通用变频器的功率因数

通用变频器的功率因数
通用变频器的功率因数

通用变频器的功率因数

通用变频器的功率因数

变频器的输入电流

变频器的输入电路是三相交流电源经全波整流后向滤波电容器Cd充电的电路,如图7. 1l(a)所示。

显然,只有当电源的线电压UL大于电容器两端的直流电压Ud时,才进行充电;低于Ud值时立即终止充电。输入电流总是出现在电压的振幅值附近,呈不连续的冲击波形式,如图7. 11 (b)所示。它具有很大的高次谐波成分,有关资料表明,输入电流的频谱分析如图7. 12所示。由图可知,24其5次谐波和7次谐波分量是很大的,几乎比基波分量小不了多少。

变频器输入电路的功率因数

高次谐波电流的瞬时功率可以由下式计算Pi=u1i1式中下标i为谐波次数。

现以5次谐波电流为例进行观察。变频器的输入电压为正弦波,如图7. 13曲线①所示,5次谐波电流如曲线②所示,两者的乘积Ps 如曲线③所示。户。曲线与时间轴之间的面积(图中之阴影部分)表示该时间段内所做的功。

由图可知,在电源电压的每半个周期内,有一部分是“+”功,是电源电压在做功;另一部分是“一”功,表示电源在吸收能量。可以证明,在电源电压的每半个周期内,所有正功Ps和与所有负功Ps和是相等的,做功的总和为0,故平均功率为O。

可见,高次谐波电流使电源与负载之间不断地进行能量交换,并不真正做功。这与贮能元件(电感元件和电容元件)在交流电路中和电源之间进行能量交换其效果耋是完全相同的。

变频器输入电路的无功功率是由高次谐波电流产生,而高次谐波电流成分较大。因此变频器输入电路的功率因数较低。

改善变频器功率因数的方法

如前所述,变频器功率因数较低的原因是输入端高次谐波电流成分较大,而产生高次谐波电流的原因是中间直流环节的大滤波电容。

针对以上分析的情况,在变频器输入电路中,改善功率因数的根本途径是削弱高次谐波电流。为此,在电路中串入电抗器是比较行之有效的方法。具体方法有两种,如图7. 14所示。

(1)直流电抗器Ld串于整流桥和滤波电容之间。直流电抗器的结构简单、体积小,且滤波效果好,可使功率因数提高到0. 95。

(2)交流电抗器LA串接于三相的输入电路中。交流电抗器的滤波效果较差,只能将功率因数提高到0. 5~0.85。但它除了滤波功能外,还具有以下功能:

①抑制输入电路中的浪涌电流。

②削弱电源电压不平衡的影响。

接人电抗器后,各次谐波电流与电感的关系如图7.15 所示。由图可知,随着电感量的增大,各次谐波电流都将显著减小。

图7. 15表明,电感越大,改善功率因数的效果越好。但电感太大,也会增大基波电流的电压降,减小变频器的输入电压。所以,选用电抗器时,电抗器上的电压降以不大于额定电压的3%为宜。

由于电源变压器的内部阻抗也能起到电抗器的上述作用。因此,一般说来,当变压器容量大于500k.V.A或变压器容量超过变频器容量的10倍以上时,应选配电抗器。应该注意的是,不要在变频器输出端接电容器来吸收图7.15接入电抗器的效果高次谐波电流或改善电网功率因数。其理由如下:

(1)变频器输出是PWM电压,含有很多高次谐波,一旦接上电容器,由于谐波作用,将增大变频器输出电流,会损坏大功率开关器件和连接的电容器。

(2)变频器输入侧功率因数取决于变频器的AC-DC变换电路系统,不取决于电机的功率因数,所以在变频器的输出端连接电容器,并不能改善输入功率因数。

变频器的功率因数为什么较低?

功率因数是对负载将电能转换为有用功的度量,在数值上等于有功功率(以kW为单位)与视在功率(以kVA为单位)的比值,这个比值最大为1,意味着有功功率等于视在功率,是电气工程师追求的目标。

对于传统的线性负载(电阻、电容、电感),只有电阻性负载的功率因数为1,其他负载(电感、电容),功率因数均小于1,这是因为电感导致电流滞后于电压,电容导致电流超前于电压。当电压和电流不同相的情况,在一个周期中,会有负功率,这部分负功率与正功率抵消使总和为零,这部分功率称为无功功率(如左图所示)。这种由于电流与电压之间存在相位差导致的无功功率称为相移无功功率。

对于变频器或其他整流器负载,电流的波形与电压形状不同,不能再用上面的相移概念,而用谐波电流的概念分析功率因数。变频器的工作电流中包含基频电流和高次谐波(5、7、11、13等)电流,基频电流与电压同频同相,产生有功功率;而谐波电流与电压不同频,其产生的都是无功功率(如右图所示)。

由于变频器的谐波电流丰富,因此功率因数很低。例如,6脉整流器的相移功率因数接近为1,但是其总功率因数经常在0.65 –0.7之间。改善非线性负载的功率的主要方法是消除谐波电流。随

着电力资源紧张以及电力公司开始对无功功率实施罚款或者收费,提高功率因数已经成为电力公司和用户都关心的问题。

变频器在50HZ上运行功率因数有多少

变频器的输入电流

变频器的输入电流是三相交流电源经全波整流后向滤波电容器C 充电的电路。

显然,只有当电源的线电压UL 的瞬时值大于电容器两端的直流电压UD 时,才进行充电。所以,输入电流总是出现在电压的振幅值附近,呈不连续的冲击波形式。它具有很大的高次谐波成分。

充电电流总是出现在电源峰值附近的有限时间内,呈不连续的脉冲波形。高次谐波的瞬时功率一部分为“ + ”,另一部分为“一”,属于无功功率。这种无功功率使得变频调速系统的功率因数较低,约为 O.7 ~ 0.75 。

由于变频器输入侧功率因数较低的原因。不是电流波形滞后于电压,而是高次谐波电流造成的,所以不能通过并联补偿电容器来提高功率因数.而应设法减小高次谐波电流,具体措施就是接入电抗器,接在三相电源与整流桥之间。直流电抗器,接在整流桥与滤波电容器之间。使用其中一种就有明显效果,两种共同使用可将功率因数提高到 0.95 以上。直流电抗器除了提高功率因数外。还能限制接通电源瞬间的充电涌流。另外,不允许在变频器输出端,即与电动机的连接端并接电容器。因为变频器输出的所谓正弦波,实际上是脉冲宽度和占空比的大小按正弦规律分布的脉宽调制波,这个脉冲序列是变

频器中逆变管不断交替导通形成的,如果在输出端接入电容器,则逆变管在交替导通过程中,不但要向电动机提供电流,还会增加电容器的充电电流和放电电流,会导致逆变管损坏。

电机功率因数

什么是电机的功率因数 电网中的电力负荷如电动机、变压器等,属于既有电阻又有电感的电感性负载。电感性负载的电压和电流的相量间存在着一个相位差,通常用相位角φ的余弦cosφ来表示。cosφ称为功率因数,又叫力率。功率因数是反映电力用户用电设备合理使用状况、电能利用程度和用电管理水平的一项重要指标。 cosφ——功率因数; P——有功功率,kW; Q——无功功率,kVar; S——视在功率,kV。A; U——用电设备的额定电压,V; I——用电设备的运行电流,A。 功率因数分为自然功率因数、瞬时功率因数和加权平均功率因数。 (1)自然功率因数:是指用电设备没有安装无功补偿设备时的功率因数,或者说用电设备本身所具有的功率因数。自然功率因数的高低主要取决于用电设备的负荷性质,电阻性负荷(白炽灯、电阻炉)的功率因数较高,等于1,而电感性负荷(电动机、电焊机)的功率因数比较低,都小于1。 (2)瞬时功率因数:是指在某一瞬间由功率因数表读出的功率因数。瞬时功率因数是随着用电设备的类型、负荷的大小和电压的高低而时刻在变化。 (3)加权平均功率因数:是指在一定时间段内功率因数的平均值. 提高功率因数的方法有两种,一种是改善自然功率因数,另一种是安装人工补偿装置。 功率因数是交流电路的重要技术数据之一。功率因数的高低,对于电气设备的利用率和分析、研究电能消耗等问题都有十分重要的意义。 所谓功率因数,是指任意二端网络(与外界有二个接点的电路)两端电压U与其中电流I之间的位相差的余弦。在二端网络中消耗的功率是指平均功率,也称为有功功率,电路中消耗的功率P,不仅取决于电压V与电流I的大小,还与功率因数有关。而功率因数的大小,取决于电路中负载的性质。对于电阻性负载,其电压与电流的位相差为0,因此,电路的功率因数最大();而纯电感电路,电压与电流的位相差为π/2,并且是电压超前电流;在纯电容电路中,电压与电流的位相差则为-(π/2),即电流超前电压。在后两种电路中,功率因数都为0。对于一般性负载的电路,功率因数就介于0与1之间。 一般来说,在二端网络中,提高用电器的功率因数有两方面的意义,一是可以减小输电线路上的功率损失;二是可以充分发挥电力设备(如发电机、变压器等)的潜力。因为用电器总是在一定电压U和一定有功功率P的条件下工作。 可知,功率因数过低,就要用较大的电流来保障用电器正常工作,与此同时输电线路上输电电流增大,从而导致线路上焦耳热损耗增大。另外,在输电线路的电阻上及电源的内组上的电压降,都与用电器中的电流成正比,增大电流必然增大在输电线路和电源内部的电压损失。因此,提高用电器的功率因数,可以减小输电电流,进而减小了输电线路上的功率损失。 提高功率因数,可以充分利用供电设备和线路的容量,减小设备、线路中的损耗,电机的有效功率会提高。 1) 提高用电质量,改善设备运行条件,可保证设备在正常条件下工作,这就有利于安全生产。 2) 可节约电能,降低生产成本,减少企业的电费开支。例如:当cos?=0.5时的损耗是cos?=1时的4倍。 3) 能提高企业用电设备的利用率,充分发挥企业的设备潜力。 4) 可减少线路的功率损失,提高电网输电效率。 5) 因发电机的发电容量的限定,故提高cos?也就使发电机能多出有功功率。 在实际用电过程中,提高负载的功率因数是最有效地提高电力资源利用率的方式。 在现今可用资源接近匮乏的情况下,除了尽快开发新能源外,更好利用现有资源是我们解决燃眉之急的唯一办法。而对于目前人类所大量使用和无比依赖的电能使用,功率因数将是重中之重。 高功率因数,可提高电机设备出力。 对于3相电动机:P=√3UIcosφ所以功率因素从0.8提高到0.9,出力提高0.1UI√3其它:感应电动机的功率因数有两种,即自然功率因数和总功率因数。自然功率因数就是设备本身固有的功率因数,其值决定

(完整版)变频器能改善功率因数吗

变频器能改善功率因数吗?又是怎么改善的? 一、先确定几个概念: 1、无功功率,是负载与电源之间交换能量的快慢; 2、功率因数,是指有功功率与视在功率的比值; 2、电容的电流超前电压90度; 二、变频器产生高次谐波,又使功率因数下降。到底变频器是提高还是降低功率因数?为什么? 1、变频器的输入侧是整流、电容滤波电路; 2、由于整流二极管只是在正弦交流电压的最大值处导通,主要是电容的充电脉冲电流; 3、所以变频器产生了高次谐波电流; 4、由于整流管导通时,电流、电能只有输入没有输出,是单方向的,所以电源功率是有功功率=视在功率,没有交换能量的无功功率,功率因数是1; 5、所以变频器产生高次谐波,但功率因数没有下降,因为变频器只吸收了能量; 6、所以变频器产生高次谐波,功率因数也没有提升,因为变频器只吸收了能量,没有给电网提供无功功率 三、有些资料说变频器有电容器能提高电网的功率因数: 1、如果测量电压与电流的相位角,确实是容性角; 2、如果功率因数表是根据此容性角计算功率因数,则功率因数低于1; 3、依此功率因数计算得出的容性无功功率,认为是给电网提供的无功补偿功率,并得出“变频器有电容器能提高电网的功率因数”。 4、这是测量原理上造成的错误! 5、如果实测有功功率和视在功率; 6、变频器与电源之间就不存在无功功率; 7、也没有电容为电源提供的容性无功功率; 8、也不会出现变频器提高电网功率因数的错误说法; 四、从变频器输入端看,能量实际传递的过程和方式: 1)当交流电压大于滤波电容的电压时,整流二极管导通,滤波电容充电;

2)当交流电压经过最大值开始减小,小于于滤波电容的电压时,整流二极管反向截至,滤波电容充电结束并向负载测逆变电路供电; 3)这样没有电能不断的由电源输入到电容器,电容器不断的将电能输入到负载; 4)电流、电能是单方向流动或传输,没有逆向电源的无功功率; 晶闸管整流装置之所以得到广泛应用,是因为这种整流装置简单、便宜、可靠,而且无需换相电路。由于它显示出的极大优越性,使它成为弱电控制与强电输出之间的得力桥梁。但是这种装置不是完美无缺的。其缺点是当它输出的电压低于它的最大值.亦即在开通角较大时,功率因数低。而低功率因数运行,浪费电能,这在大功率应用中是首先要考虑的问题。变频器运行改善其输入侧的功率因数较低的问题一、变频器的无功功率与功率因数 由于变频器输入侧功率因数偏低的原因,与工频电动机的运行功率因数低有着重要的区别。由于电动机是感性负载,运行电流的相位滞后于电压,功率因数的高低取决于电流与电压之间的相位关系。而变频器功率因数低是由其电路结构造成的。变频器通常是“交一直一交”式结构,即三相交流电源经三相整流桥和滤波电容器变为直流,再经控制电路和逆变管转换为频率可调的交流电。在整流过程中,只有当交流电源的瞬时值大于直流电压UD 时,整流二极管才会导通,整流桥中才有充电电流,显然,充电电流总是出现在电源峰值附近的有限时间内,呈不连续的脉冲波形。这种非正弦波具有很强的高次谐波成分。高次谐波的瞬时功率一部分为“ + ”,另一部分为“一”,属于无功功率。这种无功功率使得变频调速系统的功率因数较低,约为O .7 ~0 .75 。 二、提高功率因数的措施 由于变频器输入侧功率因数较低的原因。不是电流波形滞后于电压,而是高次谐波电流造成的,所以不能通过并联补偿电容器来提高功率因数.而应设法减小高次谐波电流接入电抗器。交流电抗器,接在三相电源与整流桥之间;直流电抗器,接在整流桥与滤波电容器之间。使用其中一种就有明显效果,两种共同使用可将功率因数提高到0 .95 以上。直流电抗器除了提高功率因数外。还能限制接通电源瞬间的充电涌流。另外,不允许在变频器输出端,即与电动机的连接端并接电容器。因为变频器输出的所谓正弦波,实际上是脉冲宽度和占空比的大小按正弦规律分布的脉宽调制波,这个脉冲序列是变频器中逆变管不断交替导通形成的,如果在输出端接入电容器,则逆变管在交替导通过程中,不但要向电动机提供电流,还会增加电容器的充电电流和放电电流,会导致逆变管损坏。 三、电抗器的选用 电抗器对大部分变频器来说不是标准配置,是选配件。可根据需要选用。 四、交流电抗器的相关应用 有时为了降低设备投资的成本而不接交流电抗器,容忍变频调速系统在低功率因数下运行。但在下列运行环境中连接交流电抗器则是必需的: 1 .如与变频器在同一供电系统中的电子设备较多,变频器的高次谐波将影响电子设备正常工作,这时应在变频器输入侧连接交流电抗器,同时用1000V 、100nF-220nF 的电容器进行滤波,尽量减小高次谐波的干扰。 2 .同一供电系统中有容量较大的可控硅设备,由于可控硅设备也会导致电压波形的畸变,与变频器相互产生影响,因此,两种设备的输入端都应接入交流电抗器。

异步电动机功率因数

现场找不到功率表,要求以钳式电流表代替。即用电流表套住一根主电缆,测量其交流电流值,并换算为功率。 ※工人师傅的经验公式为:P=0.5*I 其中:P为电机有功功率,单位千瓦;I为实测电流,单位安培。 然则问题是,何以证明此经验公式? 三、问题的研究 电机是普通三相异步电动机,Y型接法。额定电压380V,额定功率7.5KW,额定电流15.2A。 通过经验可知,三相电机总功率等于3乘以每相的功率,即p=3*u*i,其中: p为三相电机总功率,单位瓦 u为相电压,单位伏 i为相电流,单位安注:暂用字母大小写区分相电压与线电压 又查阅资料知,线电压等于1.732倍相电压,线电流等于相电流,即p=3*(U/1.732)*I,其中:p为三相电机总功率,单位瓦 U为线电压,即380伏 I为线电流,即钳式电流表实测电流,单位安 故:得到公式p=1.732*U*I 四、问题的解决 综上,P=1.732*U*I*cosφ/1000,其中: P为三相电机有功功率,单位千瓦 U为线电压,即380伏 I为线电流,即钳式电流表实测电流,单位安 cosφ为功率因数,针对电机通常取0.8 故:P=0.52*I≈0.5*I(KW),公式得证。 五、问题的补充 1 三相四线制 三相四线制供电方式,即国际电工委员会(IEC)规定的TN-C方式,是用工作零线兼作接零保护线,可以称作保护中性线,可用NPE表示。故三根相线、一根中性线。 三相五线制供电方式,即国际电工委员会(IEC)规定的TN-S方式,是把工作零线N和专用保护线PE严格分开的供电系统。故三根相线、一根工作零线、一根保护零线。 单相三线制是三相五线制的一部分,即根据国际电工委员会(IEC)标准和国家标准而定的TN—S系统,在配电中出现了N线和PE线。故相线、零线、接地线。 三相三线制一般常用于电力输送和工厂强力电源供电,它不是国际电工委员会(IEC)规定的方式。 2 Y型接法 采用三相三线制的三角形接法,为三组线圈头尾相接,适用于4.5KW以下电动机 采用三相四线制的Y形接法又称星形接法,为三组线圈的三个尾相接,形成一个Y形,适用于4.5KW 以上电动机 3 线电压,线电流 相电压是指一相负载对地的电压,在三相四线制中,也就是相线与中性线之间的电压。 线电压是相与相的电压,在三相四线制中,也就是各相线之间的电压。 故在采用三相四线制的Y形接法中,线电压等于1.732倍相电压,线电流等于相电流。 另外,在采用三相三线制的三角形接法中,线电压等于相电压,线电流等于1.732倍相电流。 4 功率因数 电感性负载的电压和电流的相量间存在着一个相位差,通常用相位角φ表示,而功率因数就是cos φ。 空载时,定子电流基本上用来产生主磁通,有功功率很小,功率因数也很低; 随着负载电流增大,输入电流中的有功分量也增大,功率因数逐渐升高;

变频器节能计算方法

变频调速节能量的计算方法 一、概述 据统计,全世界的用电量中约有60%是通过电动机来消耗的。由于考虑起动、过载、安全系统等原因,高效的电动机经常在低效状态下运行, 采用变频器对交流异步电动机进行调速控制,可使电动机重新回到高效的 运行状态,这样可节省大量的电能。生产机械中电动机的负载种类千差万别,为便于分析研究,将负载分为平方转矩、恒转矩和恒功率等几类机械 特性,本文仅对平方转矩、恒转矩负载的节能进行估算。所谓估算,即在 变频器投运前,对使用了变频器后的节能效果进行的计算预测。变频器一 旦投运后,用电工仪表测量系统的节能量更为准确。现假定,电动机系统 在使用变频器调速前后的功率因数基本相同,且变频器的效率为95%在设计过程中过多考虑建设前,后长期工艺要求的差异,使裕量过大。如火电设计规程SDJ-79规定,燃煤锅炉的鼓风机,引风机的风量裕度分别为5%和5~10%风压裕度为10°%^ 10%~15%设计过程中很难计算管网的阻力,并考虑长期运行过程中可能发生的各种问题,通常总把系统的最大风量和风压裕量作为选型的依据,但风机的系列是有限的,往往选不到合适的风机型号就往上靠,大20%~30的比较常见。生产中实际操作时,对于离心风机、泵类负载常用阀门、挡板进行节流调节,则增加了管路系统的阻尼,造成电能的浪费;对于恒转矩负载常用电磁调速器、液力耦合器进行调节,这两种调速方式效率较低,而且,转速越低,效率也越低。由于电机的电流的大小随负载的轻重而改变,也即电机消耗的功率也是随负载的大小而改变,因此要想精确地计算系统的节能是困难的,在一定程度上影响了变频调速节能的实施。本文介绍用以下的公式来进行节能的估算。 二、节能的估算 1、风机、泵类平方转矩负载的变频调速节能风机、泵类通用设备的用电占电动机用电的50%左右,那就意味着占全国用电量的30%采用电动机变频调速来调节流量,比用挡板、阀门之类来调节,可节电20%~50%如果平均按30%+算,节省的电量为全国总用电量的9%这将产生巨大的社会效益和经济效益。生产中,对风机、水泵常用阀门、挡板进行节流调节,增加 了管路的阻尼,电机仍旧以额定速度运行,这时能量消耗较大。如果用变 频器对风机、泵类设备进行调速控制,不需要再用阀门、挡板进行节流调节,将阀门、挡板开到最大,管路阻尼最小,能耗也大为减少。节能量可 用GB12497《三相异步电动机经济运行》强制性国家标准实施监督指南中的计算公式,即: 能量可用GB12497《三相异步电动机经济运行》强制性国家标准实施监督指南中的计算公式,即:

电动机的效率 功率因数及其影响因素

电动机的效率、功率因数及其影响因素一、什么是电动机的功率因数? 异步电动机的功率因数是衡量在异步电动机输入的视在功率(即容量等于三倍相电流与相电压的乘积)中,真正消耗的有功功率所占比重的大小,其值为输入的有功功率P1与视在功率S之比,用cos ψ来表示。cosψ=P/S 电动机在运行中,功率因数是变化的,其变化大小与负载大小有关,电动机空载运行时,定子绕组的电流基本上是产生旋转磁场的无功电流分量,有功电流分量很小。此时,功率因数很低,约为0.2左右,当电动机带上负载运行时,要输出机械功率,定子绕组电流中的有功电流分量增加,功率因数也随之提高。当电动机在额定负载下运行时,功率因数达到最大值,一般约为0.7-0.9。因此,电动机应避免空载运行,防止“大马拉小车”现象。 二、什么是电动机的输入功率和输出功率 电动机从电源吸取的有功功率,称为电动机的输入功率,一般用P1表示。而电动机转轴上输出的机械功率,称为输出功率,一般用P2表示。在额定负载下,P2就是额定功率Pn。 电动机运行时,内部总有一定的功率损耗,这些损耗包括:绕组上的铜(或铝)损耗,铁芯上的铁损耗以及各种机械损耗等。因此输入功率等于损耗功率与输出功率之和,也就是说,输出功率小于输入功率。

三、什么是电动机的效率 电动机内部功率损耗的大小是用效率来衡量的,输出功率与输入功率的比值称为电动机的效率,其代表符号为η 1、三相交流异步电动机的效率:η=P/(√3*U*I*COSφ) 其中,P—是电动机轴输出功率 U—是电动机电源输入的线电压 I—是电动机电源输入的线电流 COSφ—是电动机的功率因数 2、电动机的输出功率:指的是电动机轴输出的机械功率 3、电动机的输入功率:指的是电源给电动机输入的有功功率: P=√3*U*I*COSφ(KW) 其时,这个问题有些含糊,按说电动机的输入功率应该指的是电源输入的视在功率:S==√3*U*I这个视在功率包括有功功率(电动机的机械损耗、铜损、铁损等)、无功功率。 效率高,说明损耗小,节约电能。但过高的效率要求,将使电动机的成本增加。一般异步电动机在额定负载下其效率为75~92%。异步电动机的效率也随着负载的大小而变化。空载时效率为零,负载增加,效率随之增大,当负载为额定负载的0.7~1倍时,效率最高, 影响电动机功率的因素 电动机的损耗包含各种形式,有与负载电流大小基本无关的铁损、由励磁电流产生的定子铜损以及机械损耗,还有与负载电流大小有关的定、转子铜损、杂散损耗等。即使在电动机空载情况下,电动

康沃变频器说明书

下载文档 收藏 康沃变频器说明书 康沃变频器说明书 康沃变频器的简单介绍报告人:李奋祥报告人李奋祥 2005年12月28日年月日目录第一章通用变频器发展史第一节通用变频器发展历史及特点第二节新型变频器发展趋势第二章通用变频器结构与原理第一节通用变频器的类别结构第二节通用变频器的工作原理第三节康沃变频器简介第四节 国内外其他变频器简介 2 深圳市康沃电气技术有限公司 Shenzhen CONVO Electric Technologies Co. Ltd 第一章通用变频器发展史第一节通用变频器发展历史及特点随着微机技术、电力电子技术和调速控制理论的不断发展,变频器作为一种智能调速“电源”也在不断地更新。从变频器问世以来,通用变频器主要经历以下几个发展阶段: 80年代初期的模拟式、80年代中期的数字式、90年代初期的智能式、90年代中期的多功能型及现在的集中型通用变频器。通用变频器发展主要有以下特点:1、功率器件不断更新换代双极晶体管BJT、绝缘栅双极晶体管IGBT、集成门极换流晶闸管IGCT、巨型晶体管GTO 2、应用范围不断扩大在纺织、印染、塑胶、石油、化工、冶金、造纸、食品、装卸搬运等行业都有着广泛应用 3.控制理论不断成熟 3.控制理论不断成熟 3 深圳市康沃电气技术有限公司 Shenzhen CONVO Electric Technologies Co. Ltd 第一章通用变频器发展史第二节新型通用变频器发展趋势低电磁噪音、 1、低电磁噪音、静音化新型通用变频器采用高频载波方式的正弦波SPWM调制实现静音化 2、专用化新型通用变频器为更好地发挥变频调速控制技术的独特功能,并尽可能满足现场控制的需要,派生了许多专用机型如风机水泵空调专用型、起重机专用型、恒压供水专用型、交流电梯专用型、纺织机械专用型、机械主轴传动专用型、电源再生专用型、中频驱动专用型、机车牵引专用型等。 3、系统化通用变频器除了发展单机的数字化、智能化、多功能化外,还向集成化、系统化方向发展。 4 深圳市康沃电气技术有限公司 Shenzhen CONVO Electric Technologies Co. Ltd 第一章通用变频器发展史 4、网络化 ? 新型通用变频器可提供多种兼容的通信接口,支持多种不同的通信协议,内装RS485接口,可由个人计算机向通用变频器输入运行命令和设定功能码数据等,通过选件可与现场总线:Profibus-DP、 Interbus-S 、 Device Net 、 Modbus Plus、CC-Link、LONWORKS、Ethernet、CAN Open、T-LINK等通讯 5、操作傻瓜化新型通用变频器机内固化的“调试指南”会引导你一步一步地填入调试表格,无需记住任何参数,充分体现了易操作性。 6、内置式应用软件新型通用变频器可以内置多种应用软件,有的品牌可提供多达130余种的应用软件,以满足现场过程控制的需要,如PID控制软件、张力控制软件、速度级链、速度跟随、电流平衡、变频器功能设置软件、通讯软件等 5 深圳市康沃电气技术有限公司 Shenzhen CONVO Electric Technologies Co. Ltd 第一章通用变频器发展史 7、参数自调整用户只要设定数据组编码,而不必逐项设置,通用变频器会将运行参数自动调整到最佳状态(矢量型变频器可对电机参数进行自整定)。 8、功能设置软件化通用变频器的功能可以在WINDOWS95/98环境下设置并下装,并可以进行数

通用变频器的功率因数

通用变频器的功率因数 通用变频器的功率因数 变频器的输入电流 变频器的输入电路是三相交流电源经全波整流后向滤波电容器Cd充电的电路,如图7. 1l(a)所示。 显然,只有当电源的线电压UL大于电容器两端的直流电压Ud时,才进行充电;低于Ud值时立即终止充电。输入电流总是出现在电压的振幅值附近,呈不连续的冲击波形式,如图7. 11 (b)所示。它具有很大的高次谐波成分,有关资料表明,输入电流的频谱分析如图7. 12所示。由图可知,24其5次谐波和7次谐波分量是很大的,几乎比基波分量小不了多少。

变频器输入电路的功率因数 高次谐波电流的瞬时功率可以由下式计算Pi=u1i1式中下标i为谐波次数。 现以5次谐波电流为例进行观察。变频器的输入电压为正弦波,如图7. 13曲线①所示,5次谐波电流如曲线②所示,两者的乘积Ps 如曲线③所示。户。曲线与时间轴之间的面积(图中之阴影部分)表示该时间段内所做的功。

由图可知,在电源电压的每半个周期内,有一部分是“+”功,是电源电压在做功;另一部分是“一”功,表示电源在吸收能量。可以证明,在电源电压的每半个周期内,所有正功Ps和与所有负功Ps和是相等的,做功的总和为0,故平均功率为O。 可见,高次谐波电流使电源与负载之间不断地进行能量交换,并不真正做功。这与贮能元件(电感元件和电容元件)在交流电路中和电源之间进行能量交换其效果耋是完全相同的。 变频器输入电路的无功功率是由高次谐波电流产生,而高次谐波电流成分较大。因此变频器输入电路的功率因数较低。 改善变频器功率因数的方法 如前所述,变频器功率因数较低的原因是输入端高次谐波电流成分较大,而产生高次谐波电流的原因是中间直流环节的大滤波电容。 针对以上分析的情况,在变频器输入电路中,改善功率因数的根本途径是削弱高次谐波电流。为此,在电路中串入电抗器是比较行之有效的方法。具体方法有两种,如图7. 14所示。

功率因数表的结构与工作原理及示波图法测量功率因数

功率因数表的结构与工作原理及示波图法测量功率因数 摘要:本文主要描述测量功率因数的方法,介绍相关仪表的结构及其工作原理,在测量功率因数时产生误差的因素。现在常见的是采用单片机测量功率因数,说明它的工作原理。阐述通过示波图测量功率因数的方法。 关键字:功率因数机械式电子式 1.功率因数的定义 在交流电路中,电压(U)与电流(I)之间的相位差(Φ)的余弦叫做功率因数,用符号cosΦ表示,在数值上,功率因数是有功功率和视在功率的比值,即cos Φ=P/S。 在直流电路里,电压乘电流就是有功功率。但在交流电路里,电压乘电流是视在功率,而能起到作功的一部分功率(即有功功率)将小于视在功率。有功功率与视在功率之比叫做功率因数,以cosΦ表示,其实最简单的测量方式就是测量电压与电流之间的相位差,得出的结果就是功率因数。 功率因数也可以由电路中纯阻值与总阻抗的比值求得。在实际电路中由于有电机设备中(如鼓风机、抽水机、压缩机等)等感性负载,使功率因数降低即产生了无功功率.无功功率使得电能没有全部转化为人们所用(即有功功率),而有一部分损耗(即无功功率)。也就是因为感性负载的存在,造成了系统里的一个KVAR 值,视在功率、有功功率、无功功率三者是一个三角函数的关系:KVA2=KW2+KVAR2 功率因数一般用仪表测量,有机械式功率因数表,电子式功率因数表。也可以通过示波图测量,以下分别阐述他们的结构与工作原理。 2.机械式功率因数表的结构及工作原理 单项功率因数表一般用于单相交流电路或使用对称负载平衡的三相交流电路中。单相表在频率不同时会影响读数准确性。常见机械式功率因数表一般有电动式,铁磁电动式,电磁式和变换器式几种。 现在以单相功率因数表为例来介绍机械式功率因数表的原理:

电动机功率因数的意义

电动机功率因数的意义 来源:湘潭电机厂 https://www.360docs.net/doc/1017300699.html,/ 三相异步电动机的正确接线 大多数电工都知道,三相电动机的三相定子绕组每相绕组都有两个引出线头。一头叫做首端,另一头叫末端。规定第一相绕组首端用D1表示,末端用D4表示;第二相绕组首端用D2表示,末端用D5表示;第三相绕组首末端分别用D3和D6来表示。这六个引出线头引入接线盒的接线柱上,接线柱相应地标出 D1~D6的标记。三相定子绕组的六根端头可将三相定子绕组接成星形或三角形,星形接法是将三相绕组的末端并联起来,即将D4、D5、D6三个接线柱用铜片连结在一起,而将三相绕组首端分别接入三相交流电源,即将D1、D2、D5分别接入A、B、C 相电源。而三角形接法则是将第一相绕组的首端D1与第三相绕组的末端D6相连接,再接入一相电源;第二相绕组的首端D2与第一相绕组的末端D1相连接,再接入第二相电源;第三相绕组的首端D5与第二相绕组的末端D6相连接,再接入第三相电源。即在接线板上将接线柱D1和D6、D2和D1、D5和D6分别用铜片连接起来,再分别接入三相电源。一台电动机是接成星形还是接成三角形,应视厂家规定而进行,可以从电动机铭牌上查到。三相定子绕组的首末端是生产厂家事先设定好的,绝不可任意颠倒,但可将三相绕组的首末端一起颠倒,例如将三相绕组的末端D1、D5、D6倒过来作为首端,而将D1、D2、D5作为末端,但绝不可单独将一相绕组的首末端颠倒,否则将产生接线错误。如果接线盒中发生接线错误,或者绕组首末端弄错,轻则电动机不能正常起动,长时间通电造成启动电流过大,电动机发热严重,影响寿命,重则烧毁电动机绕组,或造成电源

电机效率与功率因数

什么是电动机的功率因数? 异步电动机的功率因数是衡量在异步电动机输入的视在功率(即容量等于三倍相电流与相电压的乘积)中,真正消耗的有功功率所占比重的大小,其值为输入的有功功率P1与视在功率S之比,用cosψ来表示。 电动机在运行中,功率因数是变化的,其变化大小与负载大小有关,电动机空载运行时,定子绕组的电流基本上是产生旋转磁场的无功电流分量,有功电流分量很小。此时,功率因数很低,约为0.2左右,当电动机带上负载运行时,要输出机械功率,定子绕组电流中的有功电流分量增加,功率因数也随之提高。当电动机在额定负载下运行时,功率因数达到最大值,一般约为0.7-0.9。因此,电动机应避免空载运行,防止“大马拉小车”现象。 什么是电动机的输入功率和输出功率 电动机从电源吸取的有功功率,称为电动机的输入功率,一般用P1表示。而电动机转轴上输出的机械功率,称为输出功率,一般用P2表示。在额定负载下,P2就是额定功率Pn。 电动机运行时,内部总有一定的功率损耗,这些损耗包括:绕组上的铜(或铝)损耗,铁芯上的铁损耗以及各种机械损耗等。因此输入功率等于损耗功率与输出功率之和,也就是说,输出功率小于输入功率。 什么是电动机的效率 电动机内部功率损耗的大小是用效率来衡量的,输出功率与输入功率的比值称为电动机的效率,其代表符号为,常用百分数表示,即: 效率高,说明损耗小,节约电能。但过高的效率要求,将使电动机的成本增加。一般异步电动机在额定负载下其效率为75~92%。异步电动机的效率也随着负载的大小而变化。空载时效率为零,负载增加,效率随之增大,当负载为额定负载的0.7~1倍时,效率最高,运行最经济。

通用变频器调试步骤和参数设置

通用变频器调试步骤和参数设置快速调试 当选择P0010=1(快速调试)时,P0003(用户访问级)用来选择要访问的参数。这一参数也可以用来选择由用户定义的进行快速调试的参数表。在快速调试的所有步骤都已完成以后,应设定P3900=1,以便进行必要的电动机数据的计算,并将其它所有的参数(不包括P0010=1)恢复到它们的缺省设置值。

一、快速调试步骤和参数设置

二、功能调试 1、开关量输入功能 2、开关量输出功能 可以将变频器当前的状态以开关量的形式用继电器输出,通过输出继电器的状态来监控变频器的内部状 的每一位更改。 3、模拟量输入功能

1电压信号2~10V作为频率给定,需要设置: 以模拟量通道2电流信号4~20mA作为频率给定,需要设置: 注意:对于电流输入,必须将相应通道的拨码开关拨至ON的位置。 4、模拟量输出功能 MM440变频器有两路模拟量输出,相关参数以in000和in001区分,出厂值为0~20mA输出,可以标定为4~20mA输出(P0778=4),如果需要电压信号可以在相应端子并联一支500Ω电阻。需要输出的物理量可以 5、加减速时间 加速、减速时间也称作斜坡时间,分别指电机从静止状态加速到最高频率所需要的时间,和从最高频率

设置过小可能导致变频器过电流。P1121设置过小可能导致变频器过电压。 6、频率限制 多段速功能,也称作固定频率,就是设置参数P1000=3的条件下,用开关量端子选择固定频率的组合,实现电机多段速度运行。可通过如下三种方法实现: 1)直接选择(P0701~ P0706 = 15) 在这种操作方式下,数字量输入既选择固定频率(见上表),又具备起动功能。 3)二进制编码选择+ON命令(P0701~P0704 = 17)

变频器使用的误区

误区1: 使用变频器都能节电一些文献宣称变频器是节电控制产品,给人的感觉是只要使用变频器都能节电。实际上, 变频器之所以能够节电,是因为其能对电动机进行调速。如果说变频调速器是节电控制产品的话,那么所有的调速设备也都可以说是节电控制产品。变频调速器只不过比其它调速设备效率和功率因数略高。 变频器能否实现节电,是由其负载的调速特性决定的。对于离心风机、离心水泵这类负载,转矩与转速的平方成正比,功率与转速的立方成正比。只要原来采用阀门控制流量,且不是满负荷工作,改为调速运行,均能实现节电。当转速下降为原来的80%时,功率只有原来的51.2%。可见,变频调速器在这类负载中的应用,节电效果最为明显。对于罗茨风机这类负载,转矩与转速的大小无关,即恒转矩负载。若原来采用放风阀放走多余风量的方法调节风量,改为调速运行,也能实现节电。当转速下降为原来的80%时,功率为原来的80%。比在离心风机、离心水泵中的应用节电效果要小得多。对于恒功率负载,功率与转速的大小无关。水泥厂恒功率负载,如配料皮带秤,在设定流量一定的条件下,当料层厚时,皮带速度减慢;当料层薄时,皮带速度加快。变频调速器在这类负载中的应用,不能节电。 与直流调速系统比较,直流电动机比交流电动机效率高、功率因数高,数字直流调速器与变频调速器效率不相上下,甚至数字直流调速器比变频调速器效率略高。所以,宣称使用交流异步电动机和变频调速器比使用直流电动机和直流调速器要节电,理论和实践证明,这是不正确的。 误区2:变频器的容量选择仅以电动机额定功率为依据 相对于电动机来说,变频调速器的价格较贵,因此在保证安全可靠运行的前提下,合理地降低变频调速器的容量就显得十分有意义。 变频调速器的功率指的是它适用的 4 极交流异步电动机的功率。由于同容量电动机,其极数不同,电动机额定电流不同。随着电动机极数的增多,电动机额定电流增大。变频调速器的容量选择不能仅以电动机额定功率为依据。同时,对于原来未采用变频器的改造项目,变频调速器的容量选择也不能仅以电动机额定电流为依据。这是因为电动机的容量选择要考虑最大负荷、富裕系数、电动机规格等因素,工业用电动机常常在50%~60%额定负荷下运行。若以电动机额定电流为依据来选择变频调速器的容量,留有富裕量太大,造成经济上的浪费,而可靠性并没有因此得到提高。 对于鼠笼式电动机,变频器的容量选择应以变频器的额定电流大于或等于电动机的最大正常工作电流 1.2 倍为原则。对于重载起动、高温环境、绕线式电动机、同步电动机等条件

功率因数调整表

功率因数的标准值及其适用范围 功率因数标准0.90,适用于160千伏安以上的高压供电工业用户(包括社队工业用户)、装有带负荷调整电压装置的高压供电电力用户和3200千伏安及以上的高压供电电力排灌站; 功率因数标准0.85,适用于100千伏安(千瓦)及以上的其他工业用户(包括社队工业用户),100千伏安(千瓦)及以上的非工业用户和100千伏安(千瓦)及以上的电力排灌站; 功率因数标准0.80,适用于100千伏安(千瓦)及以上的农业用户和趸售用户,但大工业用户未划由电业直接管理的趸售用户,功率因数标准应为0.85。 功率因数的计算 凡实行功率因数调整电费的用户,应装设带有防倒装置的无功电度表,按用户每月实用有功电量和无功电量,计算月平均功率因数; 凡装有无功补尝设备且有可能向电网倒送无功电量的用户,应随其负荷和电压变动及时投入或切除部分无功补尝设备,电业部门并应在计费计量点加装有防倒装置的反向无功电度表,按倒送的无功电量与实用无功电量两者的绝对值之和,计算月平均功率因数; 根据电网需要,对大用户实行高峰功率因数考核,加装记录高峰时段内有功、无功电量的电度表,据以计算月平均高峰功率因数;对部分用户还可试行高峰、低谷两个时段分别计算功率因数,由试行的省、市、自治区电力局或电网管理局拟订办法,报水利电力部审批后执行。 电费的调整 根据计算的功率因数,高于或低于规定标准时,在按照规定的电价计算出其当月电费后,再按照“功率因数调整电费表”(表一、二、三、)所规定的百分数增减电费。如用户的功率因数在“功率因数调整电费表”所列两数之间,则以四舍五入计算。 根据电网的具体情况,对不需增设补尝设备,用电功率因数就能达到规定标准的用户,或离电源点较近,电压质量较好、勿需进一步提高用电功率因数的用户,可以降低功率因数标准或不实行功率因数调整电费办法,但须经省、市、自治区电力局批准备,并报电网管理局备案。降低功率因数标准的用户的实际功率因数,高于降低后的功率因数标准时,不减收电费,但低于降低后的功率因数标准时,应增收电费。 表一以0.90为标准值的功率因数调整电费表 减收电费增收电费 实际功率因数月电费减少%实际功率因数月电费增加%实际功率因数月电费增加% 0.90 0.00 0.89 0.5 0.75 7.5 0.91 0.15 0.88 1.0 0.74 8.0 0.92 0.30 0.87 1.5 0.73 8.5 0.93 0.45 0.86 2.0 0.72 9.0 0.94 0.60 0.85 2.5 0.71 9.5 0.95~1.00 0.75 0.84 3.0 0.70 10.0 0.83 3.5 0.69 11.0 0.82 4.0 0.68 12.0 0.81 4.5 0.67 13.0 0.80 5.0 0.66 14.0 0.79 5.5 0.65 15.0

通用变频器的过电流保护功能

当变频器的输出侧发生短路或电动机堵转时,变频器将流过很大的电流,从而造成电力半导体的损坏。为了防止过电流,变频器中设置有过电流保护电路。当电流超过某一数值时,变频器或者通过关断电力半导体器件切断输出电流,或者调整电动机的运行状态减少变频器的输出电流。 例如,如果电动机的启动时间设置过短,或者转动惯量太大时,启动时常会发生过电流,这时可以重新设置启动时间。对于新一代变频器,在电流超过额定电流的一定范围内,允许变频器运行一段时间,变频器的输出频率保持不变,此时电动机的启动时间将比设定时间要长。如果启动时间设置太短,则切断变频器的输出。 变频器为了实现过电流保护,需要从变频器的硬件和软件两个方面采取措施。由于软件处理时受到采样时间以及微处理器的处理速度的限制,因此对于某些快速变化的过电流不能进行保护。这种情况下,通常采用硬件电路进行保护。例如,在主电路电力半导体器件驱动电路中包括过电流的检测和封锁驱动信号的保护电路,它不经过CPU的处理,可以实现对变频器的快速保护。当硬件保护电路动作时,它还会给CPU发出中断信号,CPU据此进行相应的处理。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解台达变频器、三菱变频器、西门子变频器、安川变频器、艾默生变频器的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.360docs.net/doc/1017300699.html,/

电动机的功率因数

电动机知识 随着起重机的不断发展,传统控制技术难以满足起重机越来越高的调速和控制要求。在电子技术飞速发展的今天,起重机与电子技术的结合越来越紧密,如采用PLC取代继电器进行逻辑控制,交流变频调速装置取代传统的电动机转子串电阻的调速方式等。在选型对比基础上,本项目电动机调速装置采用了先进的变频调速方案,变频器最终选型为ABB变频器ACS800,电动机选用专用鼠笼变频电动机。在众多交流变频调速装置中,ABB变频器以其性能的稳定性,选件扩展功能的丰富性,编程环境的灵活性,力矩特性的优良性和在不同场合使用的适应性,使其在变频器高端市场中占有相当重要的地位。ACC800变频器是ACS800系列中具有提升机应用程序的重要一员, 它在全功率范围内统一使用了相同的控制技术,例如起动向导,自定义编程,DTC控制等,非常适合作为起重机主起升变频器使用。本文结合南京梅山冶金发展有限公司设备分公司所负责维修管理的宝钢集团梅钢冷轧厂27台桥式起重机变频调速控制系统,详细介绍ACC800变频器在起重机主起升中的应用。 1DTC控制技术 DTC(直接转矩控制,DirectTorqueControl)技术是ACS800变频器的核心技术,是交流传动系统的高性能控制方法之一,它具有控制算法简单,易于数字化实现和鲁棒性强的特点。其实质是利用空间矢量坐标的概念,在定子坐标系下建立异步电动机空间矢量数学模型,通过测量三相定子电压和电流(或中间直流电压)直接计算电动机转矩和磁链的实际值,并与给定

转矩和磁链进行比较,开关逻辑单元根据磁链比较器和转矩比较器的输出选择合适的逆变器电压矢量(开关状态)。定子给定磁链和对应的电磁转矩的实际值,可以用定子电压和电流测量值直接计算得到。在计算中,只需要一个电动机参数―――定子电阻,这一点和几乎需要全部电动机参数的直接转子磁链定向控制(矢量控制)形成了鲜明对比,极大地减轻了微处理器的计算负担,提高了运算速度 。直接转矩控制结构较为简单,可以实现快速的转矩响应(不大于5ms)。 2防止溜钩控制 作为起重用变频系统,其控制重点之一是在电动机处于回馈制动状态下系统的可靠性("回馈"是指电动机处于发电状态时通过逆变桥向变频器中间直流回路注入电能),尤其需要引起注意的是主起升机构的防止溜钩控制。溜钩是指在电磁制动器抱住之前和松开之后的瞬间,极易发生重物由停止状态出现下滑的现象。 电磁制动器从通电到断电(或从断电到通电) 需要的时间大约为016s(视起重机型号和起重量大小而定),变频器如过早停止输出,将容易出现溜钩,因此变频器必须避免在电磁制动器抱闸的情况下输出较高频率,以免发生"过流"而跳闸的误动作。 防止溜钩现象的方法是利用变频器零速全转矩功能和直流制动励磁功能。零速全转矩功能,即变频器可以在速度为零的状态下,保持电动机有足够大的转矩,从而保证起重设备在速度为零时,电动机能够使重物在空中停止,直到电磁制动器将轴抱住为止,以防止溜钩的发生。直流制动励磁功能,即变频器在起动之前自动进行直流强励磁,使电动机有足够大的起动

西门子通用型变频器的功能特点

西门子变频器进入中国市场较晚,但是其增长速度最快。西门子变频器主要分为通用型、工程型和专用型三类。西门子通用型变频器快速增长的原因主要有以下几个方面: (1)不断推出新产品,满足不同用户的特定要求。西门子产品一般的更新周期不超过5年。其产品能够满足不同用户的特殊要求。 (2)强大的通讯功能和全面的配套软件,是西门子自动化产品的一大特点。这在我国造纸、化工、钢铁、机械制造等诸多产业从技术改造向自动化控制全面推进的飞速发展过程中,尤显其竞争优势。 (3)近两年推出的MM4新一代变频器不仅具有西门子工程型变频器MasterDrive的良好架构,还具有较高的性能价格比,虽然价格不高却有着比同类产品更强大的功能。利用BiCo功能可以为更为复杂的功能进行编程,它可以在输入(数字的,模拟的,串行通讯的等等)和输出(变频器的电流,频率,模拟输出,继电器节点输出等等)之间建立布尔代数式和数学关系式。 (4) MM4新一代变频器不同于其他变频器的另一个显著特点是:他给用户提供的是一个完全开放的编程平台,使用户可以根据自己的需要最大限度的合理利用有限的资源实现尽可能复杂的控制特性。它的几十个自由功能块可以代替PLC实现一些简单的编程操作。 (5)由于价格低廉,变频器在制造时不得已选用了一些底端的原器件,或者说在选用原器件时考虑的富裕量太小。比如:耐压,耐温,耐电压、电流冲击等。因此,在我国使用的实践中出现问题相对较多,这是令我们感到非常遗憾的地方。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有 10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关变频器产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.360docs.net/doc/1017300699.html,。

如何改善变频器功率因数偏低问题

如何改善变频器功率因数偏低问题 变频器运行时,通常都要采取一些措施,以改善其输入侧的功率因数较低的问题 一、变频器的无功功率与功率因数 变频器输入侧功率因数偏低的原因,与工频电动机的运行功率因数低有着重要的区别。由于电动机是感性负载,运行电流的相位滞后于电压,功率因数的高低取决于电流与电压之间的相位关系。而变频器功率因数低是由其电路结构造成的。变频器通常是“交一直一交”式结构,即三相交流电源经三相整流桥和滤波电容器变为直流,再经控制电路和逆变管转换为频率可调的交流电。在整流过程中,只有当交流电源的瞬时值大于直流电压 UD 时,整流二极管才会导通,整流桥中才有充电电流,显然,充电电流总是出现在电源峰值附近的有限时间内,呈不连续的脉冲波形。这种非正弦波具有很强的高次谐波成分。高次谐波的瞬时功率一部分为“ + ”,另一部分为“一”,属于无功功率。这种无功功率使得变频调速系统的功率因数较低,约为 O.7 ~ 0.75 。 二、提高功率因数的措施 由于变频器输入侧功率因数较低的原因。不是电流波形滞后于电压,而是高次谐波电流造成的,所以不能通过并联补偿电容器来提高功率因数.而应设法减小高次谐波电流。直流电抗器除了提高功率因数外。还能限制接通电源瞬间的充电涌流。另外,不允许在变频器输出端,即与电动机的连接端并接电容器。因为变频器输出的所谓正弦波,实际上是脉冲宽度和占空比的大小按正弦规律分布的脉宽调制波,这个脉冲序列是变频器中逆变管不断交替导通形成的,如果在输出端接入电容器,则逆变管在交替导通过程中,不但要向电动机提供电流,还会增加电容器的充电电流和放电电流,会导致逆变管损坏。 三、电抗器的选用 电抗器对大部分变频器来说不是标准配置,是选配件。应根据需要选用。

相关文档
最新文档