电路分析实验报告.doc
电路分析基础实验报告.doc
电路分析基础实验报告信息科学系科技软件工程专业基础电路分析课程实验报告;XXXX年级班:2011级软件的5级(1105)名称:学生编号:本课程中的所有实验都使用工作台作为模拟工具。
实验一基尔霍夫定理和串并联电阻的实验目的;学习使用工作台软件,学习建立简单的直流电路,用模拟测量仪器测量电压和电流。
1.基尔霍夫电流和电压定理的验证。
解决方案:为了设计一个电路,它需要包括至少两个环路和两个节点。
测量节点电流和回路电压的代数和,验证基尔霍夫电流和电压定理,并与理论计算值进行比较。
实验示意图:与理论计算数据的对比分析;i3=i1 i2u1 U2 u7 U6=0;U4 u3 u7 u5=0;u1 U2 u3 U4 u5 U6=0;2.电阻器串并联分压和分流关系的验证解决方案:设计一个电路需要包括三个以上的电阻,包括串联电阻和并联电阻,测量电阻上的电压和电流,验证电阻的串并联分压和分流关系,并与理论计算值进行比较。
实验示意图:与理论计算数据的对比分析;200ω100ω=300ω;(100ω200ω)//600ω=200ω;I1=15/(200 200 100)=30 MAI 2=I1 *(600/900)=10 MAI 3=I1 *(300/900)=20毫欧1=U3 *(200/300)=4VU 2=U3 *(100/300)=2V实验结果:1.使用大电阻可以减少误差2。
工具不能熟练使用,而且有随机代码。
实验2叠加定理实验目的:通过实验加深对叠加定理的理解;学习使用受控源,并进一步学习使用模拟测量仪器来测量电压和电流等变量。
解决方案:为了设计一个电路,需要包括至少两个独立的源(一个电压源和一个电流源)和一个受控源,分别测量每个独立源单独作用时的响应,并测量所有独立源共同作用时的响应,以验证叠加定理。
与理论计算值相比。
电压源单独作用电流源单独作用电压源和电流源共同作用实验原理图及理论计算数据对比分析;当电压源单独作用时,i=12/(1 3)=3:通过实验加深对交流电路中幅值、有效值和相位的理解;学会使用交流信号源和模拟仪器测量交流电压和电流,学会使用示波器。
电路分析实验报告
电路分析实验报告本次电路分析实验,我们通过实验操作及测量,掌握了一些基础电路分析方法。
本文将从实验目的、实验步骤、实验结果及结论四个部分进行论述。
一、实验目的本次实验的主要目的是通过对一些基础电路进行分析,掌握基础电路分析方法。
同时,通过实际操作,加深对理论知识的理解,为以后的学习和实践打下基础。
二、实验步骤本次实验包括五个电路分析实验,分别为电阻电路的分析、电容电路的分析、电感电路的分析、交流电路的分析以及三相平衡电路的分析。
下面我们逐一介绍各个实验的步骤。
1.电阻电路的分析电阻电路是最常见的一种电路,是我们学习和分析电路的基础。
在实验中,我们将使用电表和万用表等工具,测量不同电阻值的电阻器的电压、电流等指标,并对电路进行分析。
2.电容电路的分析电容电路是由电容器组成的电路,其特点是具有充电和放电过程。
在实验中,我们将使用电容器,观察电容电路的充电和放电过程,并测量其中的各项指标。
3.电感电路的分析电感电路是由电感器组成的电路,其特点是在通电和断电时会有一定的自感电动势。
在实验中,我们将使用电感器,观察电感电路的变化情况,并测量其中的各项指标。
4.交流电路的分析交流电路是由交流电源和各种电器元件组成的电路,其特点是电压和电流大小和正负方向均会变化。
在实验中,我们将使用各项电器元件,测量交流电路中的电压、电流、功率等指标,并对其进行分析。
5.三相平衡电路的分析三相平衡电路是由三个单相电路组成的电路,特点是在不同的电路中,电流和电压均不相同,需要进行平衡调节。
在实验中,我们将使用三个单相电路元件,实现三相平衡电路,并测量其中的各项指标。
三、实验结果经过实验操作和测量,我们得到了大量的数据和实验结果。
我们将根据不同的实验,分别列举出各自的实验结果。
1.电阻电路的分析通过电阻电路的测量,我们得到了电阻器的电压、电流等数据,并且根据欧姆定律、基尔霍夫定律等提出了一些分析结论。
2.电容电路的分析通过电容电路的充电和放电现象的观察,我们得到了电容器的电压随时间的变化规律,并且根据它们的基本关系,提出了分析结论。
电路分析基础实验报告
电路分析基础实验报告实验名称:电路分析基础实验实验目的:通过对不同电路进行分析,加深对电路原理的理解,并掌握使用基本电路元件搭建电路的技能。
实验器材:电源、电阻、电容、电感、电工万用表、示波器、导线等。
实验原理:电路分析是指对电路中各个元件之间的关系进行定量分析的过程。
在这个实验中,我们将学习使用欧姆定律、基尔霍夫定律和串并联等电路定律进行电路分析。
实验步骤及实验结果:1.首先,我们搭建一个简单的串联电路。
将两个电阻依次连接,连接到电源上。
使用电工万用表测量电源的电压和电阻的电流,并记录测量结果。
根据欧姆定律计算电阻的阻值,并将结果与测量结果进行比较。
实验结果:测量得到电源电压为12V,电阻电流为0.5A。
根据欧姆定律,计算得到电阻的阻值为R=V/I=12V/0.5A=24Ω。
测量结果与计算结果相符。
2.接下来,我们搭建一个并联电路。
将两个电阻分别连接到电源的两个正极,将另外两个端点连接到电源的两个负极上。
使用电工万用表测量电源的电压和电阻的电流,并记录测量结果。
根据欧姆定律计算电阻的阻值,并将结果与测量结果进行比较。
实验结果:测量得到电源电压为12V,电阻电流为1A。
根据欧姆定律,计算得到电阻的阻值为R=V/I=12V/1A=12Ω。
测量结果与计算结果相符。
3.然后,我们搭建一个RC电路,将电阻和电容串联连接到电源上。
使用示波器观察电阻上的电压和电容上存储的电荷的变化情况,并记录结果。
实验结果:观察到电阻上的电压呈指数衰减的变化趋势,电容上的电荷在刚接通电源时迅速充电,然后逐渐达到稳定。
通过测量,我们可以得到RC时间常数,从而计算出电路的时间常数。
4.最后,我们搭建一个RL电路,将电阻和电感串联连接到电源上。
使用示波器观察电阻上的电压和电感上存储的磁场的变化情况,并记录结果。
实验结果:观察到电阻上的电压呈指数增长的变化趋势,电感上的磁场随着时间的增加而增强。
通过测量,我们可以得到RL时间常数,从而计算出电路的时间常数。
电路分析实验报告(1)
电路分析实验报告(1)电路分析实验报告一、实验目的:本次实验旨在通过对电路的分析和实验验证,进一步掌握基本的直流电路分析原理和方法,提高学生的电路分析能力。
二、实验设备和器件:1. 直流稳压电源2. 万用表3. 电阻箱4. 电流表5. 线圈三、实验步骤和结果:1. 串联电路实验(1)将两个不同电阻的电阻器串联,经过万用表检测,记录电阻器的阻值为R1=200 ohm,R2=400 ohm。
(2)通过Ohm定律计算,串联电路的总电阻值为:R = R1 + R2 = 600 ohm(3)利用直流稳压电源,控制电流大小,以电流表测量串联电路中的电流大小,并进行记录。
(4)根据欧姆定律,I = U/R,其中U为电源输出电压,R为串联电路的总电阻,所以电流大小为I=5V/600 ohm=0.0083A。
2. 并联电路实验(1)将两个不同电阻的电阻器并联,经过万用表检测,记录电阻器的阻值为R1=100 ohm,R2=300 ohm。
(2)通过合并电流的公式1/R总 = 1/R1 + 1/R2,计算并联电路的总电阻值为:1/R总 = 1/100 + 1/300 = 0.01, R总 = 100 ohm(3)利用直流稳压电源,控制电压大小,以电流表测量并联电路中的电流大小,并进行记录。
(4)根据欧姆定律,I = U/R,其中U为电源输出电压,R为并联电路的总电阻,所以电流大小为I=5V/100 ohm=0.05A。
四、实验结论:通过本次实验的进行,我们得到了串联电路和并联电路的阻值、电流等重要基本参数,并进一步掌握了相关原理和方法,是我们深入学习电路分析相关知识的重要基础,同时也对提高我们的实验操作能力有着积极的作用。
电路分析实验报告总结(3篇)
第1篇一、实验背景电路分析是电子技术领域的基础课程,通过对电路的基本原理和特性的研究,培养学生的电路分析和设计能力。
本次实验旨在通过实际操作,加深对电路分析理论的理解,提高电路实验技能。
二、实验目的1. 掌握电路分析方法,包括电路等效变换、电路分析方法、电路特性分析等;2. 学会使用常用电子仪器,如万用表、示波器等;3. 提高电路实验技能,培养严谨的科学态度和团队合作精神。
三、实验内容本次实验主要包括以下内容:1. 电路基本元件的测试与识别;2. 电路等效变换与简化;3. 电路分析方法的应用;4. 电路特性分析;5. 电路实验技能训练。
四、实验步骤1. 实验前准备:熟悉实验原理、步骤,准备好实验器材;2. 测试电路基本元件:使用万用表测试电阻、电容、电感等元件的参数;3. 电路等效变换与简化:根据电路图,运用等效变换和简化方法,将复杂电路转换为简单电路;4. 电路分析方法的应用:根据电路分析方法,分析电路的输入输出关系、电路特性等;5. 电路特性分析:通过实验,观察电路在不同条件下的工作状态,分析电路特性;6. 实验数据记录与分析:记录实验数据,分析实验结果,总结实验经验。
五、实验结果与分析1. 电路基本元件测试:通过测试,掌握了电阻、电容、电感等元件的参数,为后续电路分析奠定了基础;2. 电路等效变换与简化:成功地将复杂电路转换为简单电路,提高了电路分析的效率;3. 电路分析方法的应用:运用电路分析方法,分析了电路的输入输出关系、电路特性等,加深了对电路理论的理解;4. 电路特性分析:通过实验,观察了电路在不同条件下的工作状态,分析了电路特性,为电路设计提供了参考;5. 电路实验技能训练:通过实际操作,提高了电路实验技能,为今后的学习和工作打下了基础。
六、实验总结1. 本次实验加深了对电路分析理论的理解,提高了电路实验技能;2. 通过实验,学会了使用常用电子仪器,为今后的学习和工作打下了基础;3. 培养了严谨的科学态度和团队合作精神,提高了自身综合素质;4. 发现了自身在电路分析方面的不足,为今后的学习指明了方向。
电路分析实验报告
电路分析实验报告实验报告实验名称:电路分析实验目的:通过对不同电路的分析,学习和掌握电路分析的方法和技巧。
实验内容:1. 直流电路分析:利用基尔霍夫定律和欧姆定律,分析并计算直流电路中的电流和电压。
2. 交流电路分析:利用欧姆定律和基尔霍夫定律,分析并计算交流电路中的电流和电压。
实验仪器:电源、电压表、电流表、电阻、电容、电感等。
实验步骤:1. 搭建直流电路:根据实验要求,搭建所需的直流电路,并连接电源、电压表、电流表等测量仪器。
2. 测量电流和电压:利用电流表和电压表测量电路中的电流和电压数据。
3. 分析电路:根据测量数据,利用基尔霍夫定律和欧姆定律,分析电路中的电流和电压分布情况。
4. 计算电路参数:根据分析得出的电流和电压关系,计算电路中的电阻、电容和电感等参数。
5. 搭建交流电路:根据实验要求,搭建所需的交流电路,并连接电源、电压表、电流表等测量仪器。
6. 测量交流电压和电流:利用电压表和电流表测量电路中的交流电压和电流数据。
7. 分析交流电路:根据测量数据,利用欧姆定律和基尔霍夫定律,分析交流电路中的电流和电压分布情况。
8. 计算交流电路参数:根据分析得出的电流和电压关系,计算交流电路中的电阻、电容和电感等参数。
实验结果:1. 直流电路分析结果:根据测量数据和分析结果,得出直流电路中电流和电压的分布情况。
2. 交流电路分析结果:根据测量数据和分析结果,得出交流电路中电流和电压的分布情况。
实验讨论和结论:通过本次实验,我们学会了利用基尔霍夫定律和欧姆定律进行电路分析的方法和技巧。
通过对直流电路和交流电路的分析,我们掌握了计算电路中电流和电压的能力,并计算出了电路中的电阻、电容和电感等参数。
实验结果与理论计算结果基本一致,证明了电路分析方法的正确性和可靠性。
实验总结:本次实验通过对直流电路和交流电路的分析,加深了我们对电路分析的理解和掌握。
在实验过程中,我们学会了使用测量仪器进行电流和电压的测量,并利用基尔霍夫定律和欧姆定律进行电路分析。
电路分析实验实验报告
电路分析实验实验报告电路分析实验实验报告引言:电路分析是电子工程领域中的一项基础实验,它通过对电路的结构和性能进行分析,帮助我们了解电路的工作原理和特性。
本次实验旨在通过对不同电路的测量和分析,探讨电路中的电压、电流、功率等基本概念,并通过实验数据验证电路理论模型的正确性。
实验一:欧姆定律的验证欧姆定律是电路分析的基础,它描述了电流、电压和电阻之间的关系。
在本实验中,我们使用直流电源和不同阻值的电阻进行测量,验证欧姆定律的准确性。
实验步骤:1. 连接电路:将直流电源的正极和负极分别与电路中的两端连接,确保电源开关关闭。
2. 测量电阻:使用万用表测量电阻的阻值,并记录下来。
3. 测量电流:将万用表的电流测量端与电路中的一端相连,另一端与电源的负极相连,打开电源开关,并记录下电流值。
4. 测量电压:将万用表的电压测量端依次与电路中的不同位置相连,记录下各个位置的电压值。
实验结果与分析:根据欧姆定律,电流等于电压除以电阻。
通过实验测量得到的电流值与计算得到的电流值进行比较,可以发现它们非常接近。
这说明欧姆定律在实际电路中是成立的。
实验二:串联电路与并联电路的特性比较在实际电路中,电阻可以串联连接或并联连接,这会对电路的总阻值、总电流和总电压产生影响。
本实验旨在通过测量串联电路和并联电路的特性,比较它们之间的差异。
实验步骤:1. 连接电路:使用直流电源、电阻和导线搭建串联电路和并联电路。
2. 测量总电阻:使用万用表测量串联电路和并联电路的总电阻,并记录下来。
3. 测量总电流:将万用表的电流测量端与电路中的一端相连,另一端与电源的负极相连,打开电源开关,并记录下电流值。
4. 测量总电压:将万用表的电压测量端依次与电路中的不同位置相连,记录下各个位置的电压值。
实验结果与分析:通过实验测量得到的数据,我们可以计算出串联电路和并联电路的总电阻、总电流和总电压。
比较这些数据,我们可以发现在串联电路中,总电阻等于各个电阻的和,而总电流和总电压相等;而在并联电路中,总电阻的倒数等于各个电阻的倒数之和,而总电流和总电压相等。
《电路分析》正弦稳态交流电路相量的研究实验报告
《电路分析》正弦稳态交流电路相量的研究实验报告一、实验目的1.研究正弦稳态交流电路中电压、电流相量之间的关系。
2. 掌握单相正弦交流电路中电压、电流及功率的测量方法3. 理解改善电路功率因数的意义并掌握其方法。
二、实验原理1. 在单相正弦交流电路中,用交流电流表测得各支路的电流值,用交流电压表测得回路各元件两端的电压值,它们之间的关系满足相量形式的基尔霍夫定律。
2. RC串联电路,在正弦稳态信号U的激励下,U R与U C 保持有90º的相位差,即当R阻值改变时,U R的相量轨迹是一个半园。
U、U C与U R三者形成一个直角形的电压三角形,如图4.1所示。
R值改变时,可改变φ角的大小,从而达到移相的目的。
图4.13. 在感性负载两端并联电容,可以改善电路的功率因数(cosφ值)。
三、实验平台NI Multisim 14.0四、实验步骤与数据记录、处理1. 单相交流电路的基尔霍夫电压定律按图4.2所示调用元件,连接电路。
将万用表均选为交流电压档,开启仿真开关,记录各万用表显示的数值至表格4-1中,并保留截图。
验证电压的相量关系,是否符合电压三角形。
表4-1 电压相量测量2、RLC交流参数测量按图4.3所示调用元件,建立RLC电路。
正确接入功率表,将万用表分别选为交流电压挡和交流电流挡,开启仿真开关,记录各仪表显示的数值至表格4-2中,并保留截图。
表4-2 RLC参数测量根据测量结果,计算RLC各参数,与实际值进行比较。
3、并联电路─电路功率因数的改善按图4.4所示调用元件,建立电路。
正确接入功率表,将万用表选为交流电流挡,开启仿真开关,记录各仪表显示的数值至表格4-3中。
改变电容的数值,记录各参数,观察功率因数的改变情况。
图4.4 功率因数改善电路表4-3 功率因数的改善五、实验结果总结1. 完成数据表格中的计算。
2. 根据实验数据,分别绘出电压、电流相量图,验证相量形式的基尔霍夫定律。
3. 画出功率因数随并联电容变化的曲线图。
分析电路实验报告总结(3篇)
第1篇一、实验背景在本次实验中,我们主要学习了电路分析的基本原理和方法,通过实际操作和数据分析,掌握了电路中各种元件的特性和电路的运行规律。
本实验旨在提高我们对电路原理的理解,培养实际操作能力,并加深对电路分析方法的认识。
二、实验目的1. 理解电路的基本组成和基本定律;2. 掌握电路分析的基本方法,包括基尔霍夫定律、欧姆定律等;3. 熟悉常用电路元件的特性和应用;4. 提高实际操作能力和问题解决能力。
三、实验内容1. 基尔霍夫定律实验:通过实验验证基尔霍夫定律的正确性,加深对节点电压、回路电流等概念的理解。
2. 欧姆定律实验:通过实验验证欧姆定律的正确性,掌握电阻、电流、电压之间的关系。
3. 电路元件特性实验:观察和分析电阻、电容、电感等元件的特性和应用。
4. 电路分析方法实验:通过实际电路分析,掌握电路分析方法,如节点电压法、回路电流法等。
四、实验步骤1. 准备实验仪器和电路元件,确保实验环境安全。
2. 根据实验要求搭建电路,连接相关元件。
3. 对电路进行初步测试,确保电路连接正确。
4. 根据实验要求,分别进行基尔霍夫定律、欧姆定律、电路元件特性、电路分析方法等实验。
5. 记录实验数据,进行分析和处理。
6. 对实验结果进行总结,撰写实验报告。
五、实验结果与分析1. 基尔霍夫定律实验:实验结果显示,基尔霍夫定律在本次实验中得到了验证,节点电压和回路电流的计算结果与理论值基本一致。
2. 欧姆定律实验:实验结果显示,欧姆定律在本次实验中得到了验证,电阻、电流、电压之间的关系符合理论公式。
3. 电路元件特性实验:实验结果显示,电阻、电容、电感等元件的特性和应用得到了充分验证,为后续电路设计提供了理论依据。
4. 电路分析方法实验:实验结果显示,节点电压法、回路电流法等电路分析方法在本次实验中得到了有效应用,提高了电路分析效率。
六、实验总结1. 通过本次实验,我们对电路分析的基本原理和方法有了更深入的理解。
实验报告(电路分析)
六、教师评语
□优:很好地满足实验内容要求,实验结果分析详实、合理,实验心得深刻,很好的达到实验预期效果;使用的分析指标科学、合理、可行,搜集的数据准确、及时,统计分析方法、模型和软件的使用正确、恰当,对模型输出结果的解释正确、符合逻辑。
□良:较好地满足实验内容要求,实验结果分析合理,有一点的实验心得,较好地达到实验预期效果。
按图接实验线路,调自耦变压器使输出的三相线电压为220V,各相负载为3只220V,40W的并联灯泡,分别测量三相负载的线电压、相电压、线电流、相电流、中线电流、电源与负载中点间的电压,三相功率。并将所测的数据记入表中。除掉中线,重复上述测量记入表然后接上中线。
四、实验结果(包括程序或图表、结论陈述、数据记录及分析等,可附页)
实验报告
课程名称:电路分析
实验编号
及实验名称
功率因数的提高
成绩
姓 名
准考证号
专 业
一、实验目的及要求
1.掌握三相电路中负载作Y和△联接的正确方法。
2.验证三相对称负载作Y、△联接时负载的相电压和线电压、相电流和线电流之间的关系。
3.学会用两表法测量三相电路的功率。
二、实验环境及相关情况(包含使用软件、实验设备、主要仪器及材料等)
线电压
(V)
相电压
()
线(相)电流
(A)
中线电流(A)
中点电压(V)
功率(W)
P
P
有中线
220
220
220
125
125
125
0.40
0.40
0.40
0
0
120
无中线
220
探究电路分析实验报告
一、实验目的1. 了解电路分析的基本原理和方法。
2. 熟悉常用电路元件的特性及其在电路中的作用。
3. 提高电路分析能力和实际操作技能。
二、实验原理电路分析是研究电路中电压、电流、功率等物理量之间关系的学科。
本实验主要探究以下原理:1. 基尔霍夫电流定律:在电路中,任意节点处,流入节点的电流之和等于流出节点的电流之和。
2. 基尔霍夫电压定律:在电路中,任意闭合回路内,各段电压之和等于电动势之和。
3. 电阻的串联与并联:串联电路中,总电阻等于各分电阻之和;并联电路中,总电阻的倒数等于各分电阻倒数之和。
4. 欧姆定律:电流、电压、电阻三者之间的关系为I=U/R。
三、实验器材1. 电源:直流电源,电压可调。
2. 电阻:不同阻值的电阻,用于搭建电路。
3. 电流表:测量电路中的电流。
4. 电压表:测量电路中的电压。
5. 导线:连接电路元件。
6. 开关:控制电路的通断。
7. 万用表:测量电阻、电压、电流等。
四、实验步骤1. 根据实验要求,搭建电路,包括串联电路、并联电路和混合电路。
2. 用万用表测量各电阻的阻值,并记录下来。
3. 用电压表和电流表测量电路中各部分的电压和电流,并记录下来。
4. 根据实验原理,计算电路中各部分的电压、电流和功率。
5. 分析实验数据,验证实验原理。
五、实验结果与分析1. 串联电路(1)实验数据:R1=10Ω,R2=20Ω,电源电压U=12V。
(2)计算结果:I=U/(R1+R2)=12V/(10Ω+20Ω)=0.6A;U1=I×R1=0.6A×10Ω=6V;U2=I×R2=0.6A×20Ω=12V。
(3)分析:实验数据与计算结果相符,验证了串联电路中各部分电压之和等于电源电压,电流在各部分相等。
2. 并联电路(1)实验数据:R1=10Ω,R2=20Ω,电源电压U=12V。
(2)计算结果:I=U/R1=12V/10Ω=1.2A;I2=U/R2=12V/20Ω=0.6A;I=I1+I2=1.2A+0.6A=1.8A。
电路分析实验234报告
实验二 电路元件伏安特性的测绘一、实验目的1. 学会识别常用电路元件的方法2. 掌握线性电阻、非线性电阻元件伏安特性的逐点测试法3. 掌握实验台上直流电工仪表和设备的使用方法。
二、原理说明任何一个电器二端元件的特性可用该元件上的端电压U 与通过该元件的电流I 之间的函数关系I =f(U)来表示,即用I-U 平面上的一条曲线来表征,这条曲线称为该元件的伏安特性曲线。
1. 线性电阻器的伏安特性曲线是一条 通过坐标原点的直线,如图2-1中a 所示, 该直线的斜率等于该电阻器的电阻值。
2. 一般的白炽灯在工作时灯丝处于 高温状态, 其灯丝电阻随着温度的升高 而增大,通过白炽灯的电流越大,其温度 越高,阻值也越大,一般灯泡的“冷电阻” 与“热电阻”的阻值可相差几倍至十几倍, 所以它的伏安特性如图2-1中b 曲线所示。
3. 一般的半导体二极管是一个非线性电阻元件,其伏安特性如图2-1中 c 所示。
正向压降很小(一般的锗管约为0.2~0.3V ,硅管约为0.5~0.7V ),正向电流随正向压降的升高而急骤上升,而反向电压从零一直增加到十多至几十伏时,其反向电流增加很小,粗略地可视为零。
可见,二极管具有单向导电性,但反向电压加得过高,超过管子的极限值,则会导致管子击穿损坏。
4. 稳压二极管是一种特殊的半导体二极管,其正向特性与普通二极管类似,但其反向特性较特别,如图2-1中d 所示。
在反向电压开始增加时,其反向电流几乎为零,但当电压增加到某一数值时(称为管子的稳压值,有各种不同稳压值的稳压管)电流将突然增加,以后它的端电压将基本维持恒定,当外加的反向电压继续升高时其端电压仅有少量增加。
注意:流过二极管或稳压二极管的电流不能超过管子的极限值,否则管子就会烧坏。
U(V)( )四、实验内容1. 测定线性电阻器的伏安特性按图2-2接线,调节稳压电源的输出电压U ,从0 伏开始缓慢地增加,一直到10V 。
当电阻器两端电压U R 分别为表1数值时,记下相应的流过电阻器的电流I 。
电路分析实验报告
电路分析实验报告引言:电路分析是电子工程领域中的基础实验之一,通过对电路的分析,可以了解电流、电压、功耗等相关参数,从而更好地设计电子产品。
本篇实验报告将介绍我们在电路分析实验中的实验过程、结果和分析。
实验步骤:实验一:串联电路的分析我们首先构建了一个串联电路,该电路由一串电阻构成。
我们使用万用表和电流表测量电阻的阻值和电流的大小。
通过改变电阻的值,我们记录了不同电阻下电流的变化情况,并绘制了相应的电流-电阻关系图。
通过观察图表,我们发现电流和电阻成反比关系。
这一实验结果与基本的欧姆定律相一致。
实验二:并联电路的分析接下来,我们构建了一个并联电路,该电路由多个电阻并联而成。
通过测量并记录电流和电压的值,我们计算了电路的总电阻。
实验结果显示,并联电路的总电阻小于其中任意一个电阻。
这进一步验证了并联电路的特性,即总电阻为电阻的倒数之和。
实验三:交流电路的分析在这个实验中,我们关注的是交流电路的分析。
我们通过感应电阻和电容器构建了一个RLC电路,使用示波器测量了电压信号的幅值和相位。
我们观察到电容的阻抗与频率成反比关系,而电感的阻抗与频率成正比关系。
这些现象进一步揭示了交流电路中的频率依赖性。
实验四:直流电路的分析在最后一个实验中,我们关注的是直流电路的分析。
通过构建一个带有电池、电阻和LED的电路,我们探讨了电流在电路中的流动情况以及LED的亮度与电流的关系。
实验结果显示,当电流增大时,LED的亮度也随之增大。
这为我们设计和控制LED电路提供了重要的依据。
实验结果与分析:通过实验,我们成功地分析了不同类型的电路,并获得了相关的实验数据。
我们得出了串联电路中电流与电阻关系的结论,验证了并联电路的总电阻计算方法,观察到了交流电路中频率依赖性的现象,以及直流电路中电流和LED亮度之间的关系。
这些实验结果对我们深入了解和应用电路分析方法具有重要意义。
结论:通过这次电路分析的实验,我们学习了电路的基本原理和分析方法。
电路实验报告(8篇)
电路实验报告(8篇)电路实验报告(8篇)电路实验报告1一、实验题目利用类实现阶梯型电阻电路计算二、实验目的利用类改造试验三种构造的计算程序,实现类的封装。
通过这种改造理解类实现数据和功能封装的作用,掌握类的设计与编程。
三、实验原理程序要求用户输入的电势差和电阻总数,并且验证数据的有效性:电势差必须大于0,电阻总数必须大于0小于等于100的偶数。
再要求用户输入每个电阻的电阻值,并且验证电阻值的有效性:必须大于零。
此功能是由类CLadderNetwork的InputParameter ()函数实现的。
且该函数对输入的数据进行临界判断,若所输入数据不满足要求,要重新输入,直到满足要求为止。
本实验构造了两个类,一个CResistance类,封装了电阻的属性和操作,和一个CLadderNetwork类,封装了阶梯型电阻电路的属性和操作。
用户输入的电势差、电阻总数、电阻值,并赋给CladderNetwork的数据,此功能是由类CLadderNetwork的InputParameter 函数实现的。
输出用户输入的电势差、电阻总数、电阻值,以便检查,,此功能是由类CLadderNetwork的PrintEveryPart()函数实现的。
根据用户输入的电势差、电阻总数、电阻值换算出每个电阻上的电压和电流。
此功能是由类CLadderNetwork的Calculate ()函数实现的。
最后输出每个电阻上的电压和电流,此功能是由类CLadderNetwork 的PrintResult()函数实现的'。
此程序很好的体现了面向对象编程的技术:封装性:类的方法和属性都集成在了对象当中。
继承性:可以继承使用已经封装好的类,也可以直接引用。
多态性:本实验未使用到多态性。
安全性:对重要数据不能直接操作,保证数据的安全性。
以下是各个类的说明:class CResistance //电阻类private:double voltage;double resistance;double current;public:void InitParameter(); //初始化数据void SetResist(double r); //设置resistance的值void SetCur(double cur); //设置current的值void SetVol(double vol); //设置voltage的值void CalculateCurrent(); //由电阻的电压和电阻求电流double GetResist(){return resistance;} //获得resistance的值保证数据的安全性double GetCur(){return current;} //获得current的值double GetVol(){return voltage;} //获得voltage的值class CResistance //电阻类{private:CResistance resists[MAX_NUM]; //电阻数组int num;double srcPotential;public:void InitParameter(); //初始化数据void InputParameter(); //输入数据void Calculate(); //计算void PrintEveryPart(); //显示输入的数据以便检查void PrintResult(); //显示结果四、实验结果程序开始界面:错误输入-1(不能小于0)错误输入0 (不能为0)输入正确数据3输入错误数据-1输入错误数据0输入正确数据4同样给电阻输入数据也必须是正数现在一次输入2,2,1,1得到正确结果。
电路分析基础实验报告 (1).docx
实验一1. 实验目的学习使用workbench软件,学习组建简单直流电路并使用仿真测量仪表测量电压、电流。
2.解决方案1)基尔霍夫电流、电压定理的验证。
解决方案:自己设计一个电路,要求至少包括两个回路和两个节点,测量节点的电流代数和与回路电压代数和,验证基尔霍夫电流和电压定理并与理论计算值相比较。
2)电阻串并联分压和分流关系验证。
解决方案:自己设计一个电路,要求包括三个以上的电阻,有串联电阻和并联电阻,测量电阻上的电压和电流,验证电阻串并联分压和分流关系,并与理论计算值相比较。
3.实验电路及测试数据4.理论计算根据KVL和KCL及电阻VCR列方程如下:Is=I1+I2,U1+U2=U3,U1=I1*R1,U2=I1*R2,U3=I2*R3解得,U1=10V,U2=20V,U3=30V,I1=5A,I2=5A5. 实验数据与理论计算比较由上可以看出,实验数据与理论计算没有偏差,基尔霍夫定理正确;R1与R2串联,两者电流相同,电压和为两者的总电压,即分压不分流;R1R2与R3并联,电压相同,电流符合分流规律。
6. 实验心得第一次用软件,好多东西都找不着,再看了指导书和同学们的讨论后,终于完成了本次实验。
在实验过程中,出现的一些操作上的一些小问题都给予解决了。
实验二1.实验目的通过实验加深对叠加定理的理解;学习使用受控源;进一步学习使用仿真测量仪表测量电压、电流等变量。
2.解决方案自己设计一个电路,要求包括至少两个以上的独立源(一个电压源和一个电流源)和一个受控源,分别测量每个独立源单独作用时的响应,并测量所有独立源一起作用时的响应,验证叠加定理。
并与理论计算值比较。
3. 实验电路及测试数据电压源单独作用:电流源单独作用:共同作用:4.理论计算电压源单独作用时:-10+3Ix1+2Ix1=0,得Ix1=2A;,得Ix2=-0.6A;电流源单独作用时:{I2−Ix2=32Ix2+I2+2x2=0,得Ix=1.4A.两者共同作用时: {I−Ix=32Ix+I+2Ix=105. 实验数据与理论计算比较由上得,与测得数据相符,Ix=Ix1+Ix2,叠加定理得证。
电路分析实验报告(含实验数据)
电路分析实验报告(含实验数据)实验目的:1. 熟悉调节电路、晶体管放大电路、集成运算放大电路的基本原理。
3. 学会使用万用表和示波器等仪器对电路进行测量和分析。
实验原理:一、调节电路:调节电路是一种使电压稳定在一定值的电路,是电源电压稳定的基础。
在实际电路中,电源电压有时波动较大,会影响整个电路的工作。
为此,需要一种使电源电压变化不会影响整个电路的电路——调节电路。
调节电路分两种类型:线性调节电路和开关型调节电路。
线性调节电路是一种将电源电压变化转化为小于1/1000的电压波动的电路,且输出电流几乎不随载荷变化而变化;开关型调节电路是一种将电源电压变化转化为开关动作,使输出电压不随电源电压的变化而变化。
在本实验中,我们主要研究线性调节电路。
二、晶体管放大电路:晶体管放大电路是一种利用半导体器件进行信号放大的电路。
晶体管放大电路可以帮助改变电路的功率、增益、输出阻抗和频率响应等。
由于晶体管具有节约能源、低功率损耗、易于集成等优点,因此在电子电路中得到了广泛应用。
三、集成运算放大电路:集成运算放大电路是一种关键的信号处理电路,它可与其他电路一起组合使用,以构成各种电子系统。
集成运算放大电路内部由多个晶体管和电容等元件构成,具有高精度、高稳定性、高增益和低噪声等优点。
实验过程:1. 调节电路实验调节电路的组成:桥式整流器、滤波器和稳压器。
桥式整流器的作用:将交流电转化为直流电。
滤波器的作用:平滑直流输出电流,减少涟波输出。
稳压器的作用:保持输出电压稳定不变。
实验步骤:1)连接电路,调整电平,打开电源开关,调节电位器使输出电压为10V,并记录。
2)逐渐增大负载电流,记录随负载电流的输出电压、直流电阻和电源电流。
实验数据:载荷电流/I 输出电压/V 电源电流/A 直流电阻/Ω0 10.03 0.034 00.5 9.93 0.034 17.811 9.89 0.035 21.041.5 9.85 0.035 23.382 9.81 0.036 25.322.5 9.78 0.036 26.993 9.74 0.037 28.55晶体管放大电路的组成:二极管滤波器、交流耦合放大器和输出级。
电路实验报告(9篇)
电路实验报告(9篇)电路试验报告1一、试验仪器及材料1、信号发生器2、示波器二、试验电路三、试验内容及结果分析1、VCC=12v,VM=6V时测量静态工作点,然后输入频率为5KHz的正弦波,调整输入幅值使输2、VCC=9V,VM=4、5V时测量静态工作点,然后输入频率为5KHz的正弦波,调整输入幅值使输3、VCC=6V,VM=3V时测量静态工作点,然后输入频率为5KHz的正弦波,调整输入幅值使输出波形最大且不失真。
(以下输入输出值均为有效值)四、试验小结功率放大电路特点:在电源电压确定的状况下,以输出尽可能大的不失真的信号功率和具有尽可能高的转换效率为组成原则,功放管常工作在尽限应用状态。
电路试验报告2一、试验目的1、更好的理解、稳固和把握汽车全车线路组成及工作原理等有关内容。
2、稳固和加强课堂所学学问,培育实践技能和动手力量,提高分析问题和解决问题的力量和技术创新力量。
二、试验设备全车线路试验台4台三、试验设备组成全车电线束,仪表盘,各种开关、前后灯光分电路、点火线圈、发动机电脑、传感器、继电器、中心线路板、节气组件、电源、收放机、保险等。
四、组成原理汽车总线路的组成:汽车电器与电子设备总线路,包括电源系统、起动系统、点火系统、照明和信号装置、仪表和显示装置、帮助电器设备等电器设备,以及电子燃油喷射系统、防抱死制动系统、安全气囊系统等电子掌握系统。
随着汽车技术的进展,汽车电器设备和电子掌握系统的应用日益增多。
五、试验方法与步骤1、汽车线路的特点:汽车电路具有单线、直流、低压和并联等根本特点。
(1)汽车电路通常采纳单线制和负搭铁,汽车电路的单线制.通常是指汽车电器设备的正极用导线连接(又称为火线),负极与车架或车身金属局部连接,与车架或车身连接的导线又称为搭铁线。
蓄电池负极搭铁的汽车电路,称为负搭铁。
现代汽车普遍采纳负搭铁。
同一汽车的全部电器搭铁极性是全都的。
对于某些电器设备,为了保证其工作的牢靠性,提高灵敏度,仍旧采纳双线制连接方式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电压源与电流源的等效变换一、实验目的1、加深理解电压源、电流源的概念。
2、掌握电源外特性的测试方法。
二、原理及说明1、电压源是有源元件,可分为理想电压源与实际电压源。
理想电压源在一定的电流范围内,具有很小的电阻,它的输出电压不因负载而改变。
而实际电压源的端电压随着电流变化而变化,即它具有一定的内阻值。
理想电压源与实际电压源以及它们的伏安特性如图4-1所示(参阅实验一内容)。
2、电流源也分为理想电流源和实际电流源。
理想电流源的电流是恒定的,不因外电路不同而改变。
实际电流源的电流与所联接的电路有关。
当其端电压增高时,通过外电路的电流要降低,端压越低通过外电路的电流越大。
实际电流源可以用一个理想电流源和一个内阻R S并联来表示。
图4-2为两种电流源的伏安特性。
3、电源的等效变换一个实际电源,尤其外部特性来讲,可以看成为一个电压源,也可看成为一个电流源。
两者是等效的,其中IS =US/RS或 US=ISRS图4-3为等效变换电路,由式中可以看出它可以很方便地把一个参数为U s和R s的电压源变换为一个参数为I s和R S的等效电流源。
同时可知理想电压源与理想电流源两者之间不存在等效变换的条件。
三、仪器设备电工实验装置: DG011、 DG053 、 DY04 、 DYO31四、实验内容1、理想电流源的伏安特性1)按图4-4(a)接线,毫安表接线使用电流插孔,R L使用1KΩ电位器。
2)调节恒流源输出,使I S为10mA。
,3)按表4-1调整R L值,观察并记录电流表、电压表读数变化。
将测试结果填入表4-1中。
2、实际电流源的伏安特性按照图4-4(b)接线,按表4-1调整R L值,将测试的结果填入表4-1中。
3、电流源与电压源的等效变换按照等效变换的条件,上述电流源可以方便地变换为电压源,如图4-5所示,其中U S=I S R S=10mA×1KΩ=10V,内阻R S仍为1KΩ,按表4-1调整R L值,将测试结果填入表4-1中,并与实际电流源的数据比较,验证其等效互换性。
表4-1 电流源与电压源的等效变换五、报告要求1.根据测试数据绘出各电源的伏安特性曲线。
2.比较两电源互换后的结果,如有误差分析产生的原因。
受控源特性的研究一、实验目的1、加深对受控源概念的理解;2、测试VCVS、VCCS或CCVS、CCCS加深受控源的受控特性及负载特性的认识。
二、原理及说明1、根据控制量与受控量电压或电流的不同,受控源有四种:电压控制电压源(VCVS);电压控制电流源(VCCS);电流控制电压源(CCVS);电流控制电流源(CCCS)。
其电路模型如图5-1所示。
2、四种受控源的转移函数参量的定义如下:(1) 电压控制电压源(VCVS),U2=f(U1),μ=U2/U1称为转移电压比(或电压增益)。
(2) 电压控制电流源(VCCS),I2=f(U1),g m=I2/U1称为转移电导。
(3) 电流控制电压源(CCVS),U2=f(I1),r m=U2/I1称为转移电阻。
(4) 电流控制电流源(CCCS),I2=f(I1),α=I2/I1称为转移电流比(或电流增益)。
三、实验设备电工实验装置:DG011 、DY04 、DY031 、DG053四、实验内容将DG011试验箱和DY04电源板的±12V偏置电压及地线接好。
1、受控源VCVS的转移特性U2=f(U1)及外特性U2=f(I L)(1)按图5-2接线,R L取2KΩ。
●按表5-1调节稳压电源输出电压U1,测量U1及相应的U2值,填入表5-1中。
●绘制U2=f(U1)曲线,并由其线性部分求出转移电压比μ。
VCVS 表5-1(2)保持U1=2V,按表5-1调节R L值,测量U2及I L值,填入表5-2中,并绘制U2=f(I L)曲线。
VCVS 表5-22、受控源VCCS的转移特性I L=f(U1)及外特性I L=f(U2)(1)按图5-3接线,R L取2KΩ。
●按表5-3调节稳压电源输出电压U1,测量U1及相应的I L值,填入表5-3中。
●绘制I L = f(U1)曲线,由其线性部分求出转移电导g m。
VCCS 表5-3(2)保持U1=4V,按表5-4调节R L值,测量I L及U2值,填入表5-4中,并绘制I L=f(U2)曲线。
VCCS 表5-43、CCVS的转移特性U2=f(I1)及外特性U2=f(I L)(1)按图5-4接线,I S为可调恒流源。
R L取2KΩ。
●按表5-5调节恒流源输出电流I S,测量I S及相应的U2值,填入表5-5中。
●绘制转移特性曲线U2=f(I S),由线性部分求出转移电阻r m。
CCVS 表5-5(2) I S=1mA,按表5-6调整R L,测量U2及I L值,填入表5-6中。
并绘制负载特性曲线U2=f(I L)。
CCVS 表5-64、受控源CCCS的转移特性I L=f(I1)及外特性I L=f(U2)。
(1)按图5-5接线,I S为可调恒流源。
R L取2KΩ。
●按表5-7调节恒流源的输出电流I S,测量相应的I L值,填入表5-7中。
●绘制I L=f(I S1)曲线,并由其线性部分求出转移电流比α。
CCCS 表5-7(2) I S=0.4mA,按表5-8调整R L,测量I L及U2值,填入表5-8中。
并绘制负载特性曲线I L=f(U2)曲线。
CCCS 表5-8六、实验报告1、根据实验数据,在方格纸上分别画出四种受控源的转移特性和负载特性曲线,并求出相应的转移参量。
2、对实验结果作合理分析和结论,总结对四种受控源的认识和理解。
负阻抗变换器一、实验目的1、了解负阻抗变换器的组成原理。
2、学习负阻抗变换器的测试方法。
3、加深对负阻抗变换器的认识。
二、原理及说明1、负阻抗是电路理论中一个重要基本概念,在工程实践中广泛的应用。
负阻抗的产生除某些线性元件(如燧道二极管)在某个电压或电流的范围内具有负阻特性外,一般都由一个有源双口网络来形成一个等值的线性负阻抗。
该网络由线性集成电路或晶体管等元件组成,这样的网络称作负阻抗变换器。
按有源网络输入电压和电流与输出电压和电流的关系,可分为电流倒置型和电压倒置形两种(INIC及VNIC),电流倒置型电路模型(INIC)如图6-1所示。
在理想情况下,其电压、电流关系为:U2 = U1I2 = KI1 (K为电流增益)如果在INIC的输出端接上负载Z L,如图6-2所示,则它的输入阻抗为Z1为:2、本实验用线性运算放大器组成如图6-3所示的INIC 电路,在一定的电压、电流范围内可获得良好的线性度。
根据运放理论可知:U 1=U +=U -=U 2 (运放输入“虚短”)I 1=I 3=-I 4=-I 2 (运放输入不取电流)∴ I 1Z 1=I 2Z 2若Z 1=R 1=1K Ω、Z 2=R 2=300Ω时,则有:若 Z L =R L 时, 则:若则:其中:若, 则:其中:三、仪器设备1、电工实验装置:DG011 、 DG053 、 DY031 、 DY04 、 DY0532、双踪示波器四、实验内容1、负电阻的伏安特性,计算电流增益K及等值负阻●连接DG011实验板与电源DY04之间的±12V线及地线。
●按图6-4接线,Z L=300Ω。
●按表6-1选取U1值,分别测量INIC的输入电压U1及输入电流I1,将测量结果填入表6-1中。
表6-1 Z L=300Ω时INIC负阻抗电路的伏安特性2、使Z L=600Ω,重复上述的测量。
表6-2 Z L=600Ω时INIC负阻抗电路的伏安特性3、计算:等效负阻:实验测量值:理论计算值:电流增益:4、负阻的伏安特性曲线U1=f(I1)5、阻抗变换及相位观察●按图6-5接线,U1和U S接双踪示波器(示波器内部已共地),图中Z L选用0.47μF电容和1K电阻元件串联,信号发生器选正弦波,图中的1K为电流取样电阻(电阻两端的电压波形与电流波形同相,用示波器观察U1的波形,间接反映电流I1的相位)。
●调节正弦波信号使U1P-P≤2V、f=200Hz,用双踪示波器观察并绘制U S与U1的幅度及相位差。
●改变频率,观察并记录两波形幅度和相位的变化情况。
六、报告要求1、完成计算与绘制特性曲线。
2、解释实验现象。
3、总结对INIC的认识。
简单RC电路的过渡过程一、实验目的1、研究RC电路在零输入、阶跃激励和方波激励情况下,响应的基本规律和特点。
2、学习用示波器观察分析电路的响应。
二、原理及说明1、一阶RC电路对阶跃激励的零状态响应就是直流电源经电阻R向C充电。
对于图7—1所示的一阶电路,当t=0时开关K由位置2转到位置1,由方程:初始值: Uc(0-)=0可以得出电容和电流随时间变化的规律:上述式子表明,零状态响应是输入的线性函数。
其中τ=RC,具有时间的量纲,称为时间常数,它是反映电路过渡过程快慢程度的物理量。
τ越大,暂态响应所待续的时间越长即过渡过程时间越长。
反之,τ越小,过渡过程的时间越短。
2、电路在无激励情况下,由储能元件的初始状态引起的响应称为零输入响应。
即电容器的初始电压经电阻R放电。
在图7-1中,让开关K于位置1,使初始值Uc(0-)=U0,再将开关K转到位置2。
电容器放电由方程:可以得出电容器上的电压和电流随时间变化的规律:4、对于RC电路的方波响应,在电路的时间常数远小于方波周期时,可以视为零状态响应和零输入响应的多次过程。
方波的前沿相当于给电路一个阶跃输入,其响应就是零状态响应,方波的后沿相当于在电容具有初始值u c(0-)时把电源用短路置换,电路响应转换成零输入响应。
由于方波是周期信号,可以用普通示波器显示出稳定的图形,以便于定量分析。
本实验采用的方波信号的频率为1000Hz。
三、仪器设备1、电工实验装置:DG011 、DY031 、DG053 、DY0532、示波器四、实验内容1、RC电路充电1)按图7-2接线。
将DY04电源和DG011板上的电压表和秒表的电源开关接通。
2)首先将开关扳向3,使电容放电,电压表显示为0.0。
3)将开关置于停止位上2,按清零按钮使秒表置零。
4)将开关扳向1位开始计时,当电压表指示的电容电压Uc达到表7-1中所规定的某一数值时,将开关置于2点(中间点),用秒表记下时间填在表7-1中,然后开关置于1点,重复上述实验并记下各时间。
注意:开关断开的时间尽量要短,否则电容放电将造成电容两端的电压下降。
表7-1 RC电路充电2、RC电路放电将电容充电至10V电压,按清零按钮使秒表置零,将开关K置于3点,方法同上。
数据记在表7-2中。
表7-2 RC电路放电3、用示波器观察RC电路的方波响应①调整信号发生器,使之产生1KHz、V P-P=2V的稳定方波。
②按图7-3接线。