静态基线解算

合集下载

TGO静态解算操作流程

TGO静态解算操作流程

TGO静态解算操作流程1、新建项目在左侧项目栏中,点击新建项目快捷方式.在显示的对话框中输入项目名,并选择模板.确认后将自动弹出项目属性对话框,可对项目属性进行编辑.2、导入数据从项目栏选择导入,显示的对话框列出了可导入的文件格式和仪器类别.此次操作中导入GPS数据文件.dat.输入点信息:在数据导入检查对话框中,选定使用复选框,名称中输入测站的名称,如果需要高程则要在天线高中输入天线高度,天线类型选Micro-centered L1/L2,测量要选槽口底部.确认后,如果没有选定坐标系统,软件自动弹出缺省投影定义对话框点击确认即可.若选择了坐标系统,将不出现该对话框.点标记:完成数据的导入后,系统将观测情况用图形方式显示出来.在视图中的点标记中选择名称,可在图中显示点的名称.3、基线解算选择基线:点击选择中的全部,或用鼠标器将全部基线画框选中,即选中所有的基线进行基线解算.处理形式设定:如果需要,在测量中选定GPS处理形式可设定进行GPS基线处理时的一些控制参数.主要是设置卫星高度角限制、星历类型、解算类型.点击高级的按钮,编辑质量验收标准、对流层天顶延迟等.处理基线:在测量中选择处理GPS基线.处理完毕可以看到基线长度,解算类型固定才可,否则要重新处理星历,比率,参考变量,均方根等因子.“使用”复选框选定,说明根据验收标准基线处理结果为“通过”或“标记”;若复选框为空,则处理结果为“失败”.按下保存,仅将选定了“使用”的解保存到项目中.查看报告:在报告中点击GPS基线处理报告,查看基线处理报告.通过基线报告分析,记录有关残差较大的卫星和时段,点击视图中的timeline,可对卫星和时段进行取舍.从报告工具条下查看GPS环闭合差报告,可以获得有关闭合环的闭合差信息.同时在设置里可以设置要显示的项目.4、无约束平差基准选择:在平差菜单下选基准/ WGS-84坐标系.平差形式选择:在平差菜单下可选平差形式进行平差形式的设定,一般选择95%的置信界限.执行平差:点击平差.查看报告:在报告中看网平差报告,如果通过则继续进行约束平差,失败则要进行加权平差.加权平差:在平差中选加权策略设定观测值的加权策略.将纯量类型改为“交替的”.再次进行平差,查看报告,直到通过为止.保存校正坐标:选择平差菜单下的校正坐标,保存,可将点在WGS-84基准下的坐标储存下来.在没有其他测量数据的情况下,这些坐标只用于决定点的位置,保存它们仅是为了校正.5、GPS点校正完成GPS网的无约束平差后,如果各项质量指标达到要求,即可开始进行GPS网的约束平差.龙泉山GPS控制网采用地方独立坐标系,已知点资料所属坐标系的椭球参数以及投影中央子午线未知,因此采用点校正的方法.点校正:选择测量菜单下的GPS点校正.出现GPS点校正对话框,选择校正组成.三参数转换法是计算从WGS-84椭球的中心到地方投影椭球的中心沿X、Y、Z轴的平移量,一般用于小范围的基准转换80km x 80km.在此默认三参数.本次只进行二维处理,所以不进行“垂直平差”,选择“更新缺省投影起点”和“水平平差”.不选“设置比例尺为”,通常不将比例因子设为1,以检查计算的比例因子是否接近于1.点列表:点击点列表.在弹出的点列表对话框中,用鼠标选择GPS点,输入点名,网格点中输入当地坐标.确认后回到界面.点击计算,计算GPS校正参数.点击点另存为,取名称.此时就可以得到WGS84和地方独立坐标系统的参数关系.单击报告,浏览校正计算的详细报告.此报告显示计算的所有参数及当前计算的控制点坐标与其已知位置和各残差值的比较.最后点击确认退出.查看报告:选择报告菜单下的附加报告,选择“点”然后确认.就可以看到计算后的各点坐标.第五章数据处理GPS测量的外业实施GPS点位选埋1、选点GPS外业测量选点时,测站点之间不要求一定通视,图形结构也比较灵活,因此,点位选择比较方便.但考虑GPS测量的特殊性,并顾及后续测量,选点时应着重考虑:1每点最好与某一点通视,以便后续测量工作的使用.2点周围高度角15°以上不要有障碍物,以免信号被遮挡或吸收.测站上应便于安置GPS接收机和天线,可方便地进行观测.3点位要远离大功率无线电发射源、高压电线等,以免电磁场对信号的干扰.4点位应选在视野开阔、交通方便、有利扩展、易于保存的地方,以便观测和日后使用.2、标志埋设GPS网点一般应埋设具有中心标志的标石,以精确标志点位,点的标石和标志必须稳定、坚固以利长久保存和利用.在基岩露头地区,也可直接在基岩上嵌入金属标志.资料有:①点之记;② GPS网的选点网图;③土地占用批准文件与测量标志委托保管书;④选点与埋石工作技术总结.外业观测目前接收机的自动化程度较高,操作人员只需作好以下工作即可:1各测站的观测员应按计划规定的时间作业,确保同步观测.2确保接收机存储器有足够存储空间.3开始观测后,正确输入高度角,天线高及天线高量取方式.4观测过程中应注意查看测站信息、接收到的卫星数量、卫星号、各通道信噪比、相位测量残差、实时定位的结果及其变化和存储介质记录等情况. 5同一观测时段中,接收机不得关闭或重启;将每测段信息如实记录在GPS 测量手簿上.6进行长距离高等级GPS测量时,要将气象元素,空气湿度等如实记录,每隔一小时或两小时记录一次.GPS基线处理GPS基线处理分析TGO进行基线处理后,龙泉山控制网的网形图如下:图5-1 龙泉山GPS控制网点击每条基线,可以查看基线解算报告,主要查看内容:1 基线解算质量的三个恒量标准,即基线的比率、参考方差、RMS等是否超过设置标准.2卫星的连续动态跟踪:良好的观测情况应该是连续跟踪和观测,而不应经常中断.3残差图:残差绝对值大小应该在载波相位波长的1/10之内.如果系统发现处理结果中存在异常,将显示提示信息.出现的重新计算报告,信息仅供参考,不能作为判断基线是否合格的依据.GPS基线处理报告见表5-1:表5-1 基线处理报告从上表可以看出,各基线比率均大于标记值3,达到“通过”状态;各基线参考变量小于标记值10,达到“通过”状态.各基线RMS均小于标记值,达到“通过”状态.查看各基线的卫星相位跟踪总结和残差图,没有残差过大的卫星和时段.因此各项指标均符合要求.GPS环闭合差报告GPS环闭合差报告见表5-2:表5-2 GPS环闭合差报告从报告的这一部分可以看出,各项均符合有关规定.无约束平差查看网平差报告,在平差报告的“平差后的观测值”部分,给出了基线向量观测值的残差和精度,根据这些数值,可以判断基线向量观测值质量的优劣.查看平差报告中有关基线向量精度的部分,确定未超出规范的相应要求.在平差报告的“协方差项”这一部分,给出了基线向量观测值的精度,其中的距离中误差和相对距离中误差是判定网是否达到规范中对相应等级网的要求的指标.表5-3 无约束平差协方差项根据上表,可以看出各项指标均符合规范要求.其中最弱边的相对中误差是1:29837.GPS点校正固定不同两点对精度的影响为了研究固定不同的两个点对精度的影响,下面按其分布分为三类,代表性的选其中两个点进行分析.1 固定点均匀分布的数据处理结果固定I26、I28两点,经过GPS校正后的点坐标和已知坐标间的残差差异:表5-4 检核点平差值与已知值比较表按中误差的计算公式计算得到:m=2 固定点分布于一侧的数据处理结果固定I26、I32两点,经过GPS校正后的点坐标和已知坐标间的残差差异:表5-5 检核点平差值与已知值比较表按中误差的计算公式计算得到:3 固定点分布于中间的数据处理结果固定I36、I32两点,经过GPS校正后的点坐标和已知坐标间的残差差异:表5-6 检核点平差值与已知值比较表按中误差的计算公式计算得到:由以上三种固定不同分布的两点得出的中误差大小,可以看出,固定均匀分布的两点I26、I28后得出的中误差最小,精度最高;固定一侧分布的两点I26、I32后得出的中误差最大,精度最低.由此可得出如下结论:进行约束平差时,控制点均匀分布所得到的成果精度最高.固定点的个数对精度的影响均匀分布.由于龙泉山控制网较小,测点数量有限,在研究固定点的个数对精度的影响时,只代表性的选择分别固定2个点、3个点、4个点时对网精度的影响.由上面结论得知固定均匀分布的两点进行GPS网约束平差的精度最高,所以所选点均为均匀分布,以减少分布差异造成的误差.1 固定两个点进行约束平差的数据处理结果在中已经分析并得出固定均匀分布的两点I26、I28的中误差,在此直接应用其结果,不再计算.2 固定三个点进行约束平差的数据处理结果固定I26、I36、I28三点,经过GPS校正后的点坐标和已知坐标间的残差差异:表5-7 检核点平差值与已知值比较表按中误差的计算公式计算得到:在固定三个点的约束平差中,由于这三个点的坐标有一定的误差,会出现固定点坐标平差前后发生变化,但相差不大,对整个网的精度影响不大,可以忽略.3 固定四个点进行约束平差的数据处理结果固定I26、I36、I28、I32四点,经过GPS校正后的点坐标和已知坐标间的残差差异:表5-8 检核点平差值与已知值比较表按中误差的计算公式计算得到:在固定四个点的约束平差中,由于这四个点的坐标有一定的误差,会出现固定点坐标平差前后发生变化,但相差不大,对整个网的精度影响不大,可以忽略.由以上三种固定不同分布的两点得出的中误差大小,可以看出,固定三个点I26、I36、I28后得出的中误差最小,精度最高;固定两个点I26、I28后得出的中误差最大,精度最低.从而得出结论,固定均匀分布的三个点时龙泉山GPS控制网的精度较高.第六章结论1、TGO软件功能强大、使用方便、自动化程度高、结果可靠.但是在数据检核部分只按水平分量和垂直分量W 与W 合在一起进行环闭合差的检验,平差计算后输出网的信息与现行规范要求也不一致,这使大多用户很难掌握其精度指标.2、对龙泉山GPS网进行二维约束平差,分别研究固定不同分布的两点和固定点的个数对精度的影响,得出结论:固定相同个数的点时,选择均匀分布的点时GPS网精度较高;相同的分布状况下,固定均匀分布的三个点时GPS 网的精度较高.3、在研究固定点个数对GPS网精度的影响时,固定三个点和固定四个点时的中误差非常相近,可能是由于本次龙泉山GPS控制网测点数量有限,从而在一定程度上影响了固定点个数对网精度影响的分析结果.参考文献1 刘小春. GPS 技术简介及其在工程测量中的应用举例. 高校理科研2 徐绍铨, 张海. GPS测量原理及应用M .武汉: 武汉测绘科技大学出版社. 19983 马耀昌, 辛国. GPS测量误差与数据处理的质量控制. 地理空间信息. 第2 期4 黄劲松. GPS测量与数据处理M .武汉: 武汉大学出版社, 20035 李征行,黄劲松. GPS测量与数据处理. 武汉:武汉大学出版社.6 吴俐明. GPS网数据的质量控制J .测绘通报, 2000 9 : 18~207 张述清. 全球定位系统的数据处理系统——TGO功能扩展应用. 测绘通报. 2006. 第10期8 魏二虎,黄劲松. GPS测量操作与数据处理. 武汉:武汉大学出版社.9 李全信. TGO软件中环闭合差的检核问题. 工程勘察. 2006. 第7期10 王文彬.新疆东天山地区C级GPS网的布设和精度分析. 地矿测绘. 2006. 第2 期11 陈中新, 奚长元. 吴江市D级地籍GPS控制网的数据处理与分析. 苏州科技学院学报自然科学版. 第2 期。

静态基线数量如何计算公式

静态基线数量如何计算公式

静态基线数量如何计算公式静态基线数量的计算公式。

静态基线数量是指在一个项目中,需要多少个基线来确保项目的稳定性和可靠性。

在软件开发项目中,静态基线数量的计算是非常重要的,它可以帮助项目团队确定需要多少个基线来进行测试和验证。

静态基线数量的计算公式是一个复杂的数学模型,需要考虑多个因素来确定最终的结果。

静态基线数量的计算公式可以根据项目的特点和需求来确定,一般来说,可以使用以下的公式来计算静态基线数量:静态基线数量 = (总代码行数需要覆盖的代码行比例) / 每个基线的代码行数。

在这个公式中,总代码行数是指项目中所有的代码行的总和,需要覆盖的代码行比例是指项目中需要进行测试和验证的代码行的比例,每个基线的代码行数是指每个基线中包含的代码行的数量。

需要注意的是,静态基线数量的计算公式是一个理论模型,实际应用中可能会受到多种因素的影响,比如项目的规模、复杂度、技术栈等等。

因此,在实际应用中,需要根据具体的情况来确定最终的静态基线数量。

静态基线数量的计算公式的作用。

静态基线数量的计算公式可以帮助项目团队确定需要多少个基线来进行测试和验证。

通过计算静态基线数量,项目团队可以更好地规划测试和验证的工作,确保项目的稳定性和可靠性。

同时,静态基线数量的计算公式也可以帮助项目团队评估项目的风险和挑战,及时调整测试和验证的策略,提高项目的成功率。

静态基线数量的计算公式的应用。

静态基线数量的计算公式可以应用于各种软件开发项目中,包括Web开发、移动应用开发、嵌入式系统开发等等。

通过计算静态基线数量,项目团队可以更好地规划测试和验证的工作,提高项目的质量和成功率。

在实际应用中,项目团队可以根据具体的情况来确定静态基线数量的计算公式,比如调整需要覆盖的代码行比例、每个基线的代码行数等参数。

通过不断优化和调整,可以更准确地确定静态基线数量,提高项目的测试和验证效率。

静态基线数量的计算公式的挑战。

静态基线数量的计算公式在实际应用中也面临一些挑战,比如需要考虑多种因素来确定最终的结果、需要不断优化和调整参数等等。

TGO静态解算操作流程

TGO静态解算操作流程

Trimble Geomatics Office数据处理软件静态解算流程介绍一、说明本文的介绍以一个控制网的两个观测时段为例,对每一步的操作进行了详细的介绍,按照本文所述步骤进行操作,可以达到让初学者对软件基本掌握的水平,能解决一般的GPS静态解算的问题。

二、软件的运行开机运行软件的方法很多,这里只简单介绍其中的一种:单击“开始”菜单,单击“所有程序(P)”启动Ttimble Geomatics Office软件,如图1所示:图1软件启动后的界面如图2所示,图2三、坐标系统的建立在新建项目前,应首先建立项目所采用的坐标系统,即测量过程中所采用的坐标系统,坐标系统的建立与管理主要通过菜单栏的“功能”菜单来实现的,如图3所示:单击“功能”,选择“Coordinate System Manager ”项,出现如图4所示的对话框:图3图41.新建椭球基准在图4所示的窗口中选择“椭球”标签项,如图5所示:在窗口的空白处单击鼠标右键,出现鼠标右键菜单,选择“添加新椭球(A)...”,如图6所示:图5图6然后在“椭球属性”对话框中输入名称,及相应的长半轴和扁率,剩下的短半轴和偏心率在文本框里用鼠标左键单击即可自动计算出来。

如图7所示,输入的是国家西安80坐标系统的椭球参数。

国家北京54坐标系统椭球参数:长半轴:6378245 m扁率:298.300国家西安80坐标系统椭球参数:长半轴:6378140 m扁率:298.257图7单击“确定”按钮,新建椭球即完成,如图8所示:图82.建立坐标转换选择“坐标转换”标签,如图9所示:在右侧框的空白处单击鼠标右键,选择“添加新的基准转换参数”>“七参数”,如图10所示:图9在基准转换属性对话框中输入名称、椭球,椭球的选择通过右侧的下拉箭头进行选择,参数框中选择“从WGS84(F)”,下面的三个平移量、三个旋转角及尺度比不用输入。

如图11所示的输入的是国家西安80坐标系统的名称及选择的是“xian80”椭球图10图113.坐标系统的建立选择“坐标系统”标签,如图12所示:在左侧框的空白处单击鼠标右键,弹出右键菜单,选择“增加新的坐标系统组(A)...”,如图13所示:图12在“坐标系统组参数”对话框中输入名称,单击“确定”按钮即完成坐标系统组的命名。

gnss静态数据处理的基本流程

gnss静态数据处理的基本流程

gnss静态数据处理的基本流程
GNSS静态数据处理的基本流程包括以下步骤:
1. 数据预处理:这是GNSS静态数据处理的第一步,主要目的是对原始数
据进行质量控制和格式转换。

包括数据筛选、格式转换、时钟同步和测站坐标转换等操作。

在这一阶段,可以采用滤波算法对原始数据进行筛选,剔除质量较差的观测数据;将不同厂商和型号的接收机所生成的原始数据格式进行统一,以便于后续处理;利用网络时间协议(NTP)对各接收机的时钟进行同步,以减小时钟偏差对解算结果的影响;将各测站的坐标从当地坐标系转换到所需的坐标系。

2. 基线解算:基线解算是利用GNSS观测数据,通过一定的数据处理方法,求解两个或多个测站之间的相对位置和方向的过程。

这一步骤通常需要使用专门的GNSS数据处理软件来完成。

3. 网平差:网平差是利用基线解算的结果,通过一定的数据处理方法,求解整个GNSS网中所有测站的位置、方向和尺度等信息的过程。

这一步骤通常需要使用专门的平差计算软件来完成。

4. 成果输出:经过上述步骤处理后,可以得到较为准确的GNSS测量成果,包括各测站的三维坐标、方向、尺度等信息。

这些成果可以以文本文件、表格等形式输出,以便于后续的数据分析和利用。

需要注意的是,在实际的GNSS静态数据处理中,上述流程可能因不同的数据处理软件和具体应用需求而有所差异。

因此,在进行GNSS静态数据处理时,需要根据具体情况进行适当调整和处理。

GPS静态数据解算(自己整理版详细流程)

GPS静态数据解算(自己整理版详细流程)
GPS应用
汇 报 人: 日 期:2019.6.29
1 PART
GPS静态测量及基线解算
2 PART
曲线要素输入
3 PART
坐标转换
GPS静态观测及基பைடு நூலகம்解算
1、静态GPS原理
静态相对定位是在WGS-84坐标系中,利用载波相位确定 观测站与某一地面参考点之间的相对位置,或两测站之间的相对位置。 也就是我们通常所说的静态测量。测量时必须使用两台或两台以上的 接收机分别摆在不同的测站上,两两测站之间至少要有4颗共同卫星, 同步做一定时间的静止观测。其精度经静态后处理软件处理后可达到 仪器标识的精度(一般在GPS接收机机头上有说明)
一2、、网网形形设设计计
(1) 选点与埋设 在选点时应遵循以下原则: 1)点位周围应便于安置接收设备,视野开阔视场内障碍物的高度角不宜超过15°。 2)点位应远离大功率无线电发射源(如电视台、电台微波站等)及电压输电线和微波无线电信号 传送通道,以避免周围磁场对GPS信号的干扰; 3)点位周围不应有强烈反射卫星信号的物体(如大型建筑物等); 4)点位应选在交通方便,并有利于用其他测量手段扩展和联测,以提高作业效率; 5)点位应选在地面基础稳固的地方,以利于点位的保存; 6)点位的埋设宜用混凝土现场浇筑的形式埋设为不锈钢标志,埋深应在当地永久冻土层以下0.3 米,桩面注记字体应朝向正北。
(4)设计网形 布设GPS控制网的观测作业方式主要以下几种:点连式、边连式、网连式和混连 式:
3、外业施侧
(1)、观测计划 GPS卫星的可见性图及最佳观测时间的选择 采用的接收机类型和数量 观测区的划分 运输 通信等
(2)野外观测 在外业观测中,仪器操作人员应注意以下事项: 1、 当确认外接电源电缆及天线等各项连接完全无误后,方可接通电源,启动接收机。 2、 一个时段观测过程中,不允许进行以下操作:关闭又重新启动; 改变卫星高度角设置;改变天线位 置;改变数据采样间隔。 3、在观测过程中要特别注意供电情况。 4、仪器高一定要按规定始、末各量测一次,并及时输入仪器及记入测量手簿之中。 5、接收机在观测过程中不要靠近接收机使用对讲机、玩手机。 6、观测过程中要随时查看仪器内存或硬盘容量,每日观测结束后,应及时将数据转存至计算机硬、软 盘上,确保观测数据不丢失。

静态数据后处理基线解算步骤

静态数据后处理基线解算步骤

静态数据后处理基线解算及坐标投影1.运行“南方GPS数据处理”程序,点击“文件”菜单中的“新建”菜单,在弹出的对话框中输入“项目名称”并选定投影坐标系(一般情况为北京54坐标3度带坐标系统);2.点击“数据输入”菜单下的“增加观测数据文件”菜单,找到存放观测数据的文件夹,点击右上方的“全选”按钮然后单击确定导入观测数据;3.点击“数据输入”菜单下的“坐标数据录入”,在弹出的对话框中选择已知点点号后输入相应的已知点坐标数据(至少两个已知点数据);4.点击“基线解算”菜单下的“全部解算”菜单,等待程序对基线进行自动进行解算;5.点击左屏幕中的“基线简表”子项,查看基线解算是否全部通过(方差小于3时系统会自动提示解算不通过),如果有未解算通过的基线边可在相应的基线解算数据行上单击右键,在弹出的对话框中增加或者减少“高度截止角”和“历元间隔”反复解算直到基线的方差比大于3为止,特殊情况下可选择参考卫星。

6.点击左屏幕中的“闭合环”子项查看同步环和异步环的闭合精度是否合格(如果精度太低系统将会提示);7.点击左屏幕中的“重复基线”子项查看重复基线的精度情况,如果精度太低系统将会自动删除不合格的重复基线;8.以上工作确保无误的情况下,点击“平差处理”菜单下的网平差,系统将自动对GPS网进行平差计算和坐标成果解算。

如果系统提示已知点坐标与坐标系统设置差异太大:首先请检查已知点的坐标数据是否正确;其次如果确认已知点坐标数据无误后还会出现该提示,说明所提供的已知点坐标数据不是北京54坐标系,点击“平差处理”菜单下的“平差参数设置”在弹出的对话框中将“进行已知点与坐标系匹配检查”一项变为不选中再进行网平差即可。

9.自定义坐标系时先选择相应的坐标系统参数再点新建,并注意坐标投影高(如果有两个以上已知点,可不考虑投高度)。

10.点击“成果”菜单下的“成果报告打印”,设置纸张为A4然后系统将自动打印出成果报告。

GPS测量数据处理中的基线解算与坐标转换方法

GPS测量数据处理中的基线解算与坐标转换方法

GPS测量数据处理中的基线解算与坐标转换方法GPS(全球定位系统)是一种使用卫星技术进行地理测量和定位的先进工具。

在实际的测绘和测量工作中,GPS测量数据处理是一个重要的环节。

其中,基线解算与坐标转换方法是其中的核心内容之一。

基线解算是指根据通过GPS观测得到的卫星观测数据,计算出两个或多个测站之间的距离和方向的过程。

对于两个测站之间的基线,首先需要解算出基线长度,即测站之间的直线距离。

然后,根据相同的基线长度,可以得到基线的坐标方向。

基线解算方法主要有静态基线解算、动态基线解算和RTK(实时动态差分)基线解算。

静态基线解算是利用长时间内(通常为几个小时到一天)的GPS观测数据,通过一些统计学方法计算出基线的精度。

这种方法适用于不需要实时性的测量任务,例如大范围的地形测量和控制网的建立。

静态基线解算的优点是计算结果精度高,但缺点是耗时较长。

动态基线解算是利用运动中的GPS接收机,通过较短时间内的观测数据,计算出基线的精度。

这种方法适用于需要实时性的测量任务,例如航空和航海等应用。

动态基线解算的优点是计算速度快,但相对于静态基线解算,精度稍低。

RTK(实时动态差分)基线解算是一种利用两个或多个接收机之间的无线电链路,进行实时差分校正的方法。

这种方法适用于需要高精度和实时性的测量任务,例如建筑物和道路测量。

RTK基线解算的优点是计算精度高且实时性强,但缺点是对设备的要求较高。

坐标转换是指将GPS观测得到的坐标转换为地理坐标系统或工程坐标系统中的相应坐标的过程。

常用的坐标转换方法有七参数法、四参数法和三参数法等。

七参数法是指通过观测得到的七个参数,包括三个旋转参数、三个平移参数和一个尺度参数,来实现坐标转换的方法。

这种方法适用于大范围的坐标转换,例如全球定位系统和国家坐标系之间的转换。

七参数法的优点是转换精度高,但缺点是计算复杂。

四参数法是指通过观测得到的四个参数,包括两个平移参数和两个尺度参数,来实现坐标转换的方法。

5静态基线处理

5静态基线处理

第五章静态基线处理基线处理软件的优劣不但影响着GPS相对静态测量的精度,而且也影响着相对静态测量可靠性、所需观测时间等。

对于一个商业用途的基线处理软件而言,不但要求能准确、可靠地处理出基线向量,而且要求软件对用户友好、易于使用。

HDS2003 数据处理软件很好地实现了复杂的基线处理理论与简易的软件使用的有机统一。

对于正常的观测数据,通常不需人工干预,就能很快得到准确的结果。

而对于观测质量比较差的数据,用户也可以根据各种基线处理的输出信息,进行人工干预,使基线的处理结果符合工程的要求。

§5.1 基线处理的过程按指定的数据类型录入GPS观测数据后,软件会自动分析各点位采集到的数据内在的关系,并形成静态基线后,就可以进行基线处理了。

基线处理的过程可分为如下几个主要部分:一、设定基线解算的控制参数基线解算的控制参数,用以确定数据处理软件采用何种处理方法来进行基线解算。

设定基线解算的控制参数是基线解算时的一个非常重要的环节。

通过控制参数的设定可以实现基线的优化处理。

控制参数在“基线解算设置”中进行设置,主要包括“数据采样间隔”、“截止角”、“参考卫星”及其电离层和解算模型的设置等。

二、外业输入数据的检查与修改在录入了外业观测数据后、在基线解算之前,需要对观测数据进行必要的检查。

检查的项目包括测站名点号、测站坐标、天线高等。

对这些项目进行检查的目的是为了避免外业操作时的误操作。

三、基线解算基线解算的过程一般是自动进行的,无需人工干预。

基线解算有分为如下几步:1)基线解算自检基线解算之前,软件会检查基线解算控制参数的设置、观测数据及星历文件、起算坐标等等。

2)读入星历数据星历数据的格式可以为RINEX格式,也可以为中海达自定义的二进制格式(*.zhd),也可以为SP3格式的精密星历。

3)读入观测数据HDS2003 GPS 数据处理软件进行单基线处理时,首先需要读取原始的GPS 观测值数据,一般来说各接收机厂商随接收机一起提供的数据处理软件都可以直接处理从接收机中传输出来的GPS 原始观测值数据,而由第三方所开发的数据处理软件则不一定能对各接收机的原始观测数据进行处理。

中海达静态传输及解算操作流程

中海达静态传输及解算操作流程

中海达GPS静态数据传输及解算简易操作流程静态数据的传输:插好数据线,开机把接收机改为静态模式(若是静态机则开机即可),打开HDS2003数据处理软件点【工具】【HitMon数据传输】一一进入数据传输软件,点【连接】【计算机通讯设置】一一设置通讯串口及传输的波特率一般为115200 ,改好后点设置, 再点【连接】【连接】或直接点工具栏上的连接快捷键(若用USB传输线则插上后直接点连接即可),连上后在对话框右下角显示仪器号,读取接收机数据后在主界面显示观测的数据,点【文件】【设置卸载文件的存储目录】或直接点工具栏左侧的路径快捷键一一设置接收机传出文件的存储目录,设置好后界面刷新一下,在对话框下方显示下载的路径,选择需要下载的文件右键【输入测站信息】一一输入点名、时段、仪器高等,确定后界面刷新一下把改后的数据在写入仪器内,(软件默认点名为四位若不够四位软件自动在点名后加“下划线补齐,若仪器高输错,第二次修改时需把点名后的“下划线删除,不然所改的数据不能传入到接收机里)刷新后在界面里就可以看到改后的文件的点名和仪器高了,右键【数据导出】一一把所测的数据导入到指定的文件夹里,导出后点【连接】【断开】或直接点工具栏上的断开快捷键,就可拨下数据线进行下一台接收机的数据传输。

接收机的设置:点【查看】【接收机信息】可查看接收机号、注册日期、内存等信息,点【工具】【采样间隔、高度截止角设置】可更改采样间隔和高度截止角,点【工具】【接收机注册】可输入21位注册码进行接收机的注册。

HDS2003数据处理软件的解算:运行HDS2003数据处理软件1新建项目点【项目(F)】【新建(N)…】,弹出新建项目对话框,输入项目名确定,弹出项目属性设置对话框,在项目细节里填写好各项信息,点控制网等级-选择自己的控制网等级,点坐标系统--—选择已知点坐标系及输入测区的中央子午线,改好后点击确定。

2导入数据点【项目(F)】【导入(I)…】,弹出数据导入对话框,数据格式选择第一个中海达ZHD观测数据弹出打开对话框选择需要解算的数据,点击打开弹出是否加载数据对话框,点击是,数据载入并在窗口中自动生成数据的网图。

静态测量和解算

静态测量和解算

静态测量和解算一、静态测量测量遵循的原则大家都知道,在布局上是由整体到局部,在精度上是由高级到低级,在次序上是先控制后碎部。

控制网是一个地区或者测区的统一坐标基准框架,是保证测量精度的重要因素,按等级可分为ABCDE,按不同行业分有城市公路铁路等等。

AB级网我们一般做不了,等级太高,要求太高,常见的都是C级及以下。

各个网的等级划分,观测时间长短,观测时段多少可参照云盘中上传的GPS测量规范2009。

南方的仪器在做控制网中需要更测量模式,从原来的基准站模式和移动站模式改为静态即可,不需要拧天线(之前见过用户做静态时“忘”带天线了,又开车回去取的,完全浪费时间)。

S86及S86-2013还有银河6,都可以通过面板去更改模式,很简单,不再赘述。

S82 T(双星)改静态方法:在关机状态下,同时常按住主机上的F键和开机键,等三个灯同时闪烁两次以上时同时松手,这时候按一下F键,左侧红灯亮,再按一下F键,中间红灯亮,再按一下F键,右侧红灯亮,按开机键即可。

S82-2013灯比较多,但方法一样。

同时常按主机上的F键和开机键,等灯同时闪烁两次以上时同时松手,按F键把最左侧的灯调到第一个亮,按开机键即可。

如果要更改采集间隔,S82 S82-2013最好用电脑通过仪器之星软件改,S86 S86-2013和银河6直接通过面板改。

银河1 银河1plus改静态的方式是:开机情况下,按住关机键,等机器关闭后,手不要松,会有语音提示"基准站、移动站、静态、进入自检状态",等播报完静态时,马上松手即可,再开机,模式就会变成静态。

外业观测时,最好是按规范来,打印若干记录表。

类似于这种,目的在于记录详细的外业观测记录,便于内业处理数据。

尤其是仪器高,好多次,用户打电话,仪器高忘记量了。

静态测量中,重复设站的点仪器高没量或者量错,不仅影响高程,平面也会影响。

观测时,没事就看看机器是否正常,电池电量是否够用。

仪器高的量取方法:仪器高按图上所示量取,86,86-2013,银河1 银河6测量仪器高时都需要用测高片,只有82 82-2013用斜高。

GPS静态数据检算各参数定义

GPS静态数据检算各参数定义

GPS静态测量数据处理定义一、基线解算的类型1、单基线解(1)定义:当有台GPS接收机进行了一个时段的同步观测后,每两台接收机之间就可以形成一条基线向量,共有条同步观测基线,其中最多可以选出相互独立的条同步观测基线,至于这条独立基线如何选取,只要保证所选的条独立基线不构成闭和环就可以了。

这也是说,凡是构成了闭和环的同步基线是函数相关的,同步观测所获得的独立基线虽然不具有函数相关的特性,但它们却是误差相关的,实际上所有的同步观测基线间都是误差相关的。

所谓单基线解算,就是在基线解算时不顾及同步观测基线间误差相关性,对每条基线单独进行解算。

(2)特点:单基线解算的算法简单,但由于其解算结果无法反映同步基线间的误差相关的特性,不利于后面的网平差处理,一般只用在普通等级GPS网的测设中。

2、多基线解(1)定义:与单基线解算不同的是,多基线解算顾及了同步观测基线间的误差相关性,在基线解算时对所有同步观测的独立基线一并解算。

(2)特点:多基线解由于在基线解算时顾及了同步观测基线间的误差相关特性,因此,在理论上是严密的。

(3)多站整体解(绝对坐标)(4)单基线解算的过程(5)利用基线解算软件解算基线向量的过程二、基线解算结果的质量评定指标1、单位权方差因子(1)定义:(2)实质:反映观测值的质量,又称为参考方差因子。

越小越好。

2、RMS - 均方根误差定义:(2)实质:表明了观测值的质量,观测值质量越好,越小,反之,观测值质量越差,则越大,它不受观测条件(观测期间卫星分布图形)的好坏的影响。

3、数据删除率(1)定义:在基线解算时,如果观测值的改正数大于某一个阈值时,则认为该观测值含有粗差,则需要将其删除。

被删除观测值的数量与观测值的总数的比值,就是所谓的数据删除率。

(2)实质:数据删除率从某一方面反映出了GPS原始观测值的质量。

数据删除率越高,说明观测值的质量越差。

4、RATIO(1)定义:RATIO值为在采用搜索算法确定整周未知数参数的整数值时,产生次最小的单位权方差与最小的单位权方差的比值。

GPS静态数据检算各参数定义

GPS静态数据检算各参数定义

GPS静态测量数据处理定义一、基线解算的类型1、单基线解(1)定义:当有台GPS接收机进行了一个时段的同步观测后,每两台接收机之间就可以形成一条基线向量,共有条同步观测基线,其中最多可以选出相互独立的条同步观测基线,至于这条独立基线如何选取,只要保证所选的条独立基线不构成闭和环就可以了。

这也是说,凡是构成了闭和环的同步基线是函数相关的,同步观测所获得的独立基线虽然不具有函数相关的特性,但它们却是误差相关的,实际上所有的同步观测基线间都是误差相关的。

所谓单基线解算,就是在基线解算时不顾及同步观测基线间误差相关性,对每条基线单独进行解算。

(2)特点:单基线解算的算法简单,但由于其解算结果无法反映同步基线间的误差相关的特性,不利于后面的网平差处理,一般只用在普通等级GPS网的测设中。

2、多基线解(1)定义:与单基线解算不同的是,多基线解算顾及了同步观测基线间的误差相关性,在基线解算时对所有同步观测的独立基线一并解算。

(2)特点:多基线解由于在基线解算时顾及了同步观测基线间的误差相关特性,因此,在理论上是严密的。

(3)多站整体解(绝对坐标).z.(4)单基线解算的过程(5)利用基线解算软件解算基线向量的过程二、基线解算结果的质量评定指标1、单位权方差因子(1)定义:(2)实质:反映观测值的质量,又称为参考方差因子。

越小越好。

2、RMS-均方根误差定义:(2)实质:表明了观测值的质量,观测值质量越好,越小,反之,观测值质量越差,则越大,它不受观测条件(观测期间卫星分布图形)的好坏的影响。

3、数据删除率(1)定义:在基线解算时,如果观测值的改正数大于*一个阈值时,则认为该观测值含有粗差,则需要将其删除。

被删除观测值的数量与观测值的总数的比值,就是所谓的数据删除率。

(2)实质:数据删除率从*—方面反映岀了GPS原始观测值的质量。

数据删除率越高,说明观测值的质量越差。

4、RATIO(1)定义:RATIO值为在采用搜索算法确定整周未知数参数的整数值时,产生次最小的单位权方差与最小的单位权方差的比值。

GPS静态基线解算原理

GPS静态基线解算原理

GPS静态基线解算原理编写人:**学号: *************所在院系:测绘学院2011年5月目录1 RINEX文件命名与类型............................... - 1 - 1.1 观测文件格式.................................... - 1 -1.2 导航电文文件格式................................ - 4 -2 GPS卫星位置的计算................................. - 7 - 2.1 计算归化时间tk.................................. - 7 - 2.2 对平均运动角速度进行改正........................ - 8 - 2.3 观测时刻卫星平近点角Mk的计算................... - 8 - 2.4 计算偏近点角Ek.................................. - 8 - 2.5 真近点角Vk的计算............................... - 8 - 2.6 升交距角Φk的计算.............................. - 8 - 2.7 摄动改正项δu,δr,δi的计算.................. -8 - 2.8 计算经过摄动改正的升交距角uk、卫星矢径rk和轨道倾角ik ..................................................... -9 - 2.9 计算卫星在轨道平面坐标系的坐标.................. - 9 - 2.10 观测时刻升交点经度Ωk的计算.................... - 9 -2.11 计算卫星在地心固定坐标系中的直角坐标............ - 9 -3 GPS静态基线解算 .................................. - 9 - 3.1 载波相位测量原理................................ - 9 - 3.2 载波相位测量的观测方程......................... - 10 - 3.3 观测值的组合................................... - 11 - 3.4 在接收机和卫星间二次差......................... - 11 - 3.5 观测方程的线性化............................... - 12 -1 RINEX 文件命名与类型1.1 观测文件格式(1)观测文件的文件头如下图列出了头文件中程序里所需要的信息图1-1 rienx o 文件 表1-1 rienx o 文件头文件说明 标签描述RINEX VERSION / TYPE版本格式(2.10) 文件类型 导航系统:空格或’G’为GPS ,‘R’为GLONASS ,‘S’‘T’:‘M’为混合 APPROX POSITION XYZ 标记点概略位置(WGS84) ANTENNA: DELTA H/E/N- 天线高度:天线底部相交于标记点的高度- 天线中心相对标记点东向和北向距离(单位米)文件头观测值WA VELENGTH FACT L1/2 - L1和L2载波的缺省系数1: 整周2: 半周0 (L2载波): 单频接收机-0或空格*WAVELENGTH FACT L1/2 - L1和L2载波的缺省系数1: 整周2: 半周0 (L2载波): 单频接收机- 系数适用的卫星数据- 系数适用的卫星列表# / TYPES OF OBSERV - 文件中观测类型数量- 观测类型如果超过9种观测类型,下行继续观测类型:L1,L2: L1、L2载波相位测量C1: L1载波C/A码伪距测量P1,P2: L1,L2载波P码伪距测量D1,D2: L1、L2载波多普勒频率测量*INTERV AL 以秒为单位的观测间隔TIME OF FIRST OBS-初次观测时间(四字节年,月、日、时、分、秒)-时间系统:GPS(GPS时间系统)GLO(UTC时间系统)*TIME OF LAST OBS -最后观测时间(四字节年,月、日、时、分、秒)-时间系统:GPS(GPS时间系统)GLO(UTC时间系统)*# OF SATELLITES观测到的卫星数量*PRN / # OF OBS 不同的观测类型中,观测到的卫星数量,如果超过9种类型下行继续END OF HEADER 文件头部分的最后一行(2)、观测文件数据记录表1-2 rienx o文件观测值说明观测记录描述观测值的第一行-星历:年(2字节需要时补0) ;月,日,时,分,秒; -星历标志0:表示正常1:表示从前一历元到当前历元观测失败2: 开始移动天线3: 新地点4: 接下来是头信息5: 其它事件-当前历元的卫星数量-当前观测到的卫星列表-接收机钟差(秒,可选)-如果超过12颗卫星,下行继续事件标志:OBSERV ATIONS - 观测值- LLI- 信号强度信号强度设为 1-9级:1: 最小信号强度5: 信噪比S/N9: 最大信号强度0: 或空: 不确定1.2 导航电文文件格式图1-2 (1)、头文件格式表1-3 rinex n 文件头文件说明头文件标签 说明RINEX VERSION/TYPE -RINEX 格式的版本号-文件类型PGN/RUN BY/DA TE -创建本数据文件所采用的名称文件头文件体-创建本数据文件单位名称-创建本数据文件的日期COMMENT 注释行LON ALPHA 历书中的电离层参数A0~A3 ION BETA 历书中的电离层参数B0~B3DELTA-UTC:A0,A1,T,W 用于计算UTC时间的历书参数-A0,A1:多项式系数-T:UTC数据参考时刻-W:UTC参考周数,为连续计数,不是1024余数LEAP SECONDS 由于周跳造成的时间差END OF HEADER 文件头的最后一个记录(2)、数据记录格式表1-4 rinex n 文件头观测值说明观测值记录说明PRN号/历元/卫星钟- 卫星的PRN号- 历元:TOC(卫星钟参考时刻)年,月,日,时,分,秒- 卫星钟的偏差(s)- 卫星钟的漂移(s/s)- 卫星钟的漂移速度(s/s^2)广播轨道—1 - IDOC(数据星历发布时间)-)(mCrs-)/(sradn∆-)(radM广播轨道—2 -)(radCuc- e轨道偏心率-)(radians Cus-))((2/1mAsqrt广播轨道—3 - TOE星历的参考时刻(GPS周内的秒数)-)(radCic-))((OMEGAradΩ-)(radCis ik广播轨道—4 -)(radi-)(mCrc-)(radω-))(/(OMEGADOTsradΩ广播轨道—5 -))(/(IDOTsradi- 2L上的码- GPS周数(与TOE一同表示时间)。

静态GPS网的基线解算的精度评定及其质量控制

静态GPS网的基线解算的精度评定及其质量控制

静态GPS网的基线解算的精度评定及其质量控制发表时间:2012-12-06T13:39:35.873Z 来源:《建筑学研究前沿》2012年7月Under供稿作者:王守民铁占琦李国防[导读] 随着社会的不断发展,科技的不断进步,GPS技术越来越多的应用在我们的生产王守民铁占琦李国防河南省有色金属地质矿产局第五地质大队 450000 摘要:随着社会的不断发展,科技的不断进步,GPS技术越来越多的应用在我们的生产,生活当中,大地测量,汽车导航,气象变化等领域对GPS技术精度的要求越来越高,精确的实时性的定位已经成为现代GPS技术的基本要求,因此对于静态GPS网的基线解算的精度评价要求越来越高,要有有效的实时的定位报告就必须进行科学的,合理的精度评定和质量控制,本文就这一问题进行思考和研究。

关键词:静态GPS网;基线解算;精度评定;质量控制近年来,GPS这个词已经越来越广泛的应用在我们生活的各个领域,对于GPS网的精确度和质量控制也越来越多的引起人们的注意和研究。

一、静态GPS网的基线解算 GPS众所周知就是全球定位与导航。

是由覆盖面积广泛的一定数量的卫星所组成的一个复杂的庞大的系统,主要由三部分组成,空间部分(GPS卫星),地面部分(地面监控设施),用户(地面用户所拥有的GPS接收机)。

用户通过GPS接收相应频率的卫星信号,通过信号处理从而获得自己所在的位置及相关信息,从而实现利用GPS进行定位和导航的目的。

静态GPS是指由两个或两个以上的接收仪,通过长时间的测量,对测量误差进行分析,同时传导给用户便于用户进行距离的修正。

基线解算是指在卫星定位过程中,利用波段相同的两个或两个以上观测站点之间的观测值进行比较,分析从而得出二者基线坐标的误差的过程。

基线解算是GPS定位过程中数据处理的重要环节,其结果直接影响到GPS定位的精度。

基线解算的模式主要有单基线解算模式、多基线解算模式、及整体基线解算模式3种。

1.单基线解算模式:针对构成闭合环的基线的函数相同,单基线解算模式只在不构成闭合环的情况下忽略同步观测基线间的误差而对每条基线进行单独的解算。

静态基线解算

静态基线解算

静态基线解算静态基线解算是通过测量和计算地球表面上的两个或多个固定测点之间的相对位置,来研究地壳运动、地球形状、构造变形等问题的一种技术方法。

该方法基于大地测量原理和测量仪器,通过角度观测、距离观测和高差观测等多种手段,对测点的空间坐标进行测量,并通过数据处理和解算,得到测点的平面坐标、高程等位置信息。

静态基线解算通常分为以下几个步骤:1. 数据采集:选择合适的测点,并使用全站仪、GNSS接收机等测量仪器进行观测,获取角度观测值、距离观测值和高差观测值等原始数据。

在采集数据时,需要注意测点的稳定性和观测仪器的精确性,以确保获取可靠的观测结果。

2. 数据预处理:对采集到的原始数据进行预处理,包括数据检查、数据筛选和数据平差等步骤。

数据检查主要是对原始数据进行质量检验,排除异常数据或误差较大的观测值。

数据筛选是对观测数据进行精度筛选,选择适用于后续解算的观测数据。

数据平差是通过数理统计方法对观测数据进行加权平差,以提高解算结果的精度和可靠性。

3. 解算计算:根据预处理后的观测数据,利用大地测量学中的数学模型和算法,进行基线解算计算。

解算计算的主要内容包括角度解算、距离解算和高度解算。

在解算计算过程中,需要考虑大地曲线、地球形状、地球椭球体参数等因素,并利用数学模型进行数据处理和解算。

解算计算结果将得到各测点的空间坐标和位置信息。

4. 数据分析和精度评定:对解算结果进行分析和评定,包括坐标精度评定、形变分析等内容。

数据分析主要是通过计算和对比解算结果的精度、一致性和可靠性,进行误差分析和精度评定。

形变分析则是通过对解算结果的比对,研究地壳运动、构造变形等问题。

静态基线解算在地球科学、大地测量、测绘地理信息等领域具有广泛的应用。

它可以用于地壳运动的监测与研究,如地震活动、板块运动等;也可以用于大尺度地形测量和制图,如高精度测图、地图更新等;此外,它还可以用于工程测量和导航定位等领域,如建筑工程、交通工程等。

中海达静态传输及解算操作流程

中海达静态传输及解算操作流程

中海达GPS静态数据传输及解算简易操作流程静态数据的传输:插好数据线,开机把接收机改为静态模式(若是静态机则开机即可),打开HDS2003数据处理软件点【工具】→【HitMon数据传输】——进入数据传输软件,点【连接】→【计算机通讯设置】——设置通讯串口及传输的波特率一般为115200,改好后点设置,再点【连接】→【连接】或直接点工具栏上的连接快捷键(若用USB传输线则插上后直接点连接即可),连上后在对话框右下角显示仪器号,读取接收机数据后在主界面显示观测的数据,点【文件】→【设置卸载文件的存储目录】或直接点工具栏左侧的路径快捷键——设置接收机传出文件的存储目录,设置好后界面刷新一下,在对话框下方显示下载的路径,选择需要下载的文件右键→【输入测站信息】——输入点名、时段、仪器高等,确定后界面刷新一下把改后的数据在写入仪器内,(软件默认点名为四位若不够四位软件自动在点名后加“_”下划线补齐,若仪器高输错,第二次修改时需把点名后的“_”下划线删除,不然所改的数据不能传入到接收机里)刷新后在界面里就可以看到改后的文件的点名和仪器高了,右键→【数据导出】——把所测的数据导入到指定的文件夹里,导出后点【连接】→【断开】或直接点工具栏上的断开快捷键,就可拨下数据线进行下一台接收机的数据传输。

接收机的设置:点【查看】→【接收机信息】可查看接收机号、注册日期、内存等信息,点【工具】→【采样间隔、高度截止角设置】可更改采样间隔和高度截止角,点【工具】→【接收机注册】可输入21位注册码进行接收机的注册。

HDS2003数据处理软件的解算:运行HDS2003数据处理软件1新建项目点【项目(F)】→【新建(N)…】,弹出 新建项目对话框,输入项目名确定,弹出项目 属性设置 对话框,在 项目细节 里填写好各项信息,点 控制网等级——选择自己的控制网等级,点 坐标系统——选择已知点坐标系及输入测区的中央子午线,改好后点击确定。

【专业】静态数据解算:基线处理网平差

【专业】静态数据解算:基线处理网平差

【专业】静态数据解算:基线处理网平差HGO数据处理软件包是中海达GPS解算软件必备的软件包,用于GPS解算软解可直接安装,适用于对静态采集的GPS数据进行系统处理,得到较好的基线解算结果。

文件名:HGO数据处理软件包V2.0.4软件大小:73.6 MB (77,271,283 字节)1、新建项目:输入项目名选择保存路径项目属性:输入项目基本信息,限差项选择相应测量规范及控制等级提示:仪器精度:表示仪器硬件自身的误差精度比例误差(ppm):表示仪器硬件与距离之间的一个误差比例精度坐标系统椭球:选择源椭球与目标椭球投影:选择投影方法、设置中央子午线2、导入数据:可以多选导入、导入目录、导入手簿项目(做PPK 解算时候用),导入数据时,软件信息状态栏会进行相应提示及观测位置单点定位自动纠正。

通过软件查看静态观测值好坏3、①单点定位与质检:可以查看质量检查栏是否提示指标超限或通过,以及其他指标初步判断数据好坏②观测序列图:可以查看卫星的观测序列图完整情况判断数据的好坏;③卫星图:可以通过卫星查看观测位置卫星被遮挡情况、及信噪比图判断静态数据的好坏;4、软件自动处理基线有时会出现基线、重复基线、同步环、闭合环不合格的情况,对于不合格的基线、重复基线、同步环、闭合环,单独处理对应的基线,直到全部符合项目属性设置的规范要求为止。

基线处理详细步骤:① '基线处理'设置'解算设置'参数,保存至全部a. 可点击菜单栏的“基线处理”选择“处理全部基线”,软件自动解算全部基线;b. 也可点击导航栏的“处理基线”选择“处理全部”,软件自动解算全部基线;处理基线时,主要看两个指标:ratio值、rms值Ratio值>2,越大越好,最大99Rms值基线中误差,越小越好,一般调整<8mm考核基线质量的附加条件有:重复基线、同步环、异步环②继续处理软件自动解算不合格基线、同步环、异步环、重复基线(需反复处理基线)基线处理方法一:通过“解算设置”参数,即调整高度截止角、采样间隔、最少历元数、GNSS卫星系统(尝试某一卫星系统不参与解算、BDS或GLONASS不参与解算,或单GPS解算),然后保存至“选中”,点击菜单栏“基线处理”选择“处理选定基线”;或点击导航栏“处理基线”选择“处理”;或点击鼠标右键选择“解算”,直到该条基线合格为止基线处理:方法二:有时通过设置“解算设置”参数,发现基线还是不合格,则可结合调整基线残差序列来进行交叉处理,这是基线质量处理的强大工具。

5.静态基线处理

5.静态基线处理

第五章静态基线处理基线处理软件的优劣不但影响着GPS相对静态测量的精度,而且也影响着相对静态测量可靠性、所需观测时间等。

对于一个商业用途的基线处理软件而言,不但要求能准确、可靠地处理出基线向量,而且要求软件对用户友好、易于使用。

HDS2003 数据处理软件很好地实现了复杂的基线处理理论与简易的软件使用的有机统一。

对于正常的观测数据,通常不需人工干预,就能很快得到准确的结果。

而对于观测质量比较差的数据,用户也可以根据各种基线处理的输出信息,进行人工干预,使基线的处理结果符合工程的要求。

§5.1 基线处理的过程按指定的数据类型录入GPS观测数据后,软件会自动分析各点位采集到的数据内在的关系,并形成静态基线后,就可以进行基线处理了。

基线处理的过程可分为如下几个主要部分:一、设定基线解算的控制参数基线解算的控制参数,用以确定数据处理软件采用何种处理方法来进行基线解算。

设定基线解算的控制参数是基线解算时的一个非常重要的环节。

通过控制参数的设定可以实现基线的优化处理。

控制参数在“基线解算设置”中进行设置,主要包括“数据采样间隔”、“截止角”、“参考卫星”及其电离层和解算模型的设置等。

二、外业输入数据的检查与修改在录入了外业观测数据后、在基线解算之前,需要对观测数据进行必要的检查。

检查的项目包括测站名点号、测站坐标、天线高等。

对这些项目进行检查的目的是为了避免外业操作时的误操作。

三、基线解算基线解算的过程一般是自动进行的,无需人工干预。

基线解算有分为如下几步:1)基线解算自检基线解算之前,软件会检查基线解算控制参数的设置、观测数据及星历文件、起算坐标等等。

2)读入星历数据星历数据的格式可以为RINEX格式,也可以为中海达自定义的二进制格式(*.zhd),也可以为SP3格式的精密星历。

3)读入观测数据HDS2003 GPS 数据处理软件进行单基线处理时,首先需要读取原始的GPS 观测值数据,一般来说各接收机厂商随接收机一起提供的数据处理软件都可以直接处理从接收机中传输出来的GPS 原始观测值数据,而由第三方所开发的数据处理软件则不一定能对各接收机的原始观测数据进行处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

GPS静态基线解算原理2011年5月目录1 RINEX文件命名与类型............................... - 1 - 1.1 观测文件格式.................................... - 1 -1.2 导航电文文件格式................................ - 4 -2 GPS卫星位置的计算................................. - 7 - 2.1 计算归化时间tk.................................. - 7 - 2.2 对平均运动角速度进行改正........................ - 8 - 2.3 观测时刻卫星平近点角Mk的计算................... - 8 - 2.4 计算偏近点角Ek.................................. - 8 - 2.5 真近点角Vk的计算............................... - 8 - 2.6 升交距角Φk的计算.............................. - 8 - 2.7 摄动改正项δu,δr,δi的计算.................. -8 - 2.8 计算经过摄动改正的升交距角uk、卫星矢径rk和轨道倾角ik ..................................................... -9 - 2.9 计算卫星在轨道平面坐标系的坐标.................. - 9 - 2.10 观测时刻升交点经度Ωk的计算.................... - 9 -2.11 计算卫星在地心固定坐标系中的直角坐标............ - 9 -3 GPS静态基线解算 .................................. - 9 - 3.1 载波相位测量原理................................ - 9 - 3.2 载波相位测量的观测方程......................... - 10 - 3.3 观测值的组合................................... - 11 - 3.4 在接收机和卫星间二次差......................... - 11 - 3.5 观测方程的线性化............................... - 12 -1 RINEX 文件命名与类型1.1 观测文件格式(1)观测文件的文件头如下图列出了头文件中程序里所需要的信息图1-1 rienx o 文件 表1-1 rienx o 文件头文件说明 标签描述RINEX VERSION / TYPE版本格式(2.10) 文件类型 导航系统:空格或’G’为GPS ,‘R’为GLONASS ,‘S’‘T’:‘M’为混合 APPROX POSITION XYZ 标记点概略位置(WGS84) ANTENNA: DELTA H/E/N- 天线高度:天线底部相交于标记点的高度- 天线中心相对标记点东向和北向距离(单位米)文件头观测值WA VELENGTH FACT L1/2 - L1和L2载波的缺省系数1: 整周2: 半周0 (L2载波): 单频接收机-0或空格*WAVELENGTH FACT L1/2 - L1和L2载波的缺省系数1: 整周2: 半周0 (L2载波): 单频接收机- 系数适用的卫星数据- 系数适用的卫星列表# / TYPES OF OBSERV - 文件中观测类型数量- 观测类型如果超过9种观测类型,下行继续观测类型:L1,L2: L1、L2载波相位测量C1: L1载波C/A码伪距测量P1,P2: L1,L2载波P码伪距测量D1,D2: L1、L2载波多普勒频率测量*INTERV AL 以秒为单位的观测间隔TIME OF FIRST OBS-初次观测时间(四字节年,月、日、时、分、秒)-时间系统:GPS(GPS时间系统)GLO(UTC时间系统)*TIME OF LAST OBS -最后观测时间(四字节年,月、日、时、分、秒)-时间系统:GPS(GPS时间系统)GLO(UTC时间系统)*# OF SATELLITES观测到的卫星数量*PRN / # OF OBS 不同的观测类型中,观测到的卫星数量,如果超过9种类型下行继续END OF HEADER 文件头部分的最后一行(2)、观测文件数据记录表1-2 rienx o文件观测值说明观测记录描述观测值的第一行-星历:年(2字节需要时补0) ;月,日,时,分,秒; -星历标志0:表示正常1:表示从前一历元到当前历元观测失败2: 开始移动天线3: 新地点4: 接下来是头信息5: 其它事件-当前历元的卫星数量-当前观测到的卫星列表-接收机钟差(秒,可选)-如果超过12颗卫星,下行继续事件标志:OBSERV ATIONS - 观测值- LLI- 信号强度信号强度设为 1-9级:1: 最小信号强度5: 信噪比S/N9: 最大信号强度0: 或空: 不确定1.2 导航电文文件格式图1-2 (1)、头文件格式表1-3 rinex n 文件头文件说明头文件标签 说明RINEX VERSION/TYPE -RINEX 格式的版本号-文件类型PGN/RUN BY/DA TE -创建本数据文件所采用的名称文件头文件体-创建本数据文件单位名称-创建本数据文件的日期COMMENT 注释行LON ALPHA 历书中的电离层参数A0~A3 ION BETA 历书中的电离层参数B0~B3DELTA-UTC:A0,A1,T,W 用于计算UTC时间的历书参数-A0,A1:多项式系数-T:UTC数据参考时刻-W:UTC参考周数,为连续计数,不是1024余数LEAP SECONDS 由于周跳造成的时间差END OF HEADER 文件头的最后一个记录(2)、数据记录格式表1-4 rinex n 文件头观测值说明观测值记录说明PRN号/历元/卫星钟- 卫星的PRN号- 历元:TOC(卫星钟参考时刻)年,月,日,时,分,秒- 卫星钟的偏差(s)- 卫星钟的漂移(s/s)- 卫星钟的漂移速度(s/s^2)广播轨道—1 - IDOC(数据星历发布时间)-)(mCrs-)/(sradn∆-)(radM广播轨道—2 -)(radCuc- e轨道偏心率-)(radians Cus-))((2/1mAsqrt广播轨道—3 - TOE星历的参考时刻(GPS周内的秒数)-)(radCic-))((OMEGAradΩ-)(radCis ik广播轨道—4 -)(radi-)(mCrc-)(radω-))(/(OMEGADOTsradΩ&广播轨道—5 -))(/(IDOTsradi- 2L上的码- GPS周数(与TOE一同表示时间)。

为连续计数,不是1024的余数- L2 P 码数据标记广播轨道—6 - 卫星精度(m )- 卫星健康状态- TGD (sec )- IODC 钟的数据龄期广播轨道—7- 电文发送时刻- 拟合区间- 备用- 备用2 GPS 卫星位置的计算2.1 计算归化时间tk首先对观测时刻t′作卫星钟差改正:t=t′-Δt (2-1)2210)()(oc oc t t a t t a a t -'+-'+=∆ (2-2)然后对观测时刻t 归化到GPS 时系tk=t-toe ,式中tk 称作相对于参考时刻toe 的归化时间。

导航电文中给出的GPS 卫星的轨道参数是相对于参考时刻toe 而言的,为求出观测时刻t 的卫星坐标,须求出观测时刻t 相对于参考时刻t 的差值,即归化时间:tk =t-toe ,计算t 时应注意两点:①GPS 导航电文提供的卫星轨道参数时间是采用GPS 星期加GPS 秒表示的,GPS 星期为从1980年1月6日0时到当时时刻的整星期数,GPS 秒为从刚过去的星期日零时开始至当前时刻的秒数,GPS 广播星历中的参考时刻t 就是用GPS 秒表示的;而GPS 接收机记录的观测时刻t(即观测历元)是用民用日即年(Y)、月(M)、日(D)、时(H)、分(min)、秒(sec)表示的。

因此需将观测时刻的民用日时间换算为GPS 时间,换算方法如下:先将民用日的时分秒化为实数时,即UT=H+(min/60)+(sec/3600);然后将民用日的Y 、M 、D 、UT 化为儒略日,即JD=INT(365.25×Y)+INT(30.6001×(m+ 1))+D + (UT/24)+1720981.5,式中INT 表示实数的整数部分,Y 、m 按以下规则计算:对于M≤ 2,y=Y+l ,m=M+12,对于M>2,Y=y ,m=M ;最后计算GPS 周和GPS 秒:GPS 周=INT((JD-2444244.5)/7),GPS 秒=(JD-24,14244.5-GPS 周×7)×24×3600。

②计算tk 时应计及一个星期(604800s)的开始或结束。

即当tk > 302400s 时,tk 应减去604800s ;当tk <-302400s 时,tk 应加上604800s 。

2.2 对平均运动角速度进行改正运动角速度为30A n μ=改正为dnn n +=0。

其中n0=)/(3a GM sqrt ,式中GM=3.986005E1423/s m ,是WGS-8 4坐标系中的地球引力常数。

dn 是导航电文中给出的摄动改正数。

2.3 观测时刻卫星平近点角Mk 的计算Mk=M0+ntk (2-3)式中M0是卫星电文 给出的参考时刻toe 的平近点角。

2.4 计算偏近点角EkEk=Mk+esinEk(Ek ,Mk 以弧度计) (2-4)上述方程可用迭代法进行解算,即先令Ek=Mk ,代 入上式,求出Ek 再 代入上式计算,因为GPS 卫星轨道的偏心率e 很小,因此收敛快,只需迭代计算两次便可求得偏近点角Ek 。

2.5 真近点角Vk 的计算由于:)cos 1/()(cos cos k k k E e e E V --= (2-5))]/(cos sin 1arctan[cos 2e E E e V k k k --= (2-6)因此:sk k s k e E E e V --=cos sin 1arctan2 (2-7)2.6 升交距角Φk 的计算ϖφ+=k k V (2-8)ω为卫星电文给出的近地点角距。

相关文档
最新文档