华东师范大学数学分析 期末试卷
最新华东师大版八年级数学下册期末试题带答案3套
最新华东师大版八年级数学下册期末试题带答案3套新华师版八年级下期末卷(一)总分120分120分钟一.选择题(共24分)1.下列计算中,正确的是()A.a2•a3=a6B.C. (﹣3a2b)2=6a4b2 ,D .a5÷a3+a2=2a22.在式子,,,,,10xy﹣2,中,分式的个数是()A.5B.4C.3D.23.不改变分式的值,如果把其分子和分母中的各项的系数都化为整数,那么所得的正确结果为()A.B.C.D.4.已知点A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数的图象上,则y1、y2、y3的大小关系是()A.y3<y1<y2B.y1<y2<y3C.y2<y1<y3D.y3<y2<y1 5.甲、乙两辆摩托车同时从相距20km的A,B两地出发,相向而行.图中l1,l2分别表示甲、乙两辆摩托车到A地的距离s(km)与行驶时间t(h)的函数关系.则下列说法错误的是()A.乙摩托车的速度较快B.经过0.3小时甲摩托车行驶到A,B两地的中点C.经过0.25小时两摩托车相遇D.当乙摩托车到达A地时,甲摩托车距离A地km(5题)(6题)(7题)6.点P是正方形ABCD边AB上一点(不与A、B重合),连接PD并将线段PD绕点P顺时针旋转90°,得线段PE,连接BE,则∠CBE等于()A.75°B.60°C.45°D.30°7.如图,点A是直线l外一点,在l上取两点B、C,分别以A、C为圆心,BC、AB长为半径画弧,两弧交于点D,分别连接AB、AD、CD,则四边形ABCD一定是()A.平行四边形B.矩形C.菱形D.梯形8.甲,乙,丙,丁四人进行射击测试,每人10次射击成绩的平均数都约为8.8环,方差分别为s=0.63,s=0.51,s=0.48,s=0.42,则四人中成绩最稳定的是()A.甲B.乙C.丙D.丁二.填空题(共18分)9.计算:()﹣1+(﹣2)0+|﹣2|﹣(﹣3)的结果为_________.10.若x2﹣3x+1=0,则的值为_________.11.写出一个你喜欢的实数k的值_________,使得反比例函数y=的图象在每一个象限内,y随x的增大而增大.12.如图,▱ABCD的顶点B在矩形AEFC的边EF上,点B与点E、F不重合,若△ACD的面积为3,则图中阴影部分两个三角形的面积和为_________.(12题)(13题)(14题)13.如图所示,将两张等宽的长方形纸条交叉叠放,重叠部分是一个四边形ABCD,若AD=6cm,∠ABC=60°,则四边形ABCD的面积等于_________ cm2.14.如图,将矩形纸ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,若EH=3厘米,EF=4厘米,则边AD的长是_________厘米.三.解答题(共10小题)15.(5分)化简,求值:,其中m=.16.(6分)若关于x的方程有增根,试解关于y的不等式5(y﹣2)≤28+k+2y.17.(6分)已知,如图,△ABC和△ECD都是等腰直角三角形,∠ACD=∠DCE=90°,D为AB边上一点.求证:BD=AE.18.(7分)如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD.求证:四边形OCED是菱形.19.(8分)初三(1)班共有40名同学,在一次30秒打字速度测试中他们的成绩统计如表:打字数/个50 51 59 62 64 66 69人数 1 2 8 11 5将这些数据按组距5(个字)分组,绘制成如图的频数分布直方图(不完整).(1)将表中空缺的数据填写完整,并补全频数分布直方图;(2)这个班同学这次打字成绩的众数是_________个,平均数是_________个.。
华东师范大学期末试卷09-10(A)参考答案
华东师范大学期末试卷(A )参考答案2009——2010学年第一学期1.填空题(20分)1) 从理论上讲,在地理学中,数学方法的运用主要有两个目的:(1)运用数学语言对地理问题进行描述,建立地理数学模型,从更高、更深层次上揭示地理问题的机理;(2)运用有关数学方法,通过定量化的计算和分析,对地理数据进行处理,从而揭示有关地理现象的内在规律。
(每空1分,共2分)2) 集中化指数的计算公式I=(A-R)/(M-R),其中集中化指数在区间[0,1]上取值,各参数的意义分别为A —实际数据的累计百分比总和;R —均匀分布时的累计百分比总和;M —集中分布时的累计百分比总和。
(每空0.4分,共2分)3) 线性模型''a b y x =+是由双曲线模型1/y=a+b/x 转化而成的,其中'y =1/y ,'x =1/x 。
(每空0.5分,共1.5分)4) 主成分分析的主要计算步骤①计算相关系数矩阵 , ②计算特征值与特征向量 , ③计算主成分贡献率及累计贡献率 , ④计算主成分载荷 。
(每空0.5分,共2分) 5) 变异函数的四个重要参数分别是:基台值(Sill )、变程(Range )或称空间依赖范围(Range of Spatial Dependence )、块金值(Nugget )或称区域不连续性值(Localized Discontinuity )和分维数(Fractal Dimension )。
变量函数的理论模型可分为三大类:有基台值模型、无基台值模型、孔穴效应模型。
(每空0.5分,共3.5分) 6) 请写出线形规划问题: Min Z=2X 1+3X 2+X 3 满足 X 1+2X 2+X 3≥33X 1-X 2+2X 3≥4X 1,X 2,X 3≥0 的标准形式(1.5分) 7) 在基于投入产出分析的资源利用优化模型中,对于不同的目标函数,其约束条件均为(1.5分) 8) AHP 决策分析方法的计算步骤为①明确问题;②建立层次结构模型;③构造判断矩阵;④层次单排序;⑤层次总排序。
(完整)华中师范大学数学分析期末考试试题2
数学分析期末考试试题一、叙述题:(每小题6分,共18分)1、 牛顿—莱不尼兹公式2、 ∑∞=1n n a收敛的cauchy 收敛原理3、 全微分二、计算题:(每小题8分,共32分)1、40202sin lim x dt t x x ⎰→2、求由曲线2x y =和2y x =围成的图形的面积和该图形绕x 轴旋转而成的几何体的体积。
3、求∑∞=+1)1(n nn n x 的收敛半径和收敛域,并求和4、已知z y x u = ,求yx u ∂∂∂2 三、(每小题10分,共30分)1、写出判别正项级数敛散性常用的三种方法并判别级数 ∑∞=1!n n n n 2、讨论反常积分⎰+∞--01dx e x x p 的敛散性3、讨论函数列),(1)(22+∞-∞∈+=x n x x S n 的一致收敛性四、证明题(每小题10分,共20分)1、设)2,1(11,01 =->>+n n x x x n n n ,证明∑∞=1n n x 发散 2、证明函数⎪⎩⎪⎨⎧=+≠++=000),(222222y x y x y x xy y x f 在(0,0)点连续且可偏导,但它在该点不可微.,参考答案一、1、设)(x f 在连续,)(x F 是)(x f 在],[b a 上的一个原函数,则成立)()()(a F b F dx x f ba -=⎰ 2、,0.0>∃>∀N ε使得N n m >>∀,成立ε<+++++m n n a a a 213、设2R D ⊂为开集,],[b a D y x y x f z ∈=),(),,(是定义在D 上的二元函数,),(000y x P 为D 中的一定点,若存在只与点有关而与y x ∆∆,无关的常数A 和B ,使得)(22y x o y B x A z ∆+∆+∆+∆=∆则称函数f 在点),(000y x P 处是可微的,并称y B x A ∆+∆为在点),(000y x P 处的全微分二、1、分子和分母同时求导316sin 2lim sin lim 54060202==→→⎰x x x x dtt x x x (8分) 2、 、两曲线的交点为(0,0),(1,1)(2分) 所求的面积为:31)(102=-⎰dx x x (3分) 所求的体积为:103)(105ππ=-⎰dx x x (3分) 3、 解:设∑∞=+=1)1()(n nn n x x f ,1)1(1)2)(1(1lim =+++∞→n n n n n ,收敛半径为1,收敛域 [-1,1](2分)),10(),1ln(11)1()(121'<<---=+=∑∞=-x x x x n x x f n n )10(),1ln(11)()(0'<<--+==⎰x x x x dt t f x f x (3分) x =0级数为0,x =1,级数为1,x =-1,级数为1—2ln2(3分)4、解: y u ∂∂=z x x z y ln (3分)=∂∂∂y x u 2zx x x x zyz y 1ln 1+-(5分) 三、1、解、有比较判别法,Cauchy,D’Alembert,Raabe 判别法等(应写出具体的内容4分)11)111(lim !)1()!1(lim -∞→+∞→=+-=++e n n n n n n n nn n (4分)由D’Alembert 判别法知级数收敛(1分) 2、解:⎰⎰⎰+∞----+∞--+=1110101dx e x dx e x dx e x x p x p x p (2分),对⎰--101dx e x x p ,由于)0(111+→→---x e x x x p p 故p >0时⎰--101dx e x x p 收敛(4分);⎰+∞--11dx e x x p ,由于)(012+∞→→--x e x x x p (4分)故对一切的p ⎰+∞--11dx e x x p 收敛,综上所述p >0,积分收敛3、解:221)(n x x S n +=收敛于x (4分)0)(sup lim ),(=-+∞-∞∈∞→x x S n x n 所以函数列一致收敛性(6分) 四、证明题(每小题10分,共20分)1、证明:11123221213423-=-->=-n n n x x x x x x x x n n n )2(,112>->n x n x n (6分) ∑∞=-211n n 发散,由比较判别法知级数发散(4分) 2、证明:||||022xy y x xy≤+≤(4分)22)0,0(),(lim y x xy y x +→=0所以函数在(0,0)点连续,(3分)又00lim 0=∆→∆x x ,)0,0(),0,0(y x f f 存在切等于0,(4分)但22)0,0(),(lim y x y x y x ∆+∆∆∆→∆∆不存在,故函数在(0,0)点不可微(3分)。
华东师大数学分析答案完整版
华东师大数学分析答案完整版一、填空题1. 极限的定义是当自变量趋近于某个值时,函数的值趋近于另一个确定的值。
2. 函数在某一点连续的充分必要条件是左极限、右极限和函数值在该点相等。
3. 无穷小量与无穷大量的关系是无穷小量的倒数是无穷大量,无穷大量的倒数是无穷小量。
4. 函数的导数表示函数在某一点的瞬时变化率。
5. 微分表示函数在某一点的微小变化量。
6. 函数的积分表示函数在某个区间上的累积变化量。
7. 变限积分的导数是原函数的导数。
8. 无穷级数的收敛性可以通过比较判别法、比值判别法等方法进行判断。
9. 函数的泰勒级数表示函数在某一点的幂级数展开。
10. 傅里叶级数表示周期函数的三角级数展开。
二、选择题1. 下列函数中,连续的是(A)。
A. f(x) = x^2B. f(x) = 1/xC. f(x) = sin(x)D. f(x) = |x|2. 下列极限中,存在的是(B)。
A. lim(x→0) 1/xB. lim(x→∞) x^2C. lim(x→0) sin(x)/xD. lim(x→∞) e^(x)3. 下列函数中,可导的是(A)。
A. f(x) = x^3B. f(x) = |x|C. f(x) = sin(1/x)D. f(x) = x^(1/3)4. 下列积分中,收敛的是(C)。
A. ∫(1/x) dxB. ∫(1/x^2) dxC. ∫(e^(x)) dxD. ∫(1/x^3) dx5. 下列级数中,收敛的是(B)。
A. ∑(1/n)B. ∑(1/n^2)C. ∑(1/n^3)D. ∑(1/n^4)三、解答题1. 求函数 f(x) = x^3 3x + 2 在 x = 1 处的导数。
解答:f'(x) = 3x^2 3,代入 x = 1,得 f'(1) = 0。
2. 求不定积分∫(e^x) dx。
解答:∫(e^x) dx = e^x + C,其中 C 为任意常数。
华东师范大学1997年数学分析试题
华东师范大学1997年数学分析试题一.(12分)设()f x 是区间I 上连续函数,证明:若f 为一一映射,则()f x 在区间I 上严格单调。
二.(12分)设1(){0x D x x =为有理数为无理数, 证明:若(),()()f x D x f x 在点0x =处都可导,且(0)0,f =则'(0)0f =。
三.(16分)考查函数()ln f x x x =的凸性,并由此证明不等式: 2()(0,0)a b a ba b ab a b +≥>>四.(16分)设级数1n a ∞=∑1n n a ∞=∑为正项级数和一般项级数两种情况分别证明:1n a ∞=∑五.(20分)设方程(,)0F x y =满足隐函数定理条件,并由此确定了隐函数()y f x =,又设(,)F x y 具有连续的二阶偏导数。
(1)求''()f x ;(2)若0000(,)0,()F x y y f x ==为()f x 的一个极值,试证明: 当00(,)x F x y 与00(,)xx F x y 同号时,0()f x 为极大值; 当00(,)x F x y 与00(,)xx F x y 异号时,0()f x 为极小值。
(3)对方程2227x xy y ++=,在隐函数形式下(不解出y )求()y f x =的极值,并用(2)的结论判断极大或极小。
六.(12分)改变累次积分的积分次序,并求其值 七(12分)计算曲面积分222(cos cos cos )SI x y z dS αβγ=++⎰⎰其中S 为锥面z =上介于0z h ≤≤的一块,(cos ,cos ,cos )αβγ为S 的下侧法向的方向余弦。
华东师范大学20003年数学分析解答
华东师范大学 2003年数学分析试题及解答Tangshan0315一、(30分)简答题(只需写出正确答案):⑴ );31()3()1()1(sin lim 221=+--→x x x x⑵);2)1(2('),11arccos(222xx y x y ++=+=则 ⑶⎰++-=))2ln 2(ln (ln 22C x x x xdx⑷ )(),sin(dy z dx z dz yxy z y x x+==则 ⑸⎰⎰-=≤+=+Dy xe dxdy e y x y x D ))1((},1|),{(2222π则⑹ .)2(},1|),{(22⎰-=-=+=Lydx xdy y x y x L π取顺时针方向,则二、(20分)判别题(正确的说明理由,错误的举出反例); ⑴若0lim ,0lim ==∞→∞→n n n n n x x 则。
错;例如01lim=∞→n n ,但11lim =∞→n n n。
⑵若)(x f 在),0(+∞上可导,且)('x f 有界,则)(x f 在),0(+∞上一致连续.对设εεξδεδε=•≤-⋅=-<-+∞∈∀>=∃>∀+∞∈≤KK x x f x f x f x x x x Kx K x f "')(')"()'(,"'),0(",',0,0),,0(,)('并且则⑶若)(x f 在],[b a 上可积,⎰=xadt t f x F )()(在),(0b a x∈可导,则)()('00x f x F =。
错;例如0,1;10,0{)(=≤<=x x x f 在[-1,1]上可积,并且.1)0()0(,0)(]1,1[,,0)()(''1=≠≡⇒-∈≡=⎰-f F x F x dt t f x F x但是⑷若∑∞=-+1212)(n n n a a收敛,且0lim =∞→n n a 则∑∞=1n n a 收敛。
华东师范大学大一数学分析期末考试题
xx0 g(x)
xx0 g (x)
xx0 g(x)
A、必要条件 B、充分条件 C、充分必要条件
三、计算题(每小题 6 分,共 30 分)
D、既非充分也非必要条件
14、 lim (1 a)(1 a2 )(1 a2n ),(| a | 1) n
15、求函数 y 2x 的单调区间 1 x2
16、 lim xln(1 x) ln x x
学院: 数学与计算机科学学院 适用班级:
题号 一 二 三 四 五 六 七 八 九
分数
总分
评卷人
一、填空题(每空 2 分,共 20 分)
1、函数 f (x) ln 1 x 的定义域是 1 x
2、 lim sin 5x x0 3x
第
1
3、 lim
n
1n
4、若 f 可导,且 y f (2x), 则 dy =
17、已知 y ln(arccos 1 ) 求 y x
18、求 d
x 1
x2
四、证明题(每小题 10 分,共 20 分)
19、已知数列xn ,它由递推公式
xn1
1 2
(xn
a xn
) 确定, a
0 ,且 x1 可取任意正实数,
证明:数列
x
n
收敛,并求
lim
n
xn
20、 ex 1 x , (x 0)
五、综合题(15 分)
21、并作图
学号
班级
专业
C、 f (x) 在 x 0的左右极限存在但不相等 D、 f (x) 在 x 0的左右极限不存在
页
n n 1
5、设 f (x) 在 x0 点可导,且在 x0 点取极大值,则 f (x0 ) =
华师大版数学八年级上册期末考试试卷含答案
华师大版数学八年级上册期末考试试题一、选择题(本题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合要求的)1.9的平方根是( )A .±3B .±13C .3D .-32.下列运算正确的是( )A .x 3·x 4=x 12B .(x 3)4=x 7C .x 8÷x 2=x 6D .(3b 3)2=6b 63.将下列长度的三根木棒首尾顺次相连,不能组成直角三角形的是( )A .8、15、17B .7、24、25C .3、4、5D .2、3、74.∠AOB 的平分线的作图过程如下:(1)如图,在OA 和OB 上分别截取OD ,OE ,使OD =OE ;(2)分别以D ,E 为圆心,以大于12DE 的长为半径作弧,两弧在∠AOB 内交于点C ;(3)作射线OC ,OC 就是∠AOB 的平分线.用下面的三角形全等判定方法解释其作图原理,最为恰当的是( )A .边角边B .角边角C .角角边D .边边边5.如图是丽水PM2.5来源统计图,则根据统计图得出的下列判断中,正确的是( )A .汽车尾气约为建筑扬尘的3倍B .表示建筑扬尘的占7%C .表示煤炭燃烧对应的扇形圆心角度数为126°D .煤炭燃烧的影响最大6.如图,在△ABC 中,AB =AC ,过点A 作AD ∥BC ,若∠1=70°,则∠BAC的大小为()A.40°B.30°C.70°D.50°7.下列分解因式正确的是()A.-ma-m=-m(a-1) B.a2-1=(a-1)2C.a2-6a+9=(a-3)2D.a2+3a+9=(a+3)28.如图,在△ABC中,AB=AC,∠A=40°,BE=DC,CF=BD,则∠EDF的度数为()A.60°B.70°C.80°D.90°9.如图,数轴上点A、B分别对应数1、2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M对应的数是()A. 3 B. 5 C. 6 D.710.根据等式:(x-1)(x+1)=x2-1,(x-1)(x2+x+1)=x3-1,(x-1)(x3+x2+x +1)=x4-1,(x-1)(x4+x3+x2+x+1)=x5-1,…的规律,则可以推算得出22021+22020+22019+…+22+2+1的末位数字是()A.1 B.3 C.5 D.7二、填空题(本题共6小题,每小题4分,共24分)11.在实数-7.5、15、4、3-125、15π、⎝⎛⎭⎪⎫222中,有a个有理数,b个无理数,则ba=________.12.已知x2n=5,则(3x3n)2-4(x2)2n的值为________.13.如图是小强根据全班同学最喜欢的四类电视节目的人数而绘制的两幅不完整的统计图,则最喜欢“体育”节目的人数是________.14.有下列命题:①正实数都有平方根;②实数都可以用数轴上的点表示;③等边三角形有一个内角为60°;④全等三角形对应角的平分线相等.其中逆命题是假命题的是________.15.如图,△ABC中,∠ABC与∠ACB的平分线交于点O,过O作EF∥BC分别交AB、AC于E、F.若△ABC的周长比△AEF的周长大12 cm,O到AB的距离为3.5 cm,则△OBC的面积为________cm2.16.如图,Rt△ABC中,∠BAC=90°,分别以△ABC的三条边为直角边作三个等腰直角三角形:△ABD、△ACE、△BCF,若图中阴影部分的面积S1=6.5,S2=3.5,S3=5.5,则S4=________.三、解答题(本题共9小题,共86分)17.(8分)计算:(1)49-327+|1-2|+⎝⎛⎭⎪⎫1-432;(2)4(x+1)2-(2x-5)(2x+5);18.(8分)先化简,再求值.(a+b)(a-b)+(4ab3-8a2b2)÷4ab,其中a=2,b=1.19.(8分)如图,在6×8的正方形网格中,每个小正方形的边长都为1,△ABC 的顶点在格点上.(1)在△ABC中,AB的长为________,AC的长为________;(2)在网格中,直接画出所有与△ABC全等的△DBC.20.(8分)如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE,DE,DC.(1)求证:△ABE≌△CBD;(2)若∠CAE=30°,求∠BDC的度数.21.(8分)设中学生体质健康综合评定成绩为x分,满分为100分.规定:85≤x≤100为A级,75≤x<85为B级,60≤x<75为C级,x<60为D级.现随机抽取福海中学部分学生的综合评定成绩,整理并绘制成如图所示的两幅不完整的统计图.请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了________名学生,a=________%;(2)补全条形统计图;(3)扇形统计图中C级对应的扇形的圆心角为________.22.(10分)如图,一个牧童在小河MN的南4 km的A处牧马,而他正位于他的小屋B的西8 km北7 km处,他想把他的马牵到小河边去饮水,然后回家,他要完成这件事所走的最短路程是多少?23.(10分)课间,小明拿着老师的等腰直角三角尺玩,不小心将三角尺掉到了两墙之间,如图所示.(1)求证:△ADC≌△CEB;(2)由三角尺的刻度可知AC=25,请你帮小明求出砌墙砖块的厚度a的大小(每块砖块的厚度相等).24.(12分)我们知道某些代数恒等式可用一些卡片拼成的图形面积来解释,例如,可用图①来解释a2+2ab+b2=(a+b)2,事实上利用一些卡片拼成的图形面积也可以对某些二次三项式进行因式分解.(1)根据图②完成因式分解:2a2+2ab=2a(________);(2)现有足够多的正方形和长方形卡片(如图③),试在图④的虚线框中画出一个用若干张1号卡片、2号卡片和3号卡片拼成的长方形,使该长方形的面积为a2+3ab+2b2.要求:每两张卡片之间既不重叠,也无空隙,拼成的图中必须保留拼图的痕迹,并利用你所画的图形面积对a2+3ab+2b2进行因式分解:a2+3ab+2b2=______________.25.(14分)线段AB⊥直线l于点B,点D在直线l上,分别以AB,AD为边作等边三角形ABC和等边三角形ADE,直线CE交直线l于点F.(1)当点F在线段BD上时,如图①,求证:DF=CE-CF;(2)当点F在线段BD的延长线上时,如图②;当点F在线段DB的延长线上时,如图③,请分别写出线段DF、CE、CF之间的数量关系,不需要证明;(3)在(1)(2)的条件下,若BD=2BF,EF=6,则CF=________.答案一、1.A 2.C 3.D 4.D 5.C6.A点拨:∵AD∥BC,∴∠C=∠1=70°.∵AB=AC,∴∠B=∠C=70°,∴∠BAC=180°-∠B-∠C=180°-70°-70°=40°.7.C8.B9.B10.B二、11.212.1 02513.1014.①③④15.21点拨:∵∠ABC与∠ACB的平分线交于点O,∴∠EBO=∠OBC,∠FCO=∠OCB.∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∴∠EOB=∠EBO,∠FOC=∠FCO,∴OE=BE,OF=FC,∴EF=BE+CF,∴AE+EF+AF=AB+AC.∵△ABC的周长比△AEF的周长大12 cm,∴(AB+BC+AC)-(AE+EF+AF)=12 cm,∴BC=12 cm.∵O到AB的距离为3.5 cm,且O在∠ABC的平分线上,∴O到BC的距离也为3.5 cm,∴△OBC的面积是12×12×3.5=21(cm2).16.2.5三、17.解:(1)原式=7-3+2-1+13=103+ 2.(2)原式=4(x2+2x+1)-4x2+25=4x2+8x+4-4x2+25=8x+29. 18.解:(a+b)(a-b)+(4ab3-8a2b2)÷4ab=a2-b2+b2-2ab=a2-2ab. 当a=2,b=1时,原式=22-2×2×1=0.19.解:(1)5;2 5(2)如图,△D1BC、△D2BC、△D3BC即为所求.20.(1)证明:在△ABE和△CBD中,∵AB=CB,∠ABE=∠CBD=90°,BE=BD,∴△ABE≌△CBD(S.A.S.).(2)解:∵AB=CB,∠ABC=90°,∴∠BAC=∠ACB=45°.∵∠CAE=30°,∴∠AEB=∠ACB+∠CAE=45°+30°=75°.由(1)知△ABE≌△CBD,∴∠BDC=∠AEB=75°.21.解:(1)50;24(2)C级的人数为50-12-24-4=10.补全条形统计图如图所示.(3)72°22.解:如图,作点A关于MN的对称点A′,连结A′B交MN于点P,连结AP,则AP+PB的长度就是最短路程.在Rt△A′DB中,由勾股定理,得A′B=DA′2+DB2=(7+4+4)2+82=17(km).答:他要完成这件事所走的最短路程是17 km.23.(1)证明:由题意,得AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠DAC=90°.又∵∠ACD+∠BCE=90°,∴∠DAC=∠BCE.在△ADC和△CEB中,∠ADC=∠CEB,∠DAC=∠ECB,AC=CB,∴△ADC≌△CEB(A.A.S.).(2)解:由题意得AD=4a,BE=3a.∵△ADC≌△CEB,∴DC=BE=3a.在Rt△ACD 中,根据勾股定理得AD2+CD2=AC2,∴(4a)2+(3a)2=252,解得a=5(负值已舍去),∴砌墙砖块的厚度a为5.24.解:(1)a+b(2)如图所示.(答案不唯一)(a+b)(a+2b)25.(1)证明:∵△ABC和△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=∠ACB=∠ABC=60°,∴∠BAD=∠CAE.在△ABD和△ACE中,AB=AC,∠BAD=∠CAE,AD=AE,∴△ABD≌△ACE(S.A.S.),∴BD=CE,∠ABD=∠ACE.∵AB⊥直线l,∴∠ABD=90°,∴∠ACE=90°,∠CBF=30°.∵点E,C,F在同一条直线上,∠ACB=60°,∴∠BCF=30°,∴∠CBF=∠BCF,∴BF=CF.∵BD=DF+BF,∴BD=DF+CF=CE,即DF=CE-CF.(2)解:题图②中,DF=CF-CE,题图③中,DF=CE+CF.(3)2或6。
华东师范大学期末试卷08-09(A)参考答案
华东师范大学期末试卷(A )参考答案2008——2009学年第一学期1.填空题(20分)1) 描述地理数据一般水平的指标有 平均值 、 中位数 、 众数 ;描述地理数据分布的离散程度的指标有 极差 、 离差 、 离差平方和 、 方差与标准差 、 变异系数 ;描述地理数据分布特征的参数有 偏度系数 、峰度系数 ;揭示地理数据分布均衡度的指数有 基尼系数 、 锡尔系数 。
(每空0.5分)2) 秩相关系数与简单相关系数的区别在于: 秩相关系数是以两要素样本值的大小排列位次来代替实际数据而求得的一种统计量 。
(1分)3) 多元线性回归模型中常数0b 及偏回归系数i b 的求解公式b = A -1B=(X T X )-1X TY (请用矩阵形式表达),其中各矩阵的具体表达式为:、 、 ; 其显著性检验中,回归平方和U 的自由度为 自变量的个数k ,剩余平方和Q 的自由度为n-k-1,n 为样本个数 。
(每空0.5分)4) 主成分分析的主要计算步骤: ①计算相关系数矩阵 , ②计算特征值与特征向量 , ③计算主成分贡献率及累计贡献率 , ④计算主成分载荷 。
(每空0.5分) 5) 全局空间自相关的度量指标有 Moran 指数 、 Geary 系数 ;局部空间自相关分析方法包括: LISA(空间联系的局部指标) 、 G 统计量 、 Moran 散点图 。
(每空0.5分) 6) 请写出线形规划问题: Min Z=2X 1+5X 2+X 3 满足 X 1+2X 2+X 3≥63X 1-X 2+2X 3≥6X 1,X 2,X 3≥0 的对偶问题max Z=6Y 1+6Y 2 Y 1+3Y 2≤22Y 1-Y 2≤5 Y 1+2Y 2≤1 Y 1,Y 2≥0_______________________________。
(1.5分)7) 在目标规划模型中,除了决策变量外,还需引入正、负偏差变量,其中,正偏差变量表示 决策值超过目标值的部分 ,负偏差变量表示 决策值未达到目标值的部分 。
华东师范大学数学分析历年真题(1997年-) 2
1
大量名纳%义税以对人上万外游以元经纳离大挂,营税于家靠2,人征0查共经1并单管5着 询同营年向位范这 分探为1报被2-围一 析87讨主告挂流月户之系 、。, 靠域实,外列 下 挂 人综现小。问 户 靠交上合税规原以题 调一人通缴治款模则X对 查、(道运管X理2企.X走.2.县X车护输理6实业X等 体1X访万0为辆县岸业费施2(县级 布师合的元2全例所对工是。户方三交: 置专治方;部,有交是程国 ,案)通X与业理法我为截人通X学.民 客设监运、措.论的.。县准道至)输9校经1运计测输教施文(任、一并交考路2,运实济3范业育设0五务纳、对通户工证作对1将业现的围税以计5)目税高调业,种号者年国车税社传与收及.林标.人提校查主货:.6内辆收会统7月时征为研草与户出行的要运X(培的登政功行底段管衡究X措规数教了政情以运一训一记策时能业,.基量。.施模题增学现管况自输).单念些在执间的,1共本一高设.目加在理进1主4设位.也高被.行(:浅前实6有情所校6计:,户标一的行经计:在校(挂情四X谈提施登况高在.以但。活些基一营原.X发的一.靠况)新。营记 校实9X摘X远据把动高本般和则生行四)人和监鉴形自改的X 是现要低统思,校概性挂.针着政、治.(X征测定式2增.交X否教:1于7计想配行念分靠河、巨管水理货X管世(内单级下后通治具学小地,和合政析经为县政大理土任运情纪二容位领高,一输理备和流税2行高管内,营例共策的具保务企况以)0方:导校如、运论竞科域1移教动校理容提为浅有,变有持.业4开后总法X.安行何强业学争研.年综交育统的 出主谈交6X这提化一监)展,体与排政加化纳(习力两交日…前活一学弊 加,小通两高,定测名了随布频,各管强理税二,的项通期…移动到生端国强我流运个政大的.下专着局.次扎项理交论人).帮全一重运:县交、全更,外税分域输1中治学借,题社.实任的通能0X治.助面个要输X.交的两军好并知收局综企(心敏校鉴以X8调1会工务创运X力理下武重职6(企1通户项和地在名征管合业一任锐园意-被研的履作新输2提目,装要能目三业运数重公完以教管理,治04)务性的义挂以。飞作 职,同路业19高标在自指是 )现输,4大安成上育工户企理监,和陈。靠X调速、为 。严时径的,.我全己标建 帮工税.行教现基学作,X业实.测内鉴旧 人研发…一 我格, 税6始队的。立县录助程款业政育役学础家的(其9施目抓别的 主展…名 大按不 收0终官头本在X一工措3税治等部目之乌建三中方的、管能行关7要X,中消 量照断摘管坚兵脑论行、3作施收上一队标申议)案.河实理力政键.采我队建防 阅部提要理.持的,文政项实设征的系政。,斯1建般设为践、。管词取国政0设监 读队高 ?讲学共提,管目践计管(坚列治新着基与设计例执外在理:数高治、督 和的自 笔话习同高对理区 .情二任定工形重提规.浅法树改模高.据校指坚执 学条身随者精者努党高的8概姓 况)期性作式阐出模谈为形革式校(的导持法 习令政着带神强力性校基况名通调情监以和。会下述学.小民象强已行四.教员.全干 了条治社,下修行础.:过研况6测来思下议,了校.节、,警经政).三育2面部 公例觉会3加积学,养政之X任)0,想面上高要看二。坚扎和很管河1、事X协, 安和悟的工极习我,管上职6障我上是来校有,、身持实两难理年总业现调只 部各,不环参者以进理,以四通的我,行三养小份严开学管;述也将可有 1项自断节加胜对一的也畜来1个过纯任深政要殖流证格展一理创职9在本持自规觉发看讲的工步基就牧的、方认洁职刻管素成域号执、做好新报发人续身章学展,党观作坚本说业学1个面真性以领理,本综:法部两当路告2生任发业制习和产性念高定概行习0指看学。来会的即高X的队项今径、…期展务度政进 3品、,度理念政值锻X标,习 的质创行8,重正快;规1…以、知管治步0 加守把负想进管2的炼之仍党 主总量新政0人要规大节举1模来2建构识理,工党加责信行理号1和头一然的二要书路管自才意化教奏措8的设建水和论人粗规强的念简令.工,6;存十、工记高径理任技义建育的 、%履全社平约,们放、学精,单以作…同全在八强作系低和中术,设中校 。产职们省会过束认的,严习神进概及实肉比县困大化,列举队不坚、的园 业情养肉主硬部真生我缺党,一述新.践牛增牛难、学特讲已3指足持精所师 化况吨育牛义,队贯活知乏纪强团…,发,产长期存和全习向话经导。执细学生虽为述,之养和才彻方识品反化结…布我业3曾栏问军,各精成员 的法化、日然方0职占恩殖谐能紧执式、牌腐素和实尽.情经6题和提位神以开5各为管所常X向如6全发的基社适紧行和4教带倡质施职况5X教,公高领%来发位民理得,4下县期言:地会应围党观的给动廉作领尽,5调过主安自导通,区老、工推头:肉以,一县的当绕肉我;教为中《责达查的我要现身汇过在消师服作所动, 类来为是的深前灭路牛做从育长队建的到与问的表役知报政支防,务获肉同 产关我父目刻消火线养人市等期支筑完了思候老现部识如队大我人三,牛比一量心们母标内防救、殖尊的场活坚部设成省考和师在队储下代的民严生增个、的支上,涵工援方呈敬道环动持一计了级 崇,:政备大表心的三产长无加1持了父把,作和现的理节,班防上肉 3生高脑从治和 队市中思实持3愧.强我生母发更的执5出各,看使一人火4牛观的海养工 党长%务委充想专.续于政市动给展加需勤3蓬位让,我项务规基,%、敬中殖作委述近的、满得题发党治真教的了肉清要训勃老我市深工实范;地出价意浮环会能的职年思市感到展、学育一我牛醒,练的师在受场刻作求》肉县栏值!现节议力领述来想人慨进。无习事课们产地才发,实益范认来真G牛“肉,观向出看精 导廉,大一 …,B党业生认能展同际无围识抓出要牛提,今他神 报5X学端、思步 …坚纪发听命作识更0势志工穷较到。栏X求产高坚天们发和任0告一正市绪提积一市定政展后和为到好1县头们作。窄加我3肉值自持受熟展习期 做思政又高4极、2正纪的很血调强立,:中人强深9牛0达身人到悉方近以专想府回,2参发1 确条社受肉结化足但 0更的营党知6存2终的民表式平来头题作、到增年加展.的规会启之构服丰 6是加一销的栏以思利彰面落总,亿,教风市了强庆消各现政,各发躯、务富 从在一明生模执1高想益的孔后书元同育,政自了祝防项状0治始界、;转意的述养这、确最式政万标觉第“和,记比。提协己教中政 方终人深一识饲职殖美不方难陈能头准悟一十表科占增在升,的师队治 向坚士受是式草人、好断向忘旧力和严和;佳情技系长学思向童节副教2 持表教老、资:加的,、;0能格道保”,含列1习想辛年大中育 为示育师促源(0工金强更最从5繁基要德持教正量.年中境勤和会9队理人衷。,增和、秋学加需保%母本求水思师是较末,界工学上长论民心今老收悠;市九习自要障牛自准想和这低,以作生的2学服的天师久牛场月,觉感环03己。道中些;全学切在时1万讲习务感参给着的肉和,努地念6,通德小扶从年县以实教代头话,的谢加了力养产保我力按的踏过的学我度能致做育,”认宗!全我点 殖量们提照是实学纯名一述繁用到战想中真旨 市们,传5欢高科养工习洁师路1职母为线起的完。 庆知以让3统聚自学育3作,性、成报牛主民的了两成进刚祝识标教,一身发之,政名长告达,、广小各一才教和准师提堂素展恩较治正校的 到将务大学类步,师灵化成出,质观好觉确长老 理实教、学加X节魂、为了共 的而地悟对表师今X论、师中习强大。X同 要给分完、待示们年与清、学X笔了会…庆一求予别大成理权热,以实廉教、记世,祝是去我作地了论力烈教来际。育大界见第加思了上各水、的给,相牢工学一观到3强考非最项平金祝2在结固作时年的在个基问常受工得钱贺各合树者来改座教础题好尊作到、!级,立致,造重师理,的重任提名向领注科以,点节论谋的务高利长导重学节牢学。的划神。,的学日固习首学工圣现党努关习世树了先习作职就性�
华东师范大学期末试卷A
W ′[ x 1 , x 2 ] + a 1 (t )W [ x 1 , x 2 ] = 0.
2. 方程的通解可表示为:
s
x c 1 x 1 (t ) + c 2 x 1 (t ) ∫ =
t t0
1 − ∫ t 0 a 1 (t ) dt e ds . x 12 ( s )
-2-
x ′′′ + x ′ = sin t + t cos t ;
x ′′ − 2 x ′ + x = 2 t e t + e t sin 2 t .
-1-
四、(本题 15 分) 设 x′ = f (t , x ) 在全平面 R 2 连续, 满足局部李普希茨条件. 倘若
| f (t , x ) | ≤ K | x | , 任意 (t , x ) ∈ R 2 成立,
2. 4.
dx x = − + x 2 ln t ; dt t
t 2 x′′ + 3tx′ + x = 0;
3. 5.
(3t 2 + 6tx 2 )dt + (6t 2 x + 4 x 3 )dx = 0; x ′ = tx ′′ + ( x ′′) 2 .
二、 (本题 15 分)设方程组:
0 x1 −1 1 dx = Ax , 其中: x = x 2 , A = 0 − 1 4 . dt x 1 0 − 4 3 9 求满足初值条件 x(0) = 9 的解. 0
三、 (每小题 5 分, 共 25 分) 求齐次方程的特征根, 并写出相应非齐次方程的形式特解, 不必 具体求解. 1. 2. 3. 4. 5.
x′′ − 3 x′ + 2 x = t2;
数学分析课本(华师大三版)-习题及答案第三学期试题
(三十二)数学分析试题(二年级第一学期)一 叙述题(每小题10分,共30分)1 叙述含参变量反常积分⎰+∞adx y x f ),(一致收敛的Cauchy 收敛原理。
2 叙述Green 公式的内容及意义。
3 叙述n 重积分的概念。
二 计算题(每小题10分,共50分)1.计算积分⎰+-=C yx ydx xdy I 2243,其中C 为椭圆13222=+y x ,沿逆时针方向。
2.已知 ),,(y z xz f z -= 其中),(v u f 存在着关于两个变元的二阶连续偏导数,求z 关于y x ,的二阶偏导数。
3.求椭球体1222222=++cz b y a x 的体积。
4.若l 为右半单位圆周,求⎰lds y ||。
5.计算含参变量积分⎰+-=π2)cos 21ln( )(dx a x a a I (1<a )的值。
三 讨论题(每小题10分,共20分)1 若积分在参数的已知值的某邻域内一致收敛,则称此积分对参数的已知值一致收敛。
试讨论积分⎰∞++=0221xa adxI 在每一个固定的a 处的一致收敛性。
2 讨论函数dx yx x yf y F ⎰+=122)()(的连续性,其中)(x f 在]1,0[上是正的连续函数。
数学分析试题(二年级第一学期)答案1一 叙述题(每小题10分,共30分)1 含参变量反常积分⎰+∞adx y x f ),(关于y 在],[d c 上一致收敛的充要条件为:对于任意给定的0>ε, 存在与y 无关的正数0A , 使得对于任意的0,A A A >',],[ ,),(d c y dx y x f A A∈<⎰'ε成立。
2 Green 公式:设D 为平面上由光滑或分段光滑的简单闭曲线所围的单连通区域。
如果函数),(),,(y x Q y x P 在D 上具有连续偏导数,那么⎰⎰∂∂∂-∂∂=+DDdxdy xPx Q Qdy Pdx )(,其中D ∂取正向,即诱导正向。
华东师范大学数学分析试题
华东师范大学2004数学分析一、〔30分〕计算题。
1、求2120)2(cos lim x x x x -→ 2、假设)),sin(arctan 2ln x x e y x +=-求'y .3、求⎰--dx x xe x 2)1(. 4、求幂级数∑∞=1n n nx 的和函数)(x f .5、L 为过)0,0(O 和)0,2(πA 的曲线)0(sin >=a x a y ,求⎰+++L dy y dx y x .)2()(3xdx a x da dy x a y cos sin ,sin ===6、求曲面积分⎰⎰++S zdxdy dydz z x )2(,其中)10(,22≤≤+=z y x z ,取上侧..二、〔30分〕判断题〔正确的证明,错误的举出反例〕1、假设},,2,1,{ =n x n 是互不相等的非无穷大数列,则}{n x 至少存在一个聚点).,(0+∞-∞∈x2、假设)(x f 在),(b a 上连续有界,则)(x f 在),(b a 上一致连续.3、假设)(x f ,)(x g 在]1,0[上可积,则∑⎰=∞→=-n i n dx x g x f n i g n i f n 110)()()1()(1lim . 4、假设∑∞=1n n a 收敛,则∑∞=12n n a 收敛.5、假设在2R 上定义的函数),(y x f 存在偏导数),(y x f x ,),(y x f y 且),(y x f x ,),(y x f y 在(0,0)上连续,则),(y x f 在(0,0)上可微.6、),(y x f 在2R 上连续,})()(|),{(),(2202000r y y x x y x y x D r ≤-+-= 假设⎰⎰=>∀∀r D dxdy y x f r y x ,0),(,0),,(00 则.),(,0),(2R y x y x f ∈= 三、〔15分〕函数)(x f 在).,(+∞-∞上连续,且,)(lim A x f x =∞→ 求证:)(x f 在).,(+∞-∞上有最大值或最小值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华东师范大学数分期末试卷(A 卷)
2009-2010年第一学期
一.(20分)判断下列结论是否成立(若成立,说明理由;若不成立,举出反例)
1.设()f x 在(a,b )连续,()f x 在0(,)x a b ∈取极值,则0'()0f x =;
2.设()f x 在点0x 可导,则存在0δ>,使得()f x 在00(,)x x δδ-+上连续;
3.设数列{}n a ,{}n b 满足1(1,2,)n n a b n ≤≤=…,lim()0n n n b a →∞-=,则极限lim ,lim n n n n a b →∞→∞ 都存在;
4.设()f x 是区间(-a,a )上的可导偶函数,则()f x 在x=0取极值。
二.(16分)计算下列极限;
1.20arctan lim
tan x x x x x
→-; 2.20ln(1)sin lim x x x x →+-; 三.(16分)计算下列函数的导函数dy dx
: 1.1
,0,()1,0;
x x e x y x e x -⎧≥⎪=⎨⎪+<⎩ 2.()y y x =由极坐标方程2(1cos )(0)a a ρθ=+>所确定。
四.(14分)讨论2x y x e -=的单调性区间,凹凸性区间,极值与拐点。
五.(14分)证明不等式:
1.2arctan (0,);12
, x x x x π+
<∈+∞+ 2.过研究ln ()x f x x =的单调性,证明:e e ππ>. 六.(8分)设()f x 在区间I 上连续但不一致连续,()g x 在(,)-∞+∞上可导且'()0g x k ≥>.证明:复合函数(())g f x 在I 上不一致连续。
七.(12分)设()f x ,()g x 在[,)a +∞上连续可微,且极限
()lim ()x f f x →+∞+∞=,()lim ()x g g x →+∞
+∞= 存在,证明:
1. 若()()f a f =+∞,则:(,)a ξ∃∈+∞,使得'()0f ξ=;
2. 若对[,),'()0,x a g x ∈+∞≠则:(,)a ξ∃∈+∞,使得
'()()()'()()()
f f f a
g g g a ξξ+∞-=+∞- 八.(附加题10分)设()f x 在[,)a +∞上二阶可导且''()1f x ≤,又极限lim ()x f x A →+∞
=存在。
证明lim '()0x f x →+∞=。