勾股定理及逆定理的应用练习(含答案)
勾股定理及其逆定理,经典过关题及练习题(含答案)
CBAFEDCB A勾股定理及其逆定理(讲义)一、 知识点睛1. 11-19的平方:_______________________________________________________________________________________________________.2. 勾股定理:_______________________________________________________________________________________________________. 3. 勾股定理的验证:4. 勾股定理逆定理:_______________________________________________________________________________________________________.5. 勾股数:满足a 2+b 2=c 2的三个正整数,称为勾股数.常见勾股数有______________;______________;_______________;________________;________________;_________________.二、精讲精练1. 一个直角三角形两直角边长分别为3和4,下列说法正确的是( )A .斜边长为25B .三角形的周长为25C .斜边长为5D .三角形的面积为202. 如图,在Rt △ABC 中,∠C =90°,若BC =8,AB =17,则AC 的长是________.S 3S 2S 1AB C86C3. 已知:如图,在Rt △ABC 和Rt △ACF 中,BC 长为3cm ,AB 长为4cm ,AF长为12cm ,则正方形CDEF 的面积为_________.4. 如图,在△ABC 中,∠ABC =90°,分别以BC ,AB ,AC 为边向外作正方形,面积分别记为S 1,S 2,S 3.若S 2=4,S 3=6,则S 1=___________.5. 如图,已知Rt △ABC 的两直角边长分别为6和8,分别以其三边为直径作半圆,则图中阴影部分的面积为___________.6. (1)等面积法是几何中一种常见的证明方法,可以直观地推导或验证公式,俗称“无字证明”.例如,著名的赵爽弦图(如图1,其中四个直角三角形较长的直角边长都为a ,较短的直角边长都为b ,斜边长都为c ),大正方形的面积可以表示为c 2,也可以表示为4×12ab +(a -b )2.由此推导出重要的勾股定理:如果直角三角形两条直角边长为a ,b ,斜边长为c ,则a 2+b 2=c 2.图2为美国第二十任总统伽菲尔德的“总统证法”,请你利用图2推导勾股定理.(2)试用勾股定理解决以下问题:如果直角三角形的两直角边长为3和4,则斜边上的高为________. 7. 如图,点C 在线段BD 上,AC ⊥BD ,CA =CD ,点E 在线段CA 上,且满足DE =AB ,连接DE 并延长交AB 于点F . (1)求证:DE ⊥AB ;(2)若已知BC =a ,AC =b ,AB =c ,你能借助本题提供的图形证明勾股定理吗?试一试吧.图2图1b ba ED A ABDEFc c图2b aba ED CBAlcba8. 如图,小方格都是边长为1的正方形,则四边形ABCD 的面积是_________.第8题图 第9题图9. 如图,在△ABC 中,∠ACB =90°,AC >BC ,分别以AB ,BC ,CA 为一边向△ABC 外作正方形ABDE ,正方形BCMN ,正方形CAFG ,连接EF ,GM ,ND .设△AEF ,△CGM ,△BND 的面积分别为S 1,S 2,S 3,则下列结论正确的是( )A .S 1=S 2=S 3B .S 1=S 2<S 3C .S 1=S 3<S 2D .S 2=S 3<S 110. 如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的面积分别为5和11,则b 的面积为______.11. 如图,从电线杆离地面8m 处向地面拉一条钢索,若这条钢索在地面的固定点距离电线杆底部6m ,那么需要多长的 钢索?12. 小明将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,子拉到离旗杆底端5米处,发现此时绳子底端距离打结处1米.法算出旗杆的高度.13. 下列各组数中不能作为直角三角形三边长的是( )DCBAAB C DE F GH图3图2图1h 26246b 106c 125A .B .C .D .7152024257202425715202425252420157图2图1DCBAA .0.3,0.4,0.5B .7,12,15C .11,60,61D .9,40,4114. 如图,在单位正方形组成的网格图中有AB ,CD ,EF ,GH 四条线段,其中能构成一个直角三角形三边的线段是( )A .CD ,EF ,GHB .AB ,EF ,GHC .AB ,CD ,GHD .AB ,CD ,EF 15. 若三角形的三边长分别是222122221n n n n n ++++,,(n 为正整数),则三角形的最大内角等于_______度.16. 将直角三角形的三边长同时扩大同一倍数,得到的三角形是( )A .钝角三角形B .锐角三角形C .直角三角形D .等腰三角形17. 三边长分别是15,36,39的三角形是_______三角形.18. 如图,求出下列直角三角形中未知边的长度:c =____,b =____,h =_____.19. 五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,下列图形中正确的是( )20. 一个零件的形状如图1中∠A 和∠DBC 都应为直角.工人师傅量得这个零件各边长如图2请说明理由.勾股定理及其逆定理(随堂测试)1.有一块土地形状如图所示,∠B =∠D =90°,AB =20米,BC =15米,CD =7BAD CB .A .c b c a b a a b c a b c c b a c b a A BCD EF D .c b a a b c C .米,则这块地的面积为__________.2.若三角形的三边长是:①5k ,12k ,13k (k >0);②111345,,;③32,42,52;④0.3,0.4,0.5;⑤2n +1,2n ,2n 2+2n +1(n 为正整数).则其中能构成直角三角形的是_____________.3.如图,在四边形ABCD 中,AD =3,AB =4,BC =12,CD =13,∠BAD =90°. (1)求BD 的长; (2)证明:BD ⊥BC ; (3)求四边形ABCD 的面积.勾股定理及其逆定理(作业)1. 以下列长度的三条线段为边,不能组成直角三角形的是( )A .1.5,2,2.5B .9,12,15C .7,24,25D .1,1,22. 若三角形的三边长是:①5k ,12k ,13k (k >0);②111345,,;③32,42,52;④11,60,61;⑤22(+)12(+)(+)+1m n m n m n ,,(m ,n 为正整数).其中能构成直角三角形的有( )A .2个B .3个C .4个D .5个3. 下列选项中,不能用来证明勾股定理的是( )4. 已知甲、乙两人从同一点出发,甲往东走了12km ,乙往南走了5km ,这时甲、乙两人相距______.5. 在Rt △ABC 中,∠C =90°,AC =9,BC =12,则点C 到AB 的距离为____________.DC BAF E D CB A 6. 记为S 1,S 2,S 3,则S 1,S 2,S 3之间的关系是( A .S l +S 2>S 3 B .S l +S 2< S 3C .S 1+S 2=S 3D .S 12+S 22=S 327. 中最大的正方形的边长为7cm ,则正方形A ,B ,___________cm 2.8. 如图,每个小方格都是边长为1的正方形,则四边形ABCD 的面积为_________.9. 如图,在正方形ABCD 中,AB =4,AE =2,DF =1,则图中共有直角三角形________个.10. 11. 如图,一架长25(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4方向上滑动了几米?12. 已知一个三角形的三边长分别是5cm ,12cm ,13cm ,你能算出这个三角形的面积吗?b915勾股定理及其逆定理【参考答案】➢ 课前预习1. 大于,互余;2. 121,144,169,196,225,256,289,324,3613. 16A S =9B S = 25C S =A B C S S S +=➢ 知识点睛1. 直角三角形两直角边的平方和等于斜边的平方.2. 略3. 三角形两边的平方和等于第三边的平方,直角三角形.4. 3,4,5;5,12,13;7,24,25;8,15,17;9,40,41;11,60,61.➢ 精讲精练1. C2. 169 cm 23. 24.245. 证明略6. 167. 148. AD =12 cm ,AC =15 cm 9. B 10. B 11. 90 12. 直角 13. C14. 符合要求,理由略15. (1)同位角相等,两直线平行.逆命题成立.(2)如果两个实数的积是正数,那么这两个实数是正数.逆命题不成立. (3)锐角三角形是等边三角形.逆命题不成立.(4)到一条线段两个端点距离相等的点在这条线段的垂直平分线上.逆命题成立.。
勾股定理及应用 练习题(带答案
勾股定理及应用 题集一、勾股定理与逆定理A. B. C. D.1.如图所示的一块地,,,,,,这块地的面积为( ).【答案】B 【解析】连接,在中,,∴,∵,,,∴是直角三角形,.【标注】【知识点】勾股逆定理的应用2.如图,在四边形中,,,,.求的度数.【答案】.【解析】连接,在中,,,∴,∴,∴,∵,,∴.在中,,∴是直角三角形,即,∵,∴.【标注】【知识点】勾股定理的逆定理【知识点】勾股定理的证明A.尺B.尺C.尺D.尺3.如图,有一个水池,其底面是边长为尺的正方形,一根芦苇生长在它的正中央,高出水面部分的长为尺,如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部恰好碰到岸边,则这根芦苇的长是( ).【答案】C 【解析】苇长尺,则水深尺,∵尺,∴尺,∵中,.∴.【标注】【知识点】勾股定理与实际问题(1)(2)4.如图,一架云梯长米,斜靠在一面墙上,梯子靠墙的一端距地面米.这个梯子底端离墙有多少米.如果梯子的顶端下滑米,那么梯子的底部在水平方向也滑动了米吗?【答案】(1)(2)米.不是.【解析】(1)(2)由题意得此时米,米,根据,∴可求米.设滑动后梯子的底端到墙的距离为米,得方程,,解得,所以梯子向后滑动了米.综合得:如果梯子的顶端下滑了米,那么梯子的底部在水平方向不是滑米.【标注】【知识点】勾股定理的综合应用A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形5.若的三边长,,满足,则是( ).【答案】D【解析】∵,∴或.∴或.∴为等腰三角形或直角三角形.【标注】【知识点】勾股逆定理的应用A. B. C. D.6.如图,已知在中,,分别以、为直径作半圆,面积分别记为、,则等于( ).【答案】A【解析】由勾股定理可知:.,,∴.【标注】【知识点】勾股定理与几何问题(1)(2)7.下表中给出的每行三个数、、满足,根据表中已有的数的规律填空:当时, , .用含字母的代数式分别表示、,,.【答案】(1)(2);; 【解析】(1)(2)∵,∴,.∵,,;,,;,,;∴,.【标注】【知识点】勾股树(1)(2)(3)8.若一个直角三角形的两条直角边长为、,斜边为,斜边上的高为.求证:..以、、为边构成的三角形是直角三角形.【答案】(1)(2)(3)证明见解析证明见解析证明见解析【解析】(1)(2)(3)∵,,∴,代入得,∴.由,,则,∴,即,∴略【标注】【知识点】解直角三角形的综合应用二、勾股定理的方程思想1.如图,已知等腰的底边,是腰上一点,且,,求的周长.【答案】.【解析】由勾股定理逆定理得,是直角三角形.在中,应用勾股定理,设,代入数值得,.所以的周长=.【标注】【知识点】方程思想在勾股定理的应用2.如图,在中,,平分,,,求的长.【答案】.【解析】过作,∵平分,∴,∵,∴由勾股定理得,设,则,在由勾股定理得:,解得,∴.【标注】【知识点】方程思想在勾股定理的应用(1)(2)3.如图,在中,,,,的平分线与相交于点,过点作,垂足为.求的长.求的长.【答案】(1)(2)..【解析】(1)∵平分,,,∴,在和中,(2),∴≌,∴.∵,,,∴在中,,∴,.设,则,,在中,,,解得,∴.【标注】【知识点】方程思想在勾股定理的应用4.如图,在中,,,,求边上的高.【答案】.【解析】设为,则,∵为的高,∴在中,,在中,,∴.即,解得:.∴.∴在中,.【标注】【知识点】方程思想在勾股定理的应用(1)(2)5.如图,在中,,,,点为边上的动点,点从点出发,沿边往运动,当运动到点时停止,设点运动的时间为秒,速度为每秒个单位长度.若是直角三角形,求的值.若是等腰三角形,求的值.【答案】(1)(2)或.,或.【解析】(1)(2)当时,是直角三角形,,,故.∵,∴,即,,.当时,是直角三角形,此时与重合,∴,,综上所述,或.当时,即,解得,当时,取中点,连接.∵,∴,∴,∴,∴,即.当时,过点作于点.∵,,,∴,在中,,即,综上所述,的值为,或.【标注】【知识点】方程思想在勾股定理的应用6.如图,是一张直角三角形纸片,,两直角边、,现将折叠,使点与点重合,折痕为,则的长为 .【答案】【解析】依题可知≌,∴.设,则,在中,,,∴,解得,,∴.【标注】【知识点】翻折问题与勾股定理7.如图,在中,,,,将折叠,使点恰好落在斜边上,与点重合,为折痕,则 .【答案】 或【解析】在中,,∵将折叠得到,∴,,∴.设,则.在中,,∴,解得.∴.【标注】【知识点】解直角三角形的综合应用A. B. C. D.8.如图,在矩形中,,,将沿对角线翻折,点落在点处,交于点,则线段的长为( ).【答案】A【解析】设,则,∵四边形为矩形,∴,,,∴,由题意得:,∴,∴,由勾股定理得,即,解得:,∴,∴.【标注】【知识点】其它翻折问题9.如图,矩形中,,,点是边上一点,连接,把沿折叠,使点落在点处.当为直角三角形时,的长为 .【答案】或【解析】当为直角三角形时,有两种情况:图图①当点落在矩形内部时,如答图所示.连接,在中,,,,沿折叠,使点落在点处,,当为直角三角形时,只能得到,点、、共线,即沿折叠,使点落在对角线上的点处,,,,设,则,,在中,,,解得,;②当点落在边上时,如答图所示.此时为正方形,.综上所述,的长为或.故答案为:或.【标注】【知识点】四边形与折叠问题三、勾股定理与最短路径问题A. B. C. D.1.如图,长方体的长为,宽为,高为,点离点的距离为,一只蚂蚁如果要沿着长方体的表面从点爬到点,需要爬行的最短距离是( ).【答案】B【解析】将长方体展开,连接、,根据两点之间线段最短,()如图,,,由勾股定理得:.()如图,,,由勾股定理得,.()只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如图:∵长方体的宽为,高为,点离点的距离是,∴,,在直角三角形中,根据勾股定理得:∴.由于,故最短距离为.【标注】【知识点】勾股定理与展开图最短路径问题2.如图所示,无盖玻璃容器,高,底面周长为,在外侧距下底的点处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口的处有一苍蝇,试求急于捕获苍蝇充饥的蜘蛛,所走的最短路线的长度.【答案】最短路线长为.【解析】如下图可知,最短路线的长度为线段的长度,作于,则,,∵底面周长为,∴,∴.∴最短路线长为.【标注】【知识点】勾股定理与展开图最短路径问题。
勾股定理及逆定理应用(含解答)
4
6
8
10
…
c
22+1
32+1
42+1
52+1
…
(1)分别观察a、b、c与n之间的关系,并用含自然数n (n>1)的代数式表示:
a =,b =,c =
(2)猜想:以a、b、c为边的三角形是否为直角三角形?并证明你的猜想.
2、若正整数a、b、c满足方程a2+b2=c2,则称这一组正整数(a、b、c)为“商高数”,下面列举五组“商高数”:(3,4,5),(5,12,13),(6,8,10),(7,24,25),(12,16,20),注意这五组“商高数”的结构有如下规律:
A、5B、 C、5或 D、5或
3、等腰三角形底边上的高是8,周长是32,则三角形的面积是()
A、56B、48C、40D、32
4、若线段a、b、c能构成直角三角形,则它们的比为()
A、2:3:4B、3:4:6C、5:12:13D、4:6:7
5、一个长方形的长是宽的2倍,其对角线的长是5cm,则长方形的面积()
3、在△ABC中,AB=10,AC=8,BC=6,则△ABC的面积是
4、如图要修一个育苗棚,棚宽a=3m,高b=4m,底d=10m,覆盖顶上的塑料薄膜的面积为
5、如图点C是以为AB直径的半圆上的一点, 则图中阴影部136则AC=
7、直角三角形的一直角边为8cm,斜边为10cm,则这个直角三角形的面积是斜边上的高为
4、一个直立的火柴盒在桌面上倒下,启迪人们发现了勾股定理的一种新的证明方法.如图,火柴盒的一个侧面 倒下到 的位置,连结 ,设 ,请利用四边形 的面积证明勾股定理: .
5、如图是2002年8月在北京召开的第24届国际数学家大会会标中的图案,其中四边形ABCD和EF都是正方形. 证:△ABF≌△DAE
勾股定理及其逆定理(习题及答案)
勾股定理及其逆定理(习题)例题示范例1:如图,强大的台风使得一棵树在离地面3m处折断倒下,树的顶部落在离树的底部4m处,这棵树折断之前有多高?解:如图,由题意,得AC=3,BC=4,∠ACB=90°.在Rt△ABC中,∠ACB=90°,由勾股定理,得AC2+BC2=AB2.∴32+42=AB2.∴AB=5.∴AB+AC=5+3=8.答:这棵树折断之前高8m.例2:如图,在△ABC中,AB=13cm,AC=5cm,BC=12cm.求证:∠C=90°.证明:如图,在△ABC中,AB=13,AC=5,BC=12,∵52+122=132,∴AC2+BC2=AB2.∴△ABC为直角三角形,且∠C=90°.巩固练习1.如图,在Rt△ABC中,∠C=90°,若BC=8,AB=17,则AC的长为________.2.已知甲、乙两人从同一地点出发,甲往东走了12km,乙往南走了5km,这时甲、乙两人之间的距离为___________.3.已知某直角三角形的两直角边长分别为3和4,则此三角形的周长为_______.4.如图所示,∠B=∠OAF=90°,BO=3cm,AB=4cm,AF=12cm,则图中半圆的面积是_______.第4题图第5题图5.如图,分别以直角三角形的三边为直径作半圆,三个半圆的面积从小到大依次记为S1,S2,S3,则S1,S2,S3之间的关系是()A.S l+S2>S3B.S l+S2<S3C.S1+S2=S3D.S12+S22=S326.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,若其中最大正方形的边长为7cm,则正方形A,B,C,D的面积之和为___________cm2.7.在△ABC中,AB=AC=13,BC=10,则△ABC的面积为______.8.已知:如图,在△ABC中,AD⊥BC,垂足为点D,AB=13,AC=20,AD=12,求BC的长.9.如图,一架长25米的云梯斜靠在一面墙上,梯子底端与墙根之间的距离为7米.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子的底端在水平方向上滑动了几米?10.如图1是用硬纸板做成的两个全等的直角三角形,两直角边的长分别为a和b,斜边长为c.图2是以c为直角边的等腰直角三角形.请你开动脑筋,将它们拼成一个能证明勾股定理的图形.(1)画出拼成的这个图形的示意图,并利用这个图形证明勾股定理;(2)假设图1中的直角三角形有若干个,你能运用图1中所给的直角三角形拼出另一种能证明勾股定理的图形吗?请画出拼成的图形的示意图,并利用该图形证明勾股定理.11.以下列长度的三条线段为边,不能组成直角三角形的是()A.1.5,2,2.5B.8,15,17C.7,24,25D.1,1,212.下面四组数,其中是勾股数的是()A.3,4,5B.0.3,0.4,0.5C.32,42,52D.6,7,813.已知一个三角形的三边长分别是12cm,16cm,20cm,则这个三角形的面积为__________.14.如图,在正方形ABCD中,点E,F分别在AD,CD边上,若AB=4,AE=2,DF=1,则图中的直角三角形共有____个.15.在△ABC中,AB=10,BC=12,BC边上的中线AD=8,求AC的长.思考小结1.赵爽弦图和毕达哥拉斯弦图都是由四个全等的__________三角形拼成的,但是在拼的过程中有区别,赵爽弦图的弦在____(填“内”或“外”),毕达哥拉斯弦图的弦在____(填“内”或“外”),请你画出对应的弦图.赵爽弦图毕达哥拉斯弦图2.我们知道3,4,5是一组勾股数,那么3k,4k,5k(k是正整数)____(填“是”或“不是”)一组勾股数;一般地,如<<)是一组勾股数,那么ak,bk,ck(k 果a,b,c(a b c是正整数)是一组勾股数吗?若是,请证明;若不是,请说明理由.解:ak,bk,ck(k是正整数)______一组勾股数,理由如下:∵a,b,c是一组勾股数,∴___________________.∵k≠0,∴k2a2+k2b2______k2c2.∴(ak)2+(bk)2_____(ck)2.∵k为正整数,∴ak,bk,ck也是________.∴ak,bk,ck(k是正整数)_______一组勾股数.【参考答案】巩固练习1.152.13km3.124.16985.C6.497.608.BC的长为219.(1)这个梯子的顶端距地面24米高;(2)梯子的底端在水平方向上滑动了8米10.略11.D12.A13.96cm214.415.AC的长为10思考小结1.直角;外;内图略2.是;是;a2+b2=c2;=;=;正整数;是。
勾股定理及逆定理的综合应用试题
勾股定理及逆定理的综合应用一、勾股定理的逆定理逆定理如果三角形三边长a,b,c满足222a b c+=,那么这个三角形是直角三角形,其中c为斜边。
逆定理说明:①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状。
②在运用这一定理时,可用两小边的平方和22+与较长边的平方2c作比较,若它们a b相等时,以a,b,c为三边的三角形是直角三角形;若222+<时,以a,b,c为三边a b c的三角形是钝角三角形;若222+>时,以a,b,c为三边的三角形是锐角三角形。
a b c二、实际应用定理中的注意问题1. 定理中a,b,c及222+=只是一种表现形式,不可认为是唯一的,如若三角形三a b c边长a,b,c满足222+=,那么以a,b,c为三边的三角形是直角三角形,但是b为a c b斜边;2. 勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形。
三、勾股定理逆定理的几种典型应用总结:1. 理解勾股定理与勾股定理逆定理之间的关系;2. 掌握好数形结合的思想及方程思想的应用。
例题1 如图,△ABC中,AB=15,AC=8,AD是中线,且AD=8.5,则BC的长为()A. 15B. 16C. 17D. 18解析:延长AD至E使ED=AD,利用好“AD是中线”这个条件,再根据题中数据的特点正好符合勾股定理逆定理,得到直角三角形,根据直角三角形斜边上的中线的性质就可以求出BD的长度了,再根据BC=2BD,所以BC的长也就求出了。
答案:解:延长AD 至E ,使DE=AD ;连接B E , ∵AD=8.5,∴AE=2×8.5=17, 在△ADC 和△EDB 中,AD =DE ∵∠ADC =∠EDB BD =CD ,∴△ADC≌△EDB(S AS ),∴BE=AC=8,BE 2+AB 2=82+152=289,AE 2=172=289, ∴∠ABE=90°,∵在Rt△BED 中,BD 是中线, ∴BD=21AE=8.5,∴BC=2BD=2×8.5=17。
《勾股定理》勾股定理的逆定理(含答案)
第 3 章《勾股定理》 : 3.2 勾股定理的逆定理填空题1. 你听说过亡羊补牢的故事吗如图,为了防止羊的再次丢次,小明爸爸要在高 0.9m ,宽 1.2m 的栅栏门的相对角顶点间加一个加固木板,这条木板需 m号) 6.如图,有一圆锥形粮堆,其正视图是边长为 6m 的正三角形 ABC ,粮堆母线 AC 的中点 P 处有一老鼠正在偷吃粮食, 此时,小猫正在 B 处,它要沿圆锥侧面到达 P 处捕捉老鼠,则小猫所经过的最短路程是 m .(结果不取近似值) 7.如图,这是一个供滑板爱好者使用的 U 型池,该 U 型池可以看作是一个长方 体去掉一个“半圆柱”而成,中间可供滑行部分的截面是半径为 4m 的半圆,其 边缘AB=CD=20,m 点E 在CD 上,CE=2m ,一滑板爱好者从 A 点滑到 E 点,则他滑 行的最短距离约为 m .(边缘部分的厚度忽略不计,结果保留整数)第 3 题) 2. 如图,将一根长 24cm 的筷子,底面直径为 5cm ,高为 12cm 的圆柱形水杯中, 设筷子露在杯子外面的长度为 h cm ,则 h 的最小值是 如图所示的一只玻璃杯,最高为 8cm ,将一根筷子插入其中,杯外最长4 厘 短 2 厘米,那么这只玻璃杯的内径是 厘米. 8 米高的路灯.当电工 B ′处,下滑后,两次梯脚间的距离为 2 cm 3. 米,最 4.如图,一架 10 米长的梯子斜靠在墙上,刚好梯顶抵达 师傅沿梯上去修路灯时,梯子下滑到了 米,则梯顶离路灯 米.第 5 题) 如图所示的圆柱体中底面圆的半径是 错误 !,高为 沿着圆柱体的侧面爬行到 C 点,则小虫爬行的最短路程是 5. .(结果保留根(第7题)(第8题)(第9题)8.如图,有一圆柱,其高为12cm,底面半径为3cm,在圆柱下底面 A 点处有一只蚂蚁,它想得到上底面 B 处的食物,则蚂蚁经过的最短距离为cm .(π 取 3 )9.一只蚂蚁从长、宽都是3,高是8 的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是.10.如图是一个三级台阶,它的每一级长、宽、高分别是 2 米、0.3 米、0.2米,A,B是这个台阶上两个相对的端点, A 点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿台阶面爬行到 B 点最短路程是米.第10 题)第12 题)11.在一个长为2 米,宽为 1 米的矩形草地上,如图堆放着一根长方体的木块,它的棱长和场地宽AD平行且>AD,木块的正视图是边长为0.2 米的正方形,一只蚂蚁从点 A 处,到达C处需要走的最短路程是米.(精确到0.01 米)12.如图是一个三级台阶,它的每一级的长、宽、高分别为7寸、5 寸和3寸,A 和 B 是这个台阶的两个相对端点, A 点上有一只蚂蚁想到B点去吃可口的食物,则它所走的最短路线长度是寸.13.观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b= ,c= 解答题14.如图,P是等边三角形ABC内的一点,连接PA,PB,PC,以BP为边作∠ PBQ=6°0 ,且BQ=B,P 连接CQ.(1)观察并猜想AP与CQ之间的大小关系,并证明你的结论;(2)若PA:PB:PC=3:4:5,连接PQ,试判断△ PQC的形状,并说明理由.15.如图,点O是等边△ ABC内一点.将△ BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.已知∠ AOB=11°0 .(1)求证:△ COD是等边三角形;(2)当α =150°时,试判断△ AOD的形状,并说明理由;(3)探究:当α 为多少度时,△ AOD是等腰三角形.16 .先请阅读下列题目和解答过程:“已知a、b、c 为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ ABC的形状.解:∵a2c2-b 2c2=a4-b 4①∴c2(a2-b 2)=(a2+b2)(a2-b2)②∴c2=a2+b2③∴△ABC是直角三角形.”④请解答下列问题:(1)上列解答过程,从第几步到第几步出现错误?(2)简要分析出现错误的原因;(3)写出正确的解答过程.17.如图,四边形ABCD中,AD=3,AB=4,BC=12,CD=13,∠BAD=9°0 ,(1)试说明:BD⊥BC;(2)计算四边形ABCD的面积.18.如图,△ ACB和△ECD都是等腰直角三角形,A,C,D三点在同一直线上,连接BD,AE,并延长AE交BD于F.(1)求证:△ ACE≌△ BCD;(2)直线AE与BD互相垂直吗?请证明你的结论.19.请阅读下列解题过程:已知a、b、c 为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ ABC的形状.解:∵a2c2-b2c2=a4-b4,A∴c2(a2 -b 2)=(a2 +b2)(a2 -b 2),B ∴c2=a2+b2,C∴△ ABC为直角三角形.D问:(1)在上述解题过程中,从哪一步开始出现错误:;(2)错误的原因是;(3)本题正确的结论是:.20.如图所示,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,∠A=90°,求四边形ABCD的面积.n2345a22-132-142-152-1b46810c22+132+142+152+11)请你分别观察a,b, c 与n 之间的关系,并用含自然n(n>1)的代数数式表示:a= ,b= ,c= ;(2)猜想:以a,b,c 为边的三角形是否为直角三角形并证明你的猜想.9 22.如图,在△ ABC 中,CD⊥AB于D,AC=4,BC=3,DB= .51)求CD,AD的值;2)判断△ ABC的形状,并说明理由.23.有一块直角三角形的绿地,量得两直角边长分别为6m,8m.现在要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,求扩充后等腰三角形绿地的周长.(图2,图 3 备用)24.如图,小明用一块有一个锐角为30°的直角三角板测量树高,已知小明离树的距离为 3 米,DE为 1.68 米,那么这棵树大约有多高?(精确到0.1 米,3≈1.732 )25 .如图,有两棵树,一棵高10 米,另一棵高 4 米,两树相距8 米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多少米?26.如图,在两面墙之间有一个底端在A点的梯子,当它靠在一侧墙上时,梯子的顶端在B点;当它靠在另一侧墙上时,梯子的顶端在D点.已知∠BAC=6°0 ,∠DAE=4°5 ,点D到地面的垂直距离DE=错误!m.求点B到地面的垂直距离BC.27.如图(1)所示,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端 B 与墙角 C 距离为 1.5 米,梯子滑动后停在DE位置上,如图所示,测得BD=0.5 米,求梯子顶端 A 下落了多少米?28.如图,铁路上A、B两点相距25km,C、D为两村庄,DA⊥AB于A,CB⊥AB 于B,已知DA=15km,CB=10km,现在要在铁路AB 上建一个土特产品收购站E,使得C、D两村到E站的距离相等,则E站应建在距 A 站多少千米处?29.如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km 的速度向北偏东60°的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响?为什么?(2)若 A 城受到这次台风影响,那么A城遭受这次台风影响有多长时间?30.如下图,在四边形ABCD中,∠B=90°,AB=8,BC=6,CD=24,AD=26,求四边形ABCD的面积.答案:填空题1.故答案为: 1.5 m.考点:勾股定理的应用.专题:应用题.分析:用勾股定理,两直角边的平方和等于斜边的平方进行解答.解答:解:由图可知这条木板的长为错误!=错误!=1.5m.点评:本题较简单,只要熟知勾股定理即可.2.故答案为:11cm.考点:勾股定理的应用.专题:应用题.分析:筷子如图中所放的方式时,露在杯子外面的长度最小,在杯中的筷子与圆柱形水杯的底面直径和高构成了直角三角形,由勾股定理可求出筷子在水杯中的长度,筷子总长度减去杯子里面的长度即露在外面的长度.解答:解:设杯子底面直径为a,高为b,筷子在杯中的长度为c,根据勾股定理,得:c2=a2+b2,故:c=错误!=错误!=13cm,h=24-13=11cm.点评:本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.3.故答案为: 6 厘米.考点:勾股定理的应用.分析:根据最长4cm,可得筷子长为12cm.那么可得AC 长,那么利用勾股定理可得内径.解:根据条件可得筷子长为12 厘米.如图AC=10厘米,BC=错误!=错误!= 6 厘米.点评:主要考查学生对解直角三角形的应用的掌握情况.4.故答案为:2cm.考点:勾股定理的应用.专题:应用题.分析:根据题意,将梯子下滑的问题转化为直角三角形的问题解答.解答:解:在直角三角形AOB中,根据勾股定理,得:OB=6m,根据题意,得:OB′=6+2=8m.又∵梯子的长度不变,在Rt △ A′ OB′中,根据勾股定理,得:OA′ =6m.则AA′ =8-6=2m.点评:熟练运用勾股定理,注意梯子的长度不变.5.故答案为:2 2 .考点:平面展开-最短路径问题.专题:压轴题.分析:先将图形展开,再根据两点之间线段最短可知.解答:解:圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长, C 是边的中 点,矩形的宽即高等于圆柱的母线长.∵AB=π?错误 !=2,CB=2.∴AC= AB 2+BC 2 = 8 =2 2 , 故答案为: 2 2 .点评 :圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,矩形的宽 即高等于圆柱的母线长. 本题就是把圆柱的侧面展开成矩形, “化曲面为平面”, 用勾股定理解决.6. 故答案为: 3 5 m .考点:平面展开-最短路径问题. 专题:压轴题;转化思想.分析 :求这只小猫经过的最短距离的问题首先应转化为圆锥的侧面展开图的问 题,转化为平面上两点间的距离的问题. 根据圆锥的轴截面是边长为 6cm 的等边三角形可知,展开图是半径是 6的半圆.点B 是半圆的一个端点, 而点 P 是平分 半圆的半径的中点, 根据勾股定理就可求出两点 B 和 P 在展开图中的距离, 就是∴n=180°,即圆锥侧面展开图的圆心角是 180 度. 则在圆锥侧面展开图中AP=3, AB=6,∠BAP=90度. ∴在圆锥侧面展开图中 BP= 32+62 = 45 =3 5 m .故小猫经过的最短距离是 3 5 m .故答案是: 3 5 m .点评 :正确判断小猫经过的路线, 把曲面的问题转化为平面的问题是解题的关键. 7. 故答案为: 22m .考点:平面展开-最短路径问题.专题:压轴题.分析 :要求滑行的最短距离,需将该 U 型池的侧面展开,进而根据“两点之间线 段最短”得出结果.解答 : 解:其侧面展开图如图:AD=πR=4π,AB=CD=20.mDE=CD-CE=20-2=18,m在 Rt △ADE 中,AE= AD 2+DE 2 =错误!≈21.9 ≈22m . 故他滑行的最短距离约为6π, 则 6π =n π×6180 解: 圆锥的底面周长是22m.点评:U型池的侧面展开图是一个矩形,此矩形的宽等于半径为4m的半圆的周长,矩形的长等于AB=CD=20.m本题就是把U 型池的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.8.故答案为:15cm.考点:平面展开-最短路径问题.专题:压轴题.分析:本题应先把圆柱展开即得其平面展开图,则A,B 所在的长方形的长为圆柱的高12cm,宽为底面圆周长的一半为πr ,蚂蚁经过的最短距离为连接A,B 的线段长,由勾股定理求得AB的长.解答:解:圆柱展开图为长方形,则A,B 所在的长方形的长为圆柱的高12cm,宽为底面圆周长的一半为πrcm,蚂蚁经过的最短距离为连接A,B 的线段长,由勾股定理得AB= 12 2+(3 π )2=错误!=错误!=15cm.故蚂蚁经过的最短距离为15cm.( π 取3) 点评:解答本题的关键是计算出圆柱展开后所得长方形长和宽的值,然后用勾股定理计算即可.9.故答案为:10.考点:平面展开-最短路径问题.分析:根据”两点之间线段最短”,将点A和点B所在的两个面进行展开,展开为矩形,则AB为矩形的对角线,即蚂蚁所行的最短路线为AB.解答:解:将点A和点B所在的两个面展开,则矩形的长和宽分别为 6 和8,故矩形对角线长AB= 62+82=10 ,即蚂蚁所行的最短路线长是10.点评:本题的关键是将点A和点B所在的面展开,运用勾股定理求出矩形的对角线.10.故答案为:2.5.考点:平面展开-最短路径问题;勾股定理.分析:先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.解:三级台阶平面展开图为长方形,长为2,宽为( 0.2+0.3 )× 3,则蚂蚁沿台阶面爬行到 B 点最短路程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到 B 点最短路程为x,由勾股定理得:x2=22+[(0.2+0.3 )×3] 2=2.52,解得x=2.5 .点评:本题用到台阶的平面展开图,只要根据题意判断出长方形的长和宽即可解答.11.故答案为:2.60 .考点:平面展开-最短路径问题.分析:解答此题要将木块展开,然后根据两点之间线段最短解答.解:由题意可知,将木块展开,相当于是AB+2个正方形的宽,∴长为2+0.2 ×2=2.4 米;宽为 1 米.于是最短路径为: 2.4 2+12=2.60 米.故答案为: 2.60 .点评 : 本题主要考查两点之间线段最短,有一定的难度,是中档题. 12.故答案为: 25寸.考点:平面展开-最短路径问题.分析 : 根据两点之间线段最短,运用勾股定理解答.解答 : 解:将台阶展开矩形,线段 AB 恰好是直角三角形的斜边,两直角边长分 别为 24 寸,7寸, 由勾股定理得 AB= 72+242 =25 寸.点评 : 本题结合实际,运用两点之间线段最短等知识来解答问题.13 . 故答案为: b=84,c=85; 考点:勾股数. 专题:规律型.分析 :认真观察三个数之间的关系:首先发现每一组的三个数为勾股数,第一个 数为从 3开始连续的奇数, 第二、三个数为连续的自然数; 进一步发现第一个数在 52=12+13中, 12=5 2-1 ,13=5 2+1 ;点评 : 认真观察各式的特点,总结规律是解题的关键.解答题14.考点:等 边三角形的 性质;全等三角形的判定与性质;勾股定理的逆定理. 专题:探究型. 分析 : 根据等边三角形的性质利用 SAS 判定△ ABP ≌△ CBQ ,从而得到 AP=CQ ;设 PA=3a ,PB=4a ,PC=5a ,由已知可判定△ PBQ 为正三角形从而可得到 PQ=4a ,再根 据勾股定理判定△ PQC 是直角三角形.解答:解:(1)猜想: AP=CQ ,证明:∵∠ ABP+∠PBC=6°0 ,∠ QBC ∠+ PBC=6°0 ,∴∠ABP=∠QBC .又 AB=BC , BP=BQ ,∴△ABP ≌△CBQ ,∴AP=CQ ;的平方是第二、三个数的和;最后得出第 n 组数为( 2n+1), (2 n +1)2- 1 2), (2n +1)2+1232-1 ),由此规律解决问题. 2 解答: 32-1在 32 =4+5 中,4= 232+1 ,5= 2则在 13、b 、c 中, b= 132-1 2 =84,c=1322+1 =85;(2)由PA:PB:PC=3:4:5,可设PA=3a,PB=4a,PC=5a,连接PQ,在△PBQ中由于PB=BQ=4,a且∠ PBQ=6°0 ,∴△PBQ为正三角形.∴PQ=4a.于是在△ PQC中∵PQ2+QC2=16a2+9a2=25a2=PC2 ∴△PQC是直角三角形.点评:此题考查学生对等边三角形的性质,直角三角形的判定及全等三角形的判定方法的综合运用.15.考点:等边三角形的判定;全等三角形的判定与性质;等腰三角形的判定;定理的逆勾股定理.专题:证明题;压轴题;探究型分析:此题有一定的开放性,要找到变化中的不变量才能有效解决问题.解答:(1)证明:∵ CO=C,D ∠OCD=6°0 ,∴△COD是等边三角形;(3 分)(2)解:当α=150°,即∠ BOC=15°0 时,△ AOD是直角三角形.(5分)∵△BOC≌△ADC,∴∠ ADC=∠BOC=15°0 ,又∵△ COD是等边三角形,∴∠ODC=6°0 ,∴∠ ADO=9°0 ,即△AOD是直角三角形;(7 分)(3)解:①要使AO=AD,需∠ AOD∠= ADO.∵∠AOD=36°0 - ∠AOB-∠COD- α =360°- 110°- 60°- α =190°- α ∠ADO=α - 60°,∴190°- α=α- 60°∴α=125°;②要使OA=O,D需∠ OAD∠= ADO.∵∠AOD=19°0 - α,∠ADO=α- 60°,∵∠OAD=18°0 - (∠AOD∠+ ADO)=50°,∴α- 60°=50°∴α=110°;③要使OD=A,D 需∠ OAD∠= AOD.∵190°- α=50°∴α=140°.综上所述:当α 的度数为125°,或110°,或140°时,△AOD是等腰三角形.(12 分)说明:第(3)小题考生答对 1 种得(2分),答对2种得(4分).点评:本题以“空间与图形”中的核心知识(如等边三角形的性质、全等三角形的性质与证明、直角三角形的判定、多边形内角和等)为载体,内容由浅入深,层层递进.试题中几何演绎推理的难度适宜,蕴含着丰富的思想方法(如运动变化、数形结合、分类讨论、方程思想等),能较好地考查学生的推理、探究及解决问题的能力.16.考点:勾股定理;等腰三角形的判定;勾股定理的逆定理.专题:阅读型.分析:从公式入手,式子的左边提取公因式,式子的右边符合平方差公式,并分解,两边同一个不为零的数,从而得到勾股定理.解答:解:(1)从第②步到第③步出错(写成第“ 2”或“二”等数字都不扣分;另外直接写“第③步”或“到第③步”都算正确),(2 分)(2)等号两边不能同除a2-b 2,因为它有可能为零.(4 分)(3)(从头或直接从第③步写解答过程都行),∵a2c2-b2c2=a4-b4,∴c2(a2-b2)=(a2+b2)(a2-b2),移项得:c2(a2-b2)- (a2+b2)(a2-b2)=0,得(a2-b2)(c2-a2-b2)=0,(5 分)∴a2 =b2或c2=a2+b2(6 分)∴△ABC是直角三角形或等腰三角形.(7 分)点评:正确理解勾股定理来验证直角三角形,从公式的角度入手,得出结论从而验证.17.考点:勾股定理;勾股定理的逆定理.分析:(1)先根据勾股定理求出BD的长度,然后根据勾股定理的逆定理,即可证明BD⊥BC;(2)根据两个直角三角形的面积即可求解.解答:解:(1)∵AD=3,AB=4,∠BAD=9°0 ,∴BD=5.又BC=12,CD=13,∴BD2+BC2=CD2.∴BD⊥BC.(2)四边形ABCD的面积=△ABD的面积+△BCD的面积=6+30=36.点评:综合运用了勾股定理及其逆定理,是基础知识比较简单.18.考点:勾股定理的逆定理;直角三角形全等的判定.专题:证明题.分析:(1)根据SAS判定△ ACE≌△ BCD,从而得到∠ EAC=∠DBC,根据角之间的关系可证得AF⊥BD.(2)互相垂直,只要证明∠ AFD=90°,从而转化为证明∠ EAC+∠CDB=90即可解答:(1)证明:∵△ ACB和△ ECD都是等腰直角三角形,∴AC=BC,CE=CD,∠ACE=∠BCD=9°0 ,在△ACE和△BCD,∠AC =BC∠ACE =∠ BCDCE=CD∴△ ACE≌△ BCD(SAS);(2)解:直线AE与BD互相垂直,理由为:证明:∵△ ACE≌△ BCD,∴∠EAC=∠DBC,又∵∠ DBC+∠CDB=9°0 ,∴∠ EAC+∠CDB=9°0 ,∴∠AFD=90°,∴AF⊥BD,即直线AE与BD互相垂直.点评:此题主要考查学生对全等三角形的判定及直角三角形的判定的掌握情况.19.故答案为:(1)第C步(2)等式两边同时除以a2-b2(3)直角三角形或等腰三角形考点:勾股定理的逆定理.专题:阅读型.分析:通过给出的条件化简变形,找出三角形三边的关系,然后再判断三角形的形状.解答:解:(1)C;(2)方程两边同除以(a2-b 2),因为(a2-b2)的值有可能是0;(3)∵c2(a2-b 2)=(a2+b2)(a2-b2)∴c2=a2+b2或a2 -b 2=0-b2=0a+b=0 或a-b=0a+b≠0c2=a2+b2或a-b=0c2=a2+b2或a=b 该三角形是直角三角形或等腰三角形.点评:本题考查了因式分解和公式变形等内容,变形的目的就是找出三角形三边的关系再判定三角形的形状.20.考点:勾股定理;勾股定理的逆定理.分析:如图,连接BD.由勾股定理求得BD的长度;然后根据勾股定理的逆定理判定△ BDC是直角三角形,则四边形ABCD的面积=直角△ ABD的面积+直角△ BDC 的面积.解答:解:∵在△ ABD中,AB⊥AD,AB=3,AD=4,∴BD= AB2+AD 2= 32+42=5 .在△BDC中,CD=12,BC=13,BD=5.∵122+52=132,即CD2+BD2 =BC2,∴△ BDC是直角三角形,且∠ BDC=9°0 ,1 1 1 1∴S四边形ABC D=S△ABD+S△BDC =2 AB?AD2+ BD?C2D ×3×4+2×5×12=36,即四边形ABCD的面积是36.点评:本题考查了勾股定理、勾股定理的逆定理.注意:勾股定理应用的前提条件是在直角三角形中.21.故答案填:n2-1,2n,n2+1;考点:勾股定理的逆定理;列代数式.专题:应用题;压轴题.分析:(1)结合表中的数据,观察a,b,c 与n之间的关系,可直接写出答案;(2)分别求出a2+b2,c2,比较即可.解答:解:(1)由题意有:n2-1,2n,n2+1;(2)猜想为:以a,b,c 为边的三角形是直角三角形.证明:∵ a=n2-1 ,b=2n;c=n2 +1∴a2+b2=(n2-1 )2+(2n)2=n4-2n2+1+4n2=n4+2n2+1=(n2+1)2 而c2=(n2+1)2∴根据勾股定理的逆定理可知以a,b,c 为边的三角形是直角三角形.点评:本题需仔细观察表中的数据,找出规律,利用勾股定理的逆定理即可解决问题.22.考点:勾股定理的逆定理.分析:利用勾股定理求出CD和AD则可,再运用勾股定理的逆定理判定△ ABC 是直角三角形.9 解答:解:(1)∵CD⊥AB且CB=3,BD= ,故△ CDB为直角三角形,5理由:∵ AD=156 ,BD=59 , 55 9 ∴ AB=AD+BD= +=5 , 16 ∴AC 2+BC 2=42+32=25=52=AB 2,∴根据勾股定理的逆定理,△ ABC 为直角三角形.点评 : 本题考查了勾股定理和它的逆定理,题目比较典型,是一个好题目. 23. 80 故答案为: 32m 或( 20+4 5 )m 或 3 m .勾股定理的应用; 分类讨论. 等腰三角形的性质.考点 专题分析 :根据题意画出图形,构造出等腰三角形,根据等腰三角形及直角三角形的 性质利用勾股定理解答.解答:解:在 Rt △ABC 中,∠ ACB=9°0 , AC=8,BC=6 由勾股定理有: AB=10,应分以下三种情况: ①如图 1,当 AB=AD=10时,∵AC ⊥BD ,∴CD=CB=6,m∴△ ABD 的周长=10+10+2×6=32m .②如图 2,当 AB=BD=10时,∵BC=6m ,∴CD=10-6=4m ,∴AD=4 5 m ,∴△ABD 的周长=10+10+4 5 = ( 20+4 5 )m .③如图 3,当AB 为底时,设AD=BD=,x 则CD=x-6,由勾股定理得: AD= 82+(x-6)2 =x25解得, x= 3 ,80∴△ ABD 的周长为: AD+BD+AB 3=m .2)△ ABC 为直角三角形. 2 2- 12 2 - CD 2 = 42 - ( )2 5 16 5 在 Rt △CAD 中, AD= AC 2 ∴在 Rt △CDB 中, CD= CB 2 (95 -BD 2 = -BD = 32 - )2 (5 12 5点评:本题考查的是勾股定理在实际生活中的运用,在解答此题时要注意分三种情况讨论,不要漏解.24.考点:勾股定理的应用.分析:因为∠ CAD=3°0 ,则AC=2C,D再利用勾股定理求得CD的长,再加上DE 的长就求出了树的高度.解答:解:在Rt△ACD中,∠ CAD=3°0 ,AD=3,设CD=x,则AC=2x,由AD2+CD2 =AC2,得,32+x2=4x2,x= 3 =1.732 ,所以大树高 1.732+1.68 ≈3.4 (米).点评:此题主要考查了学生利用勾股定理解实际问题的能力.25.考点:勾股定理的应用.分析:根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.解答:解:如图,设大树高为AB=10m,小树高为CD=4m,过 C 点作CE⊥AB于E,则EBDC是矩形,连接AC,∴EB=4m,EC=8m,AE=AB-EB=10-4=6,m 在Rt△AEC中,AC= AE 2+EC 2=错误!=10m,故小鸟至少飞行10m.点评:本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.26.考点:勾股定理的应用.分析:在Rt△ADE中,运用勾股定理可求出梯子的总长度,在Rt△ABC中,根据已知条件再次运用勾股定理可求出BC的长.解答:解:在Rt△DAE中,∵∠ DAE=4°5 ,∴∠ADE=∠DAE=4°5 ,AE=DE= 8 ,∴AD2=AE2+DE2=36m( 8 ) 2+( 8 ) 2=16,∴AD=4,即梯子的总长为 4 米.∴AB=AD4=.在Rt △ ABC中,∵∠ BAC=6°0 ,∴∠ ABC=3°0 ,1∴AC=2 AB=2,∴BC2=AB2-AC2=42-22=12,∴BC= 12 =2 3 m ;∴点B到地面的垂直距离BC=2 3 m .点评:本题考查了勾股定理的应用,如何从实际问题中整理出直角三角形并正确运用勾股定理是解决此类题目的关键.27.考点:勾股定理的应用.分析:要求下滑的距离,显然需要分别放到两个直角三角形中,运用勾股定理求得AC 和CE 的长即可.解答:解:在Rt△ACB中,AC2=AB2-BC2=2.52-1.5 2=4,∴AC=2,∵BD=0.5,∴CD=2.在Rt△ECD中,EC2=ED2-CD2=2.52 -2 2=2.25,∴EC=1.5,∴AE=AC-EC=2-1.5=0.5 .答:梯子顶端下滑了0.5 米.点评:注意此题中梯子的长度是不变的.熟练运用勾股定理.28.考点:勾股定理的应用.分析:根据使得C, D 两村到 E 站的距离相等,需要证明DE=CE,再根据△DAE≌△ EBC,得出AE=BC=10k;m解答:解:∵使得C,D两村到E站的距离相等.∴DE=C,E∵DA⊥AB于A,CB⊥AB于B,∴∠A=∠B=90°,∴AE2+AD2=DE2,BE2+BC2=EC2,∴AE2+AD2 =BE2 +BC2,设AE=x,则BE=AB-AE(= 25-x ),∵ DA=15km,CB=10km,∴x2+152=(25-x )2+102,解得:x=10,∴AE=10km,∴收购站E应建在离A点10km处.点评:本题主要是运用勾股定理将两个直角三角形的斜边表示出来,两边相等求解即可.29.考点:勾股定理的应用.专题:应用题.分析:( 1)点到直线的线段中垂线段最短,故应由 A 点向 BF 作垂线,垂足为 C , 若 AC > 200则 A 城不受影响,否则受影响;(2)点A 到直线 BF 的长为 200千米的点有两点,分别设为 D 、G ,则△ ADG 是等 腰三角形,由于 AC ⊥BF ,则 C 是 DG 的中点,在 Rt △ADC 中,解出 CD 的长, 则可求 DG 长,在 DG 长的范围内都是受台风影响, 再根据速度与距离的关系则可求时间.解答:解:(1)由 A 点向 BF 作垂线,垂足为 C , 在Rt △ABC 中,∠ABC=3°0 , AB=320km ,则 AC=160km , 因为 160< 200,所以 A 城要受台风影响;因为 DA=AG ,所以△ ADG 是等腰三角形,因为 AC ⊥BF ,所以 AC 是 BF 的垂直平分线, CD=G ,C 在 Rt △ADC 中,DA=200千米, AC=160千米,由勾股定理得, CD= DA 2- AC 2 = 2002 -160 2 =120 千米,则 DG=2DC=24千0 米,遭受台风影响的时间是: t=240 ÷40=6(小时).点评 :此题主要考查辅助线在题目中的应用,勾股定理,点到直线的距离及速度与时间的关系等,较为复杂.30.考点:勾 股定理的应 用.分析 : 连接 AC ,根据已知条件运用勾股定理逆定理可证△ ABC 和△ACD 为直角三 角形,然后代入三角形面积公式将两直角三角形的面积求出来, 两者面积相加即 为四边形 ABCD 的面积.AG=200千米. 则还有一点 G ,有∵∠B=90°,∴△ABC 为直角三角形,∵AC 2=AB 2+BC 2=82+62=102, ∵AC >0,∴AC=10,在△ACD 中,∵AC 2+CD 2=100+576=676,AD 2=262=676, ∴AC 2+CD 2=AD 2,∴△ ACD 为直角三角形,且∠ ACD=9°0 ,点评 :通过作辅助线可将一般的四边形转化为两个直角三角形,使面积的求解过 程变得简单.∴S1 ×6×8+12 ×10×24=144. 四 边 形 A B C ACD 1 2。
勾股定理及其逆定理(含答案)
勾股定理及其逆定理1.如图,O是矩形ABCD对角线AC的中点,M是AD的中点,若BC=8,OB=5,则OM的长为( )A. 1B. 2C. 3D. 42.如图,菱形ABCD的对角线AC,BD的长分别为6cm,8cm,则这个菱形的周长为( )A. 5cmB. 10cmC. 14cmD. 20cm3.如图:图形A的面积是()A.225B.B. 144C.C. 81D.D. 无法确定4.如图,在△ABC中,AB=8,AC=6,∠BAC=30°,将△ABC绕点A逆时针旋转60°得到△AB1C1,连接BC1,则BC1的长为()A. 6B. 8C. 10D. 125.如图,两个正方形的面积分别为64和49,则AC等于()A. 15B. 17C. 23D. 1136. 如图,小明学了在数轴上画出表示无理数的点的方法后,进行练习:首先画数轴,原点为O,在数轴上找到表示数2的点A,然后过点A作AB⊥OA,使AB=3(如图).以O为圆心,OB长为半径作弧,交数轴正半轴于点P,则点P所表示的数介于()A. 1和2之间B. 2和3之间C. 3和4之间D. 4和5之间6.如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD的面积为()A.B. 3C.D. 58. 直角三角形的两条直角边的长分别为4和5,则斜边长是()A. 3B. 41C.D. 97.如图,图中直角三角形共有()A. 1个B. 2个C. 3个D. 4个8.如图,AD⊥CD,CD=4,AD=3,∠ACB=90°,AB=13,则BC的长是()A. 8B. 10C. 12D. 169.若等腰三角形的腰长为10,底边长为12,则底边上的高为()A. 6B. 7C. 8D. 910.如图,字母B所代表的正方形的面积是()A. 12 cm2B. 15 cm2C. 144 cm2D. 306 cm213. 已知直角三角形的两边长分别为2、3,则第三边长可以为()A. B. 3 C. D.14. 如图,在平面直角坐标系中,若菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,则点C的坐标是()A. (5,4)B. (4,5)C. (4,4)D. (5,3)11.如图,O是矩形ABCD对角线AC的中点,M是AD的中点,若BC=8,OB=5,则OM的长为( )A.3B.4C.5D.612.如图,在边长为1个单位长度的小正方形组成的网格中,点A,B都是格点,则线段AB的长度为()A. 5B.6C.7D.2513.如图,菱形中,,这个菱形的周长是()A. B. C. D.18. 如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A. 48B. 60C. 76D. 8014.如图,E为正方形ABCD内部一点,且,,,则阴影部分的面积为()A. 25B. 12C. 13D. 1915.如图,公路AC、BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AC=10km,BC=24km,则M、C两点之间的距离为( )A. 13kmB. 12kmC. 11kmD. 10km16.Rt△ABC中,∠C=90°,AC=8,BC=15,则AB=()A. 17B.C. 289D. 18117.直角三角形两直角边长为5和12,则此直角三角形斜边上的中线的长是()A. 5B. 6C. 6.5D. 1318.如图,在矩形ABCD中,AC与BD交于点O,E是CD的中点,已知,,则AC的长为( )A. 10B. 11C. 12D. 1319.在下列四组数中,不是勾股数的一组数是()A. a=15,b=8,c=17B. a=9,b=12,c=15C. a=7,b=24,c=25D. a=3,b=5,c=720.下列各组数是三角形的三边,能组成直角三角形的一组数是()A. 2,3,4B. 3,4,5C. 6,8,12D.21.如图,一棵大树在一次强台风中距地面5m处折断,倒下后树顶端着地点A距树底端B的距离为12m,这棵大树在折断前的高度为()A. 10 mB. 15 mC. 18 mD. 20 m22.下列长度的三条线段能组成直角三角形的是()A. 3,4,5B. 2,3,4C. 4,6,7D. 5,11,1223.在以下列三个数为边长的三角形中,不能组成直角三角形的是()A. 4、7、9B. 5、12、13C. 6、8、10D. 7、24、2524.一个圆柱形铁桶的底面半径为12cm,高为32cm,则桶内所能容下的木棒最长为()A. 20cmB. 50cmC. 40cmD. 45cm25.已知的三边长分别为a,b,c,则下列条件中不能判定是直角三角形的是().A. B.C. D.26.以下列各组数为边长,不能构成直角三角形的是()A. 3,4,5B. 9,12,15C. ,,D. 0.3,0.4,0.527.-64的立方根是()A. ±8B. 4C. -4D. 1628.-8的立方根是()A. -2B. ±2C. 2D. -29.的立方根是()A. -1B. 0C. 1D. ±130.下列说法正确的是()A. 1的相反数是-1B. 1的倒数是-1C. 1的立方根是±1D. -1是无理数31.在实数0,-2,,3中,最大的是()A. 0B. -2C.D. 332.在实数,,,中有理数有()A. 1个B. 2个C. 3个D. 4个33.8的相反数的立方根是()A. 2B.C. -2D.34.下列说法正确的是()A. 是有理数B. 5的平方根是C. 2<<3D. 数轴上不存在表示的点35.-的相反数是()A. -B. -C. ±D.36.|1-|的值为()A. 1-B. 1+C. -1D. +137.在下列实数中:π,-,0,,最小的数是()A. -B. 0C.D. π38.下列结论正确的是()A. 无限不循环小数叫做无理数B. 有理数包括正数和负数C. 0是最小的整数D. 两个有理数的和一定大于每一个加数39.下列说法正确的是()A. 3.14是无理数B. 是无理数C. 是有理数D. 2p是有理数40.下列各式正确的为()A. =±4B. -=-9C. =-3D.41.下列说法正确的是()A. 1的平方根是它本身B. 是分数C. 负数没有立方根D. 如果实数x、y满足条件y=,那么x和y都是非负实数42.下列四个数:-2,-0.6,,中,绝对值最小的是()A. -2B. -0.6C.D.43.与最接近的整数是()A. 4B. 5C. 6D. 744.下列对实数的说法其中错误的是()A. 实数与数轴上的点一一对应B. 两个无理数的和不一定是无理数C. 负数没有平方根也没有立方根D. 算术平方根等于它本身的数只有0或145.下列说法:①带根号的数都是无理数;②无理数都可用数轴上的点表示;③的平方根是±4:④a2的算术平方根是a;⑤负数也有立方根,其中正确的个数有()A. 1个B. 2个C. 3个D. 4个答案和解析1.【答案】C【解析】【分析】此题考查了矩形的性质、直角三角形的性质以及三角形中位线的性质,勾股定理的有关知识,注意利用直角三角形斜边上的中线等于斜边的一半,求得AC的长是关键.首先由O是矩形ABCD对角线AC的中点,可求得AC的长,然后由勾股定理求得AB的长,即CD的长,又由M是AD的中点,可得OM是△ACD的中位线,继而求得答案.【解答】解:∵O是矩形ABCD对角线AC的中点,OB=5,∴AC=2OB=10,∴CD=AB===6,∵M是AD的中点,∴OM=CD=3.故选:C.2.【答案】D【解析】【分析】本题考查了菱形的性质,勾股定理,主要利用了菱形的对角线互相垂直平分,需熟记.根据菱形的对角线互相垂直平分可得AC⊥BD,OA=AC,OB=BD,再利用勾股定理列式求出AB,然后根据菱形的四条边都相等列式计算即可得解.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=AC=×6=3cm,OB=BD=×8=4cm,根据勾股定理得,AB===5cm,所以,这个菱形的周长=4×5=20cm.故选D.3.【答案】C【解析】【分析】根据勾股定理列式计算即可得解;本题考查了勾股定理,是基础题,主要是对勾股定理的理解与应用.【解答】解:由勾股定理得,A边长,故A的面积.故选C.4.【答案】C【解析】解:∵将△ABC绕点A逆时针旋转60°得到△AB1C1,∴AC=AC1,∠CAC1=60°,∵AB=8,AC=6,∠BAC=30°,∴∠BAC1=90°,AB=8,AC1=6,∴在Rt△BAC1中,BC1的长=,故选:C.根据旋转的性质得出AC=AC1,∠BAC1=90°,进而利用勾股定理解答即可.此题考查旋转的性质,关键是根据旋转的性质得出AC=AC1,∠BAC1=90°.5.【答案】B【解析】【分析】本题考查了勾股定理,求出AB、BC的长是解题的关键.根据正方形的性质求出AB、BD、DC的长,再根据勾股定理求出AC的长即可.【解答】解:如图,∵两个正方形的面积分别是64和49,∴AB=BD=8,DC=7,∴BC=BD+DC=8+7=15,根据勾股定理得:AC==17.故选B.6.【答案】C【解析】解:由勾股定理得,OB==,∵9<13<16,∴3<<4,∴该点位置大致在数轴上3和4之间.故选:C.利用勾股定理列式求出OB,再根据无理数的大小判断即可.本题考查了勾股定理,估算无理数的大小,熟记定理并求出OB的长是解题的关键.7.【答案】B【解析】解:∵四边形ABCD是正方形,∴∠B=90°,∴BC2=EC2-EB2=22-12=3,∴正方形ABCD的面积=BC2=3.故选:B.先根据正方形的性质得出∠B=90°,然后在Rt△BCE中,利用勾股定理得出BC2,即可得出正方形的面积.本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.即如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.也考查了正方形的性质.8.【答案】C【解析】解:由勾股定理得:斜边长为,故选:C.利用勾股定理即可求出斜边长.本题考查了勾股定理;熟练掌握勾股定理,理解勾股定理的内容是关键.9.【答案】C【解析】【分析】本题考查了直角三角形的定义,比较简单,掌握直角三角形的定义是关键,要做到不重不漏.根据直角三角形的定义:有一个角是直角的三角形是直角三角形,可作判断.【解答】解:如图,图中直角三角形有Rt△ABD、Rt△BDC、Rt△ABC,共有3个,故选:C10.【答案】C【解析】【分析】此题主要考查了勾股定理,正确应用勾股定理是解题关键.直接利用勾股定理得出AC的长,进而求出BC的长.【解答】解:∵AD⊥CD,CD=4,AD=3,∴AC==5,∵∠ACB=90°,AB=13,∴BC==12.故选C.11.【答案】C【解析】【分析】本题考查的知识点是勾股定理和等腰三角形的性质,在等腰三角形的腰和底边高线所构成的直角三角形中,根据勾股定理即可求得等腰底边上的高.【解答】解:根据题意画出图形,,如图:BC =12,AB=AC=10 ,在△ABC中,AB =AC,AD⊥BC,则BD =DC=BC=6 ,在Rt△ABD中,AB=10,BD=6,,故选C.12.【答案】C【解析】解:如图,∵a2+b2=c2,而a2=81,c2=225,∴b2=225-81=144,∴字母B所代表的正方形的面积为144cm2.故选:C.如图,利用勾股定理得到a2+b2=c2,再根据正方形的面积公式得到a2=81,c2=225,则可计算出b2=144,从而得到字母B所代表的正方形的面积.本题考查了勾股定理:会利用勾股定理进行几何计算.13.【答案】D【解析】【分析】本题考查了勾股定理,是基础题,难点在于要分情况讨论,分3是直角边和斜边两种情况讨论求解.【解答】解:3是直角边时,第三边==,3是斜边时,第三边==,所以,第三边长为或.故选D.14.【答案】A【解析】【分析】此题主要考查了菱形的性质以及坐标与图形的性质,解题的关键是利用勾股定理求出DO的长度.首先根据菱形的性质求出AB的长度,再利用勾股定理求出DO的长度,进而得到点C的坐标.【解答】解:∵菱形ABCD的顶点A,B的坐标分别为(-3,0),(2,0),点D在y轴上,∴AB=AO+OB=5,∴AD=AB=CD=5,∴DO===4,∴点C的坐标是(5,4).故选A.15.【答案】A【解析】【分析】此题考查了矩形的性质、直角三角形的性质以及三角形中位线的性质,勾股定理的有关知识,注意利用直角三角形斜边上的中线等于斜边的一半,求得AC的长是关键.首先由O是矩形ABCD对角线AC的中点,可求得AC的长,然后由勾股定理求得AB的长,即CD的长,又由M是AD的中点,可得OM是△ACD的中位线,继而求得答案.【解答】解:∵O是矩形ABCD对角线AC的中点,OB=5,∴AC=2OB=10,∴CD=AB===6,∵M是AD的中点,∴OM=CD=3.故选A.16.【答案】A【解析】【分析】本题考查了勾股定理的知识,解答本题的关键是掌握格点三角形中勾股定理的应用.建立格点三角形,利用勾股定理求解AB的长度即可.【解答】解:如图所示:AB===5.故选:A.17.【答案】C【解析】【分析】通过菱形性质及勾股定理求出边AB的值,周长为4AB即可.本题主要考查了菱形的性质,解决四边形问题一般转化为三角形问题.【解答】解:因为四边形ABCD是菱形,所以AC⊥BD,设AC与BD交于点O,则AO=1,BO=2,所以AB=.周长为4AB=4.故选C.18.【答案】C【解析】【分析】本题考查勾股定理以及正方形的性质,解题关键是利用勾股定理求出正方形的边长,然后利用部分之和等于整体求出阴影部分面积.由已知得△ABE为直角三角形,用勾股定理求正方形的边长AB,用S阴影部分=S正方形ABCD-S△ABE转换求面积.【解答】解:∵∠AEB=90°,AE=6,BE=8,∴在Rt△ABE中,AB2=AE2+BE2=100,∴S阴影部分=S正方形ABCD-S△ABE=AB2-×AE×BE=100-×6×8=76.故选C.19.【答案】D【解析】【分析】本题考查了正方形的性质,勾股定理的运用,利用勾股定理求出正方形的边长并观察出阴影部分的面积的表示是解题的关键,根据勾股定理求出AB,分别求出△AEB和正方形ABCD的面积,即可求出答案.【解答】解:∵在Rt△AEB中,∠AEB=90°,AE=3,BE=4,由勾股定理得:AB=5,∴正方形的面积是5×5=25,∵△AEB的面积是AE×BE=×3×4=6,∴阴影部分的面积是25-6=19,故选D.20.【答案】A【解析】【分析】本题考查勾股定理和直角三角形斜边上的中线的性质,在Rt△ABC中,由勾股定理可得AB=26,根据直角三角形斜边上的中线等于斜边的一半,即可得到M、C两点之间的距离.【解答】解:在Rt△ABC中,AB2=AC2+CB2,∴AB==26,∵M点是AB中点,∴MC=AB=13,故选A.21.【答案】A【解析】【分析】本题考查了勾股定理在直角三角形中的运用,掌握勾股定理是解决问题的关键.由题意可知:斜边为AB,直接由勾股定理求得答案即可.【解答】解:根据勾股定理,AB===17.故选A22.【答案】C【解析】解:由题意得,斜边=,所以斜边上的中线=×13=6.5.故选:C.根据勾股定理,先求出直角三角形的斜边长,再根据直角三角形斜边上的中线等于斜边的一半,即可求出中线长.此题考查了勾股定理以及直角三角形斜边上的中线的性质.23.【答案】D【解析】【分析】考查了矩形的性质,三角形中位线定理,勾股定理,了解矩形的性质是解答本题的关键,难度不大.首先利用三角形的中位线定理求得BC的长,然后利用勾股定理求得AC的长即可.【解答】解:∵四边形ABCD为矩形,∴O为BD的中点,∵E为CD的中点,∴OE为△ABC的中位线,∵OE=6,∴BC=2OE=12,∵AB=5,∴AC==13,故选D.24.【答案】D【解析】【分析】本题考查了勾股数的定义,掌握勾股数的知识是解决问题的关键.理解勾股数的定义,即在一组(三个数)中,两个数的平方和等于第三个数的平方.解:由题意可知,在A组中,152+82=172=289,在B组中,92+122=152=225,在C组中,72+242=252=625,而在D组中,32+52≠72,故选:D.25.【答案】B【解析】【分析】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、22+32≠42,故不是直角三角形,故此选项错误;B、42+32=572,故是直角三角形,故此选项正确;C、62+82≠122,故不是直角三角形,故此选项错误;D、()2+()2≠()2,故不是直角三角形,故此选项错误.故选:B.26.【答案】C【解析】【分析】根据大树的折断部分与未断部分、地面恰好构成直角三角形,再根据勾股定理求出AC的长,进而可得出结论.本题考查的是勾股定理的应用,熟知直角三角形斜边的平方等于两直角边的平方和是解答此题的关键.【解答】解:∵树的折断部分与未断部分、地面恰好构成直角三角形,且BC=5m,AB=12m,∴AC===13(m),∴这棵树原来的高度=BC+AC=5+13=18(m).故选C.27.【答案】A【解析】解:A.∵32+42=52,∴三条线段能组成直角三角形,故A选项正确;B.∵22+32≠42,∴三条线段不能组成直角三角形,故B选项错误;C.∵42+62≠72,∴三条线段不能组成直角三角形,故C选项错误;D.∵52+112≠122,∴三条线段不能组成直角三角形,故D选项错误;故选:A.利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.此题考查了勾股定理逆定理的运用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可,注意数据的计算.28.【答案】A【解析】解:A、42+72≠92,故不是直角三角形,故此选项符合题意;B、52+122=132,故是直角三角形,故此选项不符合题意;C、82+62=102,故是直角三角形,故此选项不符合题意;D、72+242=252,故是直角三角形,故此选项不符合题意.故选:A.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.本题考查勾股定理的逆定理.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.29.【答案】C【解析】【分析】本题考查勾股定理的实际应用,首先要正确理解题意,明白怎么放桶内所能容下的木棒最长,然后灵活利用勾股定理,难度一般.根据题意画出示意图,AC为圆桶底面直径,AC=24cm,CB=32cm,那么线段AB的长度就是桶内所能容下的最长木棒的长度,在直角三角形ABC中利用勾股定理即可求出AB,也就求出了桶内所能容下的最长木棒的长度.【解答】解:如图,AC为圆桶底面直径,∴AC=2×12=24cm,CB=32cm,∴线段AB的长度就是桶内所能容下的最长木棒的长度,∴AB===40cm.故桶内所能容下的最长木棒的长度为40cm.故选C.30.【答案】A【解析】【分析】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,可利用勾股定理的逆定理和直角三角形的定义判断.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方或最大角是否是90°即可.【解答】解:A.∵∠A:∠B:∠C=3:4:5,∴∠C=×180°=75°,故不能判定△ABC是直角三角形;B.∵,设a、b、c边长为k、k、k∴则有k2+k2=2k2,即a2+b2=c2,∴∠C=90°,故能判定△ABC是直角三角形;C.∵∠C=∠A-∠B,∴∠A=∠B+∠C,∴∠A=90°,故能判定△ABC是直角三角形;D.∵b2=a2-c2,∴b2+c2=a2,故能判定△ABC是直角三角形.故选A.31.【答案】C【解析】解:A、因为32+42=52,故能构成直角三角形,此选项错误;B、因为92+122=152,能构成直角三角形,此选项错误;C、因为()2+()2≠()2,不能构成直角三角形,此选项正确;D、因为0.32+0.42=0.52,能构成直角三角形,此选项错误.故选:C.根据勾股定理的逆定理,一个三角形的三边满足两个较小边的平方和等于较大边的平方,这个三角形就是直角三角形.本题考查勾股定理的逆定理,关键知道两个较小边的平方和等于较大边的平方,这个三角形就是直角三角形.32.【答案】C【解析】【分析】本题主要考查的是立方根的定义,掌握立方根的定义是解题的关键.依据立方根的定义求解即可.【解答】解:∵(-4)3=-64,∴-64的立方根是-4.故选C.33.【答案】A【解析】解:∵-2的立方等于-8,∴-8的立方根等于-2.故选:A.如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.34.【答案】C【解析】解:的立方根是1,故选:C.根据开立方运算,可得一个数的立方根.本题考查了立方根,先求幂,再求立方根.35.【答案】A【解析】解:A、1的相反数是-1,正确;B、1的倒数是1,故错误;C、1的立方根是1,故错误;D、-1是有理数,故错误;故选:A.根据相反数、倒数、立方根,即可解答.本题考查了相反数、倒数、立方根,解决本题的关键是熟记相反数、倒数、立方根的定义.36.【答案】D【解析】【分析】本题考查了实数的大小比较,要注意无理数的大小范围.根据正负数的大小比较,估算无理数的大小进行判断即可.【解答】解:2<<3,实数0,-2,,3中,最大的是3.故选D.37.【答案】B【解析】解:在实数,,,中=2,有理数有,共2个.故选:B.整数和分数统称为有理数,依此定义求解即可.此题考查了有理数和无理数的定义,注意需化简后再判断.38.【答案】C【解析】解:8的相反数是-8,-8的立方根是-2,则8的相反数的立方根是-2,故选:C.根据相反数的定义、立方根的概念计算即可.本题考查的是实数的性质,掌握相反数的定义、立方根的概念是解题的关键.39.【答案】C【解析】【分析】本题考查了实数的意义、实数与数轴的关系,利用被开方数越大算术平方根越大是解题关键.根据无理数的意义,开平方,被开方数越大算术平方根越大,实数与数轴的关系,可得答案.【解答】解:A、是无理数,故A错误;B、5的平方根是,故B错误;C、<,∴2<3,故C正确;D、数轴上存在表示的点,故D错误;故选C.40.【答案】D【解析】解:根据相反数、绝对值的性质可知:-的相反数是.故选:D.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.本题考查的是相反数的求法.要求掌握相反数定义,并能熟练运用到实际当中.41.【答案】C【解析】解:|1-|的值为-1.故选:C.计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.绝对值的性质,负数的绝对值是其相反数.考查了实数的性质,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.42.【答案】A【解析】解:∵-<<0<π,∴最小的数是-.故选:A.根据正数大于0,0大于负数,正数大于负数直接进行比较大小,再找出最小的数.此题主要考查了有理数的比较大小,根据正数都大于0,负数都小于0,正数大于负数,两个负数绝对值大的反而小的原则解答.43.【答案】A【解析】解:A、无限不循环小数叫做无理数,正确,故本选项符合题意;B、有理数包括正有理数、0和负有理数,不正确,故本选项不符合题意;C、0不是最小的整数,没有最小的整数,不正确,故本选项不符合题意;D、一个数同0相加仍得这个数,所以两个有理数的和不一定大于每一个加数,不正确,故本选项不符合题意.故选:A.根据有理数、无理数、整数及有理数的加法法则判断即可.本题考查了有理数、无理数、整数及有理数的加法法则,属于基础知识,需牢固掌握.44.【答案】C【解析】解:整数和分数统称为有理数.A.3.14是小数,可写成分数的形式,所以是有理数,错误.B.是有理数,错误.D.2p表示p的2倍,要视乎p本身是否为有理数而定,错误.故选:C.按照有理数无理数的定义判断即可.本题考查了有理数的定义,正确理解有理数定义是解题关键.45.【答案】D【解析】解:A、=4,故原题计算错误;B、-=9,故原题计算错误;C、=3,故原题计算错误;D、=,故原题计算正确;故选:D.根据=|a|进行化简计算即可.此题主要考查了二次根式和立方根,关键是掌握二次根式的性质.46.【答案】D【解析】解:A、1的平方根是±1,错误;B、是无理数,错误;C、负数有立方根,错误;D、如果实数x、y满足条件y=,那么x和y都是非负实数,正确;故选:D.根据平方根、分数、立方根和实数的概念解答即可.此题考查实数问题,关键是根据平方根、分数、立方根和实数的概念解答.47.【答案】C【解析】解:∵|-2|=2,|-0.6|=0.6,||=,||=,∵,所以绝对值最小的是,故选:C.根据绝对值的意义,计算出各选项的绝对值,然后再比较大小即可.此题考查了实数的大小比较,以及绝对值的意义,注意先运算出各项的绝对值.48.【答案】B【解析】【分析】本题考查了二次根式的性质和估计无理数的大小等知识点,主要考查学生能否知道在5和5.5之间,题目比较典型,根据无理数的意义和二次根式的性质,即可求出答案.【解答】解:∵,∴,∴最接近的整数为,∴.故选B.49.【答案】C【解析】【分析】本题考查了实数,利用平方根的意义、立方根的意义、实数与数轴的关系是解题关键.根据平方根的意义、立方根的意义、实数与数轴的关系,可得答案.【解答】解:A.实数与数轴上的点一一对应,说法正确,故选项不符合题意;B.π+(1-π)=1,说法正确,故选项不符合题意;C.负数的立方根是负数,说法错误,故选项符合题意;D.算术平方根等于它本身的数只有0或1,说法正确,故选项不符合题意.故选C.50.【答案】B【解析】【分析】本题主要考查了实数中无理数的概念,算术平方根,平方根,立方根的概念.①根据无理数的定义即可判定;②根据无理数与数轴的关系即可判定;③根据算术平方根、平方根的定义计算即可判定;④根据算术平方根的定义即可判定;⑤根据立方根的定义即可判定.【解答】解:①带根号的数不一定是无理数,有的是有理数,故说法错误;②无理数都可用数轴上的点表示,故说法正确;③=4,4的平方根是±2,故说法错误:④a2的算术平方根是|a|,故说法错误;⑤负数也有立方根,故说法正确.正确的是:②⑤.故选B.。
勾股定理的逆定理练习题(超经典含答案)
3.【答案】A
【解析】A、1.52+22≠32,不符合勾股定理的逆定理,故本选项符合题意;
B、52+122=132,符合勾股定理的逆定理,故本选项不符合题意;
C、72+242=252,符合勾股定理的逆定理,故本选项不符合题意;
A.5B.6C.7D.8
11.下列命题中,命题为真命题的是
A.对顶角相等B.若a=b,则|a|=|b|
C.同位角相等,两直线平行D.若ac2<bc2,则a<b
12.如图所示的一块地,∠ADC=90°, , , , ,求这块地的面积 为
A.54m2B.108m2C.216m2D.270m2
13.如图,在钝角△ABC中,已知∠A为钝角,边AB、AC的垂直平分线分别交BC于点D、E,若BD2+CE2=DE2,则∠A的度数为__________.
B、∵22+32≠42,∴三条线段不能组成直角三角形,故B选项错误;
C、∵42+62≠72,∴三条线段不能组成直角三角形,故C选项错误;
D、∵52+112≠122,∴三条线段不能组成直角三角形,故D选项错误.故选A.
20.【答案】A
【解析】∵52+122=132,∴三条边长分别为5里,12里,13里,构成了直角三角形,∴这块沙田面积为: ×5×500×12×500=7500000(平方米)=7.5(平方千米).故选A.
∴四边形ABCD的面积是6.
18.【解析】(1)∵AD⊥BC,
∴∠ADC=∠ADB=90°.
在Rt△ADC中,由勾股定理得AD=
在Rt△ADB中,由勾股定理得BD= .
勾股定理与逆定理练习题+答案解析
勾股定理及逆定理1.(2011湖北黄石)将一个有45度角的三角板的直角顶点C放在一张宽为3cm 的纸带边沿上,另一个顶点A在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30度角,如图,则三角板的最大边的长为().A. 3cmB. 6cmC. 3cmD. 6cm答案、D解析:过点C作CD⊥AD,∴CD=3,在直角三角形ADC中,∵∠CAD=30°,∴AC=2CD=2×3=6,又∵三角板是有45°角的三角板,∴AB=AC=6,∴BC²=AB²+AC²=72,∴BC=6√2,2.在△中,若,则△是().. 锐角三角形. 钝角三角形. 等腰三角形. 直角三角形答案、D3.如图,已知直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=DC=5,点P在BC上移动,则当PA+PD取最小值时,△APD中边AP上的高为().A. B. C. D.3答案、C4.如图,分别以直角的三边为直径向外作半圆.设直线左边阴影部分的面积为,右边阴影部分的面积和为,则().A. B. C. D.无法确定答案、A解析:5.(2014春•临沭县期中)如图,是一长、宽都是3cm,高BC=9cm的长方体纸箱,BC上有一点P,PC=BC,一只蚂蚁从点A出发沿纸箱表面爬行到点P的最短距离是()A.6cm B.3cm C.10cm D.12cm答案、A解析:6.(2012•宁波)勾股定理是几何中的一个重要定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为().A.90 B.100 C.110 D.121答案、C解析:7.如图,在由12个边长都为1且有一个锐角是60°的小菱形组成的网格中,点P是其中的一个顶点,以点P为直角顶点作格点直角三角形(即顶点均在格点上的三角形),请你写出所有可能的直角三角形斜边的长().A.2或4B.2或7C.7或13D.2或4或7或13或32答案、D解析:8.如图,已知点F的坐标为(3,0),点A、B分别是某函数图象与x轴,y轴的交点,点P是此图像上的一动点,设点P的横坐标为x,PF的长为d,且d与x 之间满足关系:d=5-x(0≤x≤5),则结论:①AF=2;②BF=5;③OA=5;④OB=3中,正确结论的序号是().A.①②B.②③④C.①②③④D.①②③答案、B 解析:9.如图,折叠矩形纸片ABCD ,使点B 落在边AD 上,折痕EF 的两端分别在AB 、BC 上(含端点),且AB=6cm ,BC=10cm .则折痕EF 的最大值是( )cm .A. 8B. 1010C. 31010D.1010答案、C 解析:10.观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;…列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b与c分别是().A.84,85B.79,90C.81,88D.80,89答案、A解析:11.给出下列几组数:①111,,345;②8,15,16;③n2-1,2n,n2+1;④m2-n2,2mn,m2+n2(m>n>0).其中—定能组成直角三角形三边长的是().A.①②B.③④C.①③④D.④答案、B 解析:12.五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( ) 答案、C解析:两边的平方等于第三条边的平方13、下列结论错误的是( ) A .三个角度之比为1∶2∶3的三角形是直角三角形; B .三条边长之比为3∶4∶5的三角形是直角三角形; C .三个角度之比为1∶1∶2的三角形是直角三角形; D .三条边长之比为8∶16∶17的三角形是直角三角形. 答案、D解析:D 选项两边的平方不等于第三边的平方14.如图是2002年8月北京第24届国际数学家大会会标,由4个全等的直角三角形拼合而成.如果图中大、小正方形的面积分别为52和4,那么一个直角三角形的两直角边的和等于( ).A.10B.12C.14D.16 答案、A 解析:A B CD15.以边长为2厘米的正三角形的高为边长作第二个正三角形,以第二个正三角形的高为边长作第三个正三角形,以此类推,则第十个正三角形的边长是( ) A 、2×(22)10厘米 B 、2×(21)9厘米 C 、2×(23)10厘米 D 、2×(23)9厘米答案、D 解析:。
(完整版)勾股定理典型例题详解及练习(附答案)
典型例题知识点一、直接应用勾股定理或勾股定理逆定理例1:如图,在单位正方形组成的网格图中标有 AB CD EF 、GH 四条线段, 其中能构成一个直角三角形三边的线段是( )1) 题意分析:本题考查勾照定理及勾股定理的逆定理./2) 解题思踏;可利用勾照定理直接求出各也长,再进行判断.卜 解答过程:#ai^AEAF 中,AF=h AE=2,根据勾股定理,得。
跻=J 招己'十』十F = 姊同理 = 2思* QH. = 1 CD = 2^5计算发现(右尸十0招”=(雁沪t 即/费+寥=奇,根据 勾股定理的迎定理得到以AE 、EF 、GH 为也的三角形是直角三角形.故选 B. *解题后B0思考、1.勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角形. 因此,解跑时一定要认真分析题目所蛤条件,看是否可用勾股定理来解n ,L 在运用勾股定理时,要正确分析题目所给的条件,不要习惯性地认为 七”就是斜诳而.固执"地运用公式"二/十舛 其实,同样是四"6 NC 不一定就等于叩幻I 不一定就是斜遮,A ABC 不一定就是直角三痢 形.卜A. CD 、EF 、GH C. AB 、CD GHB. AB 、EF 、GHD. AB 、CD EF3.直角三角形的判定条件与勾股定理是互逆的.区别在于勾股定理的运用是一个从"形胡(一个三角形是直角三角形)到板'3’ =疽十瑟)的辿程,而直角三角形的判定是一个从W〔一个三角形的三满是L = ^+广的条件)到胃形'这个三弟形是直急三甬形)的过程.甘1在应用勾股定理解题时,要全面地毒虑问题.注意m题中存在的多种可能性,避免漏解。
/例2-如图'有一块直角三角形舐板幽G两直角边ACMkm, BWg 现博直甬边AC沿直线AD折叠,庾它落在斜辿AB上,且点C落到点E处, 则CD等于(EC 。
A. 2cmB. 3cm C 4an D 5cm*" iiEMraZJ VI :『n暴意分析,本题考查勾股定理的应用,:)解题思路;本题若直接在△XOQ中运用勾股定理是无法求得® ffi 长的,因为只知道一条迫应。
勾股定理及逆定理的应用练习
ABA1 B 1DC D1 C 12 1 4勾股(逆)定理的应用姓名 学号一、选择题(每题3分,共9分)( )1.直角三角形的两直角边分别为5cm ,12cm ,其中斜边上的高为.A .6cmB .8.5cmC .3013cmD .6013cm( )2.有四个三角形:(1)△ABC 的三边之比为3:4:5;(2)△A ′B ′C ′的三边之比为5:12:13; (3)△A ′B ′C ′的三个内角之比为1:2:3; (4)△CDE 的三个内角之比为1:1:2.其中是直角三角形的有.A .(1)(2) B .(1)(2)(3)C .(1)(2)(4)D .(1)(2)(3)(4)( )3.下面四组数中是勾股数的一组是A .6,7,8B .5,8,13C .1.5,2,2.5D .5,12,13二、填空:(每空4分,共44分)1、如图,是一个三级台阶,它的每一级的长、宽和高分别等于5dm ,3dm 和1dm ,A 和B 是这个台阶的两个相对的端点,A 点上有一只蚂蚁,想到B 点去吃可口的食物.请你想一想,这只蚂蚁从A 点出发,沿着台阶面爬到B 点,最短线路是 (第1题) 2.如图,有一圆柱形油罐,现要从油罐底部的一点A 环绕油罐建梯子,并且要正好建到A 点正上方的油罐顶部的B 点,已知油罐高AB=5米,油罐底部周长为12米,那么梯子最短要 米。
(第2题) (第3题)3. 有一圆形油罐底面圆的周长为24m ,高为6m ,一只老鼠从距底面1m 的A 处爬行到对角B 处吃食物,它爬行的最短路线长为4. 如图,边长为5的正方体中,一只蚂蚁从A 顶点出发沿着正方体的外表面爬到B 顶点的最短路程是(第4题) (第5题)(第6题)5.如图,三个村庄A、B、C之间的距离分别为AB=15km,BC=9km,AC=12km.已知A、B两村之间已修建了一条笔直的村级公路AB,为了实现村村通公路,现在要从C村修一条笔直公路CD直达AB.已知公路的造价为10000元/km,求修这条公路的最低造价是6.如图,一只蚂蚁从实心长方体的顶点A出发,沿长方体的表面爬到对角顶点C1处(三条棱长如图所示),最短路线长为7.已知直角三角形两边的长为3和4,则此三角形的周长为____ ______.8.某市在“旧城改造”中计划在市内一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米售价a元,则购买这种草皮至少需要__________元.(第8题) (第9题) (第11题)9.已知,如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小工人师傅量得零件各边尺寸:AD=4,AB=3,DB=5,DC=12,BC=13,请你判断这个零件符合要求吗?•为什么?【9分】2.如图,△ABC的三边分别为AC=5,BC=12,AB=13,将△ABC沿AD折叠,使AC•落在AB上,求DC的长.【9分】3..观察下列图形,回答问题:【9分】问题(1):若图①中的△DEF 为直角三角形,正方形P 的面积为9,正方形Q 的面积为15,则正方形M 的面积为问题(2):如图②,分别以直角三角形的三边为直径向三角形外作三个半圆,这三个半圆面积321,,S S S 之间的关系是问题(3):如图③,如果直角三角形两直角边长分别为3和4,以直角三角形三边为直径作三个半圆,请你利用上面结论求出阴影部分的面积.4.如图,铁路上A 、B 两点相距25km ,C 、D 为两村庄,DA•垂直AB 于A ,CB 垂直AB 于B ,已知AD=15km ,BC=10km ,现在要在铁路AB 上建一个土特产品收购站E ,使得C 、D 两村到E 站的距离相等,则E 站建在距A 站多少千米处?【10分】5.某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行?为什么?【10分】。
勾股定理逆定理同步测试题(含答案)
八年级数学(勾股定理)1一、选择题1.下列几组数中,能作为直角三角形三边长度的是( ).A .2,3,4B .5,7,9C .8,15,17D .200,300,4002.五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )3.三角形的三边长a 、b 、c ,满足22()2a b c ab +=+,则这个三角形是( ) .A . 锐角三角形B . 直角三角形C . 钝角三角形D . 等边三角形4.下列结论错误的是( )A .三个角度之比为1∶2∶3的三角形是直角三角形;B .三条边长之比为3∶4∶5的三角形是直角三角形;C .三个角度之比为1∶1∶2的三角形是直角三角形;D .三条边长之比为8∶16∶17的三角形是直角三角形.5.在同一平面上把三边BC =3、AC =4、AB =5的三角形沿最长边AB 翻折后得到△ABC ′,则CC ′的长等于( ).A .125B .135C .56D .2456.小丽和小芳二人同时从公园去图书馆,都是每分钟走50米,小丽走直线用了10分钟,小芳先去家拿了钱在去图书馆,小芳到家用了6分钟,从家到图书馆用了8分钟,小芳从公园到图书馆拐了个( )角.A .锐角B .直角C .钝角D .不能确定7.下列各组线段中的三个长度①9、12、15;②7、24、25;③32、42、52;④3a 、4a 、5a (a >0);⑤22m n -、2mn 、22m n +(m 、n 为正整数,且m >n )其中可以构成直角三角形的有( )A .5组B .4组C .3组D .2组8.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )A .121B .120C .90D .不能确定ABC D二、填空题1.在△ABC 中,若222AB BC AC +=,则∠A +∠C =______度.2.若一个三角形的三边之比为5:12:13,且周长为60cm ,则它的面积为 .3.已知两条线段的长为5cm 和12cm,当第三条线段的长为 cm 时,这三条线段能组成一个直角三角形.4.如图1,在四边形ABCD 中,AD ⊥DC ,AD =8,DC =6,CB =24,AB =26.则四边形ABCD 的面积为____________.5. 如图2所示,一架5米长的消防梯子斜靠在一竖直的墙AC 上,梯足(点B )离墙底端(C 点)的距离为3米,如果梯足内移1.6米至点B 1处,则梯子顶端沿墙垂直上移_______米.6.直角三角形的三边长为连续偶数,则这三个数分别为__________.7.如图3所示的一块地,已知AD =4m ,CD =3m , AD ⊥DC ,AB =13m ,BC =12m ,则这块地的面积是__________2m .8. 将勾股数3,4,5扩大2倍,3倍,4倍,…,可以得到勾股数6,8,10;9,12,15;12,16,20;…,则我们把3,4,5这样的勾股数称为基本勾股数,请你也写出三组基本勾股数: , , .三、解答题1. 一个零件的形状如图3所示,按规定这个零件中∠A 和∠DBC 都应为直角.工人师傅量得这个零件各边尺寸如图4所示,这个零件符合要求吗?2.已知:如图,△ABC 中,AB =5cm ,BC =3 cm ,AC =4cm ,CD ⊥AB 于D , 求CD 的长及△ABC 的面积;图2 图3 图4 图1 图3图22.已知△ABC 的三边为22m n +,22m n -,2mn(1)当m =2,n =1时,△ABC 是否为直角三角形?并说明理由.(2)当m =3,n =2时,△ABC 是否为直角三角形?并说明理由.(3)对于m 、n 为任何正整数时(m >n ),你能说明△ABC 为直角三角形吗?3.如图5,已知正方形ABCD 中,F 是DC 的中点,E 为BC 的上一点,且EC =14BC .求证:EF ⊥AF .一、选择题(每小题3分,共15分) 1.如图1,正方形网格中的△ABC ,若小方格边长为1,则△ABC 是 ( )A .直角三角形B .锐角三角形C .钝角三角形D .以上答案都不对2.已知,如图2,在长方形ABCD 中,AB =3cm ,AD =9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( ).A .6cm 2B .8cm 2C .10cm 2D .12cm 2图5 图1二、填空题(每题3分,共15分)1.如图4,是2002年8月北京第24届国际数学家大会会标,由4个全等的直角三角形拼合而成.如果图中大、小正方形的面积分别为52和4,那么一个直角三角形的两直角边的和等于2. 观察下列表格:请你结合该表格及相关知识,求出b 、c 的值.即b = ,c =三、解答题1.如图5,三个村庄A 、B 、C 之间的距离分别为AB =5km ,BC =12km ,AC =13km .要从B 修一条公路BD 直达AC .已知公路的造价为26000元/km ,求修这条公路的最低造价是多少?2.如图6,甲乙两船从港口A 同时出发,甲船以16海里/时速度向北偏东50°航行,乙船以12海里/时向南偏东方向航行,3小时后,甲船到达C 岛,乙船到达B 岛.若C 、B 两岛相距60海里,问乙船出发后的航向是南偏东多少度?3.如图,△ABC 的三边分别为AC=5,BC=12,AB=13,将△ABC 沿AD 折叠,使AC 落在AB 上,求折痕AD 的长.图4图5 图64.(20分)如图,南北向MN为我国领域,即MN以西为我国领海,以东为公海.上午9时50分,我反走私A艇发现正东方向有一走私艇C以13海里/时的速度偷偷向我领海开来,便立即通知正在MN线上巡逻的我国反走私艇B.已知A、C两艇的距离是13海里,A、B两艇的距离是5海里;反走私艇B测得离C艇的距离是12海里.若走私艇C的速度不变,最早会在什么时间进入我国领海?A 卷:一、1.C 2.C 3.B 4.D 5.D二、1. 90° 2.120 3.13 4.144 5.0.8.三、1.答:这个零件符合要求.∵在△ABD 中,22223425AB AD +=+=,22525BD ==.∴222AB AD BD +=,∴∠A =90°.同理可得∠DBC =90°.2.答:(1)△ABC 是直角三角形.∵当m =2,n =1时,222()25m n +=;222()9m n -= ;2(2)16mn =.∴2222222()(2)()m n mn m n -+=+,∴△ABC 是直角三角形.(2)当m =3,n =2时,还有2222222()(2)()m n mn m n -+=+,∴△ABC 是直角三角形.(3)∵22224422222()(2)2()m n mn m n m n m n -+=++=+,∴对于m 、n 为任何正整数时(m >n ),△ABC 都是直角三角形.3.解:证明:连接AE ,设正方形边长为4a ,则EC =a ,BE =3a ,CF =DF =2a .在Rt △ABE 中,222222(4)(3)25AE AB BE a a a =+=+=.同理:222222(4)(2)20AF AD DF a a a =+=+=,222222(2)5EF EC CF a a a =+=+=,∴222EF AF AE +=.由勾股定理的逆定理知△AFE 为直角三角形,且∠AFE =90°,即EF ⊥AF .B 卷:一、1.B 2.B 3. C 4.A 5.A二、1.6、8、10 2.24 3.5、12、13 4.10 5.84,85三、1.解:∵2222512169AB BC +=+=,2213169AC ==,∴222AB BC AC +=.由勾股定理的逆定理知△AC 为直角三角形,且∠ABC =90°.由题意,可知BD ⊥AC ,∴AC ·BD =AB ·BC ,BD =6013.6013×26000=120000(元).即修这条公路的最低造价是12万元.2.解:∵AC =16×3=48,AB =12×3=36,∴222222604836BC AC AB +=-== ∴△ABC 为直角三角形且∠CAB =90°,∴乙船出发后的航向是南偏东40°C 卷:解:设MN 交AC 于E ,则∠BEC =90°.又AB 2+BC 2=52+122=169=32=AC 2,∴△ABC 是直角三角形,∠ABC =90°.又∵MN ⊥CE ,∴走私艇C 进入我领海的最近距离是CE ,则CE 2+BE 2=144,(13-CE )2+BE 2=25,得26CE =288,∴CE =13144. 13144÷169144≈0.85(小时),0.85×60=51(分).9时50分+51分=10时41分.答:走私艇最早在10时41分进入我国领海.。
勾股定理经典例题(附答案)
经典例题透析(一)类型一:勾股定理的直接用法1:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少?类型二:勾股定理的构造应用2、如图,已知:在中,,,. 求:BC的长.3如图,已知:,,于P. 求证:.4已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。
求:四边形ABCD的面积。
类型三:勾股定理的实际应用(一)用勾股定理求两点之间的距离问题3、如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了到达B点,然后再沿北偏西30°方向走了500m到达目的地C点。
(1)求A、C两点之间的距离。
(2)确定目的地C在营地A的什么方向。
(二)用勾股定理求最短问题如图,一圆柱体的底面周长为20cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程.利用勾股定理作长为的线段5、作长为、、的线段。
举一反三【变式】在数轴上表示的点。
经典例题透析(二)类型一:勾股定理及其逆定理的基本用法1、若直角三角形两直角边的比是3:4,斜边长是20,求此直角三角形的面积。
【变式2】直角三角形周长为12cm,斜边长为5cm,求直角三角形的面积。
【变式3】若直角三角形的三边长分别是n+1,n+2,n+3,求n。
【变式4】以下列各组数为边长,能组成直角三角形的是()A、8,15,17B、4,5,6C、5,8,10D、8,39,40类型二:勾股定理的应用2、如图,公路MN和公路PQ在点P处交汇,且∠QPN=30°,点A处有一所中学,AP=160m。
假设拖拉机行驶时,周围100m以内会受到噪音的影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到噪声影响?请说明理由,如果受影响,已知拖拉机的速度为18km/h,那么学校受影响的时间为多少秒?如图学校有一块长方形花园,有极少数人为了避开拐角而走“捷径”,在花园内走出了一条“路”。
初中数学勾股定理及逆定理练习题(附答案)
初中数学勾股定理及逆定理练习题一、解答题1.如图所示的一块地,4,3,13,12,AD m CD m AB m BC m ====求这块地的面积.2.如图,在正方形网格中,小正方形的边长为1,A ,B ,C 为格点(1)判断ABC 的形状,并说明理由.(2)求BC 边上的高.3.如图,在Rt ABC 中90,7cm C BC ∠=︒=.动点P 在线段AC 上从点C 出发,沿CA 方向运动;动点Q 在线段BC 上同时从点B 出发,沿BC 方向运动.如果点,P Q 的运动速度均为1cm /s ,那么运动几秒时,它们相距5cm4.如图,在ABC ∆中,45ABC ∠=︒,CD AB ⊥于点D ,BE AC ⊥于点E ,BE 与CD 交于点F .(1)求证:ACD FBD ∆≅∆(2)若5,1AB AD ==,求BF 的长5.如图,将长方形ABCD 沿直线EF 折叠,使点C 与点A 重合,折痕交AD 于点E ,交BC 于点F ,连接CE .(1)求证:AE AF CE CF===;(2)设AE a=,请写出一个a b c,,三者之间的数量关系式.=,DC c=,ED b6.如图,在边长为6的正方形ABCD中,E是边CD的中点,将ADE△,延长△沿AE对折至AFEEF交BC于点G,连接AG.(1)求证:ABG AFG△△;≅(2)求BG的长.7.如图,长方体盒子的长、宽、高分别是12cm,8cm,30cm,在AB的中点C处有一滴蜂蜜,一只小虫从E处沿盒子表面爬到C处去吃,求小虫爬行的最短路程.8.如图,在正方形ABCD中,AB边上有一点3E AE=,,1+EB=,在AC上有一点P,使EP BP 最短,求EP BP+的最短长度.9.如图,四边形ABCD 是舞蹈训练场地,要在场地上铺上草坪网,经过测量得知:90B ∠=︒,24m AB =,7m BC =,15m CD =,20m AD =.(1)判断D ∠是不是直角,并说明理由;(2)求四边形ABCD 需要铺的草坪网的面积.10.台风是一种自然灾害,它以台风中心为圆心在周围数百千米的范围内形成极端气旋,有极强的破坏力如图,有一台风中心由A 向B 移动,已知点C 为一海港,且点C 与直线AB 上的两点,A B 的距离分别为300km AC =,400km BC =,且500km AB =,以台风中心为圆心周围250km 以内为受影响区域.(1)海港C 受台风影响吗?为什么?(2)若台风的速度为20km/h ,台风影响该海港持续的时间有多长?11.如图,每个小正方形的边长是1.(1)求ABC △的周长.(2)画出BC 边上的高,并求出ABC △的面积.(3)画出AB 边上的高,并求出高.12.如图,在ABC △中,20AB =,12AC =,16BC =,把ABC △折叠,使AB 落在直线AC 上,求重叠部分(阴影部分)面积.13.已知ABC △的三边分别为a b c ,,,且4a b +=,1ab =,c =ABC △的形状. 14.台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形成气旋风暴,有极强的破坏力据气象观测,距沿海某城市A 正南方向240km 的B 处有一台风中心,其中心风力为12级,每远离台风中心25km ,风力就会减弱一级该台风中心现正以20km/h 的速度沿北偏东30°方向往C 处移动,如图,且台风中心的风力不变若城市所受风力到达或超过4级,则称受到台风影响(提示:在直角三角形中,30°角所对的直角边等于斜边的一半)(1)城市A 是否会受到台风影响?请说明理由(2)若城市A 会受到台风影响,那么台风影响该城市的时间有多长?(3)若城市A 会受到台风影响,那么该城市受到台风影响的最大风力为几级?15.如图,在长方形纸片ABCD 中,3cm AB =,9cm AD =,将此长方形纸片折叠,使点D 与点B 重合,折痕为EF ,求ABE △的面积.16.如图,长方形纸片ABCD沿对角线AC折叠,设点D落在D'处,BC交AD'于点BC=,求阴影部分的面积.,,8cm6cmE AB=17.如图,点D是ABC△,且4△内一点,把ABD△绕点B顺时针旋转60°得到CBEAD=,CD=.3BD=,5(1)判断DEC△的形状,并说明理由.(2)求ADB∠的度数.18.在一次意外事故中,有一根高为16m的电线杆在A处断裂,如图,电线杆的顶部C落在离电线杆底部B处8m远的地方,求电线杆断裂处A到地面的距离.19.如图,在等腰直角三角形ABC中,90∠=︒,点D为AC边的中点,过点D作DE DFABC⊥,CF=,求EF的长.交AB于点E,交BC于点F,若4AE=,320.八(2)班数学课外活动小组的同学测量学校旗杆的高度时,发现升旗的绳子垂到地面要多1米,当他们把绳子的下端拉开5米后,发现下端刚好接触地面.你能将旗杆的高度求出来吗?21.如图,已知一高层住宅发生火灾,消防车立即赶到距大厦8米处(车尾到大厦墙面),升起云梯到火灾窗口,已知云梯长17米,云梯底部距地面2 米,问发生火灾的住户窗口距地面多高?22.已知a,b,c,为△ABC 的三边长,且满足a 2 +b 2+c 2+50=6a+8b+10c,试判断△ABC 的形状.23.如图所示,在长方形ABCD 中, 8AB =,4BC =,将长方形沿AC 折叠,使点D 落在点D '处,求重叠部分AFC ∆的面积.24.如图,一个梯子AB 长25米,顶端A 靠在墙AC 上,这时梯子下端B 与墙角C 距离为15米,梯子滑动后停在DE 的位置上,测得BD 长为5米,求梯子顶端A 下落了多少米?25.美国第二十届总统加菲尔德也曾经给出了勾股定理的一种证明方法,如图,他用两个全等的直角三角形和一个等腰直角三角形拼出了一个直角梯形,请你利用此图形验证勾股定理.参考答案1.答案:解:连接AC∵90,4,3, 5.ADC AD CD AC ∠=︒==∴=由13,12AB BC ==可得222,AC BC AB ABC +=∴△是直角三角形∴30S ABC =△6,S ACD =△30624-=所以这块土地的面积为224m解析:2.答案:(1)结论:ABC 是直角三角形.理由:2222222221865,2313,6452BC AC AB =+==+==+=,222AC AB BC ∴+=, ∴ABC 是直角三角形.(2)设BC 边上的高为则有1122AC AB BC h ⋅⋅=⋅⋅, 13,AC AB BC ===.解析: 90,2ADB AD BD h ︒∠==∴ 3.答案:设运动x 秒时,它们相距5cm ,则()7cm,cm CQ x CP x =-= 根据题意得:()22275x x =+-解得123,4x x ==答:运动3秒或4秒时,它们相距5cm解析:4.答案:(1)证明:45,ABC CD AB ︒∠=⊥90CDB CDA ∴∠=∠=︒CDB ∴∆为等腰直角三角形BD CD ∴=BE AC ⊥90CEF FDB ∴∠=∠=︒又CFE BFD ∠=∠ACD FBD ∴∠=∠在ACD ∆和FBD ∆中,90ACD FBD BD CDCDA FDB ∠=∠⎧⎪=⎨⎪∠=∠=⎩︒ ()ACD FBD ASA ∴∆≅∆(2)ACD FBD ∆≅∆ 1AD FD ∴==又5AB =4BD ∴=∴在Rt BDF ∆中,BF === 解析:5.答案:(1)证明:由题意知,AF CF =,AE CE =,AFE CFE ∠=∠. 在长方形ABCD 中,//AD BC ,AEF CFE ∴∠=∠, AFE AEF ∴∠=∠,AE AF EC CF ∴===.(2)由题意知,AE EC a ==,ED b =,DC c =, 由90D ∠=︒知,222ED DC CE += ,即222b c a +=. 解析:6.答案:(1)证明:在正方形ABCD 中,AD AB =,90D B ∠=∠=︒. 将ADE △沿AE 对折至AFE △,AD AF ∴=,DE EF =,90D AFE ∠=∠=︒.AB AF ∴=,90B AFG ∠=∠=︒.又AG AG =,()Rt Rt HL ABG AFG ∴≅△△.(2)ABG AFG ≅△△,BG FG ∴=.设()0BG FG x x ==>,则6GC x =-, E 为CD 的中点,3CE DE EF ∴===,3EG x ∴=+. 在Rt CEG △中,()()222363x x +-=+,解得2x =,2BG ∴=. 解析:7.答案:分为三种情况:(1)如图①,连接EC .在Rt EBC △中,12820cm EB =+=,13015cm 2BC =⨯=,由勾股定理得25cm EC =(2)如图②,连接EC .同理可得25cm CE >.(3)如图③,连接EC .同理可得25cm CE >. 综上可知,小虫爬行的最短路程是25cm.解析:8.答案:如图,连接BD 交AC 于O ,连接ED 与AC 交于点P ,连接BP .此时EP BP +最短.易知BD AC ⊥,且BO OD =,BP PD ∴=,则BP EP ED +=.3AE =,134AD AB ==+=,∴在Rt ADE △中,由勾股定理得222234255ED =+==, EP BP ∴+的最短长度为5.解析:9.答案:(1)D ∠是直角,理由如下:如图,连接AC ,90B ∠=︒,24m AB =,7m BC =,222AC AB BC ∴=+22247625=+=,()25m AC ∴=. 又15m CD =,20m AD =,222152025+=即222DC AD AC +=,ACD ∴△是直角三角形,且D ∠是直角. (2)ABC ADC ABCD S S S =+四边形△△()211234m 22AB BC AD DC =⋅+⋅=. 故四边形ABCD 需要铺的草坪网的面积为2234m . 解析:10.答案:(1)海港C 受台风影响.理由如下:如答图,过点C 作CD AB ⊥.300km AC =,400km BC =,500km AB =.222AC BC AB ∴+=,ABC ∴△是直角三角形,AC BC CD AB ∴⋅=⋅,300400500CD ∴⨯=⨯,()300400240km 500CD ⨯∴==.以台风中心为圆心周围250km 以内为受影响区域, ∴海港C 受台风影响(2)当250km EC =,250km FC =时,台风正好影响C 港口. 70km ED EC ==,140km EF ∴=.台风的速度为20km/h ,∴受台风影响的时间为()140207h ÷=,答:台风影响该海港持续的时间为7h.解析:11.答案:(1)AB AC =,2BC =,故ABC △的周长为2(2)作图略,ABC △的面积12442=⨯⨯=.(3)作图略,AB 边上的高42=⨯÷解析:12.答案:设CD x =在ABC △中,20AB =,12AC =,16BC =,222AC BC AB ∴+=,90ACB ∴∠=︒.把ABC △折叠,使AB 落在直线AC 上,BD B D '∴=16x =-,B C AB AC '=-20128=-=.在Rt DCB '△中,90DCB '∠=︒,222CD B C DB ''∴+=,()222816x x ∴+=-,解得6x =.∴重叠部分(阴影部分)的面积为1612363⨯⨯=. 解析:13.答案:ABC △是直角三角形理由如下22a b +()22a b ab =+-242114=-⨯=,2214c ==,222a b c ∴+=,ABC ∴△是直角三角形. 解析:14.答案:(1)城市A 会受到台风影响理由如下:如图,过点A 作AD BC ⊥于点D .在Rt ADB △中,30ABD ∠=︒,240km AB =,()11240120km 22AD AB ∴==⨯=.由题意知,距台风中心在()()12425200km -⨯=以内时,会受到台风影响.120200<,∴城市A 会受到台风影响..(2)设台风中心移至E 处时,城市A 开始受到台风影响,台风中心移至F 处时,城市A 脱离台风影响,连接AE AF ,,则200km AE AF ==.由勾股定理,得222DE AE AD =-222200120160=-=,160km DE ∴=.同理可得160km DF =.∴城市A 受台风影响的时间为()160216h 20⨯=. (3)当台风中心位于D 处时,对城市A 的影响最大.120km AD =,∴台风从D 处到A 处,其风力将减弱12025 4.8÷=(级),A ∴处的风力为12 4.87.2-=(级),∴该城市受到台风影响的最大风力为7.2级解析:15.答案:设cm BE x =,由折叠的性质知cm DE BE x ==,则()9cm AE AD DE x =-=-.在Rt ABE △中,由勾股定理,得222BE AE AB =+,即()22293x x =-+,解得5x =.5cm DE BE ∴==, ()9954cm AE x ∴=-=-=.12ABE S AB AE ∴=⋅△()21346cm 2=⨯⨯=. 解析:16.答案:由折叠的性质,可知D D '∠=∠,CD CD '=.又CD AB =,D B ∠=∠,CD AB '∴=,B D '∠=∠在ABE △和CD E '△中, AEB CED B D AB CD '∠=∠⎧⎪'∠=∠⎨⎪'=⎩,ABE CD E '∴≅△△,AE CE ∴=.设cm AE CE x ==,则()8cm BE x =-在Rt ABE △中,222AB BE AE +=即()22268x x +-=,254x ∴=,25cm 4CE AE ==. 12S CE AB ∴=⋅阴影()2125756cm 244=⨯⨯=. 解析:17.答案:(1)DEC △是直角三角形理由如下: ABD △绕点B 顺时针旋转60°得到CBE △,CBE ABD ∴≅△△,3BE BD ∴==,4CE AD ==又60DBE ∠=︒,BDE ∴△是等边三角形,3DE BD ∴==.又5CD =,222234DE CE ∴+=+22255CD ===,DEC ∴△是直角三角形(2)由(1)得90DEC ∠=︒,BDE △是等边三角形,60BED ∴∠=︒,BEC DEC BED ∴∠=∠+∠9060150=︒+︒=︒.ABD CBE ≅△△,150ADB BEC ∴∠=∠=︒.解析:18.答案:在Rt ABC △中,90ABC ∠=︒.设m AB x =,则()16m AC x =-由勾股定理,得222AB BC AC +=,即()222816x x +=-,解得6x =.故电线杆断裂处A 到地面的距离为6m.解析:19.答案:连接BD .在等腰直角三角形ABC 中,90ABC ∠=︒,点D 为AC 边的中点,BD AC ∴⊥,BD CD AD ==,45ABD ∠=︒,45C ∠=︒,ABD C ∴∠=∠. 又DE DF ⊥,BD AC ⊥,EDB BDF FDC BDF ∴∠+∠=∠+∠,EDB FDC ∴∠=∠,在EDB △与FDC △中,EBD C BD CD EDB FDC ∠=∠⎧⎪=⎨⎪∠=∠⎩,()...EDB FDC A S A ∴≅△△,3BE CF ∴==,7AB ∴=,则7BC =,4BF ∴=.在Rt EBF △中,222EF BE BF =+223425=+=,5EF ∴=.解析:20.答案:解:能将旗杆的长度求出来理由如下:设旗杆的长度为x 米,根据勾股定理得:2225(1)x x +=+解得:12x =答:旗杆的高度为12米.解析:21.答案:设窗口距地面高为(2)x +米,根据勾股定理有222178x =-,∴15x =,则217x +=,所以窗口距地面高17米.解析:22.答案:△ABC 是直角三角形解析:∵a 2+b 2+c 2+50=6a+8b+10c,∴a 2-6a+9+b 2-8b+16+c 2-10c+25=0,即(a-3)2+(b-4)2+(c-5)2=0,∴a=3,b=4,c=5,∵32+42=52,∴△ABC 是直角三角形23.答案:在长方形ABCD 中,∵//AB CD ,∴BAC DCA ∠=∠.又由折叠的性质可得DCA FCA ∠=∠,∴BAC FCA ∠=∠,∴AF CF =.设AF x =,则8BF AB AF x =-=-.在Rt BCF ∆中, 4BC =,8BF x =-,CF x =,90B ∠=︒,∴()22248x x +-=.解得5x =. ∴11541022AFC S AF BC ∆=⋅=⨯⨯=. 解析:24.答案:5米解析:在RT ABC ∆中,根据勾股定理得: 20AC =米,由于梯子的长度不变,在RT CDE ∆中,根据勾股定理,求出CE ,从而即可得出答案.在Rt ABC ∆中, 25AB =米, 15BC =米, 故20AC ===米,在Rt ECD ∆中, 25AB DE ==米, ()15520CD =+=米, 故15EC ==米,故20155AE AC CE =-=-=米.答:梯子顶端A 下落了5米.考点:勾股定理的应用25.答案: 因为 ()()22211222S a b a ab b =+=++梯形, 又因为S 梯形221111(2)2222ab ba c ab c =++=+ 所以22211(2)(2)22a ab b ab c ++=+得c2=a2+b2.解析:试题分析:此等腰梯形的面积有三部分组成,利用等腰梯形的面积等于三个直角三角形的面积之和列出方程并整理.考点:勾股定理的证明.。
(完整word版)最新人教版第十七章勾股定理整理练习题及详细解析答案
题型一:直接考查勾股定理 例1。
在ABC ∆中,90C ∠=︒.(1)知6AC =,8BC =.求AB 的长.(2)已知17AB =,15AC =,求BC 的长。
题型二:应用勾股定理建立方程例2。
⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD =__________ ⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为___________ ⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为_______________例3.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长21EDCBA例4.如图Rt ABC ∆,90C ∠=︒3,4AC BC ==,分别以各边为直径作半圆,求阴影部分面积题型三:实际问题中应用勾股定理例5。
如图有两棵树,一棵高8cm ,另一棵高2cm ,两树相距8cm ,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了 mABCD E题型四:应用勾股定理逆定理,判定一个三角形是否是直角三角形例6。
已知三角形的三边长为a ,b ,c ,判定ABC ∆是否为直角三角形。
① 1.5a =,2b =, 2.5c = ②54a =,1b =,23c =例7。
三边长为a ,b ,c 满足10a b +=,18ab =,8c =的三角形是什么形状?题型五:勾股定理与勾股定理的逆定理综合应用例8。
已知ABC ∆中,13AB =cm ,10BC =cm ,BC 边上的中线12AD =cm ,求证:AB AC =【例1】、分析:直接应用勾股定理222a b c +=解:⑴10AB⑵8BC【例2】分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜边上高的乘积.有时可根据勾股定理列方程求解解:⑴4AC =, 2.4AC BCCD AB⋅==3k ,4k ∴222(3)(4)15k k +=,3k ∴=,⑵ 两直角边的长分别为54S =⑶ 两直角边分别为a ,b ,则17a b +=,22289a b +=,可得60ab =1302S ab ∴==2cm【例3】分析:此题将勾股定理与全等三角形的知识结合起来 解:作DE AB ⊥于E , 12∠=∠,90C ∠=︒ ∴ 1.5DE CD == 在BDE ∆中90,2BED BE ∠=︒= Rt ACD Rt AED ∆≅∆ AC AE ∴=在Rt ABC ∆中,90C ∠=︒222AB AC BC ∴=+,222()4AE EB AC +=+3AC ∴=【例4】答案:6【例5】分析:根据题意建立数学模型,如图8AB =m ,2CD =m ,8BC =m ,过点D 作DE AB ⊥,垂足为E ,则6AE =m ,8DE =m在Rt ADE ∆中,由勾股定理得10AD 【例6】答案:10m【例7】解:①22221.52 6.25a b +=+=,222.5 6.25c == ∴ABC ∆是直角三角形且90C ∠=︒②22139b c +=,22516a =,222bc a +≠ABC ∴∆不是直角三角形 【例8】解:此三角形是直角三角形理由:222()264a b a b ab +=+-=,且264c =222a b c ∴+= 所以此三角形是直角三角形【例9】证明:AD 为中线,5BD DC ∴==cm在ABD ∆中,22169AD BD +=,2169AB =222AD BD AB ∴+=,90ADB ∴∠=︒,222169AC AD DC ∴=+=,13AC =cm ,AB AC ∴=勾股定理练习题(家教课后练习)DCBADBA C1。
勾股定理经典例题(含答案)
经典例题透析类型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90° (1)已知a=6, c=10,求b, (2)已知a=40,b=9,求c; (3)已知c=25,b=15,求a.思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。
解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b=(2) 在△ABC中,∠C=90°,a=40,b=9,c=(3) 在△ABC中,∠C=90°,c=25,b=15,a=举一反三【变式】:如图∠B=∠ACD=90°,AD=13,CD=12,BC=3,则AB的长是多少? 【答案】∵∠ACD=90°AD=13, CD=12∴AC=AD-CD=13-12=25 ∴AC=5又∵∠ABC=90°且BC=3∴由勾股定理可得 AB=AC-BC=5-3=16 ∴AB= 4∴AB的长是4.类型二:勾股定理的构造应用2、如图,已知:在中,,,. 求:BC的长.思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有,,再由勾股定理计算出AD、DC的长,进而求出BC的长.解析:作于D,则因,∴(的两个锐角互余)∴(在中,如果一个锐角等于,那么它所对的直角边等于斜边的一半).根据勾股定理,在中,.根据勾股定理,在中,.∴.举一反三【变式1】如图,已知:,,于P.求证:.解析:连结BM,根据勾股定理,在中,.而在中,则根据勾股定理有.∴又∵(已知),∴.在中,根据勾股定理有,∴.【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。
求:四边形ABCD的面积。
分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于点E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。
解析:延长AD、BC交于E。
(完整版)勾股定理及逆定理习题及答案
勾股定理及逆定理习题及答案1、由于0.3,0.4,0.5不是勾股数,所以0.3,0.4,0.5为边长的三角形不是直角三角形()2、由于0.5,1.2,1.3为边长的三角形是直角三角形,所以0.5,1.2,1.3是勾股数()3.下列几组数据能作为直角三角形的三边的有( )(1)9,12,15; (2)15,36,39;(3)12,35,36 ; (4)12,18,22.4.一个三角形的三边的长分别是15cm,20cm,25cm,则这个三角形的面积是()cm2 .(A)250 (B)150 (C)200 (D)不能确定5.如图,在△ABC中,AD⊥BC于D,BD=9,AD=12,AC=20,则△ABC是().(A)等腰三角形(B)锐角三角形(C)钝角三角形(D)直角三角形6.如图,在一块平地上,张大爷家屋前9 m远处有一棵大树.在一次强风中,这棵大树从离地面6 m处折断倒下,量得倒下部分的长是10 m.出门在外的张大爷担心自己的房子被倒下的大树砸到.大树倒下时会砸到张大爷的房子吗?请你通过计算、分析后给出正确的回答( )A.一定不会B.可能会C.一定会D.以上答案都不对7.为了迎接新年的到来,同学们做了许多拉花布置教室,准备召开新年晚会,小王搬来一架长为 2.5 m的木梯,准备把梯子架到 2.4 m高的墙上,则梯脚与墙角的距离为( )A.0.7 m B.0.8 m C.0.9 m D.1.0 m 8.某天我国海监船驶向钓鱼岛海域执法时,海监船甲以15海里/时的速度离开港口向北航行,海监船乙船同时以20海里/时的速度离开港口向东航行,则它们离开港口2小时后相距( )海里.9. 在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,且满足c +a =2b ,c -a = 12 b ,则△ABC 是什么特殊三角形?1x 2.x 3.(1)(2)(4) B (5)D 6.A 7.A(8)50海里9. 解:因为c +a =2b ,c -a =12b ,所以(c +a)(c -a)=2b·12b.所以c 2-a 2=b 2,即a 2+b 2=c 2.所以△ABC 是∠C =90°的直角三角形.。
勾股定理的逆定理专题训练(含答案)
勾股定理的逆定理专题训练(含答案)
1.三角形ABC的两边分别为5和12,另一边c为奇数,并且a+b+c是3的倍数。
求c的值和三角形的类型。
2.三角形中两条较短的边为a+b和a-b(a>b),求第三条边使得三角形为直角三角形。
3.已知三角形ABC的三边a,b,c满足a²+b²+c²+50=2(m-1)余m+1,求三角形的类型。
4.已知三角形ABC中,BC=6,BC边上的高为7,求AC 边上的高。
5.已知一个三角形的三边分别为3k,4k,5k(k为自然数),求三角形的类型和理由。
6.已知一个三角形的三边分别为7cm,24cm,25cm,求三角形的面积。
7.给出几组数,判断哪组能构成直角三角形的三边长。
8.给出几组数,判断哪组能构成直角三角形的三边长。
9.等边三角形的三条高把这个三角形分成直角三角形的个数是多少?
10.已知四边形ABCD中,AB=3,BC=4,CD=12,
AD=13,求四边形的面积。
11.已知三角形ABC中,AC=17,AD=8,CD=15,
AB=10,求三角形的类型和面积。
12.已知三角形ABC中,AB=17cm,BC=30cm,求三角形的类型和面积。
13.判断一个机器零件是否符合要求。
14.已知四边形ABCD中,∠B=90,BC上的中线
AD=8cm,判断三角形ABC的类型和理由。
15.为了庆祝红宝石婚,XXX和XXX举办了一场数学竞赛,其中包括了勾股定理的逆定理的专题训练。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勾股定理的逆定理1.如图所示,△ABC 中,若∠A=75°,∠C=45°,AB=2,则AC 的长等于( )A.22B.23C. 6D.236知识点:转化的数学思想、勾股定理知识点的描述:在解决有关求线段长度问题时,常通过添加辅助线,把一般三角形的问题转化为直角三角形的问题,利用勾股定理解决问题。
勾股定理的内容:直角三角形两直角边的平方和等于斜边的平方。
答案:C详细解答:作BC 边上的高AD,△ ABC 中,∠BAC=75°,∠C=45°,那么∠B=60°,从而∠BAD=30° 在Rt △ABD 中,∠BAD=30°,AB=2,所以BD=1,AD=3 在Rt △ACD 中,∠C=45°,AD=3,所以CD=AD=3, 利用勾股定理可得AC=6。
1.已知:在Rt △ABC 中,∠C=90°,CD ⊥AB 于D ,∠A=60°,CD=3,线段AB 长为( )。
A.2B.3C.4D.33 答案:C分析:欲求AB ,可由AB=BD+AD ,分别在两个三角形中利用勾股定理和特殊角,求出BD 和AD 。
或欲求AB ,可由22BC AC AB +=,分别在两个三角形中利用勾股定理和特殊角,求出AC 和BC 。
详细解答:在Rt △ACD 中,∠A=60°,那么∠ACD=30°,又已知CD=3,所以利用勾股定理或特殊三角形的三边的比求出AD=1。
CD在Rt △ACB 中,∠A=60°,那么∠B=30°。
在Rt △BCD 中,∠B=30°,又已知CD=3,所以BC=23,利用勾股定理或特殊三角形的三边的比求出BD=3。
因此AB=BD+CD=3+1=4,小结:本题是“双垂图”的计算题,“双垂图”是中考重要的考点,所以要求对图形及性质掌握非常熟练,能够灵活应用。
目前“双垂图”需要掌握的知识点有:3个直角三角形,三个勾股定理及推导式BC 2-BD 2=AC 2-AD 2,两对相等锐角,四对互余角,及30°或45°特殊角的特殊性质等。
2.已知a ,b ,c 为△ABC 三边,且满足a 2c 2-b 2c 2=a 4-b 4,则它的形状为A .直角三角形B .等腰三角形C .等腰直角三角形D .等腰三角形或直角三角形知识点:综合代数变形和勾股定理的逆定理判断三角形的形状知识点的描述:这类问题常常用到代数中的配方、因式分解,再结合几何中的有关定理不难作出判断。
答案:D详细解答:∵ a 2c 2-b 2c 2=a 4-b 4,∴左右两边因式分解得))(()(2222222b a b a b a c -+=-∴0))((22222=---b a c b a ∴022=-b a 或0222=--b a c ,即b a =或222b a c +=,所以三角形的形状为等腰三角形或直角三角形。
2.若△ABC 的三边a ,b ,c 满足(c-b)2+︱a 2-b 2-c 2︱=0,则△ABC 是( ) (A )等腰三角形(B )直角三角形(C )等腰直角三角形 (D )等腰三角形或直角三角形 答案:C详细解答:∵(c-b)2+︱a 2-b 2-c 2︱=0,∴c-b =0且a 2-b 2-c 2=0 即b c =且222b a c +=,所以三角形的形状为等腰直角三角形。
3.五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )知识点:勾股定理的逆定理知识点的描述:在三角形中,如果某两边的平方和等于第三边的平方,那么这个三角形是直角三角形,最大的边就是斜边。
满足a 2+b 2=c 2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.最好能记住常见的几组勾股数:3、4、5;5、12、13;6、8、10;7、24、25;8、15、17等。
答案:C详细解答:A 图和B 图中右边的三角形三边不存在某两边的平方和等于第三边的平方,不是直角三角形。
D 图中两个的三角形三边都不存在某两边的平方和等于第三边的平方,都不是直角三角形。
只有C 图中的两个三角形都是直角三角形。
3.在下列说法中是错误的( )A .在△ABC 中,22222AC m n mn m n =-+、BC=、AB=(m n 、为正整数,且m n >),则△ABC 为直角三角形.B .在△ABC 中,若∠A :∠B :∠C =3:4:5,则△ABC 为直角三角形. C .在△ABC 中,若222c b a =-,则△ABC 为直角三角形. D .在△ABC 中,若a :b :c =5:12:13,则△ABC 为直角三角形. 答案:B详细解答: 在△ABC 中,若∠A :∠B :∠C =3:4:5,那么最大角∠C =0075180125=⨯ 不是直角三角形。
△ABC 三条边的比为a:b:c =5:12:13,则可设a =5k ,b =12k ,c =13k ,a 2+b 2=25k 2+144k 2=169k 2,c 2=(13k)2=169k 2,所以,a 2+b 2=c 2,△ABC 是直角三角形.4. 下列各命题的逆命题不成立的是( )A.两直线平行,同旁内角互补;B.若两个数的绝对值相等,则这两个数也相等C.对顶角相等D.如果a2=b2,那么a=b知识点:互逆命题知识点的描述:如果一个命题的题设是另一个命题的结论,而结论又是另一个命题的题设,那么这样的两个命题是互逆命题。
一个命题和它的逆命题的真假没有什么联系。
答案:C详细解答:“对顶角相等”的逆命题是“相等的角是对顶角”,显然这是一个假命题。
4.下列命题的逆命题成立的是()a=(B)全等三角形的周长相等(A)若a=b,则b(C)同角(或等角)的余角相等(D)若a=0,则ab=0答案:Ca=,则a=b。
不一定成立,也可能a=-b详细解答:(A)的逆命题是:若b(B)的逆命题是:周长相等的三角形全等。
不一定成立,两个三角形周长相等,形状不一定就相同。
(D)的逆命题是:若ab=0,则a=0。
不一定成立,也可能是b=0,而a≠0。
5.如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,两船相距()A.25海里B.30海里C.35海里D.40海里知识点:勾股定理的实际应用题知识点的描述:求距离或某个长度是很常见的实际应用题,这种问题一般转化为几何中的求线段长度问题,通常是在现有的直角三角形或构建的直角三角形中,利用勾股定理求出线段的长度,从而解决实际问题。
答案:D详细解答:画出答题图,由题意知,三角形ABC是直角三角形,AC=32海里,AB=24海里,根据勾股定理得BC2=AC2+AB2=322+242=1600,ABC所以BC=40(海里)5.有一长、宽、高分别为5cm 、4cm 、3cm 的木箱,在它里面放入一根细木条(木条的粗细、形变忽略不计)要求木条不能露出木箱.请你算一算,能放入的细木条的最大长度是( )A .cm 41B .cm 34C .cm 50D .cm 35 答案:C详细解答:画出如图所示的木箱图,图中AD 的长度就是能放入的细木条的最大长度,由题意知CB=5cm 、CA=4cm 、BD=3cm 在Rt △ACB 中,AC 和BC 是直角边,AB 是斜边,AB 2=AC 2+CB 2=41, 在Rt △ADB 中,AB 和BD 是直角边,AD 是斜边,AD 2=AB 2+BD 2=41+9=50,所以AD=()cm 506.如图,正方形网格中的△ABC ,若小方格边长为1,则△ABC 是( ) A .直角三角形 B .锐角三角形C .钝角三角形D .以上答案都不对 知识点:网格问题,勾股定理和逆定理知识点的描述:网格问题是常见的问题,解决这种问题要充分的利用正方形网格。
勾股定理的内容:直角三角形两直角边的平方和等于斜边的平方。
勾股定理的逆定理:在三角形中,如果某两边的平方和等于第三边的平方,那么这个三角形是直角三角形 答案:A详细解答:把△ABC 的各边分别放在不同的直角三角形中,给出必须的点的名称,画出图形。
在Rt △BCD 中, CD=1,DB=8,那么CB 2=CD 2+BD 2=65, 在Rt △ACE 中, AE=2,CE=3,那么AC 2=AE 2+CE 2=13, 在Rt △ABF 中, AF=6,BF=4,那么AB 2=AF 2+BF 2=52, 所以,在△ABC 中, AC 2+AB 2=13+52=65,又CB 2=65,所以,AC 2+AB 2= CB 2,根据勾股定理的逆定理可知三角形ABC 是直角三角形ACBDDCA6.如图,图中的小方格都是边长为1的正方形网格,则图中四边形的面积是 ( ) A.25 B.12.5 C. 9 D.8.5 答案:B 详细解答:S 四边形EFGH=S ABCD -S △DEF -S △CFG -S △BGH -S △AEH=5×5-21×1×2-21×3×3-21×2×3-21×2×4=12.5 7.如图,已知四边形ABCD 中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求得四边形ABCD 的面积.( )A. 36B. 25C. 24D. 30知识点:勾股定理和逆定理在数学问题中的应用知识点的描述:勾股定理的内容:直角三角形的两直角边的平方和等于斜边的平方。
勾股定理的逆定理:在三角形中,如果某两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
答案:A分析:根据题目所给数据特征,联想勾股数,连接AC ,可实现四边形向三角形转化,并运用勾股定理的逆定理可判定△ACD 是直角三角形. 详细解答:连接AC ,在Rt △ABC 中,AC 2=AB 2+BC 2=32+42=25, ∴ AC=5. 在△ACD 中,∵ AC 2+CD 2=25+122=169,又∵ AD 2=132=169,∴ AC 2+CD 2=AD 2,∴ ∠ACD=90°. 故S 四边形ABCD =S △ABC +S △ACD =21AB ·BC +21AC ·CD =21×3×4+21×5×12=6+30=36. 7.在四边形ABCD 中,AB =2,BC =5,CD =5,DA =4,∠B =90°,那么四边形ABCD 的面积是( )。