北京理工大学数学专业解析几何期末试题(MTH17014H0171006)

合集下载

北京理工大学数学专业最优化方法期末试题级A卷级B卷MTH

北京理工大学数学专业最优化方法期末试题级A卷级B卷MTH

北京理工大学数学专业最优化方法期末试题级A卷级B卷MTH课程编号:MTH17171北京理工大学2014-2015学年第二学期2013级最优化方法期末试题A 卷一、(10分)设()f x 是凸集nS R ?上的凸函数,对12,x x S ∈,实数[]0,1α?,令()121z x x ααα=+-,若z S α∈,证明()()()121f z f x x ααα≥+-。

二、(10分)设数列{}k x 的通项为:22121,2,0,1,!ii i x x x i i +===L ,证明:(1){}k x 收敛于*0x =;(2)令1,0,1,k k k xx d k +=+=L ,则*lim1k kk x x d →∞-=;(3){}k x 不是超线性收敛于*x 的。

三、(10分)求解整数规划问题:1212121212min ..14951631,0,,z x x s t x x x x x x x x =-++≤-+≤≥∈Z。

(图解法,割平面法,分枝定界法均可)四、(10分)设f 连续可微有下界,且f ?Lipschitz 连续,即:存在常数0L > ,使得,n x y R ?∈,()()f x f y L x y ?-?≤-,设{}k x 由Wolfe-Powell 型搜索产生,k d 为下降方向,()()cos T k k k kkf xdf x dθ?=-,证明:(1)()220cos kk k f x θ∞=?<∞∑;(2)若0δ?>,使得k ?,cos k θδ≥,则()lim 0k k f x→∞=。

五、(10分)设f 连续可微,序列{}k x 由最速下降法解()min f x ,并做精确搜索产生,证明:0,1,k ?=L ,()()10Tk k f xf x +??=。

六、(10分)已知线性规划:1234123412341234max 2347..23482673,,,0z x x x x s t x x x x x x x x x x x x =++++--=-+-=-≥。

北京理工大学数学专业解析几何期末试题(MTH17014-H0171006)

北京理工大学数学专业解析几何期末试题(MTH17014-H0171006)

北京理工大学数学专业解析几何期末试题(MTH17014-H0171006)课程编号:MTH17014 北京理工大学2011-2012学年第一学期2011级本科生解析几何期末试题A 卷姓名--------------,班级------------,学号--------------,题目一 二三四五六总分得分一,单选题(30分)1,已知空间三点A,B,C,下面哪个条件能确定A,B,C 四点共面( ) (a),空间任意一点O,三点满足 (b),空间任意一点O,三点满足(c),空间任意一点O,三点满足(d),空间任意一点O,三点满足2, 已知三向量满足下面哪个条件说明这三向量共面( )(a), , (b),, (c), , (d), .3,在一仿射坐标系中,平面,点A(1,-2,-1)和点B(2,-1,3).则下面说法正确的是( )(a)点A 和点B 在平面π的两侧; (b)点A 和点B 在平面π的同侧;(c)线段AB 平行于平面π; (d)线段AB 垂直于平面π.4, 在仿射坐标系中,已知直线和直线,则下面说法正确的是( ).OA OB OC =+ 11.22OA OB OC =+0.OA OB OC ++= 110.23OA OB OC ++=,,,αβγ()0αβγ⋅=0.αββγγα⨯+⨯+⨯=()0αβγ⨯⨯=()()αβγβγα⨯∙=⨯∙:2430x y z π+++=2103260x z x y ++=⎧⎨+-=⎩2102140x y z x z +--=⎧⎨+-=⎩(a)两直线平行; (b)两直线相交; (c)两直线异面; (d)两直线重合.5, 在仿射坐标系中,已知平面和直线,则下面说法正确的是( )(a)直线和平面平行; (b)直线和平面相交; (c)直线在平面上; (d)直线和平面垂直.6,在平面仿射坐标中,直线与轴相交,则( )(a),(b),(c),(d)7,在空间直角坐标系下,方程的图形是( )(a),椭球面;(b),单叶双曲面;(c),双叶双曲面;(d),锥面。

北京理工大学数学专业微分几何2012级期末试题(MTH17071)

北京理工大学数学专业微分几何2012级期末试题(MTH17071)

课程编号:MTH17071 北京理工大学2014-2015学年第二学期
2012级微分几何期末试题(回忆复原版)
一、设曲线()r r s =的挠率τ是一非零常数,s 是弧长参数,
求曲线()()()1
r s s s ds βγτ=-⎰ 的曲率和挠率。

二、设在曲线():C r r s =的所有法线上截取长度为λ的一段,它们的端点的轨迹构成曲面
S ,称为围绕曲面C 的管状曲面,其方程是()()()()(),cos sin r
s r s s s θλθβθγ=+⋅+⋅ ,其中s 是曲线的弧长参数,()(),s s βγ分别是曲线C 的主法向量和次法向量,试研究此曲面上各种类型的点的分布。

三、证明:曲面S 的平均曲率12
H b g αβαβ=。

四、求锥面2220x y z +-=上的测地线。

五、写出Gauss-Bonnet 公式,并说明其意义。

六、假定,,x y z 是,,u v w 的光滑函数,证明()()
,,,,x y z dx dy dz du dv dw u v w ∂∧∧=∧∧∂。

附:2012级微分几何考题回忆
1.曲率,挠率
2.椭圆点,双曲点,抛物点
3.练习题第五章第一题
4.测地线
5.写出gauss-bonnet 公式,以及意义
6.第七章倒数第二题。

北京理工大学2015学年第二学期《工科数学分析》期末考试卷及参考答案

北京理工大学2015学年第二学期《工科数学分析》期末考试卷及参考答案

4
九. (9 分) 把 f (x) = x ln(2 + x) 展成 x + 1的幂级数, 并指出收敛域. 十. (9 分) 证明 (2x cos y − y2 sin x)dx + (2 y cos x − x2 sin y)dy = 0 是全微分方程, 并求其通解.
5
∫∫ 十一. (9 分) 计算积分 I = S
……………….(7 分)
∑ = −(x + 1) + ∞ (−1)n ( 1 + 1 )(x + 1)n
n=2
n n −1
………….(8 分)
收敛域为 − 2 < x ≤ 0
……………….(9 分)
十.
∂Y = −2 y sin x − 2xsin y = ∂X
∂x
∂y
故所给方程是全微分方程
……………….(2 分)
= 1 − sin1
……………….(8 分)
三.
fx′ = 2x(2 + y2 )
f y′ = 2x2 y + ln y + 1
令 fx′ = 0
f y′ = 0
得x=0 y=1 e
……………….(2 分) ……………….(3 分)
fx′′2 = 2(2 + y2 )
fx′′y = 4xy
f y′′2
dy − dx xz dy
dz = dx + xy
1 dz
z dx dz =
0
dx dx
将点 P 代入得
1 + 3 +
dy
dx dy
− +
dz = dx 3 dz
dz dx =0

解析几何期末试卷A参考答案及评分标准.

解析几何期末试卷A参考答案及评分标准.

解析几何期末试卷A 参考答案及评分标准一、(10分)写出下列方程在空间所表示的图形名称.1.1321222-=++z y x 虚椭球面 2.0222=++-z y x 二次锥面(圆锥面)3.1321222=++-z y x 单叶双曲面4.y z x 22122=+ 椭圆抛物面 5.y x 22= 抛物柱面 .二、(10分)试证:对于给定的四个向量}3,5,1{=a ,}2,4,6{--=b ,}7,5,0{-=c ,}35,27,20{--=d ,总可以确定三个实数l ,m ,n ,使得a l ,b m ,c n ,d 构成封闭折线.证明:假设a l ,b m ,c n ,d构成封闭折线,则=+++d c n b m a l (4分)于是 ⎪⎩⎪⎨⎧=-+-=+--=-+0357230275450206n m l n m l m l (6分) 解出 2=l ,3=m ,5=n所以命题成立. (10分)三、(15分)设向量a ,b ,c 两两互相垂直,1||=a ,2||||==c b ,并且向量c b a r -+=,证明:1,cos ,cos ,cos 222>=<+><+><c r b r a r. 证明:因为22)(c b a r -+=)(2222c b c a b a c b a ⋅-⋅-⋅+++=, 由题设条件可得3||=r , (5分) 于是31||||,cos =⋅>=<a r a r a r,32||||,cos =⋅>=<b r b r b r ,32||||,cos -=⋅>=<c r c r c r(12分) 所以1,cos ,cos ,cos 222>=<+><+><c r b r a r (15分) 四、(10分)试求经过点)1,2,4(-P 和x 轴的平面方程. 解:由于平面过x 轴,可设为0=+Cz By (5分)以)1,2,4(-代入,得 02=+-C B于是 B :C =1:2 (8分)故所求平面方程为02=+z y (10分)五、(10分)试求经过点)1,0,1(-P ,并且与直线1l :321z y x ==和2l :431221-=-=-z y x 都相交的直线的方程.解:过)1,0,1(-P 与直线1l 的平面方程为321010001000=-------z y x即02=+-z y x (4分) 过)1,0,1(-P 与直线2l 的平面方程为412312011321=-------z y x即 022=--+z y x (8分)∴所求直线方程为 ⎩⎨⎧=--+=+-02202z y x z y x (10分)六、(10分)证明直线1l :01123-==-z y x 与2l :10211zy x =-=+是异面直线. 证明: 1l 的方向向量 }0,1,2{, 2l 的方向向量 }1,0,1{ (4分) 取 1l , 2l 上的点 )1,0,3(, )0,2,1(- (6分)计算7110120120)1(3≠=----所以 1l 与 2l 是异面直线. (10分)七、(10分)试求到定点与定直线的距离之比等于常数0>λ的点的轨迹方程,并根据λ的取值范围,说明轨迹的形状(注:假定定点不在定直线上). 解:设定点不在定直线上,建立坐标系,使定直线为x 轴,定点为),0,0(c C ,(0≠c ). 设动点为),,(z y x P ,则由假设可知),(),(轴x P d C P d λ=, 即 22222)(z y c z y x +=-++λ 平方,得 02)1()1(222222=+--+-+c cz z y x λλ(5分)①当1=λ时,得 0222=+-c cz x即)2(22cz c x -= 此为抛物柱面. (8分)②当1≠λ时,得2222222221)1)(1()1(λλλλλ-=---+-+c c z y x , 则当1>λ时,此为单叶双曲面;当 10<<λ时,此为椭球面. (10分)八、(10分)试求单叶双曲面∑:11649222=-+z y x 上,经过点)0,2,0(M 的两条直母线方程.解:∑上两族直母线:λ族:⎪⎪⎩⎪⎪⎨⎧-=-+=+)21()43()21()43(1221y z x y z x λλλλ μ族:⎪⎪⎩⎪⎪⎨⎧+=--=+)21()43()21()43(1221y z x y z x μμμμ将 )0,2,0(M 分别代入,可得 02=λ, 01=μ (6分)分别代入,可得所求直线方程:⎪⎪⎩⎪⎪⎨⎧=-=+021043y z x⎪⎪⎩⎪⎪⎨⎧=-=-043021z x y 即 ⎩⎨⎧=-=+02034y z x⎩⎨⎧=-=-02034y z x .(10分)九、(15分)在欧氏平面上,将方程0844222=+--+-y x y xy x 化成标准型,作出其图形,说明原方程表示什么曲线.解:由 022cot 122211=-=a a a θ得4πθ=于是 0tan 121111=+='θa a a 2tan 122222=-='θa a a 22sin cos 231313-=+='θθa a a0cos sin 231323=+-='θθa a a原方程化为: 04222=+'-'x y 配方0)2(222=-'-'x y 作平移变换 ⎩⎨⎧'=''-'=''y y x x 2 原方程化为x y ''=''222. (5分) 所以原方程表示抛物线. (10分)作图 (15分)。

北京理工大学《高等数学》历年期末考试试题及答案解析(精编版)

北京理工大学《高等数学》历年期末考试试题及答案解析(精编版)

x = (t − 1)et 八. 设曲线 C 的方程为 y = 1 − t4

dy dx
,
d2y dx2
及曲线
C
在参数
t
=
0
对应点处
–2/48–
第 1 部分 北京理工大学试题集
的曲率半径.
九. 设 f ′(x).
f (x)
=
1 x

ex
1 −
1,
x
<
0
1

1 c2os x
x
,
, x
x= >0
等于
mg k
.
∫1
十一. 设 f (x) 在 [0, 1] 上连续, 在 (0, 1) 内可导, 且满足 f (1) = 2 2 xe1−x f (x)dx, 证明:
0
至少存在一点 ξ, 使得 f ′(ξ) = (1 − ξ−1) f (ξ).
1.2 2011 级秋季学期期末试卷
一. 填空题
1. 极限 lim
x→0
x
− ln(1 x2
+
x)
=
2. 设 y
=
x2 + ln x, 则
dx dy
=
dy =
∫∞
3. 广义积分
e
dx x ln2
x
=
4.
微分方程
y′′
=
1
1 + x2
的通解为
; lim
1

x
(1
+
sin
2t)
1 t
dt
=
.
x→0 x 0
√ ; 设 f 可导,y = f (tan x) + 1 − x2, 则

【数学】北京理工大学数学专业数学析试题MTHMTH

【数学】北京理工大学数学专业数学析试题MTHMTH

【关键字】数学课程编号:MTH17042 北京理工大学2014-2015学年第一学期2014.11.32013级数学专业数学分析Ⅲ阶段测验(一)试题1.设是中的调和函数,S是中任意的分片光滑闭曲面。

求证:,其中和分别表示函数和沿S 外法线方向的方向导数。

2.叙述正项级数敛散性的比较判别法和D’Alembert比值判别法,并利用前者证明后者。

3.判断下列级数的敛散性:(1)(2)(3)(4)(5)4.设。

又设广义极限存在。

求证:当(含)时,级数收敛;当(含)时,级数发散。

5.研究级数的敛散性,包括绝对收敛性和条件收敛性,其中是实参数。

6.设收敛,其中R>0,求证:对一切,绝对收敛。

7.设,且有极限。

求证:数列收敛,且。

8.设存在,又设绝对收敛。

求证:。

课程编号:MTH17042 北京理工大学2014-2015学年第一学期2014.112013级数学专业数学分析Ⅲ期中试卷一、(15分)(1)设数项级数与均绝对收敛,问:是否一定收敛?为什么?如果收敛,绝对收敛,那么是否一定收敛?为什么?(2)设,绝对收敛,又设的n次部分和序列有界,求证:收敛。

2、(10分)设单调递减,且;又设是任意固定的正整数,求证:收敛当且仅当收敛。

三、(15分)设对每一个自然数n,函数在数集E内有定义,(1)用肯定语气叙述函数项级数在数集E内不满足一致收敛的Cauchy准则的严格含义;(2)设存在数列和,满足,都有,且数项级数与均收敛,试利用一致收敛的Cauchy准则证明函数项级数在数集E内一致收敛。

四、(10分)设,求证:收敛。

五、(15分)研究函数项级数的敛散性,包括绝对收敛和条件收敛,并证明:(1)函数项级数的和函数在其收敛域内连续;(2)函数项级数在其收敛域内不一致收敛。

六、(10分)设。

(1)求证:函数序列在中内闭一致收敛;(2)用两种方法证明在内不一致收敛。

七、(15分)(1)求幂级数的收敛域及和函数;(2)求函数的Maclaurin级数展开式并确定收敛区间。

北京理工大学2010-2011学年第二学期工科数学分析期末试题(A卷)

北京理工大学2010-2011学年第二学期工科数学分析期末试题(A卷)

课程编号:MTH17004, MTH17006北京理工大学2010-2011学年第二学期工科数学分析期末试题(A 卷)班级_______________ 学号_________________ 姓名__________________(本试卷共6页, 十一个大题,试卷后面空白纸撕下作草稿纸)一. 填空题(每小题2分, 共10分)1. 已知3||=a ,26||=b ,72||=⨯b a,且a 与b 的夹角是钝角,则=⋅b a ______。

2. 设x yz ye y x u z ln 2++=,则=)1,1,1()grad (div u ______________。

3. 已知向量c b a,,不共面,但向量c a c b b a +++λ,,2共面,则=λ _________。

4. 设L 是曲线1,,3===z t y t x 上从)1,0,0(A 到)1,8,2(B 的一段,若将⎰++=Lzdz ydy dx x I 2化成第一类曲线积分,则有=I _________________________。

5. 变量替换x y v x u ==,可将微分方程z yzy x z x =∂∂+∂∂化成 ________________________。

二. (9分) 交换积分次序并计算⎰⎰=yyxdx xe dy I 1。

三. (9分) 求函数y y y x y x f -+=2221),(的极值和极值点。

四. (9分)设方程523=+-y xz z 确定函数),(y x z z =,求yx z∂∂∂2。

五. (9分) 在曲面xy z =上求一点,使曲面在此点处的切平面垂直于直线13211zy x =-=+,并写出切平面方程。

六. (8分) 证明方程0ln 1=+-xdy x dx yx y y 是全微分方程,并求出通解。

七. (10分) 求幂级数∑∞=-+11)1(n n x n n 的收敛域及和函数。

大学课程《解析几何》专业期末试题A卷及答案

大学课程《解析几何》专业期末试题A卷及答案

《解析几何》期末考试试卷A适用专业: 信息与计算科学 考试日期: 2011.7 试卷类型:闭卷 考试时间:120分钟 试卷总分:100分一. 填空题(每空2分,共40分)1. 求与向量{}3,4,12a =-反方向的单位向量 .2. 向量{}1,2,3a =-与向量{}2,3,1b =-,则与a 和b 都垂直的单位向量为 .3. 设{}2,2,1a =-,向量b 与a 共线,且模为75,方向与a 相反, 则b = .4. 已知2AP PB -→-→=-,且(2,1,3)A ,(0,2,1)B -,则P 点坐标为 . 5. 一直径的两个端点坐标为(1,2,3)-, (3,0,1)的球面方程为 . 6. 在空间直角坐标系下方程221z x =+表示 .7. 二次曲线221112221323332220a x a xy a y a x a y a +++++=,当旋转角α满足 时, 方程不含交叉项.并写出曲线在直角坐标系下的三个不变量为 , , .10 222253x y z y ⎧++=⎨=⎩的圆心坐标为 .11 方程22221x y z -+=表示的曲面名称为 .12 方程2222x y z z ++=转化为球面坐标系下方程为 . 13 平面外一点(2,1,3)P 到平面221x y z -+=的距离为 . 14 写出平面240x y z -++=的法式方程 .15 平移平面直角坐标系下的坐标轴, 使新原点的坐标为(2,1)o ',则在新坐标系下坐标为(4,0)-的点在旧坐标系下的坐标为 .16 已知(1,0,1),(1,2,0),(1,2,1)a b c ==-=-,则()a b c ⨯⋅= ,()a b c ⨯⨯= .17 写出22210x y z --+=过点(2,1,-2)的直母线方程 ,.二、计算题(1,2,3每题7分,4,5每题10分, 共41分)1.求直线12340x y z --⎧=⎪⎨⎪=⎩与平面3240x y z -++=的夹角,并求交点.2.写出直线2210:220x y z L x y z +-+=⎧⎨+--=⎩的参数式方程, 并求出直线的方向余弦.3.求曲线222222x y z z x y ⎧++=⎨=+⎩在xoy 面的射影柱面方程和射影曲线方程. 4求直线11111x y z --==-在平面:210x y z π-+-=上的投影直线0l ,并求0l 绕y 轴旋转一周所成的曲面方程.5. 判断二次曲线223234440x xy y x y -+++-=是中心型,无心型还是线心型, 并化方程为标准型.三、 求证两条直线异面122:101x y z l +-==-2321:151x y z l -+-==,并求公垂线方程. (9分)四、画图题(每题5分,共10分)1.作出两个曲面z =,224z x y -=+所围立体的图形.2. 作出由三个坐标面, 曲面22z x y =+和平面1x y +=所围的立体图形.《解析几何》期末考试试卷A 答案适用专业: 信息与计算科学 考试日期: 2011.7 试卷类型:闭卷 考试时间:120分钟 试卷总分:100分二. 填空题(每空2分,共40分)1. 求与向量{}3,4,12a =-反方向的单位向量 3412,,131313⎧⎫--⎨⎬⎩⎭.2. 向量{}1,2,3a =-与向量{}2,3,1b =-,则与a 和b 都垂直的单位向量为. 3. 设{}2,2,1a =-,向量b 与a 共线,且模为75,方向与a 相反, 则b = (-10,10,-5) .4. 已知2AP PB -→-→=-,且(2,1,3)A ,(0,2,1)B -,则P 点坐标(-2,3,-5) . 5. 一直径的两个端点坐标为(1,2,3)-, (3,0,1)的球面方程为222(2)(1)(1)6x y z -+-++= .6. 在空间直角坐标系下方程221z x =+表示 拄面 .7. 二次曲线221112221323332220a x a xy a y a x a y a +++++=,当旋转角α满足 112212cot 2a a a α-=时, 方程不含交叉项.并写出曲线在直角坐标系下的三个不变量为 1I , 2I , 3I .10 222253x y z y ⎧++=⎨=⎩的圆心坐标为 (0,3,0) .11 方程22221x y z -+=表示的曲面名称为 单叶双曲面 .12 方程2222x y z z ++=转化为球面坐标系下方程为 2sin ρϕ= . 13 平面外一点(2,1,3)P 到平面221x y z -+=的距离为 5/3 . 14 写出平面240x y z -++=的法式方程0x y +=. 15 平移平面直角坐标系下的坐标轴, 使新原点的坐标为(2,1)o ',则在新坐标系下坐标为(4,0)-的点在旧坐标系下的坐标为 (-2,1) . 16 已知(1,0,1),(1,2,0),(1,2,1)a b c ==-=-,则()a b c ⨯⋅= -2 ,()a b c ⨯⨯= (5,0,5) .17 写出22210x y z --+=过点(2,1,-2)的直母线方程0220x z x y z +=⎧⎨---=⎩,10x z y -=⎧⎨+=⎩. 二、计算题(1,2,3每题7分,4,5每题10分, 共41分)1.求直线12340x y z --⎧=⎪⎨⎪=⎩与平面3240x y z -++=的夹角,并求交点.(3,4,0)s = 2分 (3,1,2)n =- 1cos 14s n s n θ⋅== 5分 12340x y z --⎧=⎪⎨⎪=⎩与3240x y z -++=解方程组得(-2,-2,0) 7分2.写出直线2210:220x y z L x y z +-+=⎧⎨+--=⎩的参数式方程, 并求出直线的方向余弦.212121ijks =--(3,0,3)= 3分取一点45(,,0)33- 4分 参数方程为433535x t y z t ⎧=-+⎪⎪⎪=⎨⎪=-⎪⎪⎩5分方向余弦cos α=,cos 0β=,cos ν= 7分3.求曲线222222x y z z x y ⎧++=⎨=+⎩在xoy 面的射影柱面方程和射影曲线方程.2242x y z ⎧+=⎨=⎩, 224x y += 7分4求直线11111x y z --==-在平面:210x y z π-+-=上的投影直线0l ,并求0l 绕y 轴旋转一周所成的曲面方程.平面束1(1)0x y z y λ--+-+=,(1,1,)n λλ=-+,1(1,1,2)n =- 3分 10n n ⋅=, 3312913I λ-=-=-,得0l :3210210x y z x y z --+=⎧⎨-+-=⎩, 6分 2224174210x y z y -++-= 10分5. 判断二次曲线223234440x xy y x y -+++-=是中心型,无心型还是线心型, 并化方程为标准型. 23113I -=-=8 3分, 中心型 4分。

北京理工大学数学专业数学分析Ⅰ试题(MTH17001H0171001)

北京理工大学数学专业数学分析Ⅰ试题(MTH17001H0171001)

北京理工大学数学专业数学分析Ⅰ试题(MTH17001H0171001)2022级数学专业数学分析Ⅰ第一次阶段测验1.(10分)设某0。

试写出十个与某等价且尽可能不同的无穷小量。

2.(15分)设某n2inn112,n1,2,(1)求证:对任意自然数n,某n(2)用N语言证明lim某nn11;2n1,并研究数列某n中是否有最大数和最小数。

23.(15分)用语言叙述某0时函数f收敛和发散的严格含义,并用两种方法证明某0时函数f某co1发散。

某某a某b0,求常数a,b的值;并给出a,b的几何意4.(10分)已知lim某某1某义。

1某co某5.(10分)研究函数f某在某0点极限的存在性。

某6.(15分)证明定理:设yfu,u某构成复合函数yf某u1某某某的极若lim某,limfuA,其中A是实常数,则当某时,函数f限存在,且limf某limfu某u7.(15分)(1)叙述limf某的严格含义;某(2)叙述f在,内取得最大值的严格含义;(3)设f在,内连续,且limf某求证:f在,内必取得最大值。

某8.(10分)设n,bn0,且成立极限limnnbn1p0。

bn1求证:数列bn收敛,且limbn0。

n2022级数学专业数学分析Ⅰ第一次阶段测验1.(10分)设某0。

试写出十个与某等价且尽可能不同的无穷小量。

2.(15分)设某n2inn211,n1,2,,用N语言证明lim某nn1,并研究2数列某n中是否有最大数和最小数。

3.(15分)设f某11co。

按定义证明:f在某0点的任意邻域内无界,但某0时某某f不是无穷大量。

4.(10分)已知lim某义。

某a某b0,求常数a,b的值;并给出a,b的几何意某1某5.(15分)某0是函数f某1某co某的哪种类型的间断点?说明理由。

某1某6.(10分)证明定理:设yfu,u某构成复合函数yf若lim某,limfuA,其中A是实常数,则函数f某00u某某在某0点的左极限存在,且limf某limfu某00u7.(15分)(1)叙述limf某的严格含义;某(2)叙述f在,内取得最大值的严格含义;(3)设f在,内连续,且limf某求证:f在,内必取得最大值。

北京理工大学数学专业解析几何期末试题(MTH17014-H0171006)

北京理工大学数学专业解析几何期末试题(MTH17014-H0171006)

课程编号:MTH17014 理工大学2011-2012学年第一学期2011级本科生解析几何期末试题A 卷--------------,班级------------,学号--------------,一,单选题(30分)1,已知空间三点A,B,C,下面哪个条件能确定A,B,C 四点共面( ) (a),空间任意一点O,三点满足.OA OB OC =+ (b),空间任意一点O,三点满足11.22OA OB OC =+ (c),空间任意一点O,三点满足0.OA OB OC ++= (d),空间任意一点O,三点满足110.23OA OB OC ++=2, 已知三向量,,,αβγ满足下面哪个条件说明这三向量共面( ) (a), ()0αβγ⋅=, (b), 0.αββγγα⨯+⨯+⨯=, (c), ()0αβγ⨯⨯=, (d), ()()αβγβγα⨯•=⨯•.3,在一仿射坐标系中,平面:2430x y z π+++=,点A(1,-2,-1)和点B(2,-1,3).则下面说确的是( )(a)点A 和点B 在平面π的两侧; (b)点A 和点B 在平面π的同侧; (c)线段AB 平行于平面π; (d)线段AB 垂直于平面π.4, 在仿射坐标系中,已知直线2103260x z x y ++=⎧⎨+-=⎩和直线2102140x y z x z +--=⎧⎨+-=⎩,则下面(a)两直线平行; (b)两直线相交; (c)两直线异面; (d)两直线重合.5, 在仿射坐标系中,已知平面10x y z ++-=和直线20210x y z x y z +-=⎧⎨-+-=⎩,则下面说确的是( )(a)直线和平面平行; (b)直线和平面相交; (c)直线在平面上; (d)直线和平面垂直.6,在平面仿射坐标中,直线1111222200A x B y C z D A x B y C z D +++=⎧⎨+++=⎩与y 轴相交,则( )(a)11220C D C D =,(b)11220A D A D =,(c)11220B D B D =,(d)11220A B A B =7,在空间直角坐标系下,方程2223230xy z xy yz +-++=的图形是( )(a),椭球面;(b),单叶双曲面;(c),双叶双曲面;(d),锥面。

解析几何-期末考试试题3套卷

解析几何-期末考试试题3套卷
说明:1.试题集中填写(或打印)在方格内,字迹须工整清晰,答题纸另附;2.试题须经教研室或系(部)领导认真审核、签字;3.学生接到试卷后,应先检查是否有缺页,如有及时报告监考老师更换。
说明:1.试题集中填写(或打印)在方格内,字迹须工整清晰,答题纸另附;2.试题须经教研室或系(部)领导认真审核、签字;3.学生接到试卷后,应先检查是否有缺页,如有及时报告监考老师更换。
解析几何期末考试试题(A3)卷
八、(12分)已知二次曲线 化简其方程,写出相应的坐标变换公式,并作出它的图形.
七、(10分)在双曲抛物面 上求平行于平面 的直母线方程
4、平面 的法式化因子 为.
5、二次曲线 的主方向为,主直径为.
三、(8分)证明 .
题号








合计
得分
一、选择题:在每小题给出的四个选项中,只有一个正确答案,把你认为是正确答案的代号,填在题后的括号内.(每小题4分,共20分)
1、如果 , ,若 ,则k为()
A. ;B. ;C. ;D. .
2、二次曲线 属于()
A.抛物型;B.椭圆型;C.双曲型;D.不能确定.
3、直线 与平面 的相关位置为()
A.垂直;B.平行;C.相交;D.直线在平面上.
4、过点M(2,-3,-5)且与平面 垂直的直线为().
A. ;B. ;
C. ;D. .
说明:1.试题集中填写(或打印)在方格内,字迹须工整清晰,答题纸另附;2.试题须经教研室或系(部)领导认真审核、签字;3.学生接到试卷后,应先检查是否有缺页,如有及时报告监考老师更换。
解析为何值时,二次曲线 为中心直线()
A.a=1.b=4;B.a=2,b=8;C.a=3.b=10;D.a=4,b=12.

北京理工大学2015工科数学分析期末试题(答案)

北京理工大学2015工科数学分析期末试题(答案)

课程编号:MTH17003 北京理工大学2015-2016学年第一学期工科数学分析期末试题(A 卷)评分标准一. 填空题(每小题4分, 共20分) 1、1-; 2、23、24π4、2y x π=-5、11(,())x f x ,(0,(0))f二、解: (1)当1x ≠时,222222(1)22()1(1)x x xf x x x +-⋅'=++ 2222212(1)1|1|(1)x x x x -=+⋅+-+ ………………(2分) 当1x >时,2222212(1)()011(1)x f x x x x -'=+⋅=+-+, ………………(3分) 当01x <<时,22222212(1)4()11(1)1x f x x x x x -'=+⋅=+-++, ………………(4分) 又 (1)0f +'=,214(1)lim 21x f x--→'==+,所以(1)f '不存在。

………………(6分) (2)由(1)知,当1≥x 时,()0f x '=,所以()f x 恒等于常数,………………(7分)又2(1)2arctan1arcsin11f =++π=, 所以当1≥x 时,22()2arctan arcsin =1xf x x xπ=++。

………………(8分)三. 解:当10x -≤<时,1()()xF x f t dt -=⎰1(1)xt dt -=+⎰21(1)2x =+, ……………(2分)当01x ≤≤时,1()()x F x f t dt -=⎰01()()xf t dt f t dt -=+⎰⎰10(1)xt dt tdt -=++⎰⎰2122x =+ ………………(6分)即 221(1)102()10122x x F x x x ⎧+-≤<⎪⎪=⎨⎪+≤≤⎪⎩,又01lim ()lim ()2x x F x F x +-→→==,故()F x 在[1,1]-上连续。

解析几何试卷及答案整理

解析几何试卷及答案整理

《解析几何》期末试卷及答案一、 填空 (每题3分,共30分) 1 .若 a =1, a 6 = 2 ,则摄影 a b= _______ 2 ___________________2 •已知不共线三点A(1,2,3),B(2,1,_5),C(3,2,_5)则三角形ABC 的 BC 边上的高为 __8 ______ 。

3. a , b 满足 ____ a = b ____________ , 时a+ b 平分 a , b 夹角。

4. 自坐标原点指向平面:2x • 3y • 6z — 35 =0的单位法矢量为以 x+z) =t(_y) 、t(x _ y) = sy5. 将双曲线 r 2 2 y z1丿尹一 C 2 * T 绕虚轴旋转的旋转曲面方程为 I x 0x 2y 2b 22z_1一 2 - * 1C6. 直线丿Ax+B q y+C q Z + D d =0 ;x+B :;+C :z + D 2=0与X 轴重合,则系数满足的条件为 D i 0G ¥C2C1 A19 A2=0 =0=D 2 = 0, 7.空间曲线「一的参数方程为 x + z =0X - -t 4y = 2t 或彳 y = -2t z 二 t 2x - -t 4oZ =t 28 .直纹曲面x 2 • y 2 -z 2=0的直母线族方程为"w(x + z) = uyU(x — y) = w(—y),或 ______2 12 9’三、计算题(6X 5=30分)1.已知 a J 3,2,11, 20,-12,'6,5,0;①试证a, b , c 共面 ②把c 分解为a , b 的线性组合3 2= (a,b,c) = O -1 6 5而a , b 不共线,所以c 可以分解为a , b 的线性组合c = 2a-b即(x -1) -2(y 2) (x -1)=0 , 整理得x -2y - 6 =02. 3. 4. 5. A 椭圆型B 双曲型 C 无心型D 线心型 点O 到平面二:2x — y 2z 0的距离为(D ) 5 A 5 B5C 9设a, b,c 满足关系a b c A 、b)若直线亍二次曲线 A 、 1 :1F(x, y)上相交,贝U 必有(1-2xy y 2 1:2-1 =0的渐近方向为(、1 : -1 、1 : -22.求与平面x y ■ z - 5 =0垂直且通过直线l :--1 y2 z-1 23的平面二的方程x -1 y 2 z -1解平面兀的方程为1 1 1=0 ,2 =24 +6 —30 =0,二 a , b , c 共面将点 p 6,2,8 代入得 w:u =1: 2 , s = 0 所以,过点p 6,2,8的两条直母线方程为——y + — —2=03 4 空亠z_1=0 k 3 2 2 求通过点p 4,0, -1且与x 轴平行的直线的参数式、对称式、一般式及摄影式方程所求直线的参数式方程为对称式方程为口y =0 z = -1=0 与 12 : x 2 2xy • y 2- x • y = 0 的公共直径对于 h : x 2 _xy _ y 2 _x _ y 二 0 , I 2 --13. 求过单叶双曲面-丫92 …2 2--1上点p 6,2,8的两条直母线方程 4 162 2单叶双曲面—乂9 4 2-1上的两族直母线方程为 16 x zy w( ) = u(1 )3 4u (△- Z) =w(1 --) x z y s(:+T=t(1—彳) 一 x z 、 ” y 、 t(— -—) = s(11 -- =02x -- =0.3 44.般式方程为*y = 0 Z - -5.1 1 °x——y__=0 1 342 2 解出中心坐标为(丄,-3)--x-y-—=0 5 5.2 2求两条二次曲线h : x2 - xy - y2 - x - y5-一丄0为中心型4x =3t 72.证明直线 x -1z -5 -3与直线 y =2t2共面并求它们所在的平面的方程而对于 12 : x 2 2xy y 2 - x y = 0, 12专,为无心型,它的 2渐近方向为X :丫二-a 12 : a 11因此公共直径方程为 -1=0 即 5x 5y 2 = 0四、证明题(2X 5=10分)1.设L 、M 、N 分别是△ ABC 的三边BC 、CA 、AB 的中点,证明:三中线矢量AL BM CN 可以构成一个三角形•1 1 — 证明 因为 AL (AB AC), BM (BA BC),CN =2 2 1-(CA CB)2所以AL BM CN 1 ■ I1 ' ’ 1 _ ・(AB AC) (BA BC) (CA CB) 因此ALBMCN 可 以构成一个三角形.证明因为■:二x -1 y 2 -3z _5=0, 整理得 2x -18y -15Z-37 =0五、利用坐标变换化简二次曲线 x 2 - xy ■ y 2■ 2x -4y = 0 并作图(15 分)解因为I 237 所以曲线为中心二次曲线,解方程组41x y 2 1F (x, y) x y -2 = 0F 1(x, y)二1=0…2或者写成标准形式22=1得中心的坐标为x=0,y=2,取(0,2)为新的原点,作移轴 原方程变为 x'2 -x' y'- y'2 -4 = 0 再转轴消去x'y'项'设旋转角为「则就一需=01 -tan2 :2ta n _:s 从而可取「4,所以得转轴公式为1x "2 3宀"这是一个椭圆,它的图形如图所示9. ________________________________________ 线心型二次曲线F(x,y)=0的渐近线方程为 __________________ a 11x a 12y a 1^ 0110. ______________________________________________ 二次曲线5x 27xy y^x 2^0在原点的切线为 _______________________________________________________= 36 -24 • 48 -36 -48 • 24 =0,所以两直线共面而它们所在的平面方程为(x"-y")(x" y")经转轴后曲线的方程化简为最简形式‘X = x' y =--x ^0 _________________________________________________2二、选择题(每题3分,共15分)1. 二次曲线x2 6xy y2 6x 2y-^0的图象为(B )。

北京理工大学2011-2012学年第一学期工科数学分析期末试题

北京理工大学2011-2012学年第一学期工科数学分析期末试题

e4 1 4
二.
1 1 x2 3x 2
2
lim
x 0
x arcsin x e
x3
1
lim
x 0
x arcsin x x3
…………………
1 lim
x 0
……………………
1 ( x 2 ) 1 x 1 lim lim 2 2 2 x0 x0 3x 1 x 3x 2 1 x 2 1 6
0 x 4 x
3 ( x, y )
y
dW xgy 2 dx gx (3 W gx (3
0 4

4 0
9 g (16 x 8 x 2 x 3 )dx 16
3 2 x) dx 4
3 2 x) dx ……………(4 分) 4
……பைடு நூலகம்…………..(6 分)
12g 12000g (J)
令 f ( x) 0 得 x
2 2 f ( x) 在 (0, ) , ( , ) , ( , ) 内单调 3 3 3 3
f ( 0) a 0 f ( ) a 0 f( 2 3 3 ) a 0 3 16
3
x
2 3
3 3 f( ) a 3 16
…………………..(7 分)
10
2 (1
3 e) 5
x 0
………………….(11 分) …………………….(2 分)
十.
令xt u

x 0
g ( x t )dt g (u )du
9
f ( x) 2 x 2 g (u )du
0
x
f ( x) 4 x g ( x)

北京理工大学数学专业数学分析Ⅰ试题(MTH17001,H0171001)

北京理工大学数学专业数学分析Ⅰ试题(MTH17001,H0171001)

2010级数学专业数学分析Ⅰ第一次阶段测验1.(10分)设0x →。

试写出十个与x 等价且尽可能不同的无穷小量。

2.(15分)设1,2,n x n == 。

(1)求证:对任意自然数n ,112n x n-<; (2)用N ε-语言证明1lim 2n n x →∞=,并研究数列{}n x 中是否有最大数和最小数。

3.(15分)用εδ-语言叙述0x →时函数f 收敛和发散的严格含义,并用两种方法证明0x →时函数()1cosf x x=发散。

4.(10分)已知lim 0x ax b →+∞⎛⎫--=⎪⎪⎭,求常数,a b 的值;并给出,a b 的几何意义。

5.(10分)研究函数()11cos xx x f x x ⎛⎫+-= ⎪ ⎪⎝⎭在0x =点极限的存在性。

6.(15分)证明定理:设()(),y f u u x ϕ==构成复合函数()()y fx ϕ=。

若()()lim ,lim x u x f u A ϕ→+∞→∞=∞=,其中A 是实常数,则当x →+∞时,函数()()f x ϕ的极限存在,且()()()lim lim x u f x f u ϕ→+∞→∞=。

7.(15分)(1)叙述()lim x f x →∞=-∞的严格含义;(2)叙述f 在(),-∞+∞内取得最大值的严格含义;(3)设f 在(),-∞+∞内连续,且()lim x f x →∞=-∞。

求证:f 在(),-∞+∞内必取得最大值。

8.(10分)设,0n n b ∀>,且成立极限1lim 10n n n b n p b →∞+⎛⎫-=>⎪⎝⎭。

求证:数列{}n b 收敛,且lim 0n n b →∞=。

2011级数学专业数学分析Ⅰ第一次阶段测验1.(10分)设0x →。

试写出十个与x 等价且尽可能不同的无穷小量。

2.(15分)设1,2,n x n == ,用N ε-语言证明1lim 2n n x →∞=,并研究数列{}n x 中是否有最大数和最小数。

北京理工大学2013-2014学年第一学期《数学分析》期末测试卷(A卷)(附参考答案)

北京理工大学2013-2014学年第一学期《数学分析》期末测试卷(A卷)(附参考答案)

课程编号:MTH17003 北京理工大学2013-2014学年第一学期工科数学分析期末试题(A 卷)班级_______________ 学号_________________ 姓名__________________(本试卷共6页, 十一个大题. 解答题必须有解题过程. 试卷后面空白纸撕下做草稿纸. 试卷不得拆散.)一. 填空题(每小题2分, 共10分)1. 设)(x p 是多项式, 且,2)(lim 23=-∞→x x x p x ,3)(lim 0=→xx p x ,则=)(x p ____________________.2. 曲线θρcos 1-=在4πθ=处的切线斜率等于__________________.3. 已知点)3,1(为曲线23bx ax y +=的拐点, 则_,__________=a .______________=b4. 设⎰⋅+-=102)(arctan 1)(dt t f x x x f , 则=)(x f _________________________________.5. 质量为m 的降落伞从跳伞塔下落, 所受空气阻力与速度成正比(比例系数为0>k ), 则降落伞的位移)(t y 所满足的微分方程为___________________________________. 二. (8分) 求极限 .1)1ln(lim2tan 0--+→xx ex x三. (8分) 设e xy e y=-确定函数)(x y y =, 求22,dxyd dx dy .四. (9分) 设⎰+∞∞→=⎪⎭⎫⎝⎛-+082lim dx e x a x a x x xx ),0(≠a 求常数a 的值.五. (9分) 求微分方程4yx ydx dy +=的通解.六. (9分) 已知x x a x f 3sin 31cos )(-=在3π=x 处取得极值, 求a 的值, 并判断)3(πf 是极大值还是极小值.七. (9分) 求曲线x y =2与直线2-=x y 所围成平面图形的面积A, 以及此平面图形绕y 轴旋转一周所得旋转体的体积V .八. (9分) 求不定积分.11⎰+dx xxx九. (9分) 一圆锥形贮水池, 深3m, 直径4m, 池中盛满了水, 如果将水抽空, 求所作的功. (要求画出带有坐标系的图形)十. (12分) 设0)()()(0=-++⎰-xx dt t f x t e x f , 其中)(x f 是连续函数, 求)(x f 的表达式.十一. (8分) 设)(x f 在]1,0[上非负连续, 试证存在)1,0(∈ξ, 使得区间]1,[ξ上以)(ξf 为高的矩形面积等于区间],0[ξ上以)(x f y =为曲边的曲边梯形的面积.(2013-2014)工科数学分析第一学期期末试题(A 卷)解答(2014.1)一.1. x x x 3223++2.12+3. ,23- 294. x x arctan 2ln 2412+-+-ππ5. dt dyk mg dt y d m -=22二. 原式 x x x x 20tan )1ln(lim-+=→20)1ln(lim xx x x -+=→ ……………..(2分) x x x 2111lim 0--+=→ ……………..(6分) )1(21lim0x x --=→ ……………..(7分)21-= ……………..(8分)三. 0=--dx dy x y dx dy e y……………..(3分) x e ydx dy y-= ……………..(4分) 222)()1()(x e dx dy e y x e dx dy dx y d y y y ----⋅= ……………..(6分) 2)()1()(x e x e y e y x e x e y y yyy y -----⋅-= ……………..(7分) 32)(22x e e y ye xy y yy --+-= ……………..(8分)四. x x a x a x ⎪⎭⎫⎝⎛-+∞→2lim a x axa a x x a x a --∞→-+=33])31[(lim ……………..(2分) a e 3= ……………..(3分)⎰+∞08dx ex x ⎰+∞-=08dx xe x ⎰+∞--=08xxde ……………..(4分) ⎰+∞-∞+-+-=088dx e xe x x ……………..(6分)880=-=+∞-xe ……………..(8分)83=a e 2ln =a ……………..(9分)五.31y x y dy dx += 31y x ydy dx =- ……………..(2分) )(131⎰⎰+⎰=---dy ey C ex dyy dyy……………..(4分))(ln 3ln ⎰-+=dy e y C e y y ……………..(6分) )1(3⎰+=dy yy C y ……………..(8分) 431y Cy += ……………..(9分) 六. x x a x f 3cos sin )(--=' ……………..(3分)由 0123)3(=+-='a f π 得 32=a ……………..(5分)x x a x f 3s i n 3c o s )(+-='' ……………..(7分)因为031)3(<-=''πf 故 )3(πf 是极大值 ……………..(9分)七.抛物线与直线的交点为)2,4(),1,1(- ……………..(1分)⎰--+=212])2[(dy y y A ……………..(3分)29)322(2132=-+=-y y y ……………..(5分)⎰--+=2142])2([dy y y V ππ ……………..(7分)ππ572]51)2(31[2153=-+=-y y ……………..(9分)八. 令 x x t +=1 即 112-=t x ……………..(2分) ⎰--=dt t t I 1222……………..(3分)⎰-+-=dt t )111(22 ……………..(4分) ⎰+--+-=dt t t )1211211(2 ……………..(6分)C t t t +--++-=1ln 1ln 2 ……………..(8分) C xx xx xx +-+-++++-=11ln11ln12 ……………..(9分)九. dx x gx dx x gx dx y g x dW 222)3(94)31(4-=-⋅=⋅=πμπμπμ ……..(3分)⎰-=302)3(94dx x gx w πμ ……………..(5分)⎰+-=3032)69(94dx x x x g πμ30432)41229(94x x x g +-=πμ ……………..(8分)g g ππμ30003==(J) ……………..(9分)十. ⎰⎰-+-=-xxx dt t tf dt t f x e x f 0)()()( ……………..(1分)⎰+='-xx dt t f e x f 0)()( ……………..(2分))()(x f e x f x +-=''- x e x f x f --=-'')()( ……………..(3分) 1)0(-=f 1)0(='f ……………..(5分) 012=-r 1±=r ……………..(6分) x x e C e C x f -+=21)( ……………..(7分)设 xA x e x f -=)(* ……………..(8分)代入微分方程得 1=A x xe x f -=1)(* ……………..(9分)通解为 xx x xe e C e C x f --++=21)(21 ……………..(10分) 由初值得 411-=C 432-=Cx x x xe e e x f --+--=214341)( ……………..(12分)十一. 令 ⎰-=tdx x f t t F 0)()1()( ……………..(2分)则)(t F 在]1,0[连续, 在)1,0(可导, 又 0)1()0(==F F由罗尔定理, )1,0(∈∃ξ, 使 0)(='ξF ……………..(6分)0)()1()(0=-+⎰ξξξf dx x f ……………..(7分)即 ⎰=-ξξξ0)()()1(dx x f f 得证 ……………..(8分)。

北京理工大学数学专业模糊数学期末试题(MTH17077)汇编

北京理工大学数学专业模糊数学期末试题(MTH17077)汇编

课程编号:MTH17077 北京理工大学2013-2014学年第二学期2011级模糊数学期末试题(本卷推断为2011级试题)一、(15分)设论域为实数集,(),A B F ∈,()(),011,122,12,3,230,0,x x x x A x x x B x x x ≤≤-≤≤⎧⎧⎪⎪=-≤≤=-≤≤⎨⎨⎪⎪⎩⎩其它其它,(1)写出0.60.7,A A ∙;(2)求,c AB A 的隶属函数;(3)求A 与B 的内积,外积,格贴近度。

二、(10分)设H 是实数集R 上的集合套,已知()(),0,1H λλ⎡=∈⎣,令()[]0,1A H λλλ∈=。

(1)求ker ,A SuppA ;(2)求A 的隶属函数()A x 。

三、(10分)设余三角范式S 的表达式为(),S a b a b ab =+-,求与S 对偶的三角范式T 的表达式(),T a b 。

四、(15分)已知{}123456,,,,,X x x x x x x =,R 是X 上的模糊关系。

110.70.40.60.60.610.60.40.60.60.70.710.40.60.60.60.60.610.60.60.610.60.410.60.60.70.60.40.61R ⎛⎫⎪ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭, (1)判断R 是否是模糊拟序矩阵,说明理由;(2)依据R 对X 进行分类(要求写出对应各阈值λ的分类以及类间偏序关系)。

五、(10分)设{}{}1231234,,,,,,X x x x Y y y y y ==,R 是X 到Y 的模糊关系,0.70.510.90.20.40.60.810.20.60R ⎛⎫⎪= ⎪ ⎪⎝⎭。

(1)求R 在X 中的投影X R ,R 在3x 处的截影3x R ;(2)设R T 为R 诱导的模糊变换,{}23,A x x =,求()R T A 。

六、(15分)设论域为实数集R ,已知()()()2,,,x f x x A F A x e x -=∈=∈。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程编号:MTH17014 理工大学2011-2012学年第一学期2011级本科生解析几何期末试题A 卷--------------,班级------------,学号--------------,一,单选题(30分)1,已知空间三点A,B,C,下面哪个条件能确定A,B,C 四点共面( ) (a),空间任意一点O,三点满足.OA OB OC =+(b),空间任意一点O,三点满足11.22OA OB OC =+(c),空间任意一点O,三点满足0.OA OB OC ++=(d),空间任意一点O,三点满足110.23OA OB OC ++=2, 已知三向量,,,αβγ满足下面哪个条件说明这三向量共面( ) (a), ()0αβγ⋅=, (b), 0.αββγγα⨯+⨯+⨯=, (c), ()0αβγ⨯⨯=, (d), ()()αβγβγα⨯•=⨯•.3,在一仿射坐标系中,平面:2430x y z π+++=,点A(1,-2,-1)和点B(2,-1,3).则下面说确的是( )(a)点A 和点B 在平面π的两侧; (b)点A 和点B 在平面π的同侧;4, 在仿射坐标系中,已知直线2103260x z x y ++=⎧⎨+-=⎩和直线2102140x y z x z +--=⎧⎨+-=⎩,则下面说确的是( )(a)两直线平行; (b)两直线相交; (c)两直线异面; (d)两直线重合.5, 在仿射坐标系中,已知平面10x y z ++-=和直线20210x y z x y z +-=⎧⎨-+-=⎩,则下面说确的是( )(a)直线和平面平行; (b)直线和平面相交; (c)直线在平面上; (d)直线和平面垂直.6,在平面仿射坐标中,直线1111222200A x B y C z D A x B y C z D +++=⎧⎨+++=⎩与y 轴相交,则( )(a)11220C D C D =,(b)11220A D A D =,(c)11220B D B D =,(d)11220A B A B =7,在空间直角坐标系下,方程2223230x y z xy yz +-++=的图形是( ) (a),椭球面;(b),单叶双曲面;(c),双叶双曲面;(d),锥面。

8,在空间直角坐标系中,曲面的方程是22442218x xy y x y z ++-++=, 则曲面是( )(a)椭球面, (b)双曲抛物面, (c)椭球抛物面, (d)双曲柱面.9,已知平面上两个三角形△ABC 和△DEF,存在几个不同的仿射变换将三角形△ABC 映射为三角形△DEF( )(a), 1个, (b), 3个, (c), 6个, (d), 无穷多个.10, 设12,γγ是平面上两个旋转变换,则12γγ不可能是( )(a)平移变换, (b)反射变换, (c)中心对称, (d)恒同变换.二, 填空题(30分)1,在一空间直角坐标系中,四面体的顶点A,B,C,D 的坐标依次为(1,0,1), (-1,1,5), (-1,-3,-3), (0,3,4), 则四面体的体积是 .2,在仿射坐标系中,给定一平面和一直线方程分别是与32230:320:210x y z x y z l x y z π-++=⎧-+-=⎨+++=⎩,则过点(0,1,-1)与平面π平行,且与直线l 共面的直线方程是3,在空间直角坐标系中,给定二次曲面222:(1)(2)(1)10x y z Γ-+-+--=和平面方程:20y z π+=,则二次曲面Γ上点到π的点的最大距离是 .4,在空间直角坐标系中,曲线22(3)10x y z ⎧-+=⎨=⎩绕x 轴旋转的旋转面方程是.5,在空间直角坐标系中, 已知马鞍面222169x y z -=,则在马鞍面上过点(4,3,0)的直线是 . 6,在空间给定不同面的四点A,B,C,D,则坐标系[;,,]I A AB AC AD 到坐标系[;,,]I B BC BD BA 的点坐标变换公式是 .7,在平面仿射坐标系中,二次曲线2234462120x xy y x y ++++-=的中心是 .8,在平面直角坐标系中,给定曲线22695880x xy y x y y -+--+=,则它的对称轴方程是9,在平面仿射坐标系中, 二次曲线225720x xy y x y ++-+=过原点的切线方程是 .10,在空间直角坐标系中,二次曲面Г关于三个坐标平面都对称,并且已知它上面有两条曲线是2214y x z ⎧+=⎪⎨⎪=⎩和22128x y z ⎧+=⎪⎨⎪=⎩,则Г的方程是 .三,在空间空间直角坐标系中,已知曲线222100x y z ⎧+-=⎨=⎩,求经过此曲线的圆柱面方程.四,在平面仿射坐标系中,二次曲线Γ过点(3,-3), (3,-7), 且以两直线10x y -=和60x y ++=为一对共轭直径. 求二次曲线方程.五,在空间直角坐标系中,求与两个球面22216x y z ++=与222(6)4x y z +-+= 都相切的圆锥面方程.六,在平面π的仿射坐标系中,给出下面六点的坐标(1,0),(0,1),(3,1),A B C ---'''(1,1),(1,3),(2,4)A B C --和二次曲线2:310x xy y Γ-++=,仿射变换:f ππ→满足, '''(),(),().f A A f B B f C C ===求二次曲线Γ在仿射变换下的像()f Γ的方程.课程编号:MTH17014 理工大学2011-2012学年第一学期2011级本科生解析几何期末试题B 卷--------------,班级------------,学号--------------,1,已知平面三点A,B,C,下面哪个条件能确定A,B,三点共线( ) (a),平面任意一点O,三点满足OA OB OC =+ (b),平面任意一点O,三点满足1344OA OB OC =+ (c),平面任意一点O,三点满足0.OA OB OC ++= (d),空间任意一点O,三点满足130.44OA OB OC ++=2, 已知非零向量,αβ,满足0αβ⨯=,下面等式成立的是( )(a), 对于任意向量有,(,,)0γαγβ=,(b), 对于任意向量有,()0γαγβ⨯⨯=, (c), 对于任意向量有,()0γαγβ⨯⨯=, (d), 存在向量使得,(,,)0γαγβ≠,.3,在一仿射坐标系中,平面:2430x y z π+++=,点A(1,-2,-1)和点B(2,-1,3).则下面说确的是( )(a)点A 和点B 在平面π的两侧; (b)点A 和点B 在平面π的同侧; (c)线段AB 平行于平面π; (d)线段AB 垂直于平面π.4, 在仿射坐标系中,已知直线2203260x y z x y -+=⎧⎨+-=⎩和直线2020x y z x z +-=⎧⎨+=⎩,则下面说确的是( )(a)两直线平行; (b)两直线相交; (c)两直线异面; (d)两直线重合.5,在空间直角坐标系下,方程22230x y xy yz xz +++-=的图形是( ) (a),椭球面;(b),单叶双曲面;(c),双叶双曲面;(d),锥面。

6,在平面直角坐标中,方程2211122212(,)2220F x y a x a xy a y b x b y c =+++++=如果1112111121122122221222120,0,0a a b a a a a a a b a a b b c+>><, 方程(,)0F x y =的图形是 ( )(a),椭圆, (b),双曲线, (c),抛物线, (d)两条相交直线.7,直角坐标系下,椭球面2222221x y z a b c++=与球面2222x y z R ++=相切(0)a b c >>>,并椭球面在球面,则它们公共点有( ) (a),两个;(b),四个;(c),八个;(d),无穷多个.8,下面哪对几何图形在平面仿射变换下不全等( )(a)平面上任意两个梯形, (b)平面上任意两个平行四边形, (c)平面任意两个椭圆, (d)平面上任意两个双曲线.9,已知平面上两个三角形△ABC 和△DEF,存在几个不同的仿射变换将三角形△ABC 映射为三角形△DEF( )(a), 1个, (b), 3个, (c), 6个, (d), 无穷多个.10, 设12,γγ是平面上两个旋转变换,则12γγ不可能是( )(a)平移变换, (b)反射变换, (c)中心对称, (d)恒同变换.二, 填空题(30分)(0,3,4), 则四面体的体积是 .2,在空间直角坐标系中,给平面方程:610ax by z π+++=和直线参数方程:21:4131x t l y t z t =+⎧⎪=--⎨⎪=+⎩,若平面π与直线l 的垂直,则a = , b = .3,在空间直角坐标系中,给定二次曲面222:(1)(2)(1)10x y z Γ-+-+--=和平面方程:0y z π+=,则二次曲面Γ上点到π的点的最大距离是 .4,在空间直角坐标系中,曲线22(1)10x y z ⎧-+=⎨=⎩绕x 轴旋转的旋转面方程是.5,在空间直角坐标系中, 已知马鞍面222169x y z -=,则在马鞍面上过点(4,3,0)的直线是 .6,在空间给定不同面的四点A,B,C,D,则坐标系[;,,]I A AB AC AD 到坐标系[;,,]I B BC BD BA 的点坐标变换公式是 .7,在平面仿射坐标系中,二次曲线2232462120x xy y x y ++++-=的中心是 .8,在平面直角坐标系中,给定曲线22695880x xy y x y y -+--+=,则它的对称轴方程是9,在平面仿射坐标系中, 二次曲线225720x xy y x y ++-+=过原点的切线方程是 .10,在空间直角坐标系中,二次曲面Г关于三个坐标平面都对称,并且已知它上面有两条曲线是2214y x z ⎧+=⎪⎨⎪=⎩和22128x y z ⎧+=⎪⎨⎪=⎩,则Г的方程是 .三,在空间空间直角坐标系中,已知曲线224400x y z ⎧+-=⎨=⎩,求经过此曲线的圆柱面方程.四,在平面仿射坐标系中,二次曲线Γ过点(3,-3), (3,-7), 且以两直线10x y -=和五,在空间直角坐标系中,求与两个球面2224x y z ++=与222(6)9x y z +-+= 都相切的圆锥面方程.六,在平面π的仿射坐标系中,给出下面六点的坐标(1,0),(0,1),(3,1),A B C ---'''(2,1),(1,3),(2,4)A B C --和二次曲线2:2310x xy y Γ+++=,仿射变换:f ππ→满足, '''(),(),().f A A f B B f C C ===求二次曲线Γ在仿射变换下的像()f Γ的方程.课程编号:MTH17014 理工大学2012-2013学年第一学期2012级本科生解析几何期末试题A 卷--------------,班级------------,学号--------------,一,单选题(30分)1,已知空间五点A,B,C,D,O.满足131110.2488OA OB OC OD ++-=则下面说确的是( )(a), 空间五点A, B, C, D, O 一定在一个平面上. (b), 空间四点A, B, C, D,一定在一个平面上. (c), 空间五点A, B, C, D, O 一定在一个直线上. (d), 空间四点A, B, C, D 一定在一个直线上.2, 已知三向量,,,αβγ满足下面哪个条件说明这三向量共面( )(c), ()0αβγ⨯⨯=, (d), ()()αβγβγα⨯•=⨯•.3,在一仿射坐标系中,平面:2430x y z π+++=,点A(1,0,1)和点B(0,0,-3).则下面说确的是( )(a)点A 和点B 在平面π的两侧; (b)点A 和点B 在平面π的同侧; (c)线段AB 平行于平面π; (d)线段AB 垂直于平面π.4, 在仿射坐标系中,已知直线1210x y z -==-和直线11410x y z --==,则下面说确的是( )(a)两直线平行; (b)两直线相交; (c)两直线异面; (d)两直线重合.5, 在仿射坐标系中,已知平面10x y z ++-=和直线20y zx ==, 则下面说确的是( )(a)直线和平面平行; (b)直线和平面相交; (c)直线在平面上; (d)直线和平面垂直.6,在平面直角坐标中,二次曲线2862612130x xy x y +--+=是( ) (a),椭圆, (b),双曲线, (c),抛物线, (d),一对相交直线.7,在空间直角坐标系下,方程222330xy z xy yz ++++=的图形是( )(a),椭球面;(b),单叶双曲面;(c),双叶双曲面;(d),锥面。

相关文档
最新文档