《解直角三角形复习一》学案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《解直角三角形(一)》学案
学习目标:
1、
理解三角函数的有关概念,掌握特殊角的三角函数值;
2、 弄清解直角三角形的含义,掌握直角三角形中的边角关系,会应用这些关系解直角三角形;
3、
能够利用构造直角三角形的方法解决求角度和线段长度的问题;
4、
在弄清基本概念、基础知识、基本题型的同时,不断归纳数学思想和方法,进一步深刻理解数形结合、转化在数学学习中的作用。
一、知识点归纳
1、锐角α的三角函数定义: ∠α的正弦:sin α= ∠α的余弦:cos α= ∠α的正切:tan α=
思考:根据三角函数的定义,你能正确填空吗?你是怎样得到的? ① <sin α< ② <cos α< “ ③ <tan α< ④sin α+ cos α 1 ⑤tan α sin α(填“<”或“>”)
②观察表格,猜想:随着∠α的增大,sin α ;cos α ; tan α 。(填增大或减小)
3、由直角三角形中的已知元素(边和角),求出其它所有未知元素的过程,叫
做 。其主要依据如下: ⑴边的关系: ; ⑵角的关系: ; ⑶边角之间的三角函数关系:
SinA= cosA= tanA= SinB=
cosB=
tanB=
思考:解直角三角形有哪几种基本类型?在练习本上列举出来,并进行口头解答。
二、热点示例与题组练习 目标1、特殊角三角函数值
题组一
1、已知∠A 为锐角,且sinA=
23,则sin 2
A
= . 2、计算:0
030
60sin cos -tan450
的值是 。 3、若tan α=
3
1
tan600,则α的度数是 。 4、在△ABC 中,若-+A B cos 2
1
-(sin 23)2=0,则∠C 的度数是 。
目标2、解直角三角形
题组二
在Rt △ABC 中,∠C=90°
①已知
a=23,b=2,则∠A= ; ②已知a=10, ∠B=600,则C = 。
③已知BC=6cm,sinA=5
3
,则AB 的长是 cm 。
④已知cosB=5
3
,则tanA= ;
题组三
1、如图,在△ABC 中,∠C=90°,BD 是∠ABC 的平分线,BD=63,BC=9,求
AC 的长。
c
b
a C
B
A
c a C
B A
D
A B
C
2、如图,在△ABC 中,∠C=90°, sinA=
5
2
,D 为AC 上一点,∠BDC=45°,DC=6,求AB 的长。
目标三、非直角三角形转化为直角三角形
题组四
1、如图,在△ABC 中,∠A=30°,∠C=15°,AC=6.求AB 的长。(结果保留根号)。
2、如图,在△ABC 中,∠B=30°,tanA=2
3
,BC=23,求AB 的长。
三、自主演练提升
1、如图1,三角形在方格纸中的位置如图所示,则tan α的值是( )
A .43
B .34
C .53
D .5
4
2、如图2,在△ABC 中,∠C=90°,tanA=3
1
,则sinsB=( )
A .1010
B .32
C .4
3 D .10103
α
C
B
A
A
D
B
C
A
图1 图2 图3 图4
3、如图3,Rt △ABC 的斜边AB 的长为m ,∠B=40°,则直角边BC 的长是( )
A .m ·sin40°
B .m ·cos40°
C .m ·tan40°
D .0
40
tan m
4、如图4, Rt △ABC 中,∠C=90°,∠A=30°,BD 是∠ABC 的平分线,AD=20,则BC= 。
目标检测
1、计算:sin60°·cos30°-
2
1
= 。 2、在△ABC 中,AB=4,BC=3,AC=5,则tanA 的值是( )
A .53
B .54
C .35
D .4
3 3、如图,AC 是电杆AB 的一根拉线,测得BC=6米,∠ACB=52°,则拉线AC
的长度是( )
A .052sin 6米
B .052tan 6米
C .6·cos52°米
D .0
52cos 6米
4、如图,△ABC 中,若∠B=45°,∠C=120°,AC=10,求BC 的大小。
C A
B
A
C
A B B A
C
C A