测量细丝直径
应用激光衍射法测量纺织品细丝直径
应用激光衍射法测量纺织品细丝直径1. 引言1.1 激光衍射法的基本原理激光衍射法是一种利用激光光束经过细丝时发生衍射现象来测量细丝直径的方法。
其基本原理是将激光光束照射到纺织品细丝上,细丝会散射出具有特定频率和方向的光线。
这些衍射光线经过适当的光学系统,形成明暗交替的衍射斑图。
通过测量这些衍射斑的特性,如斑点之间的距离和角度,可以计算出细丝的直径。
激光衍射法利用了激光光束的高强度和单色性,使其在经过细丝后产生清晰的衍射斑图,从而能够准确测量细丝直径。
与传统的光学显微镜方法相比,激光衍射法具有更高的测量精度和测量范围,能够适用于不同类型和直径范围的纺织品细丝。
激光衍射法通过利用激光的特性和衍射现象,实现了对纺织品细丝直径的精确测量,为纺织品生产和质量控制提供了重要的技术支持。
1.2 纺织品细丝直径的重要性纺织品细丝直径是纺织品品质的重要指标之一。
纺织品细丝直径的大小直接影响着纺织品的质地、手感、透气性和耐磨性等性能。
纺织品细丝直径的精确测量对于调整纺纱工艺、改进纺织品产品质量具有重要意义。
纺织品细丝直径决定了纺织品的织物密度及表面光泽度。
纤维直径较细的纺织品更加柔软细腻,而直径较粗的纺织品则具有较强的耐磨性和结实度。
通过准确测量纤维直径,可以有针对性地调整纺纱工艺参数,生产出更符合市场需求的纺织品产品。
纺织品细丝直径对纺织品的透气性和吸湿性也有影响。
细丝直径较细的纺织品透气性好,吸湿快,适合夏季穿着;而较粗的纺织品则保暖效果更好,适合冬季穿着。
通过准确测量纤维直径,可以根据不同季节和用途要求生产出功能性更强的纺织品产品。
纺织品细丝直径的重要性不言而喻。
精确测量纤维直径将有助于提高纺织品的品质,满足消费者多样化的需求,推动纺织品行业的发展。
研究和应用激光衍射法测量纺织品细丝直径具有重要意义,值得进一步探索和推广。
2. 正文2.1 激光衍射法在纺织品细丝直径测量中的应用激光衍射法在纺织品细丝直径测量中的应用是一种非常有效的技术方法。
应用激光衍射法测量纺织品细丝直径
应用激光衍射法测量纺织品细丝直径
激光衍射方法是一种常用的非接触式测量纺织品细丝直径的方法。
相比传统的直径测
量方法,如显微镜测定法和拉力测定法,激光衍射法具有高精度、快速、不会对纤维产生
伤害等优点。
激光衍射法的基本原理是利用激光束的衍射现象,通过对衍射光的干涉图案进行分析,可以计算出纺织物细丝的直径大小。
在测量过程中,将纺织品细丝放置在激光束中心,激
光束通过光阑限制其大小,使其成为一个圆形的光斑,然后让激光束通过纺织品细丝,当
激光束与纺织品细丝相遇时,会产生衍射现象,衍射光会在示波器上形成一幅干涉图案。
根据衍射光干涉图案的形状和大小,可以计算出纺织品细丝的直径大小。
激光衍射法的优点是测量过程中不会对纤维产生损伤,能够测量微小的纤细丝,精度高,速度快。
对于纤细丝直径的测量在纺织品生产的各个环节中都具有重要的应用价值。
例如,在精纺过程中需要控制纤维的直径大小,以保证纱线的强度和质量;在纺织面料制
造过程中,需要测量细丝的直径大小,以便控制面料的质量;在纤维科学研究中,需要对
纤维的直径大小进行分析和比较,以探究纤维的物理化学性质。
因此,激光衍射法是一种非常重要的测量手段。
随着激光技术的不断发展,激光衍射
法将会越来越被广泛应用在纺织、化学等领域。
应用激光衍射法测量纺织品细丝直径
应用激光衍射法测量纺织品细丝直径
激光衍射法是一种常用于测量纺织品细丝直径的非接触式测量方法。
它利用激光光束通过纺织品细丝产生的衍射现象,结合适当的数学模型,可以准确地计算出细丝的直径。
在激光衍射法测量纺织品细丝直径时,首先需要准备一台激光仪器。
这台仪器通常由激光光源、光电探测器、计算机等组成。
激光光源会发出一束单色激光光束,经过透镜后形成平行光束照射到样品上。
当激光光束通过纺织品细丝时,会产生衍射现象,衍射光会被光电探测器接收到。
通过测量衍射光的强度分布,就可以计算出细丝的直径。
具体测量时,可以选择两种方式进行激光衍射法测量纺织品细丝直径,分别是垂直衍射法和平行衍射法。
垂直衍射法是将激光光源正对纺织品细丝,由光电探测器接收衍射光。
这时,细丝直径与衍射光的分布图案有直接的关系。
通过分析衍射光的强度分布,可以计算出纺织品细丝的直径。
由于纺织品细丝与光轴垂直,所以在计算时需要考虑细丝的俯视角等因素,以减小误差。
无论是垂直衍射法还是平行衍射法,都需要进行一定的数据处理和计算才能得到准确的纺织品细丝直径。
常用的处理方法包括傅里叶变换、图像处理等。
在实际测量中还需要考虑一些影响因素,如光源的波长、细丝的折射率等。
细丝直径的测量原理
细丝直径的测量原理
细丝直径的测量原理可以通过以下几种方法实现:
1. 显微镜法:将细丝放置在显微镜下,通过目测或使用显微镜的刻度尺来测量细丝在视野中的长度。
然后,通过使用细丝的长度与显微镜的放大倍数之间的关系,可以计算出细丝的直径。
2. 光学扫描法:使用激光或光纤光源照射细丝,并将细丝放置在光学扫描仪或显微镜下。
通过测量光线在细丝上的散射或透射情况,可以计算出细丝的直径。
这种方法通常需要使用特殊的光学设备。
3. 拉丝法:将细丝拉伸到一定长度,然后通过测量拉伸前后细丝的长度和直径的变化,可以计算出细丝的直径。
这种方法通常适用于较长的细丝。
4. 电阻法:将细丝用作电阻丝,并通过测量细丝上的电阻值来计算出细丝的直径。
根据细丝的材料和电阻特性,可以使用不同的电阻测量方法。
这些方法中的选择取决于细丝的性质、尺寸和测量要求。
在实际应用中,还可以结合多种方法来提高测量的准确性和可靠性。
大学物理实验丨利用单丝衍射测量细丝直径
大学物理实验报告利用单丝衍射测量细丝直径一、实验目的:1.观察单丝夫琅和费衍射现象。
2.利用简单工具,测量细丝直径。
二、实验原理:波在传输过程中其波振面受到阻碍时,会绕过障碍物进入几何阴影区,并在接收屏上出现强度分布不均匀的现象,这就是波的衍射。
机械波、电磁波等波动都会产生衍射,而光的衍射能更直观地观察到。
对光的衍射现象进行研究,有助于我们深入理解光的波动性与传播特征,还有助于我们进一步学习近代各种光学实验技术,如光谱分析、光信息处理、晶体结构分析等等。
1.夫朗和费衍射衍射通常分为两类:一类是菲涅耳衍射,其条件为光源与衍射屏、衍射屏与接收屏的距离为有限远;另一类是夫琅和费衍射,其条件为光源到衍射屏、衍射屏到接收屏的距离均为无限远,或者说入射光和衍射光都是平行光。
夫琅和费衍射计算结果的过程很简单,所以一般实验中多采用夫琅和费衍射。
如果使用激光器作为光源(如普通的激光笔),其发射的光可以近似认为是平行光;一般衍射物是0.1mm的数量级,如果衍射屏与接收屏的距离大于1m,则衍射光大致上是平行光,这样就基本上满足了夫琅和费衍射的条件。
2.单缝衍射如图1所示,根据惠更斯一菲涅尔原理,狭缝上各点可以看成是新的波源,由这些点向各方发出球面次波,这些次波在接收屏上叠加形成一组明暗相间的条纹,按惠更斯一菲涅尔口°m迎日产原理,可以导出屏上任一点P。
处的光强为(图2):上,式中。
为狭缝宽度,入为入射光波长,e为衍射角,/。
称为主极强,它对应于P0处的光强。
从曲线上可以看出:(1)当e=0时,光强有最大值10,称为主极强,大部分能量落在主极强上。
(2)当sin e=k〃a(k=±1,±2,……)时,I e=0,出现暗条纹。
因9角很小,可以近似认为暗条纹在e=k刀a的位置上。
还可看到主极强两侧暗纹之间的角距离是A e=2〃a,而其他相邻暗纹之间的角距离均相等(均为A e=川a)。
(3)两相邻暗纹之间都有一个次极强。
细丝直径的测量
细丝直径的测量摘要:本次实验为细丝直径的测量,由于细丝利用普通的测量工具很难准确测量,误差很大,所以此次实验是利用等厚干涉原理,即由同一光源发出的平行单色光垂直入射分别经过空气劈尖所形成的空气薄膜上下表面反射后,在上表面相遇时产生的一组与棱边平行的,明暗相间,间隔相同的干涉条纹,由此来测量细丝的直径,使数据更加准确,本次试验就是利用干涉原理制作劈尖测量发丝的直径。
关键词:干涉原理空气劈尖直径光程差引言:本次实验是利用空气劈尖根据光的干涉原理测量发丝的直径,干涉和衍射是光的波动性的具体变现,利用光的等厚干涉由同一光源发出的平行光,分别经过劈尖间所形成的空气薄膜上下表面反射后产生干涉现象,形成明暗相间的条纹,使用显微镜观察明暗条纹间的距离,由此来计算发丝的直径实验原理:当两片很平的玻璃叠合在一起,并在其一端垫入细丝时,两片玻璃片之间就形成了一层空气薄膜,叫做空气劈尖。
在同一光源发出的单色平行光垂直照射下,经劈尖上下表面反射后将会产生干涉现象,在显微镜观察可发现明暗相间的干涉条纹,如图所示实验内容与步骤:实验仪器:读数显微镜45度反射镜 2片光学玻璃钠光灯发丝1 将发丝夹在2片光学玻璃的一端,另一端直接接触,形成空气劈尖。
将劈尖放在读数显微镜的载物台上。
2 打开钠光灯,调节45度反射镜,使光线平行垂直射入充满视野,此时显微镜的视野由暗变亮。
3 调节显微镜物镜的焦距使视野内明暗相间的条纹清晰,调节显微镜目镜焦距以及叉丝的位置是否对齐和劈尖放置的位置,4 找出一段最清晰的条纹用读数显微镜读出两条明条纹或暗条纹之间的距离,同一方向转动测微鼓轮测量出5组明或暗条纹的间距。
5 使用游标卡尺测量出劈尖内细丝到较远一端的距离L6 根据公式和测量的数据计算出细丝的直径和不确定度数据处理与实验结果表达式:S=(0.212+0.220+0.216+0.218+0.220)÷5=0.2172m m L=45.2mm D=2λ∙S L =2172.02.452103.5896-⨯∙=0.061mm U l =0.01mmU s =t )1()(12--∑=n n S Snn i=2.78⨯0.00665=0.0185U r =22)()(SU L U S l +=00029.0=0.017 U D =r U D ⨯=0.013⨯0.017=0.0221 最后结果为D=D ±U D =0.061±0.0221m m U r =DU D ⨯100%=1.61%结束语本次试验让我们学习到了光的等厚干涉原理,利用这一原理我们学会了如何测量细丝的直径,使我们受益匪浅,实验过程中我们应当多次测量,因为实验过程中存在较大误差,应该仔细认真以免读数发生错误。
细丝直径测试实验报告
一、实验目的1. 掌握使用劈尖干涉法测量细丝直径的原理和方法。
2. 熟悉光学仪器(如读数显微镜)的使用。
3. 培养实验操作能力和数据处理能力。
二、实验原理劈尖干涉法是一种基于等厚干涉原理的测量方法。
当两块平面玻璃板间夹有一细小物体时,两板间形成一空气劈尖。
当单色光垂直照射到劈尖上时,从劈尖上下表面反射的两束光会发生干涉,形成明暗相间的干涉条纹。
根据干涉条纹的间距和已知的光波长,可以计算出细丝的直径。
三、实验仪器与材料1. 读数显微镜2. 钠光灯3. 空气劈尖4. 细丝(直径约为0.1mm)5. 游标卡尺6. 计算器四、实验步骤1. 将细丝放置在空气劈尖的一端,确保细丝与劈尖的棱边平行。
2. 将空气劈尖放置在显微镜的载物台上,调整显微镜的焦距,使细丝的像清晰可见。
3. 调整钠光灯的亮度,使干涉条纹清晰可见。
4. 使用游标卡尺测量细丝到劈尖较远一端边缘的距离L,记录数据。
5. 观察并记录相邻两暗条纹的间距k。
6. 计算细丝直径D,公式为:D = k × (λ/2) × L,其中λ为钠光波长,取589.3nm。
五、实验结果与讨论1. 实验数据如下:| 组别 | L (mm) | k (mm) | D (mm) || ---- | ------ | ------ | ------ || 1 | 0.5 | 0.1 | 0.2945 || 2 | 0.5 | 0.095 | 0.2848 || 3 | 0.5 | 0.09 | 0.2695 || 4 | 0.5 | 0.085 | 0.2548 || 5 | 0.5 | 0.08 | 0.2395 || 6 | 0.5 | 0.075 | 0.2248 |平均直径D = (0.2945 + 0.2848 + 0.2695 + 0.2548 + 0.2395 + 0.2248) /6 = 0.2536mm2. 讨论:通过实验,我们验证了劈尖干涉法测量细丝直径的原理和方法。
3.6光学衍射法测定细丝直径
sinθ
图二
使用氦氖激光进行上述实验时,鉴于氦氖激光束具有良好的方向性,光束细锐,能量集
中,加之一般衍射狭缝宽度 a 很小,故准直透镜 L1 可省略不用。如果将观察屏放置在距离 狭缝较远处,即 D 远大于 a ,则聚焦透镜 L2 亦可省略。
根据巴比涅原理,一个细丝的衍射光场与一个宽度相等的单缝衍射光场是互补的,即它 们光场的位相相差是 180°,从而光强分布相同,衍射条纹是明暗相同的,条纹宽度是一致的. 故可用测量单缝宽度的方法和计算公式来计算单丝的直径。 四、实验内容和方法
些点,互补屏产生完全相同的光强分布. 2 单缝夫琅和费衍射光强分布规律 在讨论单丝衍射之前先来讨论夫琅和费单缝衍射
夫琅和费单缝衍射要求光源和观察屏离缝都是无限远,如图 1 装置能实现这一要求。
L1
A
L2
S f1
a
φ
O
B
Xk
Pφ
图一
L
P
图中将单色光源置于透镜 L1 的前焦平面上,光束经 L1 后变成平行光,垂直照射于宽度为 a 的狭缝 AB 上,根据惠更斯-菲涅尔原理,狭缝上各点可以看成是新的波源,由这些点向各方 向发出球面次波,这些次波经透镜 L2 后,在其后焦平面的观察屏上,可看到一组明暗相间,
E 0 ( p) E 1( p) E 2 ( p)
由此得到两个有用的结论:
(1) 若 E 1( p) 0 ,则 E 2 ( p) E 0 ( p) .即放上其中一个屏时强度为零的那些点,在换上
衍射法测量细丝直径的研究
衍射法测量细丝直径的研究
衍射法是一种精密测量物体尺寸的方法,也可用于测量细丝直径。
该方法的原理是利用高能光线通过细丝时发生的衍射现象,来计算出细丝的直径。
实验时,需要将细丝置于光源和光屏之间,通过调整光源和光屏的位置,找到最佳的衍射条件。
然后测量出两个相邻衍射条纹之间的距离,用此距离和已知参数计算出细丝直径。
衍射法测量细丝直径的优点是精度高、非破坏性,对细丝的材料和形状没有限制。
但是也存在一些限制,比如光线的干扰和偏差会影响测量结果,需要进行光线矫正和精确测量。
总之,衍射法是一种可靠的测量细丝直径的方法,具有广泛的应用前景和研究价值。
3.6光学衍射法测定细丝直径
些点,互补屏产生完全相同的光强分布. 2 单缝夫琅和费衍射光强分布规律 在讨论单丝衍射之前先来讨论夫琅和费单缝衍射
夫琅和费单缝衍射要求光源和观察屏离缝都是无限远,如图 1 装置能实现这一要求。
L1
A
L2
S f1
a
φ
O
B
Xk
Pφ
图一
L
P
图中将单色光源置于透镜 L1 的前焦平面上,光束经 L1 后变成平行光,垂直照射于宽度为 a 的狭缝 AB 上,根据惠更斯-菲涅尔原理,狭缝上各点可以看成是新的波源,由这些点向各方 向发出球面次波,这些次波经透镜 L2 后,在其后焦平面的观察屏上,可看到一组明暗相间,
3.6 光学衍射法测定细丝直径
测量诸如金属细丝直径这样的细度,可以使用游标卡尺、螺旋测微计等较精密的机械工 具,也可以使用读数显微镜、工具显微镜、阿贝比长仪等精密光学仪器,还可以利用光的干 涉或衍射原理,借助光学仪器,对微小细度进行测量。利用光的干涉与衍射原理对微小细度 进行测量,其方法简单,直观性强,测量结果精度高,在高精度测量中更显示出其独特的作 用。 一、实验目的 1. 学会用衍射法测量微小尺寸. 2. 加深对光的衍射理论的理解. 二、实验仪器 He-Ne 激光器、读数显微镜、可调狭缝、待测金属细丝、光屏、透镜、卷尺、探头、光电流 放大器。 三、实验原理 1 根据巴比涅原理:两个互补屏在衍射场中某点单独产生的复振幅之和等于光波自由传播时 该点的复振幅.(本实验中即细丝直径与单缝宽度一样时,成为一对互补屏,产生相同的光 强分布) 即
测细丝直径的应用原理
测细丝直径的应用原理
测细丝直径的应用原理主要基于以下几个方面:
1. 光学原理:利用光学显微镜原理观察细丝,并通过测量细丝在显微镜视野中的尺寸变化来确定其直径。
2. 角度测量原理:利用倾斜仪器或测角仪器,在细丝上测量两个点之间的角度,根据已知距离和夹角计算细丝的直径。
3. 描迹法:将细丝放在平面上,使其留下一条线迹,通过测量线迹的宽度或长度来推算细丝的直径。
这种方法常用于测量纺织品中的纱线直径。
4. 力学原理:利用拉力测力计等力学仪器,在细丝两端施加一个拉力,根据拉力、材料特性和材料直径的关系,计算细丝的直径。
这种方法常用于测量金属丝或其他可弯曲的材料的直径。
5. 电阻测量原理:利用电阻计或电桥等仪器,通过测量细丝电阻的变化来反推细丝的直径。
这种方法常用于测量电阻丝的直径。
上述原理中,光学原理是最常用的方法,可以通过显微镜观察细丝,利用目测或图像处理等方法来测量细丝的尺寸,达到精确测量的目的。
其他原理通常用于特
殊情况下的测量,或在实际操作中与光学原理相结合使用。
衍射法测量细丝直径
实验二衍射法测量细丝直径
一、实验目的
1.了解衍射效应在计量技术中的应用。
2.掌握激光衍射法测量细丝直径的基本原理和测量方法。
二、实验原理
激光衍射法测量细丝直径是基于巴定理:两个互补的障碍物,其夫朗和费衍射图形、光强分布相同,位相相差π/2,因此,当细丝直径与狭缝宽度相等时,他们是两互补障该物,可以用测量狭缝的方法测量细丝直径。
测量原理如图12—1所示
图12—1
当一束激光照射到被测细丝上,发生衍射效应,在距光纤L距离处接收其衍射光强分布图,由衍射光强分布图测出第n级暗纹中心到中央零级条纹中心的距离X, 即可计算出细丝直径。
值得注意的是:此法虽然测量精度较高,但一般只适用于测量0.5mm以下的细丝直径,同时要求L ››d。
三、实验仪器与设备
激光参数测量系统(接收器移动距离为400mm)一套
四、实验内容与要求
实验内容
测量细铜丝直径
实验要求
1.根据远场夫朗和费衍射公式,导出d的计算式。
2.设计实验光路。
注意事项
1. 调整光路时不能用眼睛正对激光束,以免伤害眼睛。
要用白纸接收光。
2. 激光束与平台平行、且与接收器中心等高,保持与接收器移动方向垂直,光能量应全部进入接收器内。
3.接收器前狭缝开启的不要太大(0.2 —0.3mm),要与扫描间隔相匹配。
测量细丝直径
aθ 2 =nλ 令 L=Xm+Xn,( Xm,Xn 分别表示第 m 和第 n 级条纹到接收屏中心P0 的距离) ,即 L 为中心条 纹左侧第 m 条与中心条纹右侧第 n 条间的距离。 θ 1 和θ 2 是与之对应的衍射角,由式可加得, a(θ 1 +θ 2 )=(m+n)λ 又因为 θ 1 +θ 2 ≈(Xm+Xn)/f 所以 a(Xm+Xn)/f=(m+n)λ ,即 a L /f=(m+n)λ 于是就有 a= (m+n) λ f/ L 实验测出了 f,L 值之后,就可根据上式计算出丝线的直径。 方法二: 将细丝插入两光学平玻璃板的一端, 从而形成一空气劈尖。 当用单色平行光垂直照射时, 在劈尖薄膜上下两表面反射的两束光发生干涉, 且干涉条纹是一簇与接触棱平行且等间距的 平行直条纹.
方法一: (1) 巴俾涅原理 两个互补屏单独产生的衍射场的复振幅之和等于没有屏时的复振幅, ,对于单缝的夫琅 和费衍射,除点光源在像平面的像点之外有 U=0,即像点外两个互补屏所产生的衍射图形,
其形状和光强完全相同,仅位相相差 2 ,所以我们可用丝线代替单缝进行夫琅和费衍射。 (2) 夫琅和费单缝衍射原理 为获得明亮的远场条纹,一般用透镜在焦面上形成夫朗和费条纹,如图所示。设透镜的 焦距为 f,细丝直径为 a 。
a = (a 1 + a 2 )/2 = 55.30u m对象的直径不可过大. 2.选择细锐的暗条纹进行测量.
5
结语
用衍射法测量细丝直径是一种可达到较高精度的非接触测量技术, 特别适合微小的细丝 直径测量。 参 考 文 献
[1].赵凯华,钟锡华.光学.北京:北京大学出版社,1982. [2].董有尔.大学物理学教.北京:高等教育出版社,2002.
实验报告:用劈尖干涉测量细丝的直径
实验报告:用劈尖干涉测量细丝的直径一、实验目的1、熟悉劈尖干涉仪的使用方法;2、通过劈尖干涉仪测量细丝的直径。
二、实验原理劈尖干涉仪是一种常用于测量小尺寸物体形状和参数的设备,它主要利用光的干涉来实现精确测量。
本实验所用的劈尖干涉仪原理如下:1、劈尖干涉的基本原理将一束来自同一单色光源的光分成两束,经过劈尖后其成为相干光,并在检干板上产生干涉条纹。
若将此时检干板与参考板间的距离稍微改变,则会引起检干板上条纹的移动,若此距离为λ/2,则条纹移动的条数为1,称为“一级条纹”。
距离再减小λ/4,则会出现“二级条纹”,以此类推。
2、利用劈尖干涉仪测量物体直径利用劈尖干涉仪测量物体直径的原理是:通过光学显微镜观察待测细丝与有孔参考板同时在视场中,通过改变有孔参考板与检干板之间的距离使得两组干涉条纹重合,此时移动的距离可以测得,由此求得细丝直径。
三、实验器材劈尖干涉仪、金属细丝、电动移动台。
四、实验步骤1、打开劈尖干涉仪电源,调节光源至适宜亮度;2、调节劈尖、调出最大对比度干涉条纹;3、把有孔参考板与检干板的距离初设为零,将金属细丝放在待测位置,使其与有孔参考板上的一条孔线垂直;4、启动电动移动台,调整待测物体移动到参考板的孔中;5、用显微镜观察参考板上方和下方的干涉条纹,调整镜头使两条干涉条纹相互重合,使得这两条干涉条纹振动条数最小。
6、读出微动台位置值,并计算细丝直径。
五、实验结果经过多次测量,测得细丝直径为0.08mm。
六、实验分析实验结果准确,说明劈尖干涉仪能够准确地测量物体的直径。
因为劈尖干涉仪底座和测量细丝的线径差不多,所以导致测量误差较大。
此种情况下,用显微镜观测干涉条纹,调整了一个定位器,标记出参考板和细丝的位置,就能使细丝处于干涉条纹的中线上,从而减小测量误差。
七、实验小结通过本次实验,我熟练掌握了劈尖干涉仪的使用方法,并掌握了劈尖干涉仪测量物体直径的原理和方法,增强了实验能力。
在未来的实验过程中,我将更加努力地学习物理实验课程,尽力提高实验能力,为日后的科学研究打下坚实的基础。
测细铜丝的直径的方法
测细铜丝的直径的方法
测量细铜丝直径的方法有多种,可以根据具体情况选择合适的方法。
以下是一些常见的测量方法:
1. 用千分尺或游标卡尺,这是最常见的测量细铜丝直径的方法之一。
使用千分尺或游标卡尺可以直接测量细铜丝的直径,确保测量仪器的精确度和准确性。
2. 光学显微镜测量,通过放大光学显微镜的镜头,可以清晰地观察细铜丝的直径,然后使用目镜上的刻度尺或者连接到显微镜的测量仪器来测量其直径。
3. 激光测量,利用激光测量仪器可以非常精确地测量细铜丝的直径,这种方法通常用于对直径要求非常严格的情况。
4. X射线衍射,对于特别细小的铜丝,可以使用X射线衍射技术来测量其直径,这种方法通常在科研实验室或者专业实验室中使用。
5. 电子显微镜测量,使用电子显微镜可以对细铜丝进行高分辨
率的测量,可以得到非常精确的直径数据。
在选择测量方法时,需要考虑到细铜丝的直径范围、精确度要求、实验条件等因素,以便选择最适合的测量方法。
另外,在进行测量时,需要注意操作规范,确保测量结果的准确性和可靠性。
细丝直径测定实验报告
一、实验目的1. 理解并掌握劈尖干涉法测量细丝直径的原理。
2. 学会使用读数显微镜和钠光灯等实验仪器。
3. 通过实验,提高对等厚干涉现象的认识,并掌握相关测量技术。
二、实验原理劈尖干涉法是利用劈尖干涉现象来测量细丝直径的一种方法。
实验原理如下:当两块平板玻璃的一端夹持细丝,并在其间隙形成一空气劈时,当单色光垂直照射到劈尖上时,经过劈尖上下表面的反射光会产生干涉现象。
根据干涉条纹的间距和已知的光源波长,可以计算出细丝的直径。
三、实验仪器与材料1. 钠光灯2. 读数显微镜3. 空气劈尖4. 细丝5. 游标卡尺6. 记录本四、实验步骤1. 将细丝夹持在平板玻璃之间,形成空气劈尖。
2. 调整钠光灯,使其发出的光束垂直照射到劈尖上。
3. 将空气劈尖放置在显微镜的载物台上,调整显微镜,使观察到清晰的干涉条纹。
4. 记录相邻暗条纹的间距,重复多次,取平均值。
5. 用游标卡尺测量劈尖的长度,记录数据。
6. 根据实验原理和公式计算细丝的直径。
五、实验数据与处理1. 记录相邻暗条纹的间距:L1 = 0.2mm,L2 = 0.3mm,L3 = 0.25mm,L4 =0.22mm2. 记录劈尖的长度:L = 5.0mm3. 计算相邻暗条纹的平均间距:L_avg = (L1 + L2 + L3 + L4) / 4 = 0.23mm4. 根据公式计算细丝的直径:D = λ L_avg / 2 = 589.3nm 0.23mm / 2 = 0.0688μm六、实验结果与分析通过实验,我们成功测量了细丝的直径,结果为0.0688μm。
与理论值0.06mm相比,实验结果存在一定的误差。
误差产生的原因可能包括以下方面:1. 实验仪器精度限制:读数显微镜和游标卡尺的精度有限,导致测量结果存在误差。
2. 干涉条纹的观察和记录:观察和记录干涉条纹时,可能存在人为误差。
3. 空气劈尖的制备:空气劈尖的制备过程中,可能存在厚度不均匀等问题,影响测量结果。
细丝直径测量实验报告
细丝直径测量实验报告实验报告标题:细丝直径测量实验研究一、实验目的本实验旨在通过精确的测量方法,借助先进的测量工具,对细丝的直径进行精确测量,从而获得细丝直径的准确数值。
通过本实验,我们期望能理解并掌握细丝直径测量的基本原理和方法,提高我们的实验技能和实践能力。
二、实验原理细丝直径测量主要涉及到光的反射和折射定律。
当一束光照射到细丝表面时,光线会发生反射和折射。
根据入射角和反射角之间的特定关系,我们可以利用反射定律来计算细丝的直径。
此外,我们还可以使用光的折射定律来进一步确定直径。
三、实验步骤与操作过程1.准备实验器材:本实验需要准备的器材包括光源、光屏、镜头、尺子、显微镜等。
2.搭建实验装置:将光源、光屏、镜头、被测细丝按一定位置进行摆放,调整各部件的角度,使光线能照射到细丝上并形成清晰的光斑。
3.调整光源和镜头:调整光源和镜头使光线射向镜头,并透过镜头照射到细丝上,形成清晰的光斑。
4.测量光斑直径:使用显微镜观察并测量光斑直径。
为了得到更准确的数值,我们需要在不同角度和位置多次测量并进行平均处理。
5.计算细丝直径:根据测量得到的光斑直径和镜头焦距等参数,利用相应的光学公式计算细丝直径。
四、实验结果与分析通过实验测量,我们得到了细丝直径的数值。
为了验证实验结果的准确性,我们对不同位置和角度的细丝进行了多次测量,并对结果进行了平均处理。
结果表明,我们的测量方法具有较高的准确性和可重复性。
五、实验总结通过本次实验,我们深入理解了细丝直径测量的基本原理和方法,并成功地运用光学原理对细丝直径进行了精确测量。
我们发现,对实验过程的精确控制和对实验数据的严谨处理是实验成功的关键。
此外,我们也认识到了科学实验的严谨性和精确性对于获得准确结果的重要性。
本实验不仅提高了我们的实验技能和实践能力,还培养了我们对科学研究的热爱和追求精神。
通过对比不同位置和角度的细丝直径测量结果,我们认识到光学测量方法的复杂性和精确度对于实际应用的重要性。
实验报告-用劈尖干涉测量细丝的直径_报告
实验报告-用劈尖干涉测量细丝的直径_报告----------------------------------最新精选范文公文分享-----欢迎观看-----------------------------------------------实验报告:用劈尖干涉测量细丝的直径_报告实验报告:用劈尖干涉测量细丝的直径090404162通信一班张恺一、实验名称:用劈尖干涉测量细丝的直径二、实验目的: 深入了解等厚干涉.设计用劈尖干涉测量细丝直径的方法 .设计合理的测量方法和数据处理方法,减小实验误差.三、实验仪器: 读数显微镜纳光灯平玻璃两片待测细丝四、实验原理:将两块光学玻璃板叠在一起,在一段插入细丝,则在两玻璃间形成一空气劈尖.当用单色光垂直照射时和牛顿环一两样,在空气薄膜上下表面反射的两束光发生干涉,其中光程差:2λ+λ/2产生的干涉条纹是一簇与两玻璃板交接线平行且间隔相等的平行条板.如图.显然:δ=2d+λ/2=*λ/2k=0,1,2,3,……………?δ=2d+λ/2=kλ k=1,2,3,………………?--------------------------------------------最新精选范文分享--------------谢谢观看------------------------------------------------------------------------最新精选范文公文分享-----欢迎观看-----------------------------------------------与K纹暗条纹对应的薄膜厚度:d=k*λ/2显然d=0处空气薄膜厚度为d处对应k=0是暗条纹,称为零级暗条纹.d1=λ/2处为一级暗条纹,第k级暗条纹处空气薄膜厚度为:dk=kλ/2 ……………?两相邻暗条纹对应的劈尖厚度之差为d=dk+1-dk=λ/2………………?若两暗条纹之间的距离为l,则劈尖的夹角θ,利用sinθ=λ/l………?求得.此式表明:在λ、θ一定时,l为常数,即条纹是等间距的,而且当λ一定时,θ越大,l越小,条纹越宽,因此θ不宜太大.设金属细丝至棱边的距离为l,欲求金属细丝的直径D,则可先测L和条纹间距L,由?式及sinθ=D/L求得:D=Lsinθ=L*λ/这就是本实验利用劈尖干涉测量金属细丝的直径的公式,如果N很大,实验上往往不是测量两条相邻条纹的间距,而是测量相差N级的两条暗条纹的问题,从而测得的测量结果D=N*λ/2如果N很大,为了简便,可先测出单位长度内的暗条纹数N0和从交纹到金属丝的距离L,那么 --------------------------------------------最新精选范文分享--------------谢谢观看-------------------------------------- ----------------------------------最新精选范文公文分享-----欢迎观看-----------------------------------------------N=N0L…D=N0L*λ/2五、实验内容与步骤将被测薄片夹在两地平板玻璃的一端,置于读数显微镜底座台面上, 调节显微镜,观察劈尖干涉条纹.由式?可知当波长λ已知时,只要读出干涉条纹数K,即可得相应的D.实验时,根据被测物厚薄不同,产生的干涉条纹数值不可,若K较小,可通过k值总数求D.若k较大,数起来容易出错,可先测出长度L间的干涉条纹x,从而测得单位长度内的干涉条纹数n=x/Lx然后再测出劈尖棱边到薄边的距离L,则k=n*l.薄片厚度为D=k*λ/2=n*l*λ/2.λ=589.3nm次数n 1 2 3 4 5 6 7 8 9 10每10宽度/cm 0.8021 0.8082 0.8143 0.8182 0.82210.8250 0.8272 0.8324 0.8345 0.8362平均值/cm 0.8221L=41.053cm得出每十个暗条纹之间间距 l=0.8221cm所以.最后得出 D=N0*λ*L/=10*589.3*10-6*410.53.6/=0.0147mm--------------------------------------------最新精选范文分享--------------谢谢观看------------------------------------------------------------------------最新精选范文公文分享-----欢迎观看-----------------------------------------------误差为η=/D标**100%=1.3%六、实验总结:实验中把劈尖放置好,在显微镜中找到像比较简单,在测量的时候花的时间比较多,为此测量了较多的数据.感觉实验前把细丝拉直,把镜片擦干净会使观察起来比较清晰.测量的时候大部分数据都是比较正常的,劈尖实验确实和牛顿环的实验有相似之处.总体来说在测量的时候有点耐心整个实验很快就能完成.数据的运算也不难.最后1.3%的误差我觉得可以接受.这次实验通过光的干涉的性质,不仅将光学的知识运用到实验,也让我们复习到了显微镜的调节,以及读书的方法.通过这个实验提高我们的动手能力,和对实验的理解能力还是有很大帮助的.--------------------------------------------最新精选范文分享--------------谢谢观看--------------------------------------。
细丝直径测量实验报告
细丝直径测量实验报告 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】细丝直径测量摘要:测量细丝直径,可以使用游标卡尺、螺旋测微计等等较精密的机械工具,也可以使用读数显微镜、工具显微镜等精密光学仪器,还可以利用光的干涉原理,借助光学仪器,对微小细度进行测量。
以下使用劈尖法进行细丝直径测量,其方法简单,直观性强,测量结果精度高,在高精度测量汇总更显示出其独特的作用。
关键词:细丝直径、劈尖法、等厚干涉、条纹1.引言在两片叠合的玻璃一端放入细丝,则玻璃片之间就形成一个空气劈尖。
在垂直单色光照射下,劈尖的上、下两表面的反射光相遇发生干涉,在显微镜下可观察到间隔相等的等厚干涉直条纹。
2.实验原理将两块光学平玻璃板叠在一起,一端插入一细丝,则在两玻璃板间形成一空气劈尖。
两玻璃的交线称为棱边,在平行于棱边的线上,劈尖空气膜的厚度是相等的。
当用平行单色光垂直照射劈尖时,在劈尖空气膜上、下表面反射的两束光发生干涉,形成一组与棱边平行的、等间距的直线干涉条纹,如上图所示。
设某处空气薄膜的厚度为e,则两束相干光的光程差为()22212k d k λλλ⎧⎪∆=+=⎨+⎪⎩相邻两暗纹(或明纹)对应的空气厚度差()11222122k k k k d k d k d d λλλλλ+++=+=+-=则细丝直径D 为2D N λ=⋅; N 为干涉条纹总条数2tan 2DL S L D S λααλ≈===⋅L 为劈尖长度; S 为两相邻明暗纹间距; λ为钠光波长:9589.310λ-=⨯ 3.实验内容与步骤1. 实验仪器读数显微镜,45°反射镜,2片光学玻璃板,钠光灯,金属细丝,游标卡尺2. 制作劈尖将细丝夹在距劈尖一端的3-5mm 处,将此端夹紧,将细丝拉直与劈尖边缘平行,再将劈尖另一端适度夹紧。
3. 调节读数显微镜(1)把劈尖置于载物台,物镜正下方,用压片压住;旋松手轮把显微镜放于适中位置(当置物镜最下位置时不与劈尖相碰)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方法一: (1) 巴俾涅原理
两个互补屏单独产生的衍射场的复振幅之和等于没有屏时的复振幅,,对于单缝的夫琅 和费衍射,除点光源在像平面的像点之外有 U=0,即像点外两个互补屏所产生的衍射图形,
其形状和光强完全相同,仅位相相差 2 ,所以我们可用丝线代替单缝进行夫琅和费衍射。
(2)
夫琅和费单缝衍射原理
为获得明亮的远场条纹,一般用透镜在焦面上形成夫朗和费条纹,如图所示。设透镜的
5 结语
用衍射法测量细丝直径是一种可达到较高精度的非接触测量技术,特别适合微小的细丝 直径测量。
参考文献
[1].赵凯华,钟锡华.光学.北京:北京大学出版社,1982. [2].董有尔.大学物理学教.北京:高等教育出版社,
2002. 精心搜集整理,只为你的需要
方案3 用螺旋测微计进行直接测量。(螺旋测微计的分度值为 mm)
我们原本打算用三种方法进行测量,比较所得结果。但由于实验仪器所限,最终我们只实现 了方案1。
3. 数据处理
λ= f =300 mm
m
n
L /cm
a/u m
-8
+8
ห้องสมุดไป่ตู้
-6
+9
4. 注意事项
1.根据衍射原理,所选择的测量对象的直径不可过大. 2.选择细锐的暗条纹进行测量.
引言:随着生产的发展,要求对各种金属丝,光导纤维以及钟表游丝等进行高精度的非接触 测量。过去测量毫米以下的细丝外径,一般用普通光学测量仪或电测策计等接触测量仪器。 细丝的衍射效应使普通光学方法误差变大,接触测量易受到测量力大小的影响。激光束细丝 衍射对于线径极小的细丝,其测量结果是可靠的。
1. 实验原理
多种方法测量细丝直径
学
院:物理电子工程学院
专
业:物理学
姓名及学号:冯 伟(04)
杨保国(26)
多种方法测量细丝直径
物理学 冯伟 杨保国
: 摘要 利用巴俾涅原理,通过单缝夫琅和费衍射,测量丝线的直径。 实验表明,这是一
种高精度的非接触测量,它通过对衍射图样的检测来求细丝的直径。
: 关键字 激光器;单缝衍射;单丝衍射
又因为
a( + )=(m+n)λ
+ ≈(Xm+Xn)/f
所以
a(Xm+Xn)/f=(m+n)λ,即 a L /f=(m+n)λ
于是就有 a= (m+n) λf/ L
实验测出了 f,L 值之后,就可根据上式计算出丝线的直径。
方法二:
将细丝插入两光学平玻璃板的一端,从而形成一空气劈尖。当用单色平行光垂直照射时, 在劈尖薄膜上下两表面反射的两束光发生干涉,且干涉条纹是一簇与接触棱平行且等间距的 平行直条纹.
本实验一般采用暗条纹进行测量,考虑到一般情况下θ角较小,于是有
θ≈sinθ≈tanθ
故由式得暗条纹的衍射角由下式决定
a =mλ
a =nλ
令 L=Xm+Xn,( Xm,Xn 分别表示第 m 和第 n 级条纹到接收屏中心 的距离),即 L 为中心 条纹左侧第 m 条与中心条纹右侧第 n 条间的距离。
和 是与之对应的衍射角,由式可加得,
由于L>>D, sinθ≈tanθ=D/L. 在读数显微镜下测量 m 条暗纹间距 a ,且有光程差 mλ,所以有
tanθ= mλ/2a =D/L. 即
D= mλL/2a 用钢板尺测量出 L 值,已知光波长λ,则可通过上式计算出细丝直径 D.
2. 测量方案
方案1 1. 用氦—氖激光器照射丝线,在屏幕上出现亮暗相间的条纹,以满足夫琅和费衍射条件,
并将细丝固定在激光器上。调节凸透镜使其与光源细丝等高。 2. 调节光屏与凸透镜的距离为焦距 f。
3. 测量从左边第 m 条暗纹到右边第 n 条暗纹的距离 L。 4.重复实验测量不同的 L 值。 5.数据记录及处理。
方案2 利用劈尖干涉,分别平行测量L、m、a 五组数据,求出直径D,并进行误差分析.
焦距为 f,细丝直径为 a 。
当平行光垂直于单缝平 就形成平行的明暗条纹 激光
t
面入射时,单缝衍射
其位置衍射角由下
式决定: 暗条纹的中心 asinθ=k
θ
xn
λ (k=±1,±2,±
3,…)
f
明条纹的中心 asinθ=
d
(2k+1)λ/2 (k=
±1,±2,±3,…) 中心条纹θ=0
互补法测量的计算