长沙理工大学往届高等数学试题及答案
长沙理工大学高等数学 练习册 第五章 定积分答案
![长沙理工大学高等数学 练习册 第五章 定积分答案](https://img.taocdn.com/s3/m/e10f5430b52acfc789ebc9fc.png)
习题5.1略习题5.2—5.3(A )一 计算下列定积分1.⎰203cos sin πxdx x解:原式2342011cos cos cos 44xd x x ππ=-=-=⎰2.⎰-a dx x a x 0222解:令t a x sin =,则tdt a dx cos = 当0=x 时0=t ,当a x =时2π=t原式⎰⋅⋅=2022cos cos sin πtdt a t a t a()⎰⎰-==2420244c o s 182s i n 4ππdt t a tdt a 42044164sin 41828a t a a πππ=-=3.⎰+31221xxdx解:令θtg x =,则θθd dx 2sec = 当1=x ,3时θ分别为4π,3π原式θθθθππd tg ⎰=3422sec sec()⎰-=342s i n s i n ππθθd3322-=4.⎰--1145xxdx解:令u x =-45,则24145u x -=,udu dx 21-= 当1-=x ,1时,1,3=u 原式()61581132=-=⎰du u 5.⎰+411x dx解:令t x =,tdt dx 2=当1=x 时,1=t ;当4=x 时,2=t 原式⎥⎦⎤⎢⎣⎡+-=+=⎰⎰⎰2121211212t dt dt t tdt ()[]32ln 221ln 22121+=+-=t t6.⎰--14311x dx解:令u x =-1,则21u x -=,udu dx 2-= 当1,43=x 时0,21=u 原式2ln 21111212210021-=-+-=--=⎰⎰du u u du u u7.⎰+21ln 1e xx dx解:原式()⎰⎰++=+=2211ln 1ln 11ln ln 11e e x d xx d x232ln 1221-=+=e x8.⎰-++02222x x dx解:原式()()⎰--+=++=0222111x arctg x dx()24411πππ=+=--=a r c t g a r c t g9.dx x ⎰+π2cos 1解:原式⎰⎰==ππ2cos 2cos 2dx x dx x()⎰⎰-+=πππ220c o s 2c o s 2dx x xdx22s i n s i n 2220=⎥⎦⎤⎢⎣⎡-=πππx x 10.dx x x ⎰-ππsin 4解:∵x x sin 4为奇函数∴⎰-=ππ0sin 4xdx x11.dx x ⎰-224cos 4ππ解:原式()⎰⎰=⋅=222204cos 22cos 24ππdx x xdx()()⎰⎰++=+=2022022cos 2cos 2122cos 12ππdx x x dx x()⎰⎰+++=220204cos 12cos 22πππdx x xdx x⎰+++=202044cos 4122sin 2ππππx xd x πππ234sin 412320=+=x12.⎰-++55242312sin dx x x xx 解:∵12sin 2423++x x xx 为奇函数 ∴012sin 552423=++⎰-dx x x xx13.⎰342sin ππdx x x解:原式⎰-=34ππxdctgx⎰+-=3434ππππc t g x d xx c t g x 34s i nln 9341πππx +⎪⎪⎭⎫ ⎝⎛-= 22ln 23ln 9341-+⎪⎪⎭⎫ ⎝⎛-=π 23ln 219341+⎪⎪⎭⎫ ⎝⎛-=π 14.⎰41ln dx xx解:原式⎰=41ln 2x xd⎥⎦⎤⎢⎣⎡-=⎰4141ln ln 2x d x x x ⎥⎦⎤⎢⎣⎡-=⎰4112ln 42dx x x⎰--=412122ln 8dx x42ln 8-= 15.⎰10xarctgxdx解:原式⎰=10221arctgxdx ⎥⎦⎤⎢⎣⎡+-=⎰1022102121dx x x arctgx x ⎰⎰++-=10210121218x dx dx π101021218a r c t g xx +-=π214-=π16.⎰202cos πxdx e x解:原式⎰=202sin πx d e x⎰⋅-=2022022s i n s i nππdx e x x e x x⎰+=202c o s2ππx d e e x ⎰⋅-+=2022022c o s 2c o s 2πππdx e x x e e x x⎰--=202c o s 42ππx d x e e x故()251cos 202-=⎰ππe xdx e x 17.()dx x x ⎰π2sin 解:原式()⎰⎰-==ππ2222cos 1sin dx xx dx x x ⎰⎰-=ππ02022c o s2121x d x x dx x ⎰-=ππ0232s i n 4161x d x x⎥⎦⎤⎢⎣⎡⋅--=⎰πππ002322s i n 2s i n 416x d x x x x⎰-=ππ032c o s 416x xd 462c o s 2c o s 4163003πππππ-=⎥⎦⎤⎢⎣⎡--=⎰x d x x x 18.()dx x e⎰1ln sin解:原式()()⎰⋅-=eedx xx x x x 111ln cos ln sin()⎰-=edx x e 1ln cos 1sin()()⎥⎦⎤⎢⎣⎡⋅+-=⎰e e dx x x x x x e 111ln sin ln cos 1sin()⎰-+-=edx x e e 1ln sin 11cos 1sin故()()11cos 1sin 2ln sin 1+-=⎰edx x e19.⎰--243cos cos ππdx x x解:原式()⎰--=242cos 1cos ππdx x x()⎰⎰+-=-2004s i n c o s s i n c o s ππx d xx dx x x ()()2230423c o s 32c o s 32ππ⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡=-x x 32344-=20.⎰+4sin 1sin πdx xx解:原式()⎰--=42sin 1sin 1sin πdx xx x ⎰⎪⎭⎫ ⎝⎛-=4022c o s s i n πdx x tg x x ()⎰⎰---=402421s e c c o s c o s ππdx x xx d ()242c o s 14040-+=--=πππx t g x x 21.dx xxx ⎰+π02cos 1sin解:令t x -=2π,则原式⎰-⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=2222cos 12sin 2πππππdt t t t ⎰-+-+-=2222s i n 1c o s s i n 1c o s2πππdt t t t t t ()4s i n s i n 1c o s 220202πππππ==+=⎰t a r c t g dt t t 22.⎰-+2111lndx xxx 解:原式⎰⎪⎪⎭⎫⎝⎛-+=2102211ln x d x x ()()()⎰--+--⋅+-⋅--+=210222102111111211ln 2dx x x x x x x x x x ⎰-+=210221l n 3l n 81dx x x ⎰⎰-++=210221013ln 81x dxdx21011ln 21213ln 81+-++=x x3ln 8321-=(B)一 解答1.求由0cos 0=+⎰⎰xyt tdt dt e 所决定的隐函数y 对x 的导数dxdy 。
理工大学高等数学第二学期期末试卷及答案
![理工大学高等数学第二学期期末试卷及答案](https://img.taocdn.com/s3/m/a11374efff00bed5b8f31db8.png)
系部 专业班级 学号 姓名 密封线 答题留空不够时,可写到纸的背面 注意保持装订完整,试卷折开无效 装订线
4、已知两直线的方程是 则过且平行于
的平面方程是
三、 计算题 (每小题 7 分,共 14 分)
1、设 ,求.
解
, 4 分
7 分
2、设,求
. 解: 因为
,所以
6分
. 7分
理工大学考试试卷
(2011-2012 学年度第 二 学期)
课 程 名 称:高等数学(一) B 卷
命 题:高等数学教研室
题号 一
二
三
四
五
六
七
八
总分
得分
一、 单项选择题 (每小题3分,共12分) 1.设有连续的一阶偏导数,则(
). (A ); (B )
; (C )
; (D )
2、,是圆
在第一象限从点到点
的
一段,则 ( ) .
(A )
, (B ), (C )
, (D )
3、下列无穷积分收敛的是(D ). (A )
(B)
(C)
(D)
4、二阶微分方程的通解是( A ).
(A ); (B ); (C )
; (D )
二、 填空题 (每小题3分,共 12分) 1、改变二次积分的积分次序
.
2、设, 则.
3、 .
11
∑+∑∑-⎰⎰⎰⎰
2x y dxdydz Ω+-⎰⎰⎰
⎰⎰(注意z 的积分限应该为。
长沙理工大学大一高数期末考精彩试题(精)
![长沙理工大学大一高数期末考精彩试题(精)](https://img.taocdn.com/s3/m/79aeaa5d482fb4daa48d4b77.png)
一、单项选择题 (本大题有4小题, 每小题4分, 共16分)1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3.若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x=处取得极大值;(B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。
4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x +(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分)5. =+→xx x sin 20)31(lim .6. ,)(cos 的一个原函数是已知x f x x =⋅⎰x x xx f d cos )(则 .7.lim(cos cos cos )→∞-+++=22221L n n nnn n ππππ .8.=-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y .10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12.设函数)(x f 连续,=⎰1()()g x f xt dt,且→=0()limx f x Ax ,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性.13.求微分方程2ln xy y x x'+=满足=-1(1)9y 的解.四、 解答题(本大题10分)14. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程.五、解答题(本大题10分)15. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1)求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V .六、证明题(本大题有2小题,每小题4分,共8分)16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰q f x d x q f x dx.17. 设函数)(x f 在[]π,0上连续,且0)(0=⎰πx d x f ,0cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C二、填空题(本大题有4小题,每小题4分,共16分)5.6e . 6.cx x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导(1)cos()()0x y e y xy xy y +''+++=cos()()cos()x y x ye y xy y x e x xy +++'=-+0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 1(1)112()7(1)71u du duu u u u -==-++⎰⎰原式 1(ln ||2ln |1|)7u u c =-++ 7712ln ||ln |1|77x x C =-++11.解:1033()xf x dx xe dx ---=+⎰⎰⎰3()x xd e --=-+⎰⎰00232cos (1sin )x x xe e d x πθθθ----⎡⎤=--+-=⎣⎦⎰ 令3214e π=--12. 解:由(0)0f =,知(0)0g =。
长沙理工大学高等数学期末考试试卷及答案
![长沙理工大学高等数学期末考试试卷及答案](https://img.taocdn.com/s3/m/2158cb55ad51f01dc281f1ce.png)
一、单项选择题(共20分,5个小题,每小题4分)1.已知1=a,2=b ,且两个向量的夹角为4π,则=+b a ()。
A.1B.21+ C.2D.5答案:D 。
考点:向量的运算。
解答:()()b a b a b a+⋅+=+ba b b a a ⋅+⋅+⋅=2⎪⎪⎭⎫ ⎝⎛⋅⋅++=∧b a b a b a,cos 2225222221=⋅⋅++=。
注释:了解向量的各种运算和性质,掌握两向量的点积和叉积运算。
此题利用了2a a a=⋅。
2.函数xy z =在点()0,0处满足()。
A.连续但偏导数不存在B.连续且偏导数存在C.偏导数存在但不连续D.可微答案:B 。
考点:多元函数在一点连续、可导、可微的定义。
解答:令()xyy x f z ==,(1)连续()()0,00lim,lim 0000f xy y x f y x y x ===→→→→则()xy y x f z ==,在()0,0处连续。
(2)可导()()()000lim 0,00,lim0,000=∆-=∆-∆=→∆→∆x x f x f f x x x 类似()00,0=y f ,则()xy y x f z ==,在()0,0处可导。
(3)可微()()y x f y x f z ∆∆=-∆∆=∆0,0,()()()()()()⎪⎭⎫ ⎝⎛∆+∆=⎪⎭⎫⎝⎛∆+∆+∆+∆22220,00,0y x o y x o y f x f y x 因为()()2202200limlimy x xy y x yx y x y x +=∆+∆∆∆→→→∆→∆,当()y x ,沿kx y =趋向()0,0时,该极限不存在,则()()⎪⎭⎫⎝⎛∆+∆≠∆∆22y x o y x ,即()()0,0,f y x f z -∆∆=∆()()()()⎪⎭⎫⎝⎛∆+∆+∆+∆≠220,00,0y x o y f x f y x ,故()xy y x f z ==,在()0,0处不可微,偏导数不连续(偏导连续则可微的逆否命题)。
长沙理工大学往届高等数学试题及答案.
![长沙理工大学往届高等数学试题及答案.](https://img.taocdn.com/s3/m/147fe0e4b04e852458fb770bf78a6529647d358f.png)
长沙理工大学高等数学试题及答案一、单项选择题〔本大题共5小题,每题2分,共10分〕在每题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多项选择或未选均无分。
1.设f(x)=lnx ,且函数ϕ(x)的反函数1ϕ-2(x+1)(x)=x-1,那么[]ϕ=f (x)〔 〕 2.()002lim 1cos t t xx e e dt x -→+-=-⎰〔 〕A .0B .1C .-1D .∞ 3.设00()()y f x x f x ∆=+∆-且函数()f x 在0x x =处可导,那么必有〔 〕4.设函数,131,1x x x ⎧≤⎨->⎩22x f(x)=,那么f(x)在点x=1处〔 〕A.不连续B.连续但左、右导数不存在C.连续但不可导D. 可导5.设C +⎰2-x xf(x)dx=e ,那么f(x)=〔 〕二、填空题〔本大题共10小题,每空3分,共30分〕请在每题的空格中填上正确答案。
错填、不填均无分。
6.设函数f(x)在区间[0,1]上有定义,那么函数f(x+14)+f(x-14)的定义域是__________. 7.()()2lim 1_________n n a aq aq aq q →∞++++<=8.arctan lim _________x x x→∞= 9.某产品产量为g 时,总本钱是2g C(g)=9+800,那么生产100件产品时的边际本钱100__g ==MC 10.函数3()2f x x x =+在区间[0,1]上满足拉格朗日中值定理的点ξ是_________.11.函数3229129y x x x =-+-的单调减少区间是___________.12.微分方程3'1xy y x -=+的通解是___________.13.设2ln 2,6a a π==⎰则___________.14.设2cos x z y =那么dz= _______. 15.设{}2(,)01,01y DD x y x y xe dxdy -=≤≤≤≤=⎰⎰,则_____________.三、计算题〔一〕〔本大题共5小题,每题5分,共25分〕16.设1x y x ⎛⎫= ⎪⎝⎭,求dy. 17.求极限0ln cot lim ln x x x+→18.求不定积分.19.计算定积分I=0.⎰ 20.设方程2z x 2e 1y xz -+=确定隐函数z=z(x,y),求','x y z z 。
长沙理工大学2017学年期末《高等数学》考试卷三及答案-(A3版)
![长沙理工大学2017学年期末《高等数学》考试卷三及答案-(A3版)](https://img.taocdn.com/s3/m/6e85abeab7360b4c2f3f6460.png)
弟1页/(共4页) 弟2页/(共4页)长沙理工大学2017学年期末《高等数学》考试(考试时间90分钟,满分100分)一.解答下列各题(6分*10): 1.求极限)1ln(lim 1xx e x ++→.2.设⎪⎭⎫ ⎝⎛++++=22222ln a x x a a x x y ,求y d . 3.设⎪⎩⎪⎨⎧-=-=3232tt y tt x ,求22d d x y.4.判定级数()()0!12≥-∑∞=λλλn nn n n e 的敛散性. 5.求反常积分()⎰-10d 1arcsin xx x x.6.求⎰x x x d arctan .7.⎰-π3d sin sin xx x .8.将⎪⎩⎪⎨⎧≤≤<=πππx x x x f 2,02,)(在[]ππ,-上展为以π2为周期的付里叶级数,并指出收敛于()x f 的区间.9.求微分方程0d )4(d 2=-+y x xx y 的解.10.求曲线1=xy 与直线0,2,1===y x x 所围平面图形绕y 轴旋转一周所得旋转体的体积.二.(8分)将()()54ln -=x x f 展开为2-x 的幂级数,并指出其收敛域.三.(9分)在曲线()10sin 2≤≤=x x y 上取点()()10,sin ,2≤≤a a a A ,过点A 作平行于ox 轴的直线L,由直线L ,oy 轴及曲线()a x x y ≤≤=0sin 2所围成的图形记为1S ,由直线L ,直线1=x 及曲线()1sin 2≤≤=x a x y 所围成的图形面积记为2S ,问a 为何值时,21S S S +=取得最小值.四.(9分)冷却定律指出,物体在空气中冷却的速度与物体和空气温度之差成正比,已知空气温度为30℃时,物体由100℃经15分钟冷却至70℃,问该物体冷却至40℃需要多少时间?五.(8分)(学习《工科数学分析》的做(1),其余的做(2)) (1)证明级数∑∞=-02n nxe x 在[),0+∞上一致收敛.(2)求幂级数()∑∞=-----122121212)1(n n n n x n 的收敛域及和函数.六.(6分)设()[]b a C x f ,2∈,试证存在[]b a ,∈ξ,使()()()()⎰''-+⎪⎭⎫ ⎝⎛+-=baf a b b a f a b dx x f ξ32412第3页/共4页 第4页/共4页参考答案一、1.()()()1111000ln 1lim ln 1lim 2lim 51611x x xx x x xe e x e e x +++→→→⎛⎫+ ⎪⎛⎫⎝⎭'''+=== ⎪⎝⎭+2.()()2256dy a dx ⎫''=+= 3.()()()()2223333313, 6222241dy t d y dt t dx t dx dx t -''==+==--4.()()()lim 3,5.1nn n e e n e λρλλλ→∞⎛⎫'''==≤> ⎪+⎝⎭时,收敛,时,发散65.原式()(()()21100lim 2lim arcsin 564εεεεπ++--→→'''===⎰6.()()2211arctan arctan 3arctan 6222x x xx xdx xd x C ++''==-+⎰⎰7.原式=()()()0242cos )463x dx xdx x dx πππ'''=+-=⎰⎰8.()()02n f x a '∴=为奇函数,()()2201221sin sin cos sin 4222n n n b f x n dx x n dx n n πππππππππππ-⎛⎫'===-+ ⎪⎝⎭⎰⎰()()()()()()11211112sin 21sin 2,,,,62222221n n n n f x n x nx x nn πππππππ--∞∞==--⎡⎫⎛⎫⎛⎤'=-+∈--⋃-⋃⎪ ⎪ ⎢⎥⎣⎭⎝⎭⎝⎦-∑∑9.分离变量得,()23,4dy dx y x x '=-积分得)6y '=10.()()1222211212112 2262y y V x dy or V xf x dx ππππππ'=⋅+-⋅===⎰⎰二、()()()()()4ln 4232ln 3ln 1243f x x x ⎡⎤''=-+=++-⎡⎤⎣⎦⎢⎥⎣⎦()()()1143ln 3126nn nn x n ∞-=⎛⎫⎪⎝⎭'=+--∑()4121,3x -<-≤收敛区间为()511844x '<≤三、由()2sin 01y x x =≤≤得:[]()222cos 0,sin 0,1y x x y x ''=≥∴=在上单调增.2所求面积()()()12222120sin sin sin sin 3a aS S S a x dx x a dx '=+=-+-⎰⎰()()()1222021sin sin sin 013aaa a x dx x dx a '=--+≤≤⎰⎰()()()211221cos 5,0,0722ds ds dsa a a a a da da da ''=-<<>>时,时,()11.22s a a a ∴==在处取得极小值,据题意,时,s的值最小四、设物体在时刻t 的温度为()T t ,由冷却定律及题设条件得,()()()3040100dTk T dtT ⎧=--⎪'⎨⎪=⎩,解之得:()306kt T Ce -'=+,代入得,70C =,即3070kt T e -=+,再由()1570,T =得()17ln 7154k '=,即1570ln730ln 4T T =-又40T =得()52t ≈分五、1.()()22,2nxnxnxn n f x x e f x xenx e---'==-,令0,n f '=得2x n =()()22224,0,4nx nx nx n n f x e nxe n x e f n ---⎛⎫'''''=-+< ⎪⎝⎭2x n =为()n f x 在[)0,+∞上的唯一极大值,()()22246n n f x f e n n -⎛⎫'∴≤= ⎪⎝⎭2.()()()121lim122224n n n u x x x u x +→∞'=<=±-时收敛,时发散,收敛域为(,)令()()()()12221112132n n n n n S x x -∞--=--'=∑,弟5页/(共4页) 弟6页/(共4页)()()()()2111222100112111522n xxn n n n n n n x s t dt t dt -∞∞----==-⎛⎫'=-=- ⎪⎝⎭∑∑⎰⎰()()()()()222202228278444xx x x S t dt S x x x x '-⎛⎫''∴=== ⎪++⎝⎭+⎰,故六、方法1:()()()()22023a bb a bba b aaf x dx f a t f b t +-+'=+=++-⎡⎤⎣⎦⎰⎰⎰⎰()()()()220b a b at f a t f b t f a t f b t dt--=++--++-⎡⎤⎡⎤⎣⎦⎣⎦⎰()()()22022b aa b t f b a f a t f b t -+⎛⎫''=--+--⎡⎤ ⎪⎣⎦⎝⎭()()22012b a t f a t f b t dt -''''+++-⎡⎤⎣⎦⎰()()()2201,0,222b aa b b a f b a f a f b t dt ηηη-+-⎛⎫⎡⎤''''=-+++-∈⎡⎤ ⎪⎣⎦⎢⎥⎝⎭⎣⎦⎰()()()[]()31,,6224a b f b a f b a a b ξξηη+⎛⎫'''=-+-∈+- ⎪⎝⎭方法2:根据taylor 公式()()()2122222!2a b a b a b a b f x f f x f x η++++⎛⎫⎛⎫⎛⎫⎛⎫''''=+-+- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()()()()214222bb aa ab a b f x dx b a f f x dx η++⎛⎫⎛⎫'''=-+- ⎪ ⎪⎝⎭⎝⎭⎰⎰()[],f x a b M m''在上连续,不妨设最值分别为和,从而()222222b b a a a b a b a b m x dx f x dx M x dx η+++⎛⎫⎛⎫⎛⎫''-≤-≤- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰⎰⎰ ()()()()223132212bb aa ab a b f x dx f x dx f b a ηξ++⎛⎫⎛⎫''''''∴-=-=- ⎪ ⎪⎝⎭⎝⎭⎰⎰ 故()()()()()316224baa b f x dx b a f b a f ξ+⎛⎫'''=-+- ⎪⎝⎭⎰方法3:设()f x 的原函数为()F x ,则()()()()()(),b baaF x f x f x dx F x dx F b F a ''===-⎰⎰对于函数()F x ,有Taylorg 公式()()22112222223!2a b a b a b a b a b a b F b F F b F b F b ξ++++++⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫''''''=+-+-+- ⎪ ⎪⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()31122222262a b a b b a a b b a b a F f f f ξ++-+--⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫'''=+++ ⎪ ⎪⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()()2321122222262a b a b a b a b a b a b F a F f f f ξ++-+--⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫'''=+++ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭于是,()()()()()()3121262b aa b b a F b F a f x dx b a f f f ξξ+-⎛⎫⎛⎫''''-==-++⎡⎤ ⎪ ⎪⎣⎦⎝⎭⎝⎭⎰又()f x ''连续,故必有[],a b ξ∈,使得()()()122f f f ξξξ''''''+=。
长沙理工大学近年高数上期末考题(1)
![长沙理工大学近年高数上期末考题(1)](https://img.taocdn.com/s3/m/c6819d7add36a32d7375819c.png)
长沙理工大学考试试卷………………………………………………………………………………………………………………………一、填空题:(本题总分16分,每小题4分)1.已知11xf x x =-()(),为使f x ()在0x =点连续,则应补充定义0f =() .2.已知225lim 232n a n bn n →∞++=-,则a = ,b = .3.设f x ()的一个原函数是cos x ,则f x '=() .4.已知220d sin d d x t t x =⎰ .二、选择题:(本题总分16分,每小题4分) 1.设f x ()在0x x =处可导,则000limx f x x f x x∆→-∆-=∆()()( )A .0f x '-()B .0f x '-()C .0f x '()D .02f x '()2.下列函数在1, e []上满足拉格朗日定理条件的是( )A .ln ln xB .1ln x C .ln xD .ln 2x -() 3.根据估值定理,积分201d 103cos x x+⎰π的值在区间( )内A .7, 13[]B .0, 2[]πC .11, 137⎡⎤⎢⎥⎣⎦D .22, 137⎡⎤⎢⎥⎣⎦ππ 4.函数3226187f x x x x =--+()的极大值是( )A .10B .11C .17D .9三、计算题:(本题总分64分,每小题8分) 1.求极限120lim 1xx x →+().2.若隐函数y y x =()由方程22ln arctanyx y x+=()确定,求y x '(). 3.设曲线C 的参数方程是()2e ee e t tt tx y --⎧=-⎪⎨=+⎪⎩,求曲线C 上对应于ln2t =的点的切线方程.4.求x . 5.求0x ⎰.6.求330+e e d lim2xx t x t tx-→∞⎰. 7.求2 cos d x x x ⎰.8.已知曲线22y x x =-与2g x ax =()围成的图形面积等于323,求常数a . 四、证明题:(本题总分4分,每小题4分)设f x ()在a b [,]上连续,在a b (,)可导,且0f x '≤(),记d xaf t tF x x a=-⎰()(),证明:在a b (,)内有0F x '≤().长沙理工大学考试试卷…………………………………………………………………………………………………………………一、选择题:(本题总分20分,每小题4分)1.极限201sinlimsin x x x x→的值为( ) A .1 B .∞ C .不存在 D .02.若函数e , 0sin 2, 0ax x f x b x x ⎧<=⎨+≥⎩()在0x =处可导,则a ,b 的值为( )A .21a b ==,B .12a b ==,C .21a b =-=,D .21a b ==-,3.设函数221xf x x =+(),则f x ()在( ) A .-∞+∞(,)上单调增加 B .-∞+∞(,)上单调减少 C .11-(,)上单调增加,其余区间单调减少 D .11-(,)上单调减少,其余区间单调增加4.设f x ()连续,则22d d d x tf x t t x -=⎰() ( ) A .212f x () B .2xf x () C .22xf x ()D .22xf x -() 5.设线性无关的函数123, y y y ,都是二阶非齐次线性方程y p x y q x y f x '''++=()()()的解,12C C ,是任意常数,则该非齐次方程的通解可以是( )A .11223C y C y y ++B .1122123C y C y C C y +-+() C .11221231C y C y C C y +---()D .11221231C y C y C C y ++--()二、填空题:(本题总分20分,每小题4分) 1.已知函数211f x x =+(),则0f '''=() . 2.微分方程230y y y '''++=的通解为 . 3.20ln cos limx xx →= .4.22sin d 1cos x x x x-⎛⎫+= ⎪+⎝⎭⎰ππ .5.21ln d 1xx x +∞=+⎰(). 三、解答题:(本题总分60分,每小题10分)1.求函数ln 1sin f x x a x bx x =+++()(),3g x kx =(),若f x ()与g x ()在0x →时是等价无穷小,求a ,b ,k .2.设2arctan 2e 5tx t y ty =⎧⎨-+=⎩确定了函数y y x =(),求y x '(). 3.计算1x ⎰,其中1ln 1d x t f x t t +=⎰()(). 4.证明:21arctan ln 12x x x ≥+().5.过曲线0y x =≥()上点A 做切线,使该切线与曲线及x 轴围成的平面图形D 的面积等于34. (1) 求A 点的坐标;(2) 求平面图形D 绕x 轴旋转一周所得旋转体的体积. 6.设0e d xx f x x t f t t =--⎰()()(),其中f x ()是连续函数,求f x ().长沙理工大学考试试卷…………………………………………………………………………………………………………………一、选择题:(本题总分16分,每小题4分)1.设函数 22f x x x =-<<(),,则1f x -()的值域为( )A .[0,2)B .[0,3)C .[0,2]D .[0,3] 2.当0x →时,要1cos x -与等价,则a 应等于( )A .14B .4C .12D .23.设f x ()在0x 点可导,则000limx f x x f x x∆→-∆-=∆()()( )A .0f x '-()B .0f x '-()C .0f x '()D .02f x '()4.设f x ()在[1,1]-上连续,在(1,1)-内可导,且00f x M f '≤=(),() ,则必有( ) A .f x M ≥() B .f x M >() C .f x M ≤()D .f x M <()二、填空题:(本题总分20分,每小题4分)1.设x f t y tf t f t '=⎧⎨'=-⎩(),()(),则1d d t y x == .2.设y f x y =+(),其中f 具有一阶导数,且其一阶导数不等于1,则d d yx= . 3.设ln y f x =()且f x ''()存在,则22d d yx= .4.当0a >时,反常积分0e d ax x +∞-=⎰ .5.微分方程2yy x'=的通解为 . 三、计算题:(本题总分30分,每小题6分)1.求极限11lim 1ln x x x x →⎛⎫- ⎪-⎝⎭. 2.求函数2ln x y x=的单调区间.3.求不定积分1d 1x x x -⎰().4.求定积分0a x x ⎰,其中0a >. 5.求一阶线性微分方程d 1cos d y y x x x +=满足条件21x y π==的特解. 四、解答题:(本题总分20分,每小题10分)1.已知一平面图形由曲线0, 1, x x y ===x 轴围成,求(1) 此平面图形的面积;(2) 此平面图形分别绕x 轴和y 轴旋转所成的旋转体的体积. 2.求微分方程e x y y ''+=的通解. 五、应用题:(本题9分)已知制作一个背包的成本为40元,如果一个背包的售出价为x 元,售出的背包数由8040an b x x =-+--()给出,其中a , b 为正常数,问什么样的售出价格能带来最大利润?六、证明题:(本题5分)设f x ()在[,]a b 上连续,在(,)a b 内可导,且0f x '≤(),记d xaf t t F x x a=-⎰()(),证明:在a b (,)内有0F x '≤().长沙理工大学考试试卷…………………………………………………………………………………………………………………一、选择题:(本题总分16分,每小题4分)1.极限lim 3x x →∞+的值为( )A .2B .2-C .2±D .不存在2.下列函数f x ()在12-[,]上满足罗尔中值定理条件的是( )A.f x =() B .2f x x x =() C .arccos f x x =() D .cot 2xf x π=()3.下列函数中,哪一个不是sin 2x 的原函数 ( )A .2sin xB .2cos x -C .cos2x -D .225sin 4cos x x + 4.设f x ()在a b [,]上连续,则d d d ba x f x x x ⎡⎤=⎢⎥⎣⎦⎰() ( ) A .d b af x x ⎰() B .bf b af a -()() C .[]d ba x fb f a f x x-+⎰()()()D .d baf x x xf x +⎰()()二、填空题:(本题总分16分,每小题4分) 1.函数1arcsin 3x f x -=()的定义域为 . 2.201cos 3limx xx→-= . 3.设x a y x π=+,则y '= . 4.若0a <,= .三、计算题:(本题总分50分,每小题10分)1.计算极限sin cos 30e e lim x x xx x→-. 2.设参数方程(ln sin x t y ⎧=⎪⎨⎪=⎩,求22d d y x .3.计算不定积分12ln d 1xx x x+-⎰,其中1x <. 4.计算定积分291x -⎰.5.求函数2ln xy x=的单调区间与极值.四、应用题:(本题10分)在曲线21y x =+上求一点M ,使它到点050M (,)的距离最小. 五、证明题:(本题8分)设f x ()在(,)a b 内连续,可导且f x '()单调递增,0x a b ∈(,),记00000 f x f x x x x x x f x x xϕ-⎧≠⎪-=⎨⎪'=⎩()(),()(),,证明:()x ϕ在(,)a b 内也单调递增.长沙理工大学考试试卷…………………………………………………………………………………………………………………一、填空题:(本题总分20分,每小题4分) 1.如果0x →时,1cos x -与2sin 2xa 是等价无穷小,则a = . 2.函数22132x f x x x -=-+()的可去间断点为 .3.函数e x y x -=的拐点为 .4.已知y =d x y = .5.微分方程8150y y y '''++=的通解为 . 二、求下列极限:(本题总分12分,每小题6分)1.1x →; 2.011lim ln 1x x x →⎛⎫- ⎪+⎝⎭().三、求下列导数:(本题总分12分,每小题6分)1.设e sin x y x -=,求y ''; 2.已知tan y x y =+(),求y '. 四、求下列积分:(本题总分18分,每小题6分)1.x ; 2.2e d 1e xx x x +⎰(); 3.0222d 22x x x x -+++⎰. 五、解答题:(本题总分30分,每小题10分)1.当a 为何值时,1sin sin 33y a x x =+在3x π=处有极值?求此极值,并说明是极大值还是极小值.2.求抛物线22y x =与其在点112⎛⎫⎪⎝⎭,处的法线所围成的图形的面积.3.求微分方程2ln xy y x x '+=满足条件119y =-()的解.六、证明题:(本题8分)设f x ()在[0, ]a 上连续,证明:0aaf x dx f a x dx =-⎰⎰()().。
长沙理工大学往高等数学试题及答案 (2)
![长沙理工大学往高等数学试题及答案 (2)](https://img.taocdn.com/s3/m/8f2a16863968011ca30091ca.png)
长沙理工大学高等数学试题及答案一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设f(x)=lnx ,且函数ϕ(x)的反函数1ϕ-2(x+1)(x)=x-1,则[]ϕ=f (x)( ) ....A B C D x-2x+22-x x+2 ln ln ln ln x+2x-2x+22-x 2.()002lim 1cos t t x x e e dt x -→+-=-⎰( )A .0B .1C .-1D.∞ 3.设00()()y f x x f x ∆=+∆-且函数()f x 在0x x =处可导,则必有( ).lim 0.0.0.x A y B y C dy D y dy ∆→∆=∆==∆= 4.设函数,131,1x x x ⎧≤⎨->⎩22x f(x)=,则f(x)在点x=1处( )A 。
不连续B 。
连续但左、右导数不存在 C.连续但不可导 D. 可导5.设C +⎰2-x xf(x)dx=e ,则f(x)=( )2222-x -x -x -x A.xe B.-xe C.2e D.-2e二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案.错填、不填均无分。
6.设函数f(x )在区间[0,1]上有定义,则函数f(x+14)+f (x —14)的定义域是__________. 7.()()2lim 1_________n n a aq aq aq q →∞++++<=8.arctan lim _________x x x→∞= 9。
已知某产品产量为g时,总成本是2g C(g)=9+800,则生产100件产品时的边际成本100__g ==MC 10。
函数3()2f x x x =+在区间[0,1]上满足拉格朗日中值定理的点ξ是_________。
11。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长沙理工大学高等数学试题及答案
一、单项选择题(本大题共5小题,每小题2分,共10分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设f(x)=lnx ,且函数ϕ(x)的反函数1ϕ-2(x+1)(x)=
x-1,则[]ϕ=f (x)( ) ....A B C D x-2x+22-x x+2 ln ln ln ln x+2x-2x+22-x
2.()002lim 1cos t
t x x e e dt x -→+-=-⎰( )
A .0
B .1
C .-1
D .∞ 3.设00()()y f x x f x ∆=+∆-且函数()f x 在0x x =处可导,则必有( )
.lim 0.0.0.x A y B y C dy D y dy ∆→∆=∆==∆= 4.设函数,131,1
x x x ⎧≤⎨->⎩22x f(x)=,则f(x)在点x=1处( )
A.不连续
B.连续但左、右导数不存在
C.连续但不可导
D. 可导
5.设C +⎰2
-x xf(x)dx=e ,则f(x)=( )
2222-x -x -x -x A.xe B.-xe C.2e D.-2e
二、填空题(本大题共10小题,每空3分,共30分)
请在每小题的空格中填上正确答案。
错填、不填均无分。
6.设函数f(x)在区间[0,1]上有定义,则函数f(x+14)+f(x-14)的定义域是__________. 7.()()2lim 1_________n n a aq aq aq q →∞++++<=
8.arctan lim _________x x x
→∞= 9.已知某产品产量为g 时,总成本是2
g C(g)=9+800
,则生产100件产品时的边际成本100__g ==MC 10.函数3()2f x x x =+在区间[0,1]上满足拉格朗日中值定理的点ξ是_________.
11.函数3229129y x x x =-+-的单调减少区间是___________.
12.微分方程3'1xy y x -=+的通解是___________.
13.
设2ln 2,6
a a π==⎰则___________.
14.设2cos x z y =则dz= _______. 15.设{}2(,)01,01y D D x y x y xe
dxdy -=≤≤≤≤=⎰⎰,则_____________.
三、计算题(一)(本大题共5小题,每小题5分,共25分)
16.设1x y x ⎛⎫= ⎪⎝⎭
,求dy. 17.求极限0ln cot lim ln x x x
+→
18.求不定积分
.
19.计算定积分I=0
.⎰ 20.设方程2z x 2e 1y xz -+=确定隐函数z=z(x,y),求','x y z z 。
四、计算题(二)(本大题共3小题,每小题7分,共21分)
21.要做一个容积为v 的圆柱形容器,问此圆柱形的底面半径r 和高h 分别为多少时,所用材料最省?
22.计算定积分20
sin x xdx π
⎰ 23.将二次积分⎰⎰ππ=0
x 2dy y y sin dx I 化为先对x 积分的二次积分并计算其值。
五、应用题(本题9分) 24.已知曲线2y x =,求
(1)曲线上当x=1时的切线方程;
(2)求曲线2
y x =与此切线及x 轴所围成的平面图形的面积,以及其绕x 轴旋转而成的旋转体的体积x V .
六、证明题(本题5分)
25.证明:当x>0时,ln(1x x
参考答案
一、单项选择题(本大题共5小题,每小题2分,共10分)
1.答案:B
2.答案:A
3.答案:A
4.答案:C
5.答案:D
二、填空题(本大题共10小题,每空3分,共30分)
6.答案:13,44
⎡⎤
⎢⎥⎣⎦
7.答案:1a q - 8.答案:0
9.答案:14
10
11.答案:(1,2)
12.答案:3
12
x Cx -+ 13.答案:ln 2a =
14.答案:21cos sin 2x xdx dy y y ⎛⎫-+ ⎪⎝⎭
15.答案:()2114
e --
三、计算题(一)(本大题共5小题,每小题5分,共25分)
16. 答案:()1ln 1x x dx x ⎛⎫-+ ⎪⎝⎭
17.答案:-1
18
C 19. 答案:24a π
20. 答案:2
'
'x
y z z 22x Z Z 2e 2e xy z x x -==--,
四、计算题(二)(本大题共3小题,每小题7分,共21分)
21
.答案:0020V r h r π=
==22.答案:2
4
π
23. 答案:1
五、应用题(本题9分)
24. 答案:(1)y=2x-1(2)
1
12
,
30
π
(2)
所求面积()
1
3
12
2
1121
(1
24312
y
S dy y y
⎡⎤
+
==+-=
⎢⎥
⎣⎦
⎰
所求体积()
12
22
11
1
325630
x
V x dx
πππ
ππ
=-⋅⋅⋅=-=
⎰
六、证明题(本题5分)25.证明:
()ln(1
'()ln(
ln(
ln(
1
'()ln(0
f x x x
f x x
x
x
x
x
f x x
=+
∴=++
=+
=
>
∴+>
∴=+>
故当0
x>时()
f x单调递增,则()(0),
f x f
>即
ln(1
x x>
友情提示:本资料代表个人观点,如有帮助请下载,谢谢您的浏览!。