基于Multisim的升压直流稳压电源的仿真
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PFM是脉冲频率调制,这种模式在为了提高在轻载或者空载情况下电源的效率。在轻载或者空载时候,负载需要的电流非常小,反馈电压还没有低于Vref,开关管还不需要导通,但是PWM内部是固定的时钟频率触发器,在一个周期内总会有一次开关。这个开关会产生损耗,而实际上是毫无必要的。而在PFM模式下,当负载低于一定条件,系统直接降低固定时钟的工作频率,从而减少开关损耗,提高效率。
In order to simplify the Boost converter circuit design, application of Multisim to Boost converter is modeled, and the entire working process simulation and analysis. According to the circuit test shows that, the performance of the circuit can well meet the requirements of output voltage, and reached the final boosting is achieved, thereby indicating that the simulation result is correct.
开关电源中主要的组成部分有:PWM控制器、功率开关管、变压器和反馈电路。它的输入部分由桥堆和输入电容组成,产生的未经调整的直流电压进入到变压器的原边,然后耦合到变压器的副边,通过在副边的反馈电路,把输出电压(或电流)的变化反馈到PWM控制器上,而PWM控制电路根据反馈回来电压(或电流)值的大小来决定功率MOSFET开、关时间的长短,从而将输出电压(或电流)维持在一个稳定的值上。也就是说,通过快速的开、关功率管,由MOSFET开、关时间的长短即占空比来调整存在变压器原边的能量,提供个持续的稳定的输出电压。根据反馈电路的不同,输出精度也不同,一般可达士1.5%左右。
PSM是跨周期调制Pulse Skip Modulation,在轻载情况下,系统触发器会隔一段时间,忽略一些触发信号,形成一种跳跃模式,最终的目的也是减少无必要的开关周期,提高效率。本次设计采用PWM调制。
Boost变换电路,它是一种升压型DC-DC变换器,其输出电压平均值 要大于输入电压E,主要用于开关稳压电源、直流电机能量回馈制动中。同样根据功率开关器件VT的开关频率、储能电感L、滤波电容C的数值,电感电流 或负载电流 可能连续或断续,此时变换器的特性不同,需分开讨论。
为简化Boost变换器的电路设计,应用Multisim对Boost变换器进行建模,并对全部工作过程进行仿真和分析。根据电路测试显示,电路性能能够很好地满足输出电压的设计要求,并达到了最终升压的目的,从而表明仿真结果正确。
关键词:开关电源,双闭环控制,电流模式控制PWM反馈,Multisim
ABSTRACT
虽说开关电源开始对线性电源构成了威胁,但是早期的开关电源除了PWM控制器和功率开关管外,还包括大概40到80个分立元件构成一些辅助电路一。这不但增加了成本和体积,而且还使可靠性受到了影响,所以从提高开关电源的竞争力来说,提高控制电路、保护电路的可集成性,使电源系统的设计简单化成为一个关键的问题。
多年来,由于技术上的障碍(高压、大功率)开关电源集成电路在集成化上一直得不到很大的进步,但是最近几年,大规模和超大规模集成电路技术的迅猛发展,能将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件,首先是功率MOSFET的问世,导致了中小型功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。因此目前可以通过集成复杂的功能电路来进一步提高开关电源的性能和安全性,这包括热关断电路、限流电路、过/欠压保护电路等等。与线性电源相比,开关电源输出精度高、转换效率高,性能可靠。除此之外,开关电源最大的优势还在于能够大幅度缩小变压器的体积和重量,这是因为开关电源的变压器工作于50KHz到lMHz的高频条件下,而不是像线性电源中的那样工作于50Hz的低频状态,因此缩小了变压器的体积和重量,而这也就缩小了整个电子系统的体积和重量一。理论分析和实践经验表明,电气产品的变压器、电感和电容的体积和重量与供电频率的平方根成反比。如果把工作频率从工频50Hz提高到20KHz,提高400倍,用电设备的体积和重量可以下降至工频设计的5%~10%,其主要材料可节约90%或更高,可节电30%或更多。。一般说来,开关电源的重量是线性电源的l/4,相应的体积大概是线性电源的1/3。因此,开关电源代替线性电源是大势所趋。
1.1.1
自六十年代起,第一台开关电源问世以来,开关电源在世界各国迅速发展,直流稳压电源也顺势而生,但在初期价格较高,直到八十年代,随着元件工艺的成熟,直流稳压电源的价格也日益下降,应用也变的日益广泛。近几年随着科技的发展,直流稳压电源的工作频率有原来的几十千赫发展到现在的几百千赫,甚至更高。现在智能化的直流稳压电源也被广泛应用于生产领域,对此的研究开始向高频方面发展。以美国为首的几个发达国家在这方面的研究已经转向高频下电源的拓扑理论、工作原理、建模分析方法和高频大功率开关器件,高性能集成控制器和功率模块的开发研制方面发展。我国在此方面的起步较晚,1973年才开始这方面的研究工作,现在主要在小功率单端变换器方面发展较为迅速。在功率半导体器件及控制集成化方面,与国外同类产品有这很大的差距。因此,直流稳压电源的研制及应用在此方面与之也从在很大的差距。近年来,随着微机,中小型计算机的普及和航空航天数据通信,交通邮电等事业的讯速发展,以及为了各种自动化仪器、仪表和设备配套的需要,当代对电源的需要不仅日益增大,而且对电源的性能、效率、重量、尺寸和可靠性以及诸如程序控制、电源通/断、远距离操作和信息保护等功能提出了更高的要求。对于这些要求,传统的线性稳压电源无法实现,和线性稳压电源相比,稳压电源具有以下的一些优越性:(1)效率高(2)稳压范围宽(3)体积小重量轻(4)安全可靠
直流稳压电源最基本的应用遍布于我们的生活中。笔记本电脑、MP3以及很多数码产品的电源充电器都属于稳压电源,大部分电子产品的外置电源也是稳压电源。业余电台爱好者必备的、为家中固定电台供电的13.8V电源更是典型的稳压电压。直流稳压电源为我们使用电台提供了一个稳定的低压直流源。
直流稳压电源的意义在于可以替代电池提供稳定、可控的直流电源,其输出的电压稳定程度要优于普通电池。稳压电源输出电压易于控制,可满足各种应用的需要。通常,用于实验和维修பைடு நூலகம்稳压电源都安装有电压和电流表指示装置,以实时监控电源输出状态,使用起来比临时用万用表测量供电电压和电流方便实用得多。不少多功能的稳压电源还具备恒流源功能、电压跟踪功能、可调过流保护功能等,进一步扩展了稳压电源的应用。
Switching power supply is the use of modern electronic technology, the control switch turn-on and turn-off time ratio, maintaining the stability of the output voltage of a power supply, switching power supply is usually consists of pulse width modulation ( PWM ) control of IC and MOSFET.
Key words:Switch power supply,Double loop control,Current mode feedback control PWM, Multisim
1 电源设计的拟定
1.1
一般情况下,电源要经过转换才能合乎电子系统使用的需要,如AC/DC转换器。多年来在AC/DC转换器中线性电源被广泛使用,其中的一个原因是由于它的电路简单,用到的元件少,价格便宜。电路通常由变压器、桥堆和电容组成。变压器把220V的交流电压降到合适的电压,经过四个二极管组成的桥堆得到初步的直流电源,再经过电容滤波,就是一个简单的线性电源了。
一般来说,凡用半导体功率器件作为开关,将一种电源形式转换成另一种电源形式的主电路都叫做开关变换电路。转换时采用自动控制的闭环电路来稳定输出并有各种保护环节的称为开关电源(Switch Power Supply)。DC/DC转换器发展至今,已出现了许多类型。从开关种类来分,有硬开关和软开关;从工作方式分,有PWM(脉冲宽度调制)和PFM(脉冲频率调制)两类(现在占主要地位的是PWM型转换器,所以本文也主要讨论此类转换器;从拓扑结构分,有隔离和非隔离两大类,非隔离转换器主要有Buck(降压型)、Boost(升压型)、Buck-Boost、Cuk转换器、罗氏转换器等,而隔离转换器则有正向隔离转换器、逆向隔离转换器、推挽隔离转换器等。
线性电源的主要问题在于:输出精度低、效率低、散热问题大以及很难在一个通用的输入电压范围内工作。但最大的缺陷还是在体积和重量上。前面提到通过调整器可以使输出精度增加,但这更增加功率消耗,并使效率更低线性电源要达到50%的效率就不容易了,而这些消耗掉的无用功还带来散热问题。如果使线性电源在一个通用输入电压范围内(85V~265V AC)工作,会导致线性电源的效率更低。而单一输入电压值的线性电源会给生产厂家带来不少麻烦,因为他们不得不准备很多规格的电源。
This design choice is Boost step-up DC chopper circuit, a boost DC chopper circuit can be divided into two parts of the circuit block. The main circuit module respectively, a control circuit module. The main circuit module, mainly by the control device turn-on and turn-off time ( duty cycle) to change the output voltage U size. The control circuit module, a UC3842 chip to trigger a PWM control pulse to control the switch turn-on and turn-off.
基于Multisim的升压直流稳压电源的仿真
摘 要
开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。
本次设计选择的是Boost升压直流斩波电路,升压直流斩波电路可以分为两部分电路块。分别为主电路模块,控制电路模块。主电路模块,主要由全控器件的开通与关断的时间(占空比)来改变输出电压U的大小。控制电路模块,可用一个UC3842芯片来触发产生一个PWM的控制脉冲来控制全控开关的开通与关断。
开关电源就是利用电子开关器件(如晶体管、场效应管、可控硅闸流管等),通过控制电路,使电子开关器件不停地“接通”和“关断”,让电子开关器件对输入电压进行脉冲调制,从而实现DC/AC、DC/DC电压变换,以及输出电压可调和自动稳压。
开关电源一般有三种工作模式:频率、脉冲宽度固定模式,频率固定、脉冲宽度可变模式,频率、脉冲宽度可变模式。前一种工作模式多用于DC/AC逆变电源,或DC/DC电压变换;后两种工作模式多用于开关稳压电源。另外,开关电源输出电压也有三种工作方式:直接输出电压方式、平均值输出电压方式、幅值输出电压方式。同样,前一种工作方式多用于DC/AC逆变电源,或DC/DC电压变换;后两种工作方式多用于开关稳压电源。
调制方式一般是说对开关管的控制方式,通常用的有PWM、PFM、PSM两种。
PWM是脉冲宽度调制,这种方式是对开关管的Ton时间进行调制。具体来说是反馈电阻对输出电压进行采样,将采样记过Vfb与内部基准源Vref比较判断,当Vfb>Vref,超过基准源,则减小Ton;若Vfb<Vref,则增大Ton。
In order to simplify the Boost converter circuit design, application of Multisim to Boost converter is modeled, and the entire working process simulation and analysis. According to the circuit test shows that, the performance of the circuit can well meet the requirements of output voltage, and reached the final boosting is achieved, thereby indicating that the simulation result is correct.
开关电源中主要的组成部分有:PWM控制器、功率开关管、变压器和反馈电路。它的输入部分由桥堆和输入电容组成,产生的未经调整的直流电压进入到变压器的原边,然后耦合到变压器的副边,通过在副边的反馈电路,把输出电压(或电流)的变化反馈到PWM控制器上,而PWM控制电路根据反馈回来电压(或电流)值的大小来决定功率MOSFET开、关时间的长短,从而将输出电压(或电流)维持在一个稳定的值上。也就是说,通过快速的开、关功率管,由MOSFET开、关时间的长短即占空比来调整存在变压器原边的能量,提供个持续的稳定的输出电压。根据反馈电路的不同,输出精度也不同,一般可达士1.5%左右。
PSM是跨周期调制Pulse Skip Modulation,在轻载情况下,系统触发器会隔一段时间,忽略一些触发信号,形成一种跳跃模式,最终的目的也是减少无必要的开关周期,提高效率。本次设计采用PWM调制。
Boost变换电路,它是一种升压型DC-DC变换器,其输出电压平均值 要大于输入电压E,主要用于开关稳压电源、直流电机能量回馈制动中。同样根据功率开关器件VT的开关频率、储能电感L、滤波电容C的数值,电感电流 或负载电流 可能连续或断续,此时变换器的特性不同,需分开讨论。
为简化Boost变换器的电路设计,应用Multisim对Boost变换器进行建模,并对全部工作过程进行仿真和分析。根据电路测试显示,电路性能能够很好地满足输出电压的设计要求,并达到了最终升压的目的,从而表明仿真结果正确。
关键词:开关电源,双闭环控制,电流模式控制PWM反馈,Multisim
ABSTRACT
虽说开关电源开始对线性电源构成了威胁,但是早期的开关电源除了PWM控制器和功率开关管外,还包括大概40到80个分立元件构成一些辅助电路一。这不但增加了成本和体积,而且还使可靠性受到了影响,所以从提高开关电源的竞争力来说,提高控制电路、保护电路的可集成性,使电源系统的设计简单化成为一个关键的问题。
多年来,由于技术上的障碍(高压、大功率)开关电源集成电路在集成化上一直得不到很大的进步,但是最近几年,大规模和超大规模集成电路技术的迅猛发展,能将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件,首先是功率MOSFET的问世,导致了中小型功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。因此目前可以通过集成复杂的功能电路来进一步提高开关电源的性能和安全性,这包括热关断电路、限流电路、过/欠压保护电路等等。与线性电源相比,开关电源输出精度高、转换效率高,性能可靠。除此之外,开关电源最大的优势还在于能够大幅度缩小变压器的体积和重量,这是因为开关电源的变压器工作于50KHz到lMHz的高频条件下,而不是像线性电源中的那样工作于50Hz的低频状态,因此缩小了变压器的体积和重量,而这也就缩小了整个电子系统的体积和重量一。理论分析和实践经验表明,电气产品的变压器、电感和电容的体积和重量与供电频率的平方根成反比。如果把工作频率从工频50Hz提高到20KHz,提高400倍,用电设备的体积和重量可以下降至工频设计的5%~10%,其主要材料可节约90%或更高,可节电30%或更多。。一般说来,开关电源的重量是线性电源的l/4,相应的体积大概是线性电源的1/3。因此,开关电源代替线性电源是大势所趋。
1.1.1
自六十年代起,第一台开关电源问世以来,开关电源在世界各国迅速发展,直流稳压电源也顺势而生,但在初期价格较高,直到八十年代,随着元件工艺的成熟,直流稳压电源的价格也日益下降,应用也变的日益广泛。近几年随着科技的发展,直流稳压电源的工作频率有原来的几十千赫发展到现在的几百千赫,甚至更高。现在智能化的直流稳压电源也被广泛应用于生产领域,对此的研究开始向高频方面发展。以美国为首的几个发达国家在这方面的研究已经转向高频下电源的拓扑理论、工作原理、建模分析方法和高频大功率开关器件,高性能集成控制器和功率模块的开发研制方面发展。我国在此方面的起步较晚,1973年才开始这方面的研究工作,现在主要在小功率单端变换器方面发展较为迅速。在功率半导体器件及控制集成化方面,与国外同类产品有这很大的差距。因此,直流稳压电源的研制及应用在此方面与之也从在很大的差距。近年来,随着微机,中小型计算机的普及和航空航天数据通信,交通邮电等事业的讯速发展,以及为了各种自动化仪器、仪表和设备配套的需要,当代对电源的需要不仅日益增大,而且对电源的性能、效率、重量、尺寸和可靠性以及诸如程序控制、电源通/断、远距离操作和信息保护等功能提出了更高的要求。对于这些要求,传统的线性稳压电源无法实现,和线性稳压电源相比,稳压电源具有以下的一些优越性:(1)效率高(2)稳压范围宽(3)体积小重量轻(4)安全可靠
直流稳压电源最基本的应用遍布于我们的生活中。笔记本电脑、MP3以及很多数码产品的电源充电器都属于稳压电源,大部分电子产品的外置电源也是稳压电源。业余电台爱好者必备的、为家中固定电台供电的13.8V电源更是典型的稳压电压。直流稳压电源为我们使用电台提供了一个稳定的低压直流源。
直流稳压电源的意义在于可以替代电池提供稳定、可控的直流电源,其输出的电压稳定程度要优于普通电池。稳压电源输出电压易于控制,可满足各种应用的需要。通常,用于实验和维修பைடு நூலகம்稳压电源都安装有电压和电流表指示装置,以实时监控电源输出状态,使用起来比临时用万用表测量供电电压和电流方便实用得多。不少多功能的稳压电源还具备恒流源功能、电压跟踪功能、可调过流保护功能等,进一步扩展了稳压电源的应用。
Switching power supply is the use of modern electronic technology, the control switch turn-on and turn-off time ratio, maintaining the stability of the output voltage of a power supply, switching power supply is usually consists of pulse width modulation ( PWM ) control of IC and MOSFET.
Key words:Switch power supply,Double loop control,Current mode feedback control PWM, Multisim
1 电源设计的拟定
1.1
一般情况下,电源要经过转换才能合乎电子系统使用的需要,如AC/DC转换器。多年来在AC/DC转换器中线性电源被广泛使用,其中的一个原因是由于它的电路简单,用到的元件少,价格便宜。电路通常由变压器、桥堆和电容组成。变压器把220V的交流电压降到合适的电压,经过四个二极管组成的桥堆得到初步的直流电源,再经过电容滤波,就是一个简单的线性电源了。
一般来说,凡用半导体功率器件作为开关,将一种电源形式转换成另一种电源形式的主电路都叫做开关变换电路。转换时采用自动控制的闭环电路来稳定输出并有各种保护环节的称为开关电源(Switch Power Supply)。DC/DC转换器发展至今,已出现了许多类型。从开关种类来分,有硬开关和软开关;从工作方式分,有PWM(脉冲宽度调制)和PFM(脉冲频率调制)两类(现在占主要地位的是PWM型转换器,所以本文也主要讨论此类转换器;从拓扑结构分,有隔离和非隔离两大类,非隔离转换器主要有Buck(降压型)、Boost(升压型)、Buck-Boost、Cuk转换器、罗氏转换器等,而隔离转换器则有正向隔离转换器、逆向隔离转换器、推挽隔离转换器等。
线性电源的主要问题在于:输出精度低、效率低、散热问题大以及很难在一个通用的输入电压范围内工作。但最大的缺陷还是在体积和重量上。前面提到通过调整器可以使输出精度增加,但这更增加功率消耗,并使效率更低线性电源要达到50%的效率就不容易了,而这些消耗掉的无用功还带来散热问题。如果使线性电源在一个通用输入电压范围内(85V~265V AC)工作,会导致线性电源的效率更低。而单一输入电压值的线性电源会给生产厂家带来不少麻烦,因为他们不得不准备很多规格的电源。
This design choice is Boost step-up DC chopper circuit, a boost DC chopper circuit can be divided into two parts of the circuit block. The main circuit module respectively, a control circuit module. The main circuit module, mainly by the control device turn-on and turn-off time ( duty cycle) to change the output voltage U size. The control circuit module, a UC3842 chip to trigger a PWM control pulse to control the switch turn-on and turn-off.
基于Multisim的升压直流稳压电源的仿真
摘 要
开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。
本次设计选择的是Boost升压直流斩波电路,升压直流斩波电路可以分为两部分电路块。分别为主电路模块,控制电路模块。主电路模块,主要由全控器件的开通与关断的时间(占空比)来改变输出电压U的大小。控制电路模块,可用一个UC3842芯片来触发产生一个PWM的控制脉冲来控制全控开关的开通与关断。
开关电源就是利用电子开关器件(如晶体管、场效应管、可控硅闸流管等),通过控制电路,使电子开关器件不停地“接通”和“关断”,让电子开关器件对输入电压进行脉冲调制,从而实现DC/AC、DC/DC电压变换,以及输出电压可调和自动稳压。
开关电源一般有三种工作模式:频率、脉冲宽度固定模式,频率固定、脉冲宽度可变模式,频率、脉冲宽度可变模式。前一种工作模式多用于DC/AC逆变电源,或DC/DC电压变换;后两种工作模式多用于开关稳压电源。另外,开关电源输出电压也有三种工作方式:直接输出电压方式、平均值输出电压方式、幅值输出电压方式。同样,前一种工作方式多用于DC/AC逆变电源,或DC/DC电压变换;后两种工作方式多用于开关稳压电源。
调制方式一般是说对开关管的控制方式,通常用的有PWM、PFM、PSM两种。
PWM是脉冲宽度调制,这种方式是对开关管的Ton时间进行调制。具体来说是反馈电阻对输出电压进行采样,将采样记过Vfb与内部基准源Vref比较判断,当Vfb>Vref,超过基准源,则减小Ton;若Vfb<Vref,则增大Ton。