1求下列向量组的秩与一个极大线性无关组概要
求向量组的秩与极大无关组(修改整理)
求向量组的秩与最大无关组一、对于具体给出的向量组,求秩与最大无关组1、求向量组的秩(即矩阵的秩)的方法:为阶梯形矩阵【定理】矩阵的行秩等于其列秩,且等于矩阵的秩.(三秩相等)①把向量组的向量作为矩阵的列(或行)向量组成矩阵A;②对矩阵A进行初等行变换化为阶梯形矩阵B;③阶梯形B中非零行的个数即为所求向量组的秩.【例1】求下列向量组a1=(1, 2, 3, 4),a2 =( 2, 3, 4, 5),a3 =(3, 4, 5, 6)的秩. 解1:以a1,a2,a3为列向量作成矩阵A,用初等行变换将A化为阶梯形矩阵后可求.因为阶梯形矩阵的列秩为2,所以向量组的秩为2.解2:以a1,a2,a3为行向量作成矩阵A,用初等行变换将A化为阶梯形矩阵后可求.因为阶梯形矩阵的行秩为2,所以向量组的秩为2.2、求向量组的最大线性无关组的方法方法1 逐个选录法给定一个非零向量组A:α1, α2,…, αn①设α1≠ 0,则α1线性相关,保留α1②加入α2,若α2与α1线性相关,去掉α2;若α2与α1线性无关,保留α1,α2;③依次进行下去,最后求出的向量组就是所求的最大无关组【例2】求向量组:()()()1231,2,12,3,14,1,1,,,T T Tααα=-=-=-的最大无关组 解:因为a 1非零,故保留a 1取a 2,因为a 1与a 2线性无关,故保留a 1,a 2 取a 3,易得a 3=2a 1+a 2,故a 1,a 2 ,a 3线性相关。
所以最大无关组为a 1,a 2 方法2 初等变换法【定理】 矩阵A 经初等行变换化为B ,则B 的列向量组与A 对应的列向量组有相同的线性相关性. 证明从略,下面通过例子验证结论成立.向量组:α1=(1,2,3)T, α2=(-1,2,0)T, α3=(1,6,6)T由上可得,求向量组的最大线性无关组的方法: (1)列向量行变换①把向量组的向量作为矩阵的列向量组成矩阵A ; ②对矩阵A 进行初等行变换化为阶梯形矩阵B ;③A 中的与B 的每阶梯首列对应的向量组,即为最大无关组.【例3】求向量组 :α1=(2,1,3,-1)T, α2=(3,-1,2,0)T, α3=(1,3,4,-2)T, α4=(4,-3,1,1)T的秩和一个最大无关组, 并把不属于最大无关组的向量用最大无关组线性表示。
1求下列向量组的秩与一个极大线性无关组
习题4.31.求下列向量组的秩与一个极大线性无关组: (1)[]12,1,3,1T α=-, []23,1,2,0Tα=-,[]31,3,4,2T α=-,[]44,3,1,1Tα=-.(2)[]11,1,1,1T α=, []21,1,1,1Tα=--, []31,1,1,1Tα=--,[]41,1,1,1Tα=---.(3)[]11,1,2,4T α=-, []20,3,1,2T α=,[]33,0,7,14Tα=,[]41,1,2,0T α=-,[]52,1,5,6Tα=.分析 向量组的秩等于该向量组构成的矩阵的秩, 所以求向量组的秩可以转化为求矩阵的秩. 先把向量构成矩阵通过矩阵的初等行变换成阶梯形, 通过阶梯形便可得到矩阵的秩, 它也就是该向量组的秩, 而阶梯形的阶梯头所在的列对应的向量便构成该向量组的一个极大线性无关组.解 (1) []123423141133113301123241000010210000αααα--⎡⎤⎡⎤⎢⎥⎢⎥---⎢⎥⎢⎥=−−→⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦, 所以该向量组的秩为2, 且1α, 2α为它的一个极大线性无关组.(2) []123411111111111101011111001111110001αααα--⎡⎤⎡⎤⎢⎥⎢⎥---⎢⎥⎢⎥=−−→⎢⎥⎢⎥---⎢⎥⎢⎥--⎣⎦⎣⎦, 所以该向量组的秩为4, 且1α,2α,3α,4α为它的一个极大线性无关组.(3) []1234510312103121301101101217250001042140600000ααααα⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥=−−→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦, 所以该向量组的秩为3, 且1α,2α,4α为它的一个极大线性无关组.2.计算下列向量组的秩,并判断该向量组是否线性相关. (1)[]11,1,2,3,4T α=-,[]23,7,8,9,13Tα=-,[]31,3,0,3,3T α=----,[]41,9,6,3,6Tα=-.(2)[]11,3,2,1T β=--, []22,1,5,3T β=-,[]34,3,7,1Tβ=-, []41,11,8,3Tβ=---,[]52,12,30,6Tβ=-.解 (1) []123413111311173901122806000039330000413360000αααα--⎡⎤⎡⎤⎢⎥⎢⎥----⎢⎥⎢⎥⎢⎥⎢⎥=−−→⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦所以该向量组的秩为2, 小于向量的个数4, 所以线性相关.(2)[]123451241212412313111201548257830001111313600000βββββ----⎡⎤⎡⎤⎢⎥⎢⎥-----⎢⎥⎢⎥=−−→⎢⎥⎢⎥-⎢⎥⎢⎥--⎣⎦⎣⎦所以该向量组的秩为3, 小于向量的个数5, 所以线性相关.3.设[]11,2,1T α=-, []22,4,T αλ=, []31,,1Tαλ=.(1) λ取何值时1α,2α,3α线性相关? λ取何值时1α,2α,3α线性无关? 为什么? (2)λ取何值时3α能经1α,2α线性表示? 且写出表达式.解 (1)[]1231211212402211002αααλλλλ⎡⎤⎡⎤⎢⎥⎢⎥=−−→+⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦当2λ≠且2λ≠-时, 矩阵的秩为3与向量个数相同, 所以此时该向量组线性无关.当2λ=或2λ=-时, 矩阵的秩为2小于向量个数, 所以此时向量组线性相关. (1) 当2λ=时, 秩([]12αα)=秩([]123ααα)=2, 此时3α能经1α,2α线性表示.表达式的系数为方程组[]123X ααα=的解, 而此时该方程组的解为120,1.2x x =⎧⎪⎨=⎪⎩所以表达式为3α=212α. 当2λ=-时, 秩([]12αα)=1, 秩([]123ααα)=2, 两者不相等, 所以不能线性表示.当2λ≠且2λ≠-时, 秩([]12αα)=2, 秩([]123ααα)=3, 两者不相等,所以不能线性表示.4.下述结论不正确的是( ),且说明理由.(A) 秩为4的4×5矩阵的行向量组必线性无关. (B) 可逆矩阵的行向量组和列向量组均线性无关. (C) 秩为r(r<n)的m ×n 矩阵的列向量组必线性相关. (D) 凡行向量组线性无关的矩阵必为可逆矩阵.解 (A) 正确. 如果行向量组线性相关则行向量组的秩必小于行向量的个数4, 即矩阵的行秩小于4, 而矩阵的行秩等于矩阵的秩, 因此矩阵的秩小于4, 这与矩阵的秩为4矛盾! 所以行向量组必线性无关.(B) 正确. 可逆矩阵必为满秩矩阵, 即n n ⨯的可逆矩阵的秩为n , 而矩阵的秩等于行秩和列秩, 所以矩阵的行秩=列秩=n , 因此行向量组的秩和所含向量个数相同, 据此可知该行向量组必线性无关; 同理列向量组也必线性无关.(C) 正确. 列向量组含有n 个向量, 又由于列向量组的秩(即列秩)等于矩阵的秩r , 而r<n , 即列向量组的秩小于向量组所含向量的个数, 据此列向量组必线性相关.(D) 设111001A ⎡⎤=⎢⎥⎣⎦, 易知该矩阵的行向量组线性无关, 但是它不是方阵, 所以不是可逆矩阵. 所以该选项不正确.综上所述应选D.。
1.设α1=(1,1,0),α2=(0,1,1),α3=(3,4,0).求α..
1. 设α1=(1,1,0),α2=(0,1,1),α3=(3,4,0).求α1-α2及3α1+2α2-α3. 解:α1-α2=(1,1,0)-(0,1,1)=(1,0,-1),3α1+2α2-α3=(3,3,0)+(0,2,2)-(3,4,0)=(0,1,2)2. 设3(α1-α)+2(α2+α)=5(α3+α),其中α1=(2,5,1,3),α2=(10,1,5,10),α3=(4,1,-1,1).求α.解:由3(α1-α)+2(α2+α)=5(α3+α)整理得:α=16(3α1+2α2-5α3),即α=16 (6,12,18,24)=(1,2,3,4)3.(1)× (2)× (3)√ (4)× (5)×4. 判别下列向量组的线性相关性.(1)α1=(2,5), α2=(-1,3);(2) α1=(1,2), α2=(2,3), α3=(4,3);(3) α1=(1,1,3,1),α2=(4,1,-3,2),α3=(1,0,-1,2);(4) α1=(1,1,2,2,1),α2=(0,2,1,5,-1),α3=(2,0,3,-1,3),α4=(1,1,0,4,-1).解:(1)线性无关;(2)线性相关;(3)线性无关;(4)线性相关.5. 设α1,α2,α3线性无关,证明:α1,α1+α2,α1+α2+α3也线性无关. 证明:设112123123()()0,k k k αααααα+++++=即123123233()()0.k k k k k k ααα+++++=由123,,ααα线性无关,有1232330,0,0.k k k k k k ++=⎧⎪+=⎨⎪=⎩所以1230,k k k ===即112123,,αααααα+++线性无关.6.问a 为何值时,向量组'''123(1,2,3),(3,1,2),(2,3,)a ααα==-=线性相关,并将3α用12,αα线性表示.解:1322137(5),32A a a=-=-当a =5时,312111.77ααα=+7. 作一个以(1,0,1,0)和(1,-1,0,0)为行向量的秩为4的方阵. 解:因向量(1,0,0,0)与(1,0,1,0)和(1,-1,0,0)线性无关,所以(1,0,0,0)可作为方阵的一个行向量,因(1,0,0,1)与(1,0,1,0),(1,-1,0,0),(1,0,0,0)线性无关,所以(1,0,0,1)可作为方阵的一个行向量.所以方阵可为101011001000101⎛⎫⎪- ⎪ ⎪⎪⎝⎭.8. 设12,,,s ααα的秩为r 且其中每个向量都可经12,,,r ααα线性表出.证明:12,,,r ααα为12,,,s ααα的一个极大线性无关组.【证明】若 12,,,r ααα (1)线性相关,且不妨设12,,,t ααα (t <r ) (2)是(1)的一个极大无关组,则显然(2)是12,,,s ααα的一个极大无关组,这与12,,,sααα的秩为r 矛盾,故12,,,r ααα必线性无关且为12,,,s ααα的一个极大无关组.9. 求向量组=(1,1,1,k ),=(1,1,k ,1),3α=(1,2,1,1)的秩和一个极大无关组.【解】把123,,ααα按列排成矩阵A ,并对其施行初等变换.1111111111111120010010101101001000111011001000k k k k kk k k ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥=→→→⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦⎣⎦A当k =1时,123,,ααα的秩为132,,αα为其一极大无关组. 当k ≠1时,123,,ααα线性无关,秩为3,极大无关组为其本身.10. 确定向量3(2,,)a b =β,使向量组123(1,1,0),(1,1,1),==βββ与向量组=(0,1,1),=(1,2,1),3α=(1,0,-1)的秩相同,且可由123,,ααα线性表出.【解】由于123123011120(,,);120011111000112112(,,),11010102a b b a ⎡⎤⎡⎤⎢⎥⎢⎥==→--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥==→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦A B αααβββ而R (A )=2,要使R (A )=R (B )=2,需a -2=0,即a =2,又12330112120(,,,),12001121110002a a b b a ⎡⎤⎡⎤⎢⎥⎢⎥==→⎢⎥⎢⎥⎢⎥⎢⎥--+⎣⎦⎣⎦c αααβ要使可由123,,ααα线性表出,需b -a +2=0,故a =2,b =0时满足题设要求,即=(2,2,0).11. 求下列向量组的秩与一个极大线性无关组.(1) α1=(1,2,1,3),α2=(4,-1,-5,-6),α3=(1,-3,-4,-7);(2) α1=(6,4,1,-1,2),α2=(1,0,2,3,-4),α3=(1,4,-9,-6,22),α4=(7,1,0,-1,3);(3) α1=(1,-1,2,4),α2=(0,3,1,2),α3=(3,0,7,14),α4=(1,-1,2,0),α5=(2,1,5,6). 解:(1)把向量组作为列向量组成矩阵Α,应用初等行变换将Α化为最简形矩阵B ,则1114110141141913951115409500000036701810000000A B ⎛⎫-⎛⎫ ⎪⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪---- ⎪ ⎪ ⎪=→→→= ⎪ ⎪ ⎪ ⎪---- ⎪ ⎪⎪ ⎪ ⎪----⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭⎝⎭ 52 0 50 0 99可知:R (Α)=R (B )=2,B 的第1,2列线性无关,由于Α的列向量组与B 的对应的列向量有相同的线性组合关系,故与B 对应的Α的第1,2列线性无关,即α1,α2是该向量组的一个极大无关组. (2)同理,61701714010810111201201312438⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪→→ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭ 1 -1 55 2 -9 0 4 40 - 55 7 -9 -9 0 -8 40 1 -6 0 5 -15 -10 5 -15 22 0 40 1111010101⎛⎫ ⎪ ⎪ ⎪→ ⎪ ⎪ ⎪⎝⎭⎛⎫ ⎪⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪→→ ⎪ ⎪⎪⎪ ⎪ ⎪ ⎪⎝⎭ ⎪⎪⎝⎭-10 0 0 0 2 -9 07 2 -9 0 0 0 0 -5 -11 -5 0 0 0450 0 0 -0 0 10 00 0 1 0110 0 0 10 0 0 240 0 10 0 0 0 0110 0 0 0B⎛⎫⎪⎪ ⎪= ⎪ ⎪ ⎪⎝⎭10 0 0 0可知R(Α)=R(B)=4,Α的4个列向量线性无关,即α1,α2,α3,α4是该向量组的极大无关组. (3)同理,A ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪=→→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1 0 3 1 2 1 0 3 1 2 1 0 3 1 2 1 0 3 1 2-1 3 0 -1 10 3 3 0 30 1 1 0 10 1 1 0 12 1 7 2 50 1 1 0 10 0 0 -4 -40 0 0 1 14 2 14 0 60 2 2 -4 -20 0 0 0 00 ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭0 0 0,可知R(Α)=R(B)=3,取线性无关组α1,α3,α5为该向量组的一个极大无关组.12.求下列向量组的一个极大无关组,并将其余向量用此极大无关组线性表示. (1) α1=(1,1,3,1),α2=(-1,1,-1,3),α3=(5,-2,8,-9),α4=(-1,3,1,7);(2) α1=(1,1,2,3),α2=(1,-1,1,1),α3=(1,3,3,5),α4=(4,-2,5,6),α5=(-3,-1,-5,-7). 解:(1)以向量组为列向量组成Α,应用初等行变换化为最简形式.11111100101A ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=→→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3 -1 5 -1 0 11 - 5 -1 -1 5 -127 -2 3 2 -7 47 - 2 - 2223 -1 8 10 2 -7 40 0 0 00 0 0 01 3 -9 70 4 -14 8 0 0 0 00 0 0 0B ⎛⎫ ⎪⎪ ⎪= ⎪ ⎪⎪ ⎪⎝⎭,可知,α1,α2为向量组的一个极大无关组.设α3=x 1α1+x 2α2,即12121212523839x x x x x x x x -=⎧⎪+=-⎪⎨-=⎪⎪+=-⎩解得,1237,22x x ==-设α4=x 3α1+x 4α2,即12121212133137x x x x x x x x -=-⎧⎪+=⎪⎨-=⎪⎪+=⎩解得,121,2x x ==所以31241237,2.22a a a a a a =-=+(2)同理, 1111111A B ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪=→→= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1 1 4 -3 1 1 4 -3 1 0 2 1 -21 - 3 -2 -10 -2 2 -6 20 -1 3 -12 3 5 -50 - 1 -3 10 0 0 0 03 5 6 -70 -2 2 -6 20 0 0 0 0可知, α1、α2可作为Α的一个极大线性无关组,令α3=x 1α1+x 2α2可得:121213x x x x +=⎧⎨-=⎩即x 1=2,x 2=-1,令α4=x 3α1+x 4α2, 可得:121242x x x x +=⎧⎨-=-⎩即x 1=1,x 2=3,令α5=x 5α1+x 6α2, 可得:121231x x x x +=-⎧⎨-=-⎩即x 1=-2,x 2=-1,所以α3=2α1-α2α4=α1+3α2,α5=-2α1-α 213. 设向量组12,,,m ααα与12,,,s βββ秩相同且12,,,m ααα能经12,,,s βββ线性表出.证明12,,,m ααα与12,,,s βββ等价.【解】设向量组12,,,m ααα (1)与向量组12,,,s βββ (2)的极大线性无关组分别为12,,,r ααα (3)和12,,,r βββ (4)由于(1)可由(2)线性表出,那么(1)也可由(4)线性表出,从而(3)可以由(4)线性表出,即1(1,2,,).ri ij jj a i r ===∑ αβ因(4)线性无关,故(3)线性无关的充分必要条件是|a ij |≠0,可由(*)解出(1,2,,)j j r = β,即(4)可由(3)线性表出,从而它们等价,再由它们分别同(1),(2)等价,所以(1)和(2)等价.14. 设向量组α1,α2,…,αs 的秩为r 1,向量组β1,β2,…,βt 的秩为r 2,向量组α1,α2,…,αs ,β1,β2,…,βt 的秩为r 3,试证:max{r 1,r 2}≤r 3≤r 1+r 2.证明:设αs1,…,1r Sα为α1,α2,…,αs 的一个极大线性无关组, βt1,βt2,…,2r tβ为β1,β2,…,βt 的一个极大线性无关组. μ1,…,3rμ为α1, α2,…,αs ,β1,β2,…,βt 的一个极大线性无关组,则αs1,…,1r Sα和βt1,…,βtr2可分别由μ1,…,3rμ线性表示,所以,r 1≤r 3,r 2≤r 3即max{r 1,r 2}≤r 3,又μ1,…,3rμ可由αs1,…,αsr1,βt1,…,βtr2线性表示及线性无关性可知:r 3≤r 1+r 2.15. 已知向量组α1=(1,a ,a ,a )′,α2=(a ,1,a ,a )′,α3=(a ,a ,1,a )′,α4=(a ,a ,a ,1)′的秩为3,试确定a 的值.解:以向量组为列向量,组成矩阵A ,用行初等变换化为最简形式:1113110a a a a a a a a a a a a a a a a a a a a a a a a a a a a +⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ -1 0 0 1- 0 0 1 -1 0 1- 00 0 1- 0 1-1 0 0 1-0 0 0 1-由秩A=3.可知a ≠1,从而1+3a =0,即a =-13.16. 求下列矩阵的行向量组的一个极大线性无关组.(1)2531174375945313275945413425322048⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (2)11221021512031311041⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦.【解】(1) 矩阵的行向量组1234⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦αααα的一个极大无关组为123,,ααα;(2) 矩阵的行向量组1234⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦αααα的一个极大无关组为124,,ααα.17. 集合V 1={(12,,,n x x x )|12,,,n x x x ∈R 且12n +++ x x x =0}是否构成向量空间?为什么?【解】由(0,0,…,0)∈V 1知V 1非空,设121122(,,,),(,,,),n n V V k =∈=∈∈x x x y y y αβR )则112212(,,,)(,,,).n n n x y x y x y k kx kx kx +=+++= αβα因为112212121212()()()()()0,()0,n n n n n n x y x y x y x x x y y y kx kx kx k x x x ++++++=+++++++=+++=+++=所以11,V k V +∈∈αβα,故是向量空间.18. 试证:由123(1,1,0),(1,0,1),(0,1,1)===ααα,生成的向量空间恰为R 3.【证明】把123,,ααα排成矩阵A =(123,,ααα),则11020101011==-≠A ,所以123,,ααα线性无关,故123,,ααα是R 3的一个基,因而123,,ααα生成的向量空间恰为R 3.19. 求由向量12345(1,2,1,0),(1,1,1,2),(3,4,3,4),(1,1,2,1),(4,5,6,4)=====ααααα所生的向量空间的一组基及其维数.【解】因为矩阵12345(,,,,)113141131411314214150121301213,113260001200012024140241400000=⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥--------⎢⎥⎢⎥⎢⎥=→→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦A ααααα∴124,,ααα是一组基,其维数是3维的.20. 设1212(1,1,0,0),(1,0,1,1),(2,1,3,3),(0,1,1,1)===-=--ααββ,证明:1212(,)(,)L L =ααββ.【解】因为矩阵1212(,,,)1120112010110131,0131000001310000=⎡⎤⎡⎤⎢⎥⎢⎥---⎢⎥⎢⎥=→⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦A ααββ由此知向量组与向量组的秩都是2,并且向量组可由向量组线性表出.由习题15知这两向量组等价,从而也可由线性表出.所以1212(,)(,)L L =ααββ.21. 在R 3中求一个向量γ,使它在下面两个基123123(1)(1,0,1),(1,0,0)(0,1,1)(2)(0,1,1),(1,1,0)(1,0,1)==-==-=-=αααβββ下有相同的坐标.【解】设γ在两组基下的坐标均为(123,,x x x ),即111232123233112233(,,)(,,),110011001110101101x x x x x x x x x x x x ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦-⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦γαααβββ即1231210,111000x x x --⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦求该齐次线性方程组得通解123,2,3x k x k x k===- (k 为任意实数)故112233(,2,3).x x x k k k =++=-γεεε22. 验证123(1,1,0),(2,1,3),(3,1,2)=-==ααα为R 3的一个基,并把1(5,0,7),=β用这个基线性表示. 【解】设12312(,,),(,),==A B αααββ又设11112123132121222323,x x x x x x =++=++βαααβααα,即11121212321223132(,)(,,),x x x x x x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ββααα记作 B =AX .则2321231235912359()111080345170327130327131235910023032713010330022400112r r r r r r -+↔--⎡⎤⎡⎤⎢⎥⎢⎥=−−−→−−−→---⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦-⎡⎤⎡⎤⎢⎥⎢⎥−−−−−→--⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦A B 作初等行变换因有↔A E ,故123,,ααα为R 3的一个基,且1212323(,)(,,),3312⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦ββααα即1123212323,332=+-=--βαααβααα.。
2012届钻石卡学员基础阶段线性代数巩固练习题
2012届钻⽯卡学员基础阶段线性代数巩固练习题2012届钻⽯卡学员基础阶段线性代数巩固练习题1. 计算⾏列式221 411 2021991012. 计算⾏列式123x x x x x x3. 计算⾏列式0004 0043 0432 43214. 计算⾏列式00010 0020008000 90000 000010"" """""""""5. 计算⾏列式1234 2341 3412 41236. 计算⾏列式12345 678910 00013 00024 010117. 计算⾏列式00112 00302 00240 12401 312588. 证明:111112222233333++++++a b xa xbc a b xa xbc a b xa xbc 1111222223333(1)+=?++a b x b c x a b x b c a b x b c 9. 证明:1111111111111111+?+?x x y y 22=x y10. 计算⾏列式122222222222322222122222"""""""""""n n11. 解⽅程组134123412312345423,21,421,0.++=++=??++=??+++=?x x x x x x x x x x x x x x 12. 解⽅程组234513451245123512341,2,3,4,5.+++=??+++=??+++=??+++=??+++=?x x x x x x x x x x x x x x x x x x x x13. 问:齐次线性⽅程组12341234123412340,20,30,0.+++=??+++=??+?+=??+++=?x x x ax x x x x x x x x x x ax bx 有⾮零解时,,a b 必须满⾜什么条件?14. 设 311111212,210123101A B==,求?AB BA15. 计算()11121212221212,,,??""""""n n n n n nn a a a a a a y y y a a a16. 计算111212122212110""""""%"n n n n nn a a a aa a a a a17. 计算1112121222121200""""""%"n n n n nn a a a a a a a a a 18. ⽤分块矩阵的乘法,计算下列矩阵的乘积:(1)1300028000001010023200311A =,1300028000101010123223311B=,求AB ;(2)10100101000210002000,310000030000020000130000200042A B==,求AB . 19. 设00??=?B AC ,其中B 是n 阶可逆矩阵,C 是m 阶可逆矩阵,证明A 可逆,并求1?A . 20. ⽤矩阵分块的⽅法,证明下列矩阵可逆,并求其逆矩阵:(1)1200025000003000001000001(2)121000000.000000n n a a a a"""""""""21. ⽤初等变换法求逆矩阵122212221??22. ⽤初等变换法求逆矩阵1234231211111026??23. 求逆矩阵100011001110111124. 解矩阵⽅程:1235.3459X=?25. 解矩阵⽅程:12313032410272101078X =26. 求矩阵12345001230000400121??的秩,并指出该矩阵的⼀个最⾼阶的⾮零⼦式.27. 求矩阵11210224203061103001的秩,并指出该矩阵的⼀个最⾼阶的⾮零⼦式. 28. 求矩阵321322131345561的秩,并指出该矩阵的⼀个最⾼阶的⾮零⼦式.29. 求矩阵1100211002110021的秩,并指出该矩阵的⼀个最⾼阶的⾮零⼦式. 30. 将向量α表⽰成1234,,,αααα的线性组合:1211=α,11111=α,21111=??α,31111=α,41111=α31. 将向量α表⽰成1234,,,αααα的线性组合:()0,0,0,1=α,()11,1,0,1=α,()22,1,3,1=α,()31,1,0,0=α,()40,1,1,1=??α32. 论述每个向量()12,,,="n αααα线性相关和线性⽆关的条件.33. 证明:若12,αα线性⽆关,则1212,+?αααα也线性⽆关34. 证明:122331,,αααααα+++线性⽆关的充要条件是123,,ααα线性⽆关. 35. 下列命题(或说法)是否正确?如正确,证明之;如不正确,举反例:(1)12,,,(2)>"m m ααα线性⽆关的充要条件是任意两个向量线性⽆关;(2)12,,,(2)>"m m ααα线性相关的充要条件是有1?m 个向量线性相关;(3)若12,αα线性相关,12,ββ线性相关,则有不全为零的数1k 和2k ,使11220+=k k αα,且11220+=k k ββ,从⽽使111222()()0+++=k k αβαβ,故11+αβ,22+αβ线性相关;(4)若123,,ααα线性⽆关,则122331,,αααααα线性⽆关;(5)若1234,,,αααα线性⽆关,则12233441,,,++++αααααααα线性⽆关;(6)若12,,,"n ααα线性相关,则122311,,,,?++++"n n n αααααααα线性相关. 36. 求下列向量组的秩及其⼀个极⼤线性⽆关组,并将其余向量⽤极⼤⽆关组线性表⽰:(1)()16,4,1,9,2=α,()21,0,2,3,4=?α,()31,4,9,6,22=??α,()47,1,0,1,3=?α(2)()11,1,2,4=?α,()20,3,1,2=α,()33,0,7,14=α,()42,1,5,6=α,()51,1,2,0=?α(3)()11,1,1=α,()21,1,0=α,()31,0,0=α,()41,2,3=?α37. 设向量组:()11,1,2,4=?ξ,()20,3,1,2=ξ,()33,0,7,14=ξ,()41,1,2,0=?ξ,()52,1,5,6=ξ(1)证明12,ξξ线性⽆关;(2)求向量组包含12,ξξ的极⼤线性⽆关组.38. 已经()1,2,1,1=?α,()2,3,1,1=?β,()1,1,2,2=γ(1)求,,αβγ的长度及()(),,,αβαγ;(2)求与,,αβγ都正交的所以向量.39. ⽤施密特正交化⽅法,由下列向量组分别构造⼀组标准正交向量组:(1)()1,2,2,1?,()1,1,5,3?,()3,2,8,7?;(2)()1,1,1,2??,()5,8,2,3??,()3,9,3,8;40. 证明:若A 是正交矩阵,则A 的伴随矩阵*A 也是正交矩阵. 41. 证明:若A 是正交矩阵,则:(i )A 的⾏列式等于1或者-1;(ii )1=T A A42. 求下列矩阵的特征值和特征向量:(1) 452221111(2) 220212020????43. 已知矩阵74147144A x=?的特征值13λ=(⼆重),212λ=,求x 的值,并求其特征向量.44. 设12,x x 是矩阵A 不同特征值的特征向量,证明12x x +不是A 的⼀个特征向量. 45. 设A 可逆,讨论A 与*A 的特征值(特征向量)之间的相互关系. 46. 已知10~02AΛ=?,求det()A I ?. 47. 已知12110,3202P P AP ==?,求nA . 48. 设1B P AP ?=,x 是矩阵A 属于特征值0λ的特征向量.证明:1P x ?是矩阵B 的对应其特征值0λ的⼀个特征向量.49. 设三阶实矩阵A 有⼆重特征值1λ,如果1(1,0,1),=Tx 2(1,0,1),=??Tx 3(1,1,0),Tx =4(0,1,1)T x =?都是对应于1λ的特征向量,问A 可否对⾓化?50. 对下列实对称矩阵A ,求正交矩阵T 和对⾓矩阵Λ,使1T AT ?=Λ:(1) 130341011; (2) 00410********40; (3) 133331333313333151. ⽤正交变换x Qy =,将下⾯的⼆次型化为标准形,并求正交矩阵Q :22221234121423342222f x x x x x x x x x x x x =++++52. 已知22212312323(,,)2332f x x x x x x ax x =+++通过正交变换x Qy =可化为标准形22212325f y y y =++,试求参数a 及正交矩阵Q .53. 设4200021000005000004600061A=,求正交矩阵Q ,使得T Q AQ 为对⾓矩阵. 54. ⽤配⽅法将⼆次型222123122331254484x x x x x x x x x +++??化为标准形,并写出所⽤的坐标变换. 55. 求下列⼆次型中的参数t ,使得⼆次型正定: (1) 2221231213235422x x tx x x x x x x +++??; (2) 22212312132322x x x tx x x x ++++.56. 设A 是正定矩阵,C 是实可逆矩阵,证明:TC AC 是实对称矩阵,⽽且也是正定矩阵. 57. 设A 是正定矩阵,证明A 的伴随矩阵*A 也是正定矩阵.。
线性代数 3-6 第3章6讲-极大线性无关组和秩(2)
0 0
1 0
1 0
1 4
0
B
4
(3) 将其余向量用该极大无关组线性表示.
0 0 0 0
0
化为梯形阵后每个阶梯选一个向量得一个极大无关组:1,2,5 ;
(3) 把矩阵B继续作初等行变换:
1 0 3 2 1 1 0 3 2 1 1 0 3 1 0
B 0 1 1 1
0
0
1
1
1
0 0
1
1
1
0
0 0 0 4 4 0 0 0 1 1 0 0 0 1 1
所以向量组1,
,
2
, n 与向量组e1,e2,
,en等价.
5
本讲内容
01 极大线性无关组和向量组的秩 02 向量组的秩和矩阵的秩的关系
二、向量组的秩和矩阵的秩的关系
定理3.7 设A是一个m n矩阵,则A 的秩等于A 的行秩,也等于A 的列秩.
记1,
,
2
, n
是A
的列向量组 (m
维),1,2,
,m是A
的行向量组 (n
维),
则
r( A)
r
(1,
,
2
,n )
r
(1,
,
2
,m ).
7
二、向量组的秩和矩阵的秩的关系
例3 求向量组的秩与极大无关组:
1 (1,1, 4)T ,2 (1, 0, 4)T ,3 (1, 2, 4)T ,4 (1,3, 4)T .
1 1 1 1 1 1 1 1
解
A 1,2,3,4 1 0 2 3 0 1 1 2
b11
b1s
AB (1, 2,, s )=(1,2,, Nhomakorabean
线性代数习题册参考解答
第一章 行列式1、求下列排列的逆序数,并确定它们的奇偶性。
(1)1347265;(2)321)1( -n n 。
【解】(1)62130000)1347265(=++++++=τ,偶排列;(2)2)1()1(210]321)1([-=-++++=-n n n n n τ。
当14,4+=k k n 时,2),14(22)1(-=-k k k n n 当34,24++=k k n 时,4)(12(2)1(+=-k n n 排列。
■2、用行列式定义计算x x x xx f 111231112)(=中4x 和3x 的系数,并说明理由。
含4x 2;含有3x ,(4,4)的元素乘积项,而10=+,故3x 的系数为1-611612031102251611311061202251611301160212152323112241324--=---=--=↔↔++-r r c c r r r r r r D9300003003110225123242-=--=--r r r r 。
■4、求84443633224211124=D 。
【解】性质(三角化法)+行和相等的行列式:211112111121111224844436332242111243212432434r r r r r r r D +++÷÷÷===1201010*********12014,3,2==-=r r k k 。
■5、求x x m x D n -=111mD n n c c c nn-=+++ (21mm m x ni i c x c nk k k ---=∑=-=0101001)(1,,3,2111))((-=--=∑n ni i m m x 。
■6、求nn a a a D1001011110211=+,其中021≠n a a a 。
【解】箭形行列式(爪形行列式):利用对角线上元素将第一行(或列)中元素1化为零。
线性代数课后答案解析__第二版__同济大学出版社
线性代数习题解答 同济大学出版社习题11.求下列各排列的逆序数:(1)1 2 3 4; (2)4 1 3 2;(3)4 1 5 3 2; (4)3 7 1 2 4 5 6; (5)1 3 … (21)n - 2 4 … (2)n ; (6)1 3 … (21)n - (2)n (22)n - … 2. 2.利用对角线法则计算下列二阶、三阶行列式:(1)3214---; (2)201141183---;(3)a b c b c a c a b ; (4)x y x y yx y x x yxy+++.3.在六阶行列式中,下列两项各应带什么符号: (1)233142561465a a a a a a ;(2)334214516625a a a a a a . 4.计算下列各行列式:(1)000100020010000000n n -; (2)1234214334124321------;(3)2100121001210012; (4)0451250201720343115023013-------;(5)abac aebdcd de bfcfef---; (6)1111111111111111x x y y+-+-.5.证明:(1)11121314152122232425313241425152000000000a a a a a a a a a a a a a a a a =; (2)2222111a abb aa b b +=3()a b -;(3)111111222222b cc a a bb c c a a b b c c a a b +++++++++=1112222ab ca b c a b c ; (4)222244441111a b c d a b c d a b c d ; ()()()()()a b a c a d b c b d =-----()()-+++c d a b c d ;(5)1221100001000001n n n x x xa a a a x a -----+111n n n n x a x a x a --=++++ .6.计算下列各n 阶行列式:(1)11aa,其中对角线上元素都是a ,未写出的元素都是0;(2)111x a a a x a a a x --- ;(3)123111100100100n a a a a,230≠其中n a a a ; (4)12111111111na a a +++,120n a a a ≠ 其中;(5)111222(1)(2)()(1)(2)()12111n n n n n n a a a n a a a n a a a n ---------------;(6)det(),n ij ij D a a i j ==-其中. 7.利用拉普拉斯定理计算下列各行列式:(1)320000430000002100003200000032000054;(2)3002034040030560; (3)112110000nnn nna b a b D c d c d =.解答习题11.(1)0;(2)4;(3)6;(4)7;(5)(1)2-n n ;(6)(1)-n n . 2.(1)-14;(2)-4;(3)3333---ab a b c ;(4)332()-+x y . 3.(1)正号;(2)负号. 4.(1)(1)(2)2(1)!---n n n ;(2)900;(3)5;(4)-799;(5)4abcdef ;(6)22x y . 5.提示:(1)用行列式定义证明;(2)、(3)、(4)用行列式性质证明;(5)用数学归纳法证明.6.(1)22(1)--n aa ;(2)1[1(1)](1)--+---n x n a x a ;(3)23121()()nn i ia a a a a =-∑ ;(4)1211()(1)=+∑nn i i a a a a ;(5)1()≥>≥-∏n i j i j ;(6)12(1)(1)2----n n n . 7.(1)2;(2)2;(3)1()=-∏niii i i a db c .习题21.有6名选手参加乒乓球比赛,成绩如下:选手1胜选手2,4,5,6负于选手3;选手2胜选手4,5,6负于选手1,3;选手3胜选手1,2,4负于选手5,6;选手4胜选手5,6负于选手1,2,3;选手5胜选手3,6负于选手1,2,4;若胜一场得1分,负一场得零分试用矩阵表示输赢状况,并排序.2.某种物资以3个产地运往4个销地,两次调运方案分别为矩阵A 与矩阵B .且357220430123A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,132021570648B ⎛⎫ ⎪= ⎪ ⎪⎝⎭试用矩阵表示各产地运往各销地两次的物资调运量.3.设111123111124111051A B ⎛⎫⎛⎫⎪ ⎪=-=-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,,求32AB A -与TA B .4.某厂研究三种生产方法,生产甲、乙、丙三种产品,每种生产方法的每种产品数量用如下矩阵表示:234123241A ⎛⎫ ⎪= ⎪ ⎪⎝⎭甲乙丙方法一方法二方法三 若甲、乙、丙各种产品每单位的利润分别为10元,8元,7元,试用矩阵的乘法求出以何种方法获利最多.5.设12101312A B ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,,问(1)AB BA =吗?(2)()2222A B A AB B +=++吗?(3)()()22A B A B A B +-=-吗?6.举反例说明下列命题是错误的: (1)若2A O =,则A O =;(2)若2A A =,则A O =或A E =;(3)若AX AY =,且A O ≠,则X Y =. 7.设101A λ⎛⎫=⎪⎝⎭,求23kA A A ,,,. 8.设AB 、都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB BA =. 9.用伴随矩阵法求下列矩阵的逆阵:(1)1225⎛⎫ ⎪⎝⎭; (2)cos sin sin cos θθθθ-⎛⎫⎪⎝⎭; (3)121342541-⎛⎫ ⎪- ⎪ ⎪-⎝⎭; (4)1234012300120001⎛⎫⎪⎪ ⎪ ⎪⎝⎭. 10.解下列矩阵方程: (1)25465321X -⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(2)211113210432111X -⎛⎫-⎛⎫⎪= ⎪ ⎪⎝⎭ ⎪-⎝⎭;(3)010100143100001201001010120X -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭.11.设方阵A 满足225A A E O +-=,证明3A E +可逆,并求其逆矩阵.12.已知对给定方阵A ,存在正整数k ,成立kA O =,试证E A -可逆,并指出()1E A --的表达式.13.设A 为3阶方阵,12A =,求()125A A -*-. 14.设方阵A 可逆,证明其伴随矩阵A *也可逆,且()()11AA -**-=.15.设131020101A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,2AB E A B +=+,求B .16.设三阶矩阵A B ,满足关系:16A BA A BA -=+,且100210041007A ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭, 求B .17.设033110123A ⎛⎫ ⎪= ⎪ ⎪-⎝⎭,2AX A X =+,求X .18已知AP P =Λ,其中100100210000211001P ⎛⎫⎛⎫⎪ ⎪=-Λ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,=,求A 及5A .19.设A B ,和A B +均可逆,证明11A B --+也可逆,并求其逆矩阵.20.将矩阵2131425442622140A -⎛⎫⎪-⎪= ⎪--- ⎪-⎝⎭化为行阶梯形矩阵,并求矩阵A 的一个最高阶非零子式.21.用初等变换法求下列矩阵的逆:(1)111211120⎛⎫ ⎪- ⎪ ⎪⎝⎭; (2)321315323⎛⎫⎪ ⎪ ⎪⎝⎭;(3)3201022112320121--⎛⎫⎪ ⎪ ⎪--- ⎪⎝⎭; (4)1357012300120001-⎛⎫⎪⎪⎪⎪⎝⎭.22.下列矩阵的秩.:(1)1234124511012⎛⎫ ⎪- ⎪ ⎪⎝⎭; (2)321312131370518---⎛⎫ ⎪-- ⎪ ⎪--⎝⎭; (3)1001310312011457⎛⎫⎪-⎪ ⎪-⎪⎝⎭; (4)24131121023636a -⎛⎫ ⎪- ⎪ ⎪⎝⎭.23.设A 为n 阶矩阵,且2A A =,证明()()R A R A E n +-=.24.设34432022O A O ⎛⎫⎪- ⎪= ⎪ ⎪⎝⎭,求84A A ,. 25.设矩阵A 和B 均可逆,求分块矩阵O A B O ⎛⎫⎪⎝⎭的逆矩阵,并利用所得结果求矩阵005200218300520⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭的逆矩阵.解答习题21.123456110111200111311100400011500101600100⎛⎫⎪⎪⎪⎪⎪⎪⎪⎪⎝⎭,选手按胜多负少排序为1 2 3 4 5 6.2.357213202043215701230648 A B⎛⎫⎛⎫⎪ ⎪+=+⎪ ⎪⎪ ⎪⎝⎭⎝⎭48924191007611⎛⎫⎪= ⎪ ⎪⎝⎭.3.111123111 3331111242111111051111 AB A⎛⎫⎛⎫⎛⎫⎪⎪ ⎪-=-----⎪⎪ ⎪⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭21322217204292-⎛⎫⎪=--⎪⎪-⎝⎭058123056124290051TTA B⎛⎫⎛⎫⎪ ⎪=---⎪ ⎪⎪ ⎪⎝⎭⎝⎭002123058559124056860051290⎛⎫⎛⎫⎛⎫⎪⎪ ⎪=---=-⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭.4.1072844759A⎛⎫⎛⎫⎪ ⎪=⎪ ⎪⎪ ⎪⎝⎭⎝⎭,方法一获利最多. (1)AB BA≠,因为34124638AB BA⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,,所以AB BA≠.(2)()2222A B A AB B +≠++因为 2225A B ⎛⎫+=⎪⎝⎭()2222281425251429A B ⎛⎫⎛⎫⎛⎫+== ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭但 2238681010162411812341527A AB B ⎛⎫⎛⎫⎛⎫⎛⎫++=++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以()2222A B A AB B +≠++(3)()()22A B A B A B +-≠- 因为 22022501A B A B ⎛⎫⎛⎫+=-=⎪ ⎪⎝⎭⎝⎭,,()()220206250109A B A B ⎛⎫⎛⎫⎛⎫+-== ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,而 223810284113417A B ⎛⎫⎛⎫⎛⎫-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故()()22A B A B A B +-≠-6.(1)取1111A O ⎛⎫=≠ ⎪--⎝⎭,而2A O =; (2)取1000A ⎛⎫=⎪⎝⎭,有A O A E ≠≠,,而2A A =; (3)取101010000001A X Y ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,有X Y ≠,而AX AY =.7. 21010101121A AA λλλ⎛⎫⎛⎫⎛⎫===⎪⎪ ⎪⎝⎭⎝⎭⎝⎭;3210101021131A A A λλλ⎛⎫⎛⎫⎛⎫=== ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭;由此推出 ()10231kA k k λ⎛⎫==⎪⎝⎭,,下面利用数学归纳法证明这个结论. 当12k k ==,时,结论显然成立. 假设1k -时结论成立,即有 ()11011k Ak λ-⎛⎫=⎪-⎝⎭则对于k 时,有 ()11010101111kk A A A k k λλλ-⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭,故结论成立. 8. 证明 由已知:T A A = TB B =充分性:由AB BA =,得T TAB B A =,所以()TAB AB =即 AB 是对称矩阵. 必要性:由()TAB AB =得,T T B A AB =所以BA AB =.9. (1) 公式法:1225A ⎛⎫= ⎪⎝⎭1A =112112225,2(1),2(1),1A A A A ==⨯-=⨯-=112112225221AA A A A *-⎛⎫⎛⎫== ⎪ ⎪-⎝⎭⎝⎭ 11A A A -*= 故 15221A --⎛⎫= ⎪-⎝⎭初等行变换法:()12102501AE ⎛⎫=⎪⎝⎭21212100121r r -⎛⎫−−−→ ⎪-⎝⎭12210520121r r --⎛⎫−−−→ ⎪-⎝⎭所以 15221A--⎛⎫= ⎪-⎝⎭. (2) 10A =≠ 故1A -存在11211222cos sin sin cos A A A A θθθθ===-=从而 1c o s s i n s i n c o s A θθθθ-⎛⎫=⎪-⎝⎭(3) 公式法;2A =, 故1A -存在 112131420A A A =-== 而 1222321361A A A =-==- 13233332142A A A =-==-故 11A A A -*=2101313221671-⎛⎫⎪ ⎪=-- ⎪⎪--⎝⎭初等行变换法:()121100342010541001AE -⎛⎫⎪=- ⎪ ⎪-⎝⎭ 2131351211000213100146501r r r r ---⎛⎫ ⎪−−−→-- ⎪ ⎪--⎝⎭3271211000213100011671r r --⎛⎫ ⎪−−−→-- ⎪ ⎪--⎝⎭2313120157102013610011671r r r r +---⎛⎫ ⎪−−−→-- ⎪ ⎪--⎝⎭3210021002013610011671r r +-⎛⎫ ⎪−−−→-- ⎪ ⎪--⎝⎭2122101001310103220011671r --⎛⎫ ⎪ ⎪−−−→-- ⎪- ⎪-⎝⎭所以 12101313221671A --⎛⎫⎪ ⎪=-- ⎪ ⎪--⎝⎭.(4)由对角矩阵的性质知 12110101n a a A a -⎛⎫ ⎪ ⎪ ⎪=⎪ ⎪ ⎪ ⎪⎝⎭. 10. (1) 125461321X --⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭35461221--⎛⎫⎛⎫= ⎪⎪-⎝⎭⎝⎭22308-⎛⎫= ⎪⎝⎭(2) 1211113210432111X --⎛⎫-⎛⎫ ⎪= ⎪ ⎪⎝⎭ ⎪-⎝⎭10111312324323330⎛⎫-⎛⎫ ⎪=-- ⎪ ⎪⎝⎭ ⎪-⎝⎭22182533-⎛⎫⎪= ⎪-- ⎪⎝⎭ (3) 11143120120111X --⎛⎫⎛⎫⎛⎫= ⎪ ⎪⎪---⎝⎭⎝⎭⎝⎭243110111011212-⎛⎫⎛⎫⎛⎫= ⎪⎪⎪-⎝⎭⎝⎭⎝⎭66101301212⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭11104⎛⎫⎪= ⎪⎝⎭11. 由22A A E O --=得22A A E -= 两端同时取行列式: 22A A -=即 2A A E -=,故 0A ≠ 所以A 可逆,而22A E A +=2220A E A A +==≠ 故2A E +也可逆.由22A A E O --=得()2A A E E -=所以 11()2A A A E A E ---=,则11()2AA E -=- 又由22A A E O --=(2)3(2)4A E A A E E +-+=-(2)(3)4A E A E E +-=-所以 11(2)(2)(3)4(2)A E A E A E A E --++-=-+则 11(2)(3)4A E E A -+=-. 12.()11k E A E A A ---=+++ .13. 因为11AA A-*=,所以 ()1111111255522A A A A A A A -*-----=-=- ()31112288216A A A ---=-=-=-=-⨯=-.14. 由11AA A-*=,得1A A A *-=, 所以 当A 可逆时,有110nn A A A A-*-==≠,从而A *也可逆.因为1A A A *-=,所以()11A AA --*=又()()1111A A A A A**---==,所以()()()11111A AA AA A A -**--*--===15. 由2AB E A B +=+得()2A E B A E -=-即()()()A E B A E A E -=-+因为 0011010100A E -==-≠,所以()A E -可逆,则 201030102B A E ⎛⎫ ⎪=+= ⎪ ⎪⎝⎭.16.600020001⎛⎫⎪ ⎪ ⎪⎝⎭.17.033123110⎛⎫ ⎪- ⎪ ⎪⎝⎭18. 因为AP P =Λ,所以1A P P -=Λ;又 1P =-, 1100210411P --⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,55115⎛⎫⎪Λ ⎪ ⎪⎝⎭= 所以 1100110021012102115411A P P ---⎛⎫⎛⎫⎛⎫⎪⎪⎪=Λ=-- ⎪⎪⎪ ⎪⎪⎪-⎝⎭⎝⎭⎝⎭100200611⎛⎫ ⎪= ⎪ ⎪--⎝⎭5100200611A ⎛⎫⎪= ⎪ ⎪--⎝⎭.19. 因为()1111A B A E CA B B B A ----+=+=+,由()()1A B A B E -++=得()()()()111111AB A A B B A B A B B ------++=++=则()()1111A B A A B B B B E ----++==所以11A B --+可逆,其逆为()1A B A B -+.20. 213241221312131425400124262001221400011r r r r r r A -+---⎛⎫⎛⎫ ⎪ ⎪-- ⎪ ⎪=−−−→ ⎪ ⎪---- ⎪ ⎪--⎝⎭⎝⎭ 32344221312131001200120000000100010000r r r r r r B -↔+--⎛⎫⎛⎫⎪⎪-- ⎪ ⎪−−−→−−−→= ⎪⎪⎪ ⎪⎝⎭⎝⎭B 的秩为3,其一个3阶非零子式为13112001--,对应于A 的3阶非零子式为131254262----. 故2131001200010000-⎛⎫⎪- ⎪⎪⎪⎝⎭即为矩阵A 的行阶梯形矩阵,矩阵A 的一个最高阶非零子式为131254262----. 21.(1)111222111444513444⎛⎫- ⎪ ⎪⎪- ⎪ ⎪ ⎪-- ⎪⎝⎭,(2)72363211211022⎛⎫- ⎪ ⎪-- ⎪ ⎪- ⎪⎝⎭,(3)11240101113621610--⎛⎫ ⎪-⎪ ⎪-- ⎪--⎝⎭,(4)131120012100120001--⎛⎫ ⎪- ⎪ ⎪- ⎪⎝⎭. 22.(1)2,(2)3,(3)4,(4)当4a =-时,秩为2;当4a ≠-时,秩为3.24.34432022O A O ⎛⎫⎪- ⎪= ⎪ ⎪⎝⎭,令13443A ⎛⎫= ⎪-⎝⎭ 22022A ⎛⎫= ⎪⎝⎭ 则12A O A OA ⎛⎫=⎪⎝⎭故8182A O A O A ⎛⎫=⎪⎝⎭8182A O OA ⎛⎫= ⎪⎝⎭8888816121210A A A A A ===444414426450052022O A O A OA O ⎛⎫⎪⎛⎫ ⎪==⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭25. nn s ns s A O E O C B OE ⨯⎛⎫⎪⎝⎭ 111n nA r ns ns s EO A O C B OE --⨯⎛⎫−−−→ ⎪⎝⎭()2111r Cr nns n ns EOA O OB C A E ---⨯⎛⎫−−−−−→ ⎪-⎝⎭左乘 ()121111s s B r nns n nsA O EO B C A B O E -----⨯⎛⎫−−−−→ ⎪ ⎪-⎝⎭左乘 11111s s n s n nA O A OBC A B C B -----⨯⎛⎫⎛⎫= ⎪ ⎪ ⎪-⎝⎭⎝⎭利用这个结果取103021121412A B C ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,则由11111ss n s n n A O A O B C A B C B -----⨯⎛⎫⎛⎫= ⎪ ⎪ ⎪-⎝⎭⎝⎭得 112040111113212A B --⎛⎫⎛⎫== ⎪ ⎪--⎝⎭⎝⎭,,114021201241111312113512224B CA ----⎛⎫⎛⎫⎛⎫⎛⎫=-⋅= ⎪⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭⎝⎭-,则 1124080111212262424A B --⎛⎫⎛⎫== ⎪ ⎪--⎝⎭⎝⎭,故 110002400012001212001213012482412143526-⎛⎫⎛⎫⎪ ⎪-⎪ ⎪=⎪ ⎪--⎪ ⎪--⎝⎭⎝⎭习题31.设α=(1,1,0,-1)T ,β=(-2,1,0,0)T ,γ=(-1,-2,0,1)T ,求35αβγ-+.2.设34αβ+=(2,1,1,2)T 23αβ+=(-1,2,3,1)T求,αβ.3.解向量方程325X αβ-=其中,α=(3,5,7,9)T ,β=(-1,5,2,0)T .4.判断向量β能否由其余向量线性表示?若能,写出表示式.(1)β=(0,10,8,7)T ,1α=(-1,2,3,9)T ,2α=(1,3,1,0)T ,3α=(1,8,5,-2)T .(2)β=(1,2,1,1)T ,1α=(1,1,1,1)T ,2α=(1,1,-1,-1)T ,3α=(1,-1,1,-1)T ,4α=(1,-1,-1,1)T .5.设1α=(1+k ,1,1,1)T ,2α=(1,1+k ,1,1)T ,3α=(1,1,1+k ,1)T ,β=(1,3,2,1)T ,试问k 取何值时,β可由123,,ααα线性表示?并写出表示式.6.设1α=(1,0,2,3)T ,2α=(1,1,3,5)T ,3α=(1,-1,a +2,1)T ,4α=(1,2,4,a +8)T ,β=(1,1,b +3,5)T ,试问当,a b 为何值时.(1)β不能由1234,,,αααα线性表示;(2)β能由1234,,,αααα线性表示,且表示法唯一,并写出该表示式; (3)β能由1234,,,αααα线性表示,且表示法不唯一,并写出两个表示式.7.设向量β可由向量组12,,,m ααα 线性表示,但不能由121,,,m ααα- 线性表示,则向量组12,,,m ααα 与向量组121,,,,m αααβ- 等价.8.判断下列向量组是否线性相关?(1)1α=(2,2,7,-1)T ,2α=(3,-1,2,4)T ,3α=(1,1,3,1)T .(2)1α=(1,4,2,7)T ,2α=(3,2,4,5)T ,3α=(1,-1,2,2)T ,4α=(1,4,2,7)T .9.问k 取何值时下列向量组线性相关?线性无关?1α=(k ,2,1)T ,2α=(2,k ,0)T ,3α=(1,-1,1)T10.设向量组123,,ααα线性无关,112323βααα=--,21232βααα=++,3123βααα=-+,讨论向量组123,,βββ的线性相关性.11.已知向量组12,,,m ααα 线性无关,设112βαα=+,223βαα=+,…,11m m m βαα--=+,1m m βαα=+,讨论向量组12,,,m βββ 的线性相关性.12.设向量组12,,,m ααα 不含零向量,且αk (k =2,3,…,m)不能由121,,,k ααα- 线性表示,则向量组12,,,m ααα 线性无关.13.求下列向量组的秩及一个极大线性无关组,并用极大线性无关组线性表示其余向量.(1)1α=(2,1,3,-1)T ,2α=(3,-1,2,0)T ,3α=(1,3,4,-2)T ,4α=(4,-3,1,1)T .(2)1α=(1,2,3,-1)T ,2α=(3,2,1,-1)T ,3α=(2,3,1,1)T ,4α=(2,2,2,-1)T ,5α=(5,5,2,0)T .(3)1α=(1,2,-1,1)T ,2α=(2,0,k ,0)T ,3α=(0,-4,5,-2)T ,4α=(2,2,2,-1).(4)1α=(1,0,1,2)T ,2α=(0,1,1,2)T ,3α=(-1,1,0,k )T ,4α=(1,2,k ,6)T ,5α=(1,1,2,4)T .14.设12{,,,}m R ααα =12{,,,}t R βββ ,且12,,,m ααα 可由12,,,t βββ 线性表示,则向量组12,,,m ααα 与向量组12,,,t βββ 等价.15.设有两个向量组1α=(1,2,-1,3)T ,2α=(2,5,a ,8)T ,3α=(-1,0,3,1)T ;1β=(1,a ,2a -5,7)T ,2β=(3,3+a ,3,11)T ,3β=(0,1,6,2)T ,若1β可由123,,ααα线性表示,试判断这两个向量组是否等价?16.已知向量组1β=(0,1,-1)T ,2β=(a ,3,1)T ,3β=(b ,1,0)T 与向量组1α=(1,2,-3)T ,2α=(2,1,-1)T ,3α=(3,0,1)T 具有相同的秩,且3β可由123,,ααα线性表示,求,a b .17.判断下列集合是否是向量空间?为什么?若是向量空间,求出其维数及一个基. (1)V 1={(x 1,x 2,…,x n )T ∈R n |a 1x 1+a 2x 2 + … +a n x n =0},其中a i (i = 1,2,…,n )为R 中固定的数.(2)V 2={(x 1,x 2,…,x n )T ∈R n |a 1x 1+a 2x 2 + … +a n x n =1},其中a i (i = 1,2,…,n )为R 中固定的数.18.设123,,n R ααα∈.证明,若1122330k k k ααα++=且k 1k 2 ≠ 0,则L(α1,α3)=L(α2,α3).19.求下列向量生成子空间的维数与一个基.(1)1α=(-1,3,4,7)T ,2α=(2,1,-1,0)T ,3α=(1,2,1,3)T ,4α=(-4,1,5,6)T .(2)1α=(2,1,3,-1)T ,2α=(1,-1,3,-1)T ,3α=(4,5,3,-1)T ,4α=(1,5,3,-1)T .20.设1α=(1,0,-1)T ,2α=(2,1,1)T ,3α=(1,1,1)T ;1β=(3,1,4)T ,2β=(5,2,1)T ,3β=(1,1,-6)T .(1)证明123,,ααα与123,,βββ都是R 3的基; (2)求由基123,,ααα到基123,,βββ的过渡矩阵;(3)求坐标变换公式;(4)求α=(8,3,0)分别在基123,,ααα与基123,,βββ下的坐标.21.设α=(1,0,-1,0,1)T ,β=(0,1,0,2,0)T . (1)求αβ与的内积 [αβ,]; (2)求αβ与的长度||α||,||β||; (3)求αβ与的夹角θ.22.用施密特正交化方法将下列向量组标准正交化.(1)1α=(1,1,1,1)T ,2α=(3,3,-1,-1)T ,3α=(-2,0,6,8)T ; (2)1α=(1,1,1,0)T ,2α=(1,0,1,0)T ,3α=(-1,2,3,0)T . 23.求与向量1α=(1,0,-1,2)T ,2α=(0,1,1,0)T 都正交的向量. 24.判别下列矩阵是否为正交矩阵?并说明理由.(1)1100221100221111222211112222⎛⎫ ⎪⎪⎪ ⎪⎪ ⎪-- ⎪ ⎪ ⎪-- ⎪⎝⎭,(2)11133311022211666⎛⎫⎪⎪ ⎪- ⎪ ⎪ ⎪- ⎪⎝⎭25.设,n R αβ∈,A 是n 阶正交矩阵,证明:(1)[,A A αβ]=[,αβ]; (2)||A α||=||α||;(3)A α与A β的夹角等于α与β的夹角. 26.证明,若12,,,n ααα 是R n 的一组标准正交基,A 是n 阶正交矩阵,则12,,,n A A A ααα 也是R n 的一组标准正交基.解答习题31.(0,-8,0,2)T2.α=(10,-6,-10,2)T ,β=(-7,4,7,-1)T 3.X =12(14,-10,11,27)T 4.(1)能,β=α1+α3.(2)能,β=14(5α1+α 2 - α3 - α4) 5.k =3,β=13(2α2+α3) 6.(1)1,0a b =-≠,(2)12311,(2(1))1a b a b b a βααα≠-=-+++++ (3)2131,0.2a b βαβαα=-===-或8.(1)线性无关.(2)线性相关.9.k =3或k =-2时线性相关;k ≠3且k ≠ -2时线性无关. 10.线性无关.11.m 是奇数时线性无关,m 是偶数时线性相关.13.(1)秩=2;α1,α2是极大线性无关组;α3=2α1-α2,α4=-α1+2α2. (2)秩=3;α1,α2,α3是极大线性无关组;α4=121122αα+,α5=α2+α3. (3)k ≠3时:秩=4.k =3时:秩=3;α1,α2,α4是极大线性无关组;α3=-2α1+α2.(4)k ≠ 0且k ≠ 3时:秩=4;α1,α2,α3,α4是极大线性无关组;α5=α1+α2. k =3时:秩=3;α1,α2,α3是极大线性无关组;α4=α1+2α2,α5=α1+α2. k =0时:秩=3;α1,α2,α4是极大线性无关组;α3=-α1+α2,α5=α1+α2. 15.a =4,β1,β2,β3可由α1,α2,α3线性表示,但β1,β2,β3与α1,α2,α3不等价. 16.a =20,b = 5.17.(1)V 1是向量空间.当a i = 0 (i = 1,2,…,n)时:V 1=R n ;dimV 1 = n ;坐标单位向量ε1,ε2,…,εn 是V 1的基.当a i = 0 (i = 1,2,…,n)不全零时:dimV 1 = n -1;不妨设a 1≠0,则e 1 = (-a 2,a 1,0,…,0)T ,e 2 = (-a 3,0,a 1,…,0),…,e n -1 = (-a n ,0,…,a 1)是V 1的基.(2)V 2不是向量空间.19.(1)dimL(α1,α2,α3,α4) = 2;基是α1,α2. (2)dimL(α1,α2,α3,α4) = 3;基是α1,α2,α4.20.(2)317527408-⎛⎫⎪- ⎪ ⎪-⎝⎭;(3)112233317527408x y x y x y -⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭;(4)3,2,1与11145,,444--. 21.(1)0;(2)3,5;(3)2π.22.(1)123111(1,1,1,1),(2,2,2,2),(11,1,1)242T TT e e e ==--=--,. (2)123111(1,1,1,0),(1,2,1,0),(1,0,1,0)362T T T e e e ==-=-. 23.(-4,-2,2,3).24.(1)是正交矩阵;(2)是正交矩阵.习题41. 用消元法解下列线性方程组:(1)123412341234 2 0,3 630,51050;x x x x x x x x x x x x ++-=⎧⎪+--=⎨⎪++-=⎩ (4)23y z 4,2y 4z 5,38y 2z 13,4 y 9z 6;x x x x ++=⎧⎪-+=-⎪⎨+-=⎪⎪-+=-⎩2.三个工厂分别有3吨、2吨和1吨的产品要送到两个仓库储藏,两个仓库各储藏产品4吨和2吨,用ij x 表示从第i 个工厂送到第j 个仓库的产品数(1,2,3;1,2i j ==),试列出ij x 所满足的关系式,并求解由此得到的线性方程组.3.写出一个以x 1222341001c c -⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(12,c c ∈ )为全部解的齐次线性方程组.4.确定,a b 的值使下列齐次线性方程组有非零解,并在有非零解时,求其全部解:(1)1231231232 30,3470, 20;x x x x x x x x ax -+=⎧⎪-+=⎨⎪-+=⎩ (2)123123123 0,0, 20.ax x x x bx x x bx x ++=⎧⎪++=⎨⎪++=⎩5.λ取何值时,下列非齐次线性方程组有唯一解、无解或有无限多个解?并在有无限多个解时求解:(1)1231232123 1, , ;x x x x x x x x x λλλλλ⎧++=⎪++=⎨⎪++=⎩ (2)123123123(2) 2 21, 2(5) 42, 2 4(5) 1.x x x x x x x x x λλλλ-+-=⎧⎪+--=⎨⎪--+-=--⎩6.设A 是实矩阵,证明()()T R A A R A =.7.求下列齐次线性方程组的基础解系:(1)123412341234 81020,24 5 0,38 620;x x x x x x x x x x x x -++=⎧⎪++-=⎨⎪++-=⎩ (2)123412341234232 0,35420,87630;x x x x x x x x x x x x --+=⎧⎪++-=⎨⎪++-=⎩8.设12,αα是某个齐次线性方程组的基础解系,证明:1212,2αααα+-也是该线性方程组的基础解系.9.设A 是n 阶方阵,0Ax =只有零解,求证:对任意的正整数k ,0kA x =也只有 零解.10.设A 22139528-⎛⎫=⎪-⎝⎭,求一个42⨯矩阵B ,使AB =0,且R (B )2=.11.求一个齐次线性方程组,使它的基础解系由下列向量组成:1ξ0123⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,2ξ3210⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭. 12.求下列非齐次线性方程组的通解:(1)1212341234 5,2 21,53220;x x x x x x x x x x +=⎧⎪+++=⎨⎪+++=⎩ (2)123412341234 52311,536 1,242 6.x x x x x x x x x x x x -+-=⎧⎪++-=-⎨⎪+++=-⎩13.证明:线性方程组121232343454515,,,,x x a x x a x x a x x a x x a -=-=-=-=-=.有解的充分必要条件是123450a a a a a ++++=.14.设四元非齐次线性方程组Ax b =的系数矩阵A 的秩为2,已知它的三个解向量为1η,2η,3η,其中1η4321⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,2η1351⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,3η2632-⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,求该方程组的通解.15.设矩阵A 121201101t t t ⎛⎫⎪= ⎪ ⎪⎝⎭,齐次线性方程组0Ax =的基础解系含有两个线性无关的解向量,试求方程组0Ax =的全部解.16.设A 21120131,11λμ⎛⎫ ⎪= ⎪ ⎪⎝⎭b 010⎛⎫ ⎪= ⎪ ⎪⎝⎭,η1111⎛⎫ ⎪- ⎪= ⎪ ⎪-⎝⎭,如果η是方程组Ax b =的一个解,试求方程组Ax b =的全部解.17.设η*是非齐次线性方程组Ax b =的一个解,1ξ,2ξ,…,n r ξ-是对应的齐次线性方程组的一个基础解系,证明:(1)η*,1ξ,2ξ,…,n r ξ-线性无关;(2) η*,η*+1ξ,…,η*+n r ξ-线性无关.18.若1η,2η,…,s η为非齐次线性方程组Ax b =的s 个解,12,,,s k k k 为常数,且121s k k k +++= ,证明:1k 1η+2k 2η+…+s k s η也是非齐次线性方程组Ax b =的解. 19.设非齐次线性方程组Ax b =的系数矩阵A 的秩为r ,1η,2η,…,1n r η-+是它的1n r -+个线性无关的解,试证:它的任一解可表示为x =1k 1η+2k 2η+…+1n r k -+1n r η-+,其中1211n r k k k -++++= .20.用克拉默(Cramer )法则解下列方程组:(1)1234123412341234 5, 2 42,23 52,3 2110;x x x x x x x x x x x x x x x x +++=⎧⎪+-+=-⎪⎨---=-⎪⎪+++=⎩ (2)12342345123234345 0,0,23 2, 23 2,23 2.x x x x x x x x x x x x x x x x x +++=⎧⎪+++=⎪⎪++=⎨⎪++=-⎪⎪++=⎩21.判断齐次线性方程组12312312322 0,240,5820;x x x x x x x x x +-=⎧⎪-+=⎨⎪+-=⎩ 是否仅有零解.22.问,λμ取何值时,齐次线性方程组123123123 0,0, 20;x x x x x x x x x λμμ++=⎧⎪++=⎨⎪++=⎩ 有非零解?23.问λ取何值时,齐次线性方程组123123123(1) 2 40,2(3) 0, (1)0;x x x x x x x x x λλλ--+=⎧⎪+-+=⎨⎪++-=⎩有非零解?24.证明:平面上三条不同的直线0,0,0ax by c bx cy a cx ay b ++=++=++=相交于一点的充分必要条件是 0a b c ++=.解答习题41.(1)11221121234222110,(,)00001x c c x c c c c c x x c -+-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪==+∈ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ . (2)212121210x c y c c z c ----⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=+=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,(c ∈ ).2.ij x (1,2,3;1,2i j ==)所满足的关系式为:111221223132112131122232 3,2,1,4, x x x x x x x x x x x x +=+=+=++=++=1112212231322,6;x x x x x x ⎧⎪⎪⎪⎪⎨⎪⎪⎪+++++=⎪⎩ 11121212211122213123221111221122100101101001x c c x c c x c c c x c x c x c ++⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪---- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--==++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,(12,c c ∈ ). 3.134234220,340.x x x x x x -+=⎧⎨+-=⎩4.(1)123111x c x c c x c --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,(c ∈ ).(2)当0b =或10a -=时,即0b =或1a =时,齐次线性方程组有非零解.当1a =时,有1231001x c x c x c --⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,(c ∈ ).当0b =时,有1231(1)11x c x a c c a x c --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,(c ∈ ).5.(1)当1,2λ≠-时,非齐次线性方程组有唯一解;当2λ=-时,非齐次线性方程组无解;当1λ=时,非齐次线性方程组有无限多个解,有1122112321111010001x c c x c c c x c ----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪==++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,(12,c c ∈ ). (2)当1λ≠且10λ≠时,非齐次线性方程组有唯一解; 当10λ=时,非齐次线性方程组无解;当1λ=时,非齐次线性方程组有无数多个解,有112211232122122010001x c c x c c c x c -+-⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪==++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,(12,c c ∈ ).7.(1)1ξ43410-⎛⎫ ⎪ ⎪-= ⎪ ⎪ ⎪ ⎪⎝⎭,2ξ01401⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭, (2)1ξ11971901⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭,2ξ219141910⎛⎫- ⎪ ⎪ ⎪-= ⎪ ⎪⎪ ⎪⎝⎭.10.115118008B -⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭11.12312420,230.x x x x x x -+=⎧⎨-+=⎩12.(1)x 111161,01702c -⎛⎫-⎛⎫ ⎪ ⎪⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(c ∈ ).(2)x 1291172211,72001010c c ⎛⎫⎛⎫- ⎪ ⎪⎛⎫⎪ ⎪ ⎪- ⎪ ⎪ ⎪-=++ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎪ ⎪⎝⎭⎝⎭(12,c c ∈ ).14.x 1131221()(),c c ηηηηη=+-+-(12,c c ∈ ).15.x 121011,1001c c ⎛⎫⎛⎫ ⎪ ⎪-- ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(12,c c ∈ ).16.λμ=,当12λ=,非齐次线性方程组有无限多个解,x 1211122311,100001c c ⎛⎫⎛⎫--⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪- ⎪-=++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(12,c c ∈ ). 当12λ≠,非齐次线性方程组有无限多个解,有x 011122,112201c -⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪=+ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(c ∈ ).20.(1)12341231x x x x ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭, (2)1234511111x x x x x ⎛⎫⎛⎫⎪ ⎪- ⎪ ⎪ ⎪ ⎪= ⎪ ⎪-⎪ ⎪ ⎪⎪⎝⎭⎝⎭.21.齐次线性方程组仅有零解.22.当0μ=或1λ=时,齐次线性方程组有非零解. 23.当0,23λ=或时,齐次线性方程组有非零解.习题51.求下列矩阵的特征值和特征向量.(1)3151⎛⎫ ⎪-⎝⎭;(2)200202311-⎛⎫ ⎪ ⎪ ⎪⎝⎭;(3)122212221⎛⎫ ⎪ ⎪ ⎪⎝⎭,(4)1111111111111111⎛⎫⎪-- ⎪ ⎪-- ⎪--⎝⎭. 2.证明下列各题:(1)设A 是幂等矩阵(即满足2A A =),则A 的特征值只能0是或1;. (2)设A 是正交矩阵,则A 的实特征值的绝对值为1.3.已知3阶矩阵A 的特征值为1,0,2-,计算行列式2A A E -+.4.已知3阶矩阵A 的特征值为1,2,3-,计算行列式*|32|A A E ++.5.设,A B 都是n 阶方阵,且A 可逆,证明AB 与BA 相似.6.判断矩阵⎪⎪⎪⎭⎫ ⎝⎛----=201335212A 可否对角化,若能的话,将它化为标准形.7.设矩阵20022311A a -⎛⎫ ⎪= ⎪ ⎪⎝⎭与10002000b -⎛⎫ ⎪Λ= ⎪ ⎪⎝⎭相似,求,a b ;并求一个可逆矩阵P ,使1P AP -=Λ.8.设20131405A a ⎛⎫ ⎪= ⎪ ⎪⎝⎭,问a 为何值时,矩阵A 可对角化?9.试求一个正交的相似变换矩阵,将下列实对称矩阵化为对角矩阵:(1)120222023-⎛⎫ ⎪-- ⎪ ⎪-⎝⎭;(2)400031013⎛⎫ ⎪ ⎪ ⎪⎝⎭;(3)222254245-⎛⎫ ⎪- ⎪ ⎪--⎝⎭;(4)0111101111011110-⎛⎫ ⎪- ⎪ ⎪- ⎪-⎝⎭. 10.将矩阵102012220A -⎛⎫⎪= ⎪ ⎪⎝⎭用两种方法对角化:(1)求一个可逆矩阵P ,使1P AP -为对角阵;(2)求一个正交矩阵T ,使1T AT -为对角矩阵.11.设3阶矩阵A 的特征值为1232,1,2λλλ=-==;对应的特征向量依次为1231101,1,1101ξξξ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,求矩阵A .12.设3阶实对称矩阵A 的特征值1231,0,1λλλ=-==;属于12,λλ的特征向量依次为12221,221ξξ⎛⎫⎛⎫⎪ ⎪==- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,求一个正交矩阵T ,使1T AT -为对角矩阵.13.设3阶实对称矩阵A 的特征值1231,1λλλ=-==;属于特征值11λ=-的特征向量为1011ξ⎛⎫⎪= ⎪ ⎪⎝⎭,求矩阵A .14.设120020211⎛⎫ ⎪= ⎪ ⎪---⎝⎭A ,求100A . 15.在某国,每年有比例为p 的农村居民移居城镇,有比例为q 的城镇居民移居农村.假设该国总人数不变,且上述人口迁移的规律也不变.把n 年后农村人口和城镇人口占总人数的比例依次记为n x 和n y (1)n n x y +=.(1)求11n n x y ++⎛⎫⎪⎝⎭与n n x y ⎛⎫⎪⎝⎭的关系式并写成矩阵形式:11++⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭n n n n x x A y y ; (2)设目前农村人口与城镇人口相等,即001212x y ⎛⎫ ⎪⎛⎫= ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭,求n n x y ⎛⎫⎪⎝⎭.解答习题51.(1)1212112,4;,15λλξξ⎛⎫⎛⎫=-=== ⎪ ⎪-⎝⎭⎝⎭;(2)1231230011,2,2;(,,)210111λλλξξξ-⎛⎫ ⎪=-==-=- ⎪ ⎪⎝⎭;(3)1231231011,5;(,,)011111λλλξξξ⎛⎫ ⎪==-== ⎪ ⎪--⎝⎭; (4)12341234111111002,2;(,,,)10101001λλλλξξξξ-⎛⎫ ⎪⎪=-==== ⎪ ⎪⎝⎭. 3.9. 4.-25.6.A 不可对角化.7.100110,2;210,21112---⎛⎫⎛⎫ ⎪ ⎪==-=-= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭a b P P AP .8.3=a .9.(1)12213332122,13335212333-⎛⎫ ⎪⎛⎫ ⎪ ⎪ ⎪=--=- ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪- ⎪⎝⎭T T AT ; (2)10102110,422411022-⎛⎫⎪ ⎪⎛⎫ ⎪ ⎪==⎪ ⎪ ⎪ ⎪⎝⎭ ⎪-⎪⎝⎭T T AT ;(3)12251153511452,115351052033-⎛⎫-- ⎪ ⎪⎛⎫ ⎪ ⎪⎪=-= ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪⎝⎭T T AT ;(4)111112261211111122612,1211026123310212-⎛⎫-⎪ ⎪⎛⎫ ⎪-- ⎪⎪ ⎪⎪== ⎪ ⎪- ⎪ ⎪-⎝⎭ ⎪ ⎪ ⎪⎝⎭T T AT . 10.(1)11223221,02123-⎛⎫⎛⎫⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭P P AP ;(2)11223333221,03333212333-⎛⎫ ⎪⎛⎫ ⎪ ⎪⎪=-= ⎪ ⎪ ⎪- ⎪⎝⎭ ⎪- ⎪⎝⎭T T AT . 11.233453442--⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭A .12.12213331122,03331212333-⎛⎫ ⎪-⎛⎫ ⎪ ⎪⎪=-= ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪- ⎪⎝⎭T T AT . 13.100001010⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A .14.101100100100122002050(12)13⎛⎫⎪- ⎪= ⎪ ⎪- ⎪⎝⎭A. 15.(1)1111++-⎛⎫⎛⎫⎛⎫=⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭n n n n x x p q y y p q ;(2)2()(1)12()2()(1)⎛⎫⎛⎫+---= ⎪⎪++---⎝⎭⎝⎭n n n n x q p q p q y p q p q p p q .习题61.证明:123000000a a a ⎛⎫⎪ ⎪ ⎪⎝⎭与23100000a a a ⎛⎫ ⎪⎪ ⎪⎝⎭合同. 2.写出下列二次型的矩阵表示: (1)121323422f x x x x x x =-++;(2)2224424f x xy y xz z yz =+++++;(3)22221234121314232424264f x x x x x x x x x x x x x x =+++-+-+-.3.设A 是一个n 阶对称矩阵.如果对任一个n 维列向量x ,都有0Tx Ax =,试证0A =. 4.用拉格朗日配方法化下列二次型为标准形. (1)123422x x x x -;(2)22121213222x x x x x x ++-.*5.用初等变换法化下列二次型为标准形.(1)12132346x x x x x x -+;(2)222123232334x x x x x +++.6.用正交变换法化下列二次型为标准形.(1)22212312132325228x x x x x x x x x +++++;(2)121314232434 222222x x x x x x x x x x x x +--++. 7.求一个正交变换把二次曲面的方程22234545101x xy y xz z yz ++-+-=化成标准方程.8.化下列二次型为规范形.(1)22212312133524x x x x x x x +++-;(2)22212312232422x x x x x x x +++-.9.证明:秩等于r 的对称矩阵可以表成r 个秩等于1的对称矩阵之和. 10.判别下列二次型是否正定:(1)2221231231223(,,)2342f x x x x x x x x x x =+-++;(2)2222123412341213142434(,,,)3919242612f x x x x x x x x x x x x x x x x x x =+++-++--.11.t 满足什么条件时,下列二次型是正定的:(1)222123123121323(,,)5224f x x x x x x tx x x x x x =+++-+; (2)2221231231223(,,)2322f x x x x x x tx x x x =++-+.12.试证:如果A 是正定矩阵,那么A 的主子式全大于零. 13.试证:如果A 是正定矩阵,那么 (1)(0)kA k >是正定矩阵; (2)1A -是正定矩阵.14.试证:如果,A B 是同阶正定矩阵,那么A B +也是正定矩阵.*15.试证:实二次型12(,,,)n f x x x 是半正定的充分必要条件是12(,,,)n f x x x 的正惯性指数等于它的秩.*16.试证:实二次型12(,,,)T n f x x x x Ax = 是半正定的充分必要条件是A 的特征值全大于或等于零.解答习题62.(1)112323021(,,)201110x f x x x x x -⎛⎫⎛⎫ ⎪⎪=- ⎪⎪ ⎪⎪⎝⎭⎝⎭;(2)121(,,)242121x f x y z y z ⎛⎫⎛⎫ ⎪⎪= ⎪⎪ ⎪⎪⎝⎭⎝⎭;(3)1212343411211132(,,,)23101201x x f x x x x x x --⎛⎫⎛⎫ ⎪⎪-- ⎪⎪= ⎪⎪ ⎪⎪--⎝⎭⎝⎭.4.(1)1132133244242222222222222222x y yx y yx y yx y y⎧=+⎪⎪⎪=-⎪⎪⎨⎪=+⎪⎪⎪=-+⎪⎩,22221234f y y y y=+--;(2)112322323x y y yx yx y y=+-⎧⎪=⎨⎪=-+⎩,222123f y y y=--.5.(1)112321233233626526x y y yx y y yx y y⎧=--⎪⎪⎪=--⎨⎪⎪=+⎪⎩,222123f y y y=+-;(2)1122332311221122x yx y yx y y⎧⎪=⎪⎪=+⎨⎪⎪=-⎪⎩,22212325f y y y=++.6.(1)11232233323x y y yx y yx y=-+⎧⎪=-⎨⎪=⎩,2221235f y y y=+-;(2)1124212431344134111222111222111222111222x y y yx y y yx y y yx y y y⎧=++⎪⎪⎪=-+-⎪⎪⎨⎪=-++⎪⎪⎪=+-⎪⎩,222212343f y y y y=-+++.7.4133212133221213322x u v y u v w z u v w ⎧=+⎪⎪⎪=-++⎨⎪⎪=-+⎪⎩,222111u v +=.8.(1)112322323522122x y y y x y x y y ⎧=-+⎪⎪⎪=⎨⎪⎪=-+⎪⎩,222123f y y y =-+; (2)112322333111222222212x y y y x y y x y ⎧=--⎪⎪⎪=+⎨⎪⎪=⎪⎩222123f y y y =++. 10.(1)负定;(2)正定. 11.(1)0.80t -<<;(2)151533t -<<.。
4.3 向量组的秩和最大无关组
设1, 2, …, n为Rn的一组基,则
Rn = L(1, 2, …, n)
返回
又,
Rn = L(ε1, ε2, …, εn)
Rn 的标准基
Rn, 1, 2, …, n为一组基, = x11+ x22+ …+ xnn 在基1, 2, …, n下的坐标 一个向量在确定基下的坐标是唯一的(坐标的唯一性).
矩阵A的列秩:A的列向量组的秩;
矩阵A的行秩:A的行向量组的秩.
返回
定理2 矩阵的 行秩 = 列秩 = 矩阵的秩.
证 设 R(A) = r,
A 行初等变换 B(行阶梯形矩阵),
B有 r 个非零行,B的r 个非零行的非零首元素所在 的r 个列向量线性无关, 为什么? 为B的列向量组的最大无关组. 为什么?
1, 2, …, r 可由1, 2 , …, s线性表出,有
R(B)=R(B, A) 则R( A) ≤ R(B) ≤ s
1, 2, …, r 线性无关,则 R(A)=r
r≤ s
返回
两向量组秩的关系: 若向量组(Ⅰ)可由组(Ⅱ)线性表出,则 组(Ⅰ)的秩 r1≤ 组(Ⅱ)的秩 r2. 证 设 1 ,..., r1 为(Ⅰ) 的最大无关组, 1 ,..., r2 为(Ⅱ) 的最大无关组. 组(Ⅰ)可由组(Ⅱ)线性表出,所以
4.3
向量组的秩与最大无关组
一、向量组的秩与最大无关组的概念
二、Rn 的基、维数与坐标
返回
一、向量组的秩与最大无关组的概念
例1 1 =(1,0,1), 2 =(1,-1,1), 3 =(2,0,2) 。
1, 2, 3 线性相关. 1, 2 线性无关; 2 ,3 线性无关,
线性代数 向量组的秩与极大线性无关组
向量组的秩向量组的秩向量组的秩⏹向量组的秩与极大线性无关组⏹向量组的等价向量组的秩⏹极大线性无关组与秩的定义⏹几个相关定理向量组的秩定义1如果向量组A :α1, α2, …, αm 中的部分向量组A 1:12,,,r i i i (1) 向量组A 1线性无关;(2) 向量组A 中任何一个向量可由A 1线性表出,满足条件: 极大线性无关组与秩的定义则称A 1为向量组A 的极大线性无关组,极大线性 .,,,21r R m 无关组所含向量的个数称为向量组的秩.记为:向量组的秩线性无关的向量组的极大线性无关组是其本身.由向量组秩的定义,向量组α1, α2, … ,αm线性无关⇔向量组α1,α2, … ,αm线性相关⇔R(α1, α2, …,αm)=m;R(α1,α2,…,αm) m注R(0, 0, …, 0)=0向量组的秩例1解由于α1,α2线性无关,α3= 2α1-α2,所以α1,α2是该向量组的一个极大线性无关组. 显然α1,α3与α2,α3也是这个向量组的极大线性无关组.求向量组α1=(1,-1,0),α2=(0,1,2),α3=(2,-3,-2)的极大线性无关组.向量组的秩从这个例子可以看出,那么,同一个向量组的不同的极大线性无关组所含向量的个数是否相同呢?一个线性相关的非零向量组,一定存在极大线性无关组,并且它的极大线性无关组不是唯一的.下面将回答这一问题.向量组的秩如果向量组α1,α2, …,αm中的每一个向量均可由向量组β1, β2, …, βr线性表出,并且m>r,定理1(多由少表示,则多必相关)那么向量组α1,α2, …,αm线性相关.几个相关定理向量组的秩证12(,,,) (1,2,,),i i i in a a a i m 12(,,,) (1,2,,)j j j jn b b b j r 由条件1122, 1,2,,i i i ir r k k k i m 以这两个向量组的向量为行向量(m +r ) ×n 矩阵C , 然后对矩阵C 作做初等行变换,得到设向量组的秩于是R (C )=R (C 1),则R (A )≤R (C ) =R (C 1)≤r <m ,1212r m C121000r C , 由定理3.2.3,向量组α1,α2, …,αm 线性相关. 证毕.向量组的秩,α2, …,αm中的每一个向量均可推论如果向量组α1, β2, …, βr线性表出,并且α1,α2, …,αm 由向量组β1线性无关,那么m≤r.(此推论为定理1的逆否命题)向量组的秩证12;,,, s i i i 12,,,rj j j 要证s=r.设向量组α1,α2, …,αm 的两个极大线性无关组分别为由于为极大线性无关组,12,,,s i i i 12,,,r j j j 可由其线性表出,所以线性无关,得r ≤s ;12,,,r j j j 同理可证,s ≤r. 由定理1的推论,又于是, s =r.一个向量组中任意两个极大线性无关组所含向量的个数相等.定理2向量组的秩若一个向量组的秩为r, 那么这向量组中的r 个线性无关的向量与这向量组本身的关系如何呢?向量组的秩这个例子提供了求一个向量组的部分组为其极大线性无关组的方法.例2设向量组α1,α2, …,αm 的秩为r ,试证:α1,α2, …,αm 中任意r 个线性无关的向量均为该向量组的一个极大线性无关组.。
线性代数习题及答案1
线性代数测试题(线性代数测试题(--)一、单项选择题(每小题3分,共15分。
)1.1.已知已知B A ,是同阶方阵,下列等式中正确的是 【【 】 A. ||||||B A AB = ; B. T T T B A AB =)(; C.111)(---=B A AB ; D. kk k B A AB =)(.2.2.设设A 是n m ´矩阵,齐次线性方程组0=Ax 有非零解的充要条件是 【 】A.n A r =)(;B.n A r <)(;C.0||=A ;D.n m > .3.3.设设A 是45´矩阵矩阵,,则下列命题正确的是 【 】A.A 的行向量组线性无关;B.A 的行向量组线性相关;C.A 的列向量组线性无关;D.A 的列向量组线性相关的列向量组线性相关..4.4.设设A 是n 阶可逆矩阵,l 是A 的一个特征值,则*A 的一个特征值是 【 】 A.n A ||1-l ; B.||1A -l ; C.||A l ; D.n A ||l .5.5.设设n 阶方阵A 与B 相似,则下列命题不正确的是 【 】A.A 与B 有相同的特征值;B.)()(B r A r =;C.||||B A =;D.A 与B 有相同的特征向量有相同的特征向量. .二、填空题(每小题3分,共15分。
) 1.1.已知已知)1,3,2(),1,1,1(),,2,1(321=-==a a a t ,当t t 时,时,321,,a a a 线性无关线性无关.. 2.yy y y y y f 212112)(---=中3y 的系数是的系数是 .3. .3. .3.设设A 为3阶方阵,A 的特征值为的特征值为-1-1-1,,1,2,则|3|1-A = . 4.设321,,a a a 是三元线性方程组b Ax =的三个解,且2)(=A r ,÷÷÷øöçççèæ=+40221a a ,÷÷÷øöçççèæ=-11132a a ,则b Ax =的通解为 5.设二次型31212322212224x x x tx x x x f ++++=是正定的,则t 的范围是的范围是三、(本题10分)已知÷÷÷øöçççèæ-=221011324A ,矩阵X满足X A AX 2+=,求矩阵X四、(本题10分)求下列向量组的秩和一个最大无关组求下列向量组的秩和一个最大无关组. .)3,4,3,4(,)3,2,1,1(,)1,1,3,2(,)1,1,1,1(4321-=-=--==a a a a . 五、(本题14分) 已知线性方程组ïïîïïíì=+-=-=-=-.,,,41433221k kx x k x kx k x kx k x kx (1)(8分)k 为何值时,方程组有惟一解为何值时,方程组有惟一解? ? ? 无解?无穷多解?无解?无穷多解?无解?无穷多解?(2)(6分)在有无穷多解的情况下求出其通解.六、(本题10分)已知三阶方阵A 的特征值为的特征值为-1-1-1,,1,2.2.设设3223A A I B +-=. (1)(5分)求矩阵A 的行列式及A 的秩;的秩;(2)(5分)求矩阵B 的特征值及其相似对角矩阵的特征值及其相似对角矩阵. .七、(本题14分)设úúúûùêêêëé=011101110A ,求正交矩阵P 使得L =-AP P 1为对角矩阵为对角矩阵. . 八、证明题(本大题2小题,每小题6分,共12分)分)1.1.向量组向量组321,,a a a 线性无关,试证向量组32121132,2,a a a a a a +++ 线性无关线性无关.. 2.2.设设A 为n m ´矩阵矩阵,,B 为m n ´矩阵矩阵,,且n m >. . 证明:证明:.0||=AB线性代数测试题答案线性代数测试题答案((一)一、单项选择题(每小题3分,共15分) 1.A 1.A;; 2.B 2.B;; 3.B 3.B;; 4.B 4.B;; 5.D. 二、填空题(每小题3分,共15分)1.2¹t; 2.-4 2.-4;; 3.227-; 4.)()1,1,1()2,0,1(R k k T T Î+; 5.22<<-t .三、(10分)解:由X A AX 2+=得A X I A =-)(2 ((1分)分)30210113222=--=-|I A | ((2分)所以A I A X 12--=)( (2分)分)÷÷÷øöçççèæ--=--3423111012021//I A )( ((3分)故÷÷÷øöçççèæ--=35432230241//X . . ((2分)分) 四、(10分)解:对A 进行初等行变换进行初等行变换÷÷÷÷÷øöçççççèæ-@÷÷÷÷÷øöçççççèæ----=00001100011041213311421131314121A ((5分)此向量组的秩为:分)此向量组的秩为:3 3 3 ((2分)分) 它的一个最大无关组为.,,321a a a ((3分)分)五、(14分)解:解:(1)(1)(1)系数矩阵系数矩阵A 的行列式为的行列式为10011000100014-=----=k kk k k |A | ((5分)当1±¹k 时,方程组有惟一解;时,方程组有惟一解; ((1分)分) 当1=k 时,4)(,3)(==Ab r A r ,方程组无解;,方程组无解; (1分)当1-=k 时,3)()(==Ab r A r ,方程组有无穷多解;(1分)分)(2)(2)对增广矩阵进行行初等变换:对增广矩阵进行行初等变换:÷÷÷÷øöççççèæ-@÷÷÷÷øöççççèæ------------=0000011100010101100111001111001011010011)Ab ( ((3分)分) \原方程组的通解为:)R k (),,,(k ),,,(x T T Î--+=11110101 ((3分)分)六、(10分)解:解:(1)(1)2-=A (3分)3=)A (r ((2分)分) (2)(2)设设l 为A 的特征值,x 为A 的对应于l 的特征向量,则:的特征向量,则: x x A A I Bx )231()23(3232l l +-=+-=B \的特征值为的特征值为-4-4-4,,0,5 5 ((4分)分)B 的相似对角矩阵为:÷÷÷øöçççèæ-504 . . ((1分)分) 七、解:0)2()1(1111112=+-+=---=-l l l l l l I A 得到特征值2,121=-=l l (3分)11-=l 时,÷÷÷øöçççèæ÷÷÷øöçççèæ=+000000111~111111111I A ,对应于11-=l 的两个正交的特征向量为÷÷÷øöçççèæ-÷÷÷øöçççèæ-101,121 ,单位化得÷÷÷øöçççèæ-÷÷÷øöçççèæ-10121,12161 (6分)22=l 时,÷÷÷øöçççèæ--÷÷÷øöçççèæ---=-000110101~2111211122I A ,对应于22=l 的一个特征向量为÷÷÷øöçççèæ111,位化得÷÷÷øöçççèæ11131(3分)正交阵÷÷÷÷øöççççèæ--=3/12/16/13/106/23/12/16/1P . . ((2分)分)八、(共 12分)1.1.证:令证:令0)32()2(321321211=+++++a a a a a a x x x ((2分)分)整理得:03)22()(332321321=+++++a a a x x x x x x(1分) 由于321,,a a a 线性无关,所以有:.0,0,0321===x x x (2分)则向量组32121132,2,a a a a a a +++线性无关线性无关. . . ((1分)分) 证:A 为n m ´矩阵,B 为m n ´矩阵,且n m >,n AB r n B r n A r £££\)(,)(,)( (4分)分) 又AB 为m 阶方阵,则0||=AB . (2分)分)。
西安交通大学14春学期《线性代数》离线作业
.
8.设相似于,则
.
.
9.矩阵的线性无关的特征向量的个数为
.
10.设和是3阶实对称矩阵的两个不同特征值,和依次是属于和的特征向
量,则
.
三、判断题
11.判断下列命题或说法是否正确:
(1) 若同阶矩阵与相似,则对任何常数与相似.
(2) 若方阵与对角矩阵相似,则也与对角矩阵相似.
23.求矩阵的秩.
五、证明题
24.设、为阶矩阵,且为对称矩阵,证明也是对称矩阵.
25.设阶矩阵满足.证明矩阵可逆,并求.
26.证明:矩阵与行等价的充分必要条件,是存在阶可逆矩阵,使.
第三章 向量
本章要点
1.维向量及其线性运算; 2.线性组合与线性表示; 3.线性相关与线性无关; 4.向量组的极大无关组与秩; 5.实向量的内积、长度、夹角、正交,正交矩阵与施密特正交化方法.
第四章 线性方程组
本章要点
线性方程组解的情况的判定、解的性质、解的结构及求解方法.
本章目标
1.理解齐次线性方程组有非零解的充要条件、解的性质、基础解系与 通解等概念;
2.理解非齐次线性方程组解的判定定理、解的性质、解的结构与通解 等概念;
3.掌握用初等变换法求解线性方程组的方法.
本章重点
1.齐次线性方程组基础解系的概念与计算; 2.非齐次线性方程组解的判定以及在有无穷多解时通解的计算.
.
9.设阶可逆方阵的伴随矩阵为,已知则
.
10.若矩阵的秩为2,则
.
三、判断题
11.判断下列命题或说法是否正确:
(1) 矩阵乘法满足交换律,但不满足结合律;
(2) 方阵的伴随矩阵的元素为,其中是的代数余子式;
(3) 同阶可逆矩阵的乘积仍是可逆矩阵; (4) 同阶对称矩阵的乘积必是对称矩阵; (5) 设、均为可逆矩阵,则有.
上海交通大学 线性代数教材 课后答案 习题二
(1)
(2)
(3)
(4)
(5)
(6)
解:(1)线性无关,因为
(2)线性相关,因为
(3)线性无关,因为
(4)线性无关,因为
(5)线性无关,因为
(6)线性相关,因为
32.给定向量组
(1)求此向量组的秩;
(2)求此向量组的一个极大线性无关组;
(3)用(2)中选定的极大线性无关组表示其余向量。
(1)交换矩阵A的第i行与第j行;
(2)将A的第i行乘以非零常数k;
(3)A的第j行各元素加上第i行对应元素的k倍,
则 相应地发生了什么变化?
解:(1)
(2)
(3) .
4设
(1)求可逆矩阵 使 为简化行阶梯形矩阵;
(2)求可逆矩阵 使 为简化行阶梯形矩阵
解:(1)
(2)类似的列变换求得Q
5.设
验证A可逆并将A表示成初等矩阵的乘积
(2)
解:(1)
(2)如果 是方程组的解,那么 也是方程组的根,其中 。因些可对 列变换得到
因此方程组为
37.下列线性方程组中p,q取何值时,方程组有唯一解,无穷多解,无解?在有解的情况下求出所有的解。
(1)
(2)
(3)
(4)
解:满秩有唯一解,系数矩阵与增广矩阵的秩相等且非满秩时有无穷多解,系数矩阵与增广矩阵的秩不相等时无解。
记
易知 , 非零,满足条件。
58.求下列方程组的通解。
(1)
(2)
(3)
(4)
(5)
(6)
(7)
解:
(1) ;
(2) ;
(3)
(4)无解
4[1].3向量组的秩和极大线性无关组
引子: 线性相关组中含有线性无关的部分向量组. 一、等价向量组
定义(等价): 定义(等价):
如果向量组 α 1 , α 2 ,..., α t中的每个向量都可以由 向量组
β 1 , β 2 ,..., β s 线性表出,则称向量组 {α 1 , α 2 ,..., α t }可以由向量组 { β 1 , β 2 ,..., β s }线性表出。
0 2 2 1 1 1 2 5 0 2 1 3 1 1 3 3
~
1 0 0 0
5 1 1 0 9 = ( β1 , β 2 , β 3 , β 4 , β 5 ) 0 0 1 −2 0 0 0 0 0 2 0
2 1 0 1 0 1 = 2 + 1 ; 0 0 0 0 0 0
14
三、 思考题
1、求下列向量组的秩,并求其最大线性无关组: 求下列向量组的秩,并求其最大线性无关组:
α1 = (1,0, 3,1),α 2 = ( −1, 3,0, −1),α 3 = (2,1,7, 2), α 4 = (4, 2,14,0).
2、一个向量组的秩是否确定?其极大无关组是 一个向量组的秩是否确定? 否唯一? 否唯一?
13
推论9(结论要记住) 推论9(结论要记住) 9(结论要记住 设 C m × n = A m × s B s × n ,则 R ( C ) ≤ R ( A ), R ( C ) ≤ R ( B ). 证 设矩阵 C和A用其列向量表示为
C = (c1 ,L, c n ), A = (a1 ,L, a s ).
1 0 A= 1 0 0 2 2 1 1 1 2 5 0 2 1 3 1 1 3 3
向量组的秩
6
二、向量组的秩与矩阵的秩的关系
回顾: 回顾:我们前面对于矩阵的秩的讨论 将矩阵化为阶梯形矩阵, 将矩阵化为阶梯形矩阵,求出非零行的行数 问题:矩阵的秩与其行( 问题:矩阵的秩与其行(列)向量组的秩之间的关 系?? 矩阵A的行向量组的秩称为行秩 行秩, 定义 矩阵A的行向量组的秩称为行秩, 矩阵A的列向量组的秩称为列秩。 矩阵A的列向量组的秩称为列秩。 列秩 矩阵A的秩=行秩=列秩= 定理 矩阵A的秩=行秩=列秩=向量组的秩
r ( A) ≤ r ( B )
例 证
证明 r ( AB ) ≤ min{ r ( A), r ( B )}
记C m ×n = Am× s Bs×n
b11 M [β 1 ,...β n ] = [α1 ,...α s ] bs 1
... b1n M bsn
根据向量的对应关系, 的列向量均可由 的列向量均可由A 根据向量的对应关系,C的列向量均可由 的列向量线性表示。 的列向量线性表示。 因此, 因此,r(C)≤r(A) 同样,可证 同样,可证r(C)≤r(B)
k1 k1α 1 + k 2α 2 + .. + k sα s = (α 1 ,...,α s ) M ks
k1 = ( β 1 ,... β t ). At × s M = 0 k s
19
x1 M =0 有非零解. 所以只需要证明 At × s 有非零解 xs
k1α 1 + k2α 2 + .. + k sα s = 0
线性表示, 因为 α 1 , α 2 ,L, α s 由 β 1 , β 2 ,L, β t 线性表示, 则
向量组的极大无关组与秩的求法
4
2 3 5 0 0 0 0
4时,r( A) 3 4, 1,2 ,3,4线性相关。
r(1,2 ,3 ) 3,1,2,3是一个极大无关组。
但,行摆行变换不行!
反例: 1 (1,0,0),2 (1,1,0),3 (1,1,0).
A
12
1 1
3
1
0 1 1
0 0
0 0
BT sn
AT ms
=CT
,
r(C) r(CT ) r(BT AT ) r(BT ) r(B).
r( Ams Bsn ) minr(A), r(B)
设有n两个维向量组1,2,,s与 1, 2 ,, s , 若
1,2 ,,s线性无关且
1
2
a11
a21
a12
a22
a1s 1
,
1 1
B
2
,C
2
.
am1
am2
ams
s
m
1
a11 a12 a1s 1
2
C
AB
a21
a22
a2s
2
m
a m1
am2
ams
s
r(C) r(1,2,,m ) r(1, 2,, s ) r(B).
Ams Bsn=C, r(C) r(AB) r(A).
r1 r3
1 1
1 1 1
0 0
0 0
r2r 1
1 1
1 0 1
0
0
0
0 1 0 0 0 0
r3r2
1 0
0 1
0 0
r1 r3
1 0
0 1
0
线性代数课本第三章习题详细答案
第三章 课后习题及解答将1,2题中的向量α表示成4321,,,αααα的线性组合:1.()()()()().1,1,1,1,1,1,1,1,1,1,1,1,,1,1,11,,1,12,1T4T3T21T--=--=--===αααααT2.()()()()().1,1,1,0,0,0,1,1,1,3,1,2,1,0,1,1,1,0,0,04321--=====ααααα解:设存在4321,,,k k k k 使得44332211αααααk k k k +++=,整理得14321=+++k k k k24321=--+k k k k14321=-+-k k k k14321=+--k k k k解得.41,41,41,454321-=-===k k k k 所以432141414145ααααα--+=. 设存在 4321,,,k k k k 使得44332211αααααk k k k +++=,整理得02321=++k k k ,04321=+++k k k k ,0342=-k k ,1421=-+k k k .解得 .0,1,0,14321=-===k k k k 所以31ααα-=.判断3,4题中的向量组的线性相关性: 3. ()()().6,3,1,5,2,0,1,1,1T3T2T1===ααα4. ()().3,0,7,142,1,3,0,)4,2,1,1(T3T2T 1==-=βββ,解:3.设存在 321,,k k k 使得0332211=++αααk k k ,即⎪⎩⎪⎨⎧=++=++=+065032032132131k k k k k k k k ,由0651321101=,解得321,,k k k 不全为零, 故321,,ααα线性相关.4.设存在 321,,k k k 使得0332211=++βββk k k ,即⎪⎪⎩⎪⎪⎨⎧=++=++=+-=+0142407203033213212131k k k k k k k k k k 可解得321,,k k k 不全为零,故321,,βββ线性相关. 5.论述单个向量)(n a a a ,,,21 =α线性相关和线性无关的条件.解:设存在k 使得0=αk ,若0≠α,要使0=αk ,当且仅当0=k ,故,单个向量线性无关的充要条件是0≠α;相反,单个向量)(n a a a ,,,21 =α线性相关的充要条件是0=α.6.证明:如果向量组线性无关,则向量组的任一部分组都线性无关. 证:设向量组n n αααα,,,,121- 线性无关,利用反证法,假设存在该向量组的某一部分组)(,,,21n i r i i i r ≤ααα 线性相关,则向量组n n αααα,,,,121- 线性相关,与向量组n n αααα,,,,121- 线性无关矛盾, 所以该命题成立.7.证明:若21,αα线性无关,则2121,αααα-+也线性无关.证:方法一,设存在21,k k 使得0)()(212211=-++ααααk k ,整理得,0)()(221121=-++ααk k k k ,因为21,αα线性无关,所以⎩⎨⎧=-=+02121k k k k ,可解得021==k k ,故2121,αααα-+线性无关.方法二,因为=-+)(2121,αααα⎪⎪⎭⎫⎝⎛-1111,21)(αα, 又因为021111≠-=-,且21,αα线性无关,所以向量组2121,αααα-+的秩为2,故2121,αααα-+线性无关.8.设有两个向量组s ααα,,,21 和,,,,21s βββ 其中,13121111⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=k a a a a α,3222122⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=ks a a a a α ,,321⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=ks s s s s a a a a αs βββ,,,21 是分别在s ααα,,,21 的k 个分量后任意添加m 个分量mj j j b b b ,,,21),,2,1(s j =所组成的m k +维向量,证明:(1) 若s ααα,,,21 线性无关,则s βββ,,,21 线性无关; (2) 若s βββ,,,21 线性相关,则s ααα,,,21 线性相关.证:证法1,(1)设()s A ααα,,,21 =,()s B βββ,,,21 =,因为s ααα,,,21 线性无关,所以齐次线性方程0=AX 只有零解,即,)(s A r = 且s B r =)(,s βββ,,,21 线性无关.证法2,因为s ααα,,,21 线性无关,所以齐次线性方程0=AX 只有零解,再增加方程的个数,得0=BX ,该方程也只有零解,所以s βββ,,,21 线性无关.(2) 利用反证法可证得,即假设s ααα,,,21 线性无关,再由(1)得s βββ,,,21 线性无关,与s βββ,,,21 线性相关矛盾.9. 证明:133221,,αααααα+++线性无关的充分必要条件是321,,ααα线性无关.证:方法1,(133221,,αααααα+++)=(321,,ααα)⎪⎪⎪⎭⎫ ⎝⎛110011101因为321,,ααα线性无关,且02110011101≠=,可得133221,,αααααα+++的秩为3所以133221,,αααααα+++线性无关.线性无关;反之也成立.方法2,充分性,设321,,ααα线性无关,证明133221,,αααααα+++线性无关.设存在321,,k k k 使得0)()()(133322211=+++++ααααααk k k ,整理得,0)()()(332221131=+++++αααk k k k k k因为321,,ααα线性无关,所以⎪⎩⎪⎨⎧=+=+=+000322131k k k k k k ,可解得0321===k k k ,所以133221,,αααααα+++线性无关. 必要性,(方法1)设133221,,αααααα+++线性无关,证明321,,ααα线性无关,假设321,,ααα线性相关,则321,,ααα中至少有一向量可由其余两个向量线性表示,不妨设321,ααα可由线性表示,则向量组133221,,αααααα+++可由32,αα线性表示,且23>,所以133221,,αααααα+++线性相关,与133221,,αααααα+++线性无关矛盾,故321,,ααα线性无关.方法2,令133322211,,ααβααβααβ+=+=+=,设存在321,,k k k 使得0332211=++αααk k k ,由133322211,,ααβααβααβ+=+=+=得)()()(32133212321121,21,21βββαβββαβββα---=-+=+-=,代入 0332211=++αααk k k 得,0212121321332123211=++-+-+++-)()()(βββββββββk k k ,即 0)()()(332123211321=+-+++-+-+βββk k k k k k k k k因为321,,βββ线性无关,所以⎪⎩⎪⎨⎧=+-=++-=-+000321321321k k k k k k k k k可解得0321===k k k ,所以321,,ααα线性无关.10.下列说法是否正确?如正确,证明之;如不正确,举反例:(1)m ααα,,,21 )(2>m 线性无关的充分必要条件是任意两个向量线性无关; 解:不正确,必要条件成立,充分条件不成立,例:2维向量空间不在一条直线的3个向量,虽然两两线性无关,但这3个向量线性相关。
线性代数课后习题与答案
《线性代数》课程习题第1章行列式习 题 1.11. 计算下列二阶行列式:(1)2345 (2)2163- (3)x x x x cos sin sin cos - (4)11123++-x x x x(5)2232ab b a a (6)ββααcos sin cos sin (7)3log log 1a bb a2. 计算下列三阶行列式:(1)341123312-- (2)00000d c ba (3)d c e ba 0000 (4)zy y x x 00002121(5)369528741 (6)01110111--3. 用定义计算行列式:(1)41067050330200100 (2)1014300211321221---(3)5000000004000300020001000 (4)dcb a 10011001101---. 4.用方程组求解公式解下列方程组:(1) ⎪⎩⎪⎨⎧=-+=--=--0520322321321321x x x x x x x x x (2)⎪⎩⎪⎨⎧=+-=-+=++232120321321321x x x x x x x x x习 题 1.21. 计算下列行列式:(1)123112101 (2)158********---- (3)3610285140 (4)6555655562.计算行列式(1)2341341241231234(2)121140351212734201----- (3)524222425-----a a a(4)322131399298203123- (5)0532004140013202527102135---- 3.用行列式的性质证明:(1)322)(11122b a b b a ab aba -=+(2)3332221113333332222221111112c b a c b a c b a a c c b b a a c c b b a a c c b b a =+++++++++ 4.试求下列方程的根:(1)022223356=-+--λλλ(2)0913251323221321122=--x x5.计算下列行列式(1)8364213131524273------ (2)efcfbf de cd bdae acab ---(3)2123548677595133634424355---------- (4)111110000000002211n n a a a a a a --- (5)xa a ax a aa x(6)ab ba b a ba0000000000习 题 1.31. 解下列方程组(1)⎪⎩⎪⎨⎧-=++=+--=++1024305222325321321321x x x x x x x x x (2)⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x2. k 取何值时,下列齐次线性方程组可能有非零:(1) ⎪⎩⎪⎨⎧=+-=++-=++0200321321321x x x x kx x kx x x (2)⎪⎩⎪⎨⎧=+-=++=++0300321321321x x x x kx x x x kx 习 题 五1.41.计算下列行列式(1)3010002113005004, (2)0113352063410201-- (3)222111c b a c b a (4)3351110243152113------, (5)n n n n n b a a a a a b a a a a D ++=+ 212112111112.用克莱姆法则解线性方程(1)⎪⎩⎪⎨⎧=+-=-+=--114231124342321321321x x x x x x x x x (2)⎪⎪⎩⎪⎪⎨⎧=++=+-+=+-+=++3322212543143214321321x x x x x x x x x x x x x x3.当λ为何值时,方程组⎪⎩⎪⎨⎧=+-=+-=++0020321321321x x x x x x x x x λλ可能存在非零解?4.证明下列各等式(1) 222)(11122b a b b a ab ab a -=+(2) ))()((4)2()1()2()1()2()1(222222222c b a c a b c c c b b ba a a ---=++++++(3) ))()()()()()((111144442222d c b a d c d b c b d a c a b a d c b a d c b a d c b a+++------=5.试求一个2次多项式)(x f ,满足1)2(,1)1(,0)1(-==-=f f f .第2章矩阵习 题 2.21.设 ⎥⎦⎤⎢⎣⎡=530142A , ⎥⎦⎤⎢⎣⎡-=502131B , ⎥⎦⎤⎢⎣⎡--=313210C , 求3A -2B +C 。
第三章习题与复习题(线性方程组)---高等代数
习题3.11.用消元法解下列线性方程组(1)123131232312 264257x x x x x x x x -+=⎧⎪+=⎨⎪++=⎩ (2)⎪⎪⎩⎪⎪⎨⎧=+--=+-=+-=+-115361424524132321321321321x x x x x x x x x x x x(3)⎪⎩⎪⎨⎧=-++=-+-=--+8222635363432143214321x x x x x x x x x x x x (4) ⎪⎪⎩⎪⎪⎨⎧=-+++=+++=-+++=++++233453622032315432154325432154321x x x x x x x x x x x x x x x x x x x 2.设线性方程组1232123123424x x tx x tx x t x x x ++=⎧⎪-++=⎨⎪-+=-⎩ t 为何值时方程组无解? t 为何值时方程组有解?有解时,求其解. 3.设线性方程组1234123412341234231363315351012x x x x x x x x x x ax x x x x x b+++=⎧⎪+++=⎪⎨--+=⎪⎪--+=⎩ (1) a , b 为何值时方程组有唯一解? (2) a, b 为何值时方程组无解?(3) a , b 为何值时方程组有无穷多解?并求其一般解.习题3.21.设()()()1231,1,1,22,1,0,11,2,0,2ααα=--=-=--,, ,求 (1) 321ααα++ (2) 321532ααα+- 1211222. (1,0,,0) (0,1,,0)(0,0,,1),.n n n n a a a εεεεεε===+++设 维向量 , ,, 求()()3. 2 02,1 3 1,124αβγαγβ=-=-+=设2,,,4,2, ,,,求向量 ,使.4.设()()122,0,13,1,1αα==-, 满足 12234βαβα+=+ ,求 β .5.342112231231,.αβαβαβ+=+=-设(,,,), (,,,),求习题3.31. 判断向量 β 能否由向量1α,2α,3α,4α 线性表示,若可以,求出表达式. ()()()()()1234(1) 1,1,1,1 ,1,1,1,11,1,1,11,1,1,11,1,3,1βαααα=--==--=--=-,,, ()()()()()1,1,1,11,1,1,11,1,1,11,1,1,1,1,1,2,1 )2(4321--=--=--===ααααβ,,, ()()()()()3,0,1,37,1,1,40,1,0,17,3,1,23,1,3,4 )3(4321---==-==--=ααααβ,,, 1231231232. 120347110,,,011234(1) , , ,,;(2) , , ,,,;(3) , b a a b a b a b αααββαααβααα⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭设取何值时不能由线性表示取何值时能由唯一线性表示写出该表达式取何值123, ,,,βααα时能由线性表示且表达式不唯一写出全体表达式.3.判断下列向量组的线性相关性.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=70241202152101014 )1(4321αααα,,,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=2131012021013312 )2(4321αααα,,,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=652111113211 )3(321ααα,,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=14044121302101130112 )4(4321αααα,,,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=7932 ,4354327697656324 )5(54321ααααα,,,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=7023120233631121 )6(4321αααα,,,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=431003801053001 )7(321ααα,,12344. 12341234 12341234a a a a αααα+⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭设向量组,,, 12341234(1) , ,,,;2 , ,,,.a a αααααααα为何值时线性相关()为何值时线性无关5.讨论向量组12310112,,21425111a b ααα⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭的线性相关性. 6.已知向量组1,,,,i n ααα线性无关,证明1,,,,(0)i n k k ααα≠线性无关.7.已知向量组12,,,n ααα线性无关, 1121212,,,,n n βαβααβααα==+=+++证明: 12,,,n βββ线性无关.8.设12,,,n ααα线性无关,nnn n n n nn n n a a a a a a a a a αααβαααβαααβ+++=+++=+++=22112222121212121111证明:n βββ,,,21 线性无关的充要条件是行列式D = n n n n nna a a a a a a a a 111212122212≠ 09.已知向量组m ααα,,,21 线性无关,设111322211,,,,ααβααβααβααβ+=+=+=+=--m m m m m证明:(1) 当m 为偶数时, m βββ,,,21 线性相关;(2)当m 为奇数时, m βββ,,,21 线性无关.习题3.41.求下列向量组的秩与一个极大线性无关组.(1)12344212 312101308αααα-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪==-== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,,, (2)1234511005 2112, 153223ααααα⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪===== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,,,(3)123450********* , 0111111011ααααα-⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪ ⎪===== ⎪ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,,, 2.求下列向量组的秩与一个极大无关组并将其余向量用求出的极大无关组线性表示.(1)12342104113410100124αααα⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,,,(2)123452313712024 , 3283023743ααααα--⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪ ⎪===== ⎪ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,,, (3)123452183723075, 3258010320ααααα⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪ ⎪===== ⎪ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,,,3.求向量组123411312000121135a b αααα⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭,,,的秩和一个极大无关组.4.设A 、B 均为m × n 阶矩阵,证明:R (A + B )≤ R (A )+ R (B ) 5.设向量组m ααα,,,21 ( m > 1 )的秩为r ,m m m m βαααβαααβααα-=+++=+++=+++,,,123213121证明:向量组m βββ,,,21 的秩为r .6.设A 为n × m 阶矩阵,B 为m × n 阶矩阵,且n > m ,证明 AB = 0 .习题3.51.求下列齐次线性方程组的一个基础解系并用它表出通解. (1) 123413412313424303 07 730x x x x x x x x x x x x x -+-=⎧⎪+-=⎪⎨++=⎪⎪+-=⎩ (2) 12345123451234512345202 +230322025220x x x x x x x x x x x x x x x x x x x x -+-+=⎧⎪-+-=⎪⎨--+-=⎪⎪-+-+=⎩2.设线性方程组123123123232082021430x x x x x x x x x λλλ---=⎧⎪-+--=⎨⎪+++=⎩()()()问λ为何值时, 该方程组有非零解?并求出它的全部解.3.设n 阶方阵A 的每行元素之和都为零,且R (A )= n -1 ,求方程组A X = 0的通解. 4.已知3阶非零矩阵B 的每个列向量都是线性方程组1231231232202030x x x x x x x x x λ+-=⎧⎪-+=⎨⎪+-=⎩ 的解, 求λ的值. 5.已知线性方程组12342341242200 0x x x x x cx cx x cx x +++=⎧⎪++=⎨⎪++=⎩ 的基础解系由两个解向量构成,求c 的值与该方程组的通解. 6.设12313221211A t ⎛⎫⎪-⎪= ⎪⎪--⎝⎭B 是3阶非零矩阵,且AB=O , 求t 的值.习题3.61.解下列线性方程组(在有无穷多解时求出其结构式通解). (1)12312312312323424538213496x x x x x x x x x x x x ++=⎧⎪-+=-⎪⎨+-=⎪⎪-+=-⎩(2)1234124123401 222461x x x x x x x x x x x --+=⎧⎪⎪--=⎨⎪--+=-⎪⎩2.已知线性方程组1231231232123(2)320x x x x x a x x ax x ++=⎧⎪+++=⎨⎪+-=⎩ 无解,求a 的值.3.参数λμ,取何值时,线性方程组123412341234230327162x x x x x x x x x x x x λμ+-+=⎧⎪+++=⎨⎪---=⎩ 有解、无解?4. 参数a , b 为何值时,线性方程组12345123452345123451323 22635433x x x x x x x x x x a x x x x x x x x x b ++++=⎧⎪+++-=⎪⎨+++=⎪⎪+++-=⎩有解、无解?在有解时,求其解.5. 参数a , b 为何值时,线性方程组1231231234324ax x x x bx x x bx x ++=⎧⎪++=⎨⎪++=⎩ 无解、有唯一解、有无穷多解?在有解时,求其解.6.向量123,,γγγ是四元非齐次线性方程组AX β=的解向量,()2R A =且 121321γγ⎛⎫ ⎪ ⎪+= ⎪ ⎪⎝⎭ ,231102γγ⎛⎫ ⎪ ⎪+= ⎪ ⎪-⎝⎭,132110γγ⎛⎫⎪ ⎪+= ⎪ ⎪⎝⎭求线性方程组AX β=的通解. 7.设线性方程组23112131231222322313233323142434x a x a x a x a x a x a x a x a x a x a x a x a ⎧++=⎪++=⎪⎨++=⎪⎪++=⎩ (1)若1234,,,a a a a 互不相同,证明方程组无解;(2)若1324,(0)a a k a a k k ====-≠,证明方程组有解,并求其通解.8.证明线性方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=-=-=-=-515454343232121a x x ax x a x x a x x a x x 有解的充分必要条件是∑=51i i a = 0 ,并在有解时求其通解.9.设非齐次线性方程组A X = β 的解向量12,,,s γγγ,证明(1) 线性组合1122s s k k k γγγ+++是A X = β 的解的充分必要条件是k 1 + k 2 + … + k s = 1;(2)线性组合1122s s k k k γγγ+++是A X = 0 的解的充分必要条件是k 1 + k 2 + … + k s = 0.习题三 (A)一、填空题1.设123111111λααλαλ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,当λ满足 时, 123ααα,,线性相关; 当λ满足 时, 123ααα,,线性无关. 2.已知向量组123411110112,23243519t t αααα⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭,, 线性相关, 则t 满足 .3.设向量组123ααα,,线性无关,则当参数l, m 满足 时,213213l m αααααα---,,也线性无关.4. 已知123ααα,,线性无关,若12123123242m m αααααααα+-++-,,也线性无关, 则m .5.设向量组123(, 0, )(, ,0)(0, , )a c b c a b ααα===,,线性无关, 则a , b , c 满足 . 6. 设向量组1234(2,1,1,1)(2,1,,)(3,2,1,),(4,3,2,1)a a a αααα====,,线性相关,且1a ≠, 则 a = .7. 当k = 时, 向量 ()Tk k 2,,0=β 可由向量组()T k 1,1,11+=α ,()()T T k k +=+=1,1,11,1,132αα, 线性表示且表示方法不唯一.()()()1231,2,1,1,2,0,,0,0,4,5,22, t t ααα=-==--=8.已知的秩为 则 .9. 设A = ⎪⎪⎪⎭⎫ ⎝⎛--11334221t , B 为3阶非零矩阵, 且A B = O , 则t = .10. 设B 为3阶非零矩阵,且B 的每个列向量都是方程组 ⎪⎩⎪⎨⎧=-+=+-=++030202321321321x x x x x x kx x x 的解,则k= ,B = .11. 设123,,ααα是齐次线性方程组AX = 0 的一个基础解系, 则当参数a 满足 时,122331a αααααα+++,,也是该方程组的基础解系.12. 已知向量组1234,,,αααα的秩为3, 且1234,,,αααα可由向量组123,,βββ线性表示, 则向量组123,,βββ必线性 .二、单项选择题1. 已知1143α⎛⎫ ⎪= ⎪ ⎪⎝⎭,221t α⎛⎫ ⎪= ⎪ ⎪-⎝⎭,3231α-⎛⎫⎪= ⎪ ⎪⎝⎭线性相关, 则t =( ) .(A ) 2 (B) -2 (C ) 3 (D ) –3 2.已知向量组1234αααα,,,线性无关, 则向量组( )线性无关.12233441122334411223344112233441A αααααααααααααααααααααααααααααααα+++++++-----++--() ,,,(B ) ,,,(C ) ,,,(D ) ,,,3. 对任意实数a , b , c 下列向量组线性无关的是( ).(A) (a , 1, 2), (2, b , 3), (0, 0, 0)(B) (b , 1, 1), (1, a , 3), (2, 3, c ), (a , 0, c ) (C) (1, a , 1, 1), (1, b , 1, 0), (1, c , 0, 0) (D) (1, 1, 1, a ), (2, 2, 2, b ), (0, 0, 0, c )4.若向量组 α , β , γ 线性无关, α , β , δ 线性相关, 则( ).(A ) α 必可由 β , γ , δ 线性表示 (B ) β 必不可由 α , γ , δ 线性表示 (C ) δ 必可由 α , β , γ 线性表示 (D ) δ 必不可由 α , β , γ 线性表示 5. 设同维向量组12121::,rr r mA B αααααααα+,,,,,,,,则下列说法正确的是( ). (A) A 组与B 组的线性相关性相同 (B) 当A 组线性无关时, B 组也线性无关 (C) 当B 组线性相关时, A 组也线性相关 (D) 当A 组线性相关时, B 组也线性相关 6. 下列说法正确的是( ). (A) 若1α,2α线性相关,1β ,2β线性相关, 则11βα+,22βα+一定线性相关(B) 若1α,2α 线性无关, β为任一向量, 则βα+1,βα+2一定线性无关(C) 若1α,2α ,…,m α( m ≥ 2 )线性相关, 则其中任何一个向量都可由其余向量线性表示 (D) 若n 维向量组1α,2α,… ,m α( m ≥ 2 )线性无关,则对于任意不全为零的数k 1, k 2 ,… , k m 一定有 θααα≠+++m m k k k 22117.已知向量组123ααα,,线性无关, 向量β可由123ααα,,线性表示, 向量γ不能由123ααα,,线性表示, 则对任意常数k , 必有( ).(A) 123,,, k αααβγ+线性无关 (B) 123,,, k αααβγ+线性相关 (C) 123,,, k αααβγ+线性无关 (D) 123,,, k αααβγ+线性相关8. 一个向量组的极大线性无关组( ). (A ) 个数唯一 (B) 个数不唯一(C ) 所含向量个数唯一 (D ) 所含向量个数不唯一9.已知任一n 维向量均可由n ααα,,,21 线性表示, 则n ααα,,,21 ( ).(A) 线性相关 (B) 秩等于n(C) 秩小于n (D) 秩不能确定10. 已知21346639A t ⎛⎫ ⎪= ⎪ ⎪⎝⎭, B 为三阶非零矩阵且AB =O ,则( ).(A)当t = 2时,B 的秩必为1 (B)当t = 2时,B 的秩必为2 (C)当t ≠2时,B 的秩必为1 (D)当t ≠ 2时,B 的秩必为211.设非齐次线性方程组A X = B 中未知量个数为n , 方程个数为m , 系数矩阵A 的秩为r ,则 ( ) .(A ) r = m 时,方程组A X = B 有解 (B) r = n 时,方程组A X = B 有唯一解 (C ) m = n 时,方程组A X = B 有唯一解 (D ) r < n 时,方程组A X = B 有无穷多解12.n 元线性方程组AX=B 有唯一解的充分必要条件是( ).(A ) 导出组AX=0仅有零解 (B ) A 为方阵,且∣A ∣≠0(C ) R(A) = n(D ) 系数矩阵A 的列向量组线性无关,且常数项向量B 可由A 的列向量组线性表示13.设A 是n 阶矩阵, α 是n 维列向量,若R ⎪⎪⎭⎫⎝⎛0TAαα = R (A ) ,则线性方程组 ( ).(A ) A X = α 必有无穷多解(B ) A X = α 必有唯一解 (C ) ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛y X A T0αα = 0仅有零解 (D ) ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛y X A T0αα = 0必有非零解 14.将齐次线性方程组⎪⎩⎪⎨⎧=++=++=++0003213213221x x x x x x x x x λλλλ的系数矩阵记为A , 若存在3阶矩阵B ≠ O使得AB =O , 则 ( ) .(A ) λ = -2且 B = 0 (B ) λ = -2且 B ≠ 0 (C ) λ = 1且 B = 0 (D ) λ = 1且 B ≠ 0 15. 已知123,,ααα是非齐次线性方程组AX=b 的3个解, 则下列( )不是导出组 AX = 0的解.(A) 1232ααα+- (B) 121()3αα- (C) 132αα- (D)311()2αα- 16. 已知123,,ααα是非齐次线性方程组AX=b 的3个解,则下列( )是AX = b 的解. (A) 1232ααα+- (B) 123ααα+- (C) 132αα- (D)311()2αα- 17. 已知123ααα,,是4元非齐次线性方程组AX=b 的3个不同的解且R (A ) =3,则下列( )是导出组AX = 0的基础解系.(A) 12312,ααααα+-- (B) 12αα- (C) 13αα+ (D) 3121,αααα--(B)1.设12312300111a b αααβββ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1011=,=,010012011=,=,1221求a , b 的值,使向量组123ααα,,与向量组123βββ,,等价.122.,,,.r t t t r n ≤设是互不相同的数,21(1,,,,) (1,2,,)n i i i i t t t i r α-==证明:线性无关.3. ,, , 0. , , , a b c a b c abc αβγαβγθαβαγβγ++=≠设向量,,及数满足且证明和均与等价.4.设向量组123411321326,1511031p p αααα--⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,,(1)p 为何值时,1234,αααα,,线性无关, 并在此时将向量()4,1,6,10Tβ=用该向量组线性表示;(2)p 为何值时,1234,αααα,,线性相关,并在此时求出该向量组的秩和一个极大无关组. 5.求向量组1231111121111k k ααα⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,的秩和一个极大无关组.6.,,A m n B n m m n AB E B ⨯⨯<=设为矩阵,为矩阵,且若证明的列向量组线性无关. 7.已知向量组123967ααα⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭13=2,=0,-31与1232110a b βββ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭0=1,=,-1具有相同的秩且3β可由123ααα,,线性表示,求a , b 的值. 8.已知3阶矩阵B O ≠且B 的列向量都是线性方程组12312312320200x x x x x x ax x x +-=⎧⎪-+=⎨⎪+-=⎩ 的解.(1) 求a 的值; (2) 证明0B =. 9. 已知线性方程组⎪⎩⎪⎨⎧=++=++=++000322212321321x c x b x a cx bx ax x x x ,(1) 当a , b , c 满足何种关系时,方程组仅有零解?(2)当a , b , c 满足何种关系时,方程组有无穷多组解?求出其通解. 10. 两个齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=++=++=++⎪⎪⎩⎪⎪⎨⎧=++=++=++00000011212111111121211111n tn t n n n n n mn m n n n n x b x b x b x b x b x b x a x a x a x a x a x a 与 的系数矩阵A 与B 的秩都小于n /2. 证明:这两个方程组必有相同的非零解. 11. 设12s ααα,,,为某齐次线性方程组的一个基础解系, 11122,t t βαα=+21223,t t βαα=+ 12112,,,s s t t t t βαα=+其中为任意常数. 问当12,t t 满足什么条件时, 12s βββ,,,也为该方程组的一个基础解系.12.设四元齐次线性方程组(Ⅰ)为 ⎩⎨⎧=-++=-+020324321321x x x x x x x , 且已知另一四元齐次线性方程组(Ⅱ)的一个基础解系为 T T a a )(,)(8,4,2,11,2,1,221+-=+-=αα(1) 求方程组(Ⅰ)的一个基础解系; (2) a 为何值时,(Ⅰ)与(Ⅱ)有非零公共解?在有非零公共解时, 求出全部非零公共解.13.设 r n -γγγγ,,,,210 为非齐次线性方程组A X = β 的n - r +1个线性无关的解向量,其中r = R (A ).证明:00201,,,γγγγγγ----r n 是其导出组AX = 0的一个基础解系. 14.若线性方程组n n n n n nn n n a x a x b a x a x b a x a x b ++=⎧⎪++=⎪⎨⎪⎪++=⎩111112112211 的系数矩阵的秩等于矩阵B =1111110n n nnn na ab a a b b b ⎛⎫⎪⎪ ⎪ ⎪ ⎪⎝⎭的秩. 证明此方程组有解.12312315. 4, ()3, ,,,2200,20028.AX B R A αααααα==⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭设元非齐次线性方程组已知为方程组的解其中求该方程组的通解16. 设线性方程组Ⅰ: 123123212302040x x x x x ax x x a x ++=⎧⎪++=⎨⎪++=⎩Ⅱ: 123 21x x x a ++=-有公共解, 求a 的值及所有公共解.。
线性代数-向量组的秩
0 0 1 0 1 0 1 1 0 1 1 1 = B . 0 0 0 0 0 0 0 0
β1 β 2 β 3 β 4 β 5
由定理 4.2知, 向量组的秩为 r ( A) = r ( B ) = 3 ;
的个极大无关组5 的个极大无关组 且
【例2 】
α 1 α 的秩和一个极大无关组, 求向量组 A = 2 的秩和一个极大无关组, α 3 α 4 并将其它向量用此极大无关组线性表示。 并将其它向量用此极大无关组线性表示。
其中α 1 = [2,0,1,1], α 2 = [ − 1, − 1, − 1, − 1] ,
{PAGE}
4
合理么? 【问】用三个不同的极大无关组来研究 A合理么? 三者之间有什么关系? 三者之间有什么关系?
{PAGE}
5
2、向量组的等价 、
【定义 2】 对两个给定的向量组
A : α1 , ⋯ , α r ; B : β 1 , ⋯ , β s .
中的向量线性表示, 若 A 中的每个向量都可由 B 中的向量线性表示, 线性表示. 则称 A 可由 B 线性表示. 若两个向量组能相互 线性表示, 则称它们等价 等价. 线性表示, 则称它们等价.
【证 明 】
x1 方程 x1α 1 + ⋯ + xnα n = 0 为齐次线性方程组 [α 1 , ⋯ , α n] ⋮ = 0 xn
又对矩阵 A = [α 1 , ⋯ , α n]进行行初等变换相当于对上述齐次 线性方程组的系数阵进行行初等变换, 线性方程组的系数阵进行行初等变换 而这是此方程组的 同解变换. 于是本命题成立. 同解变换 于是本命题成立
于是存在一组不全为 0 的常数 k , k1 , ⋯ , kr 使得
求向量组的秩与极大无关组
求向量组的秩与极大无关组对于具体给出的向量组,求秩与极大无关组的常用方法如下。
方法1 将向量组排成矩阵:(列向量组时)或(行向量组时) (*)并求的秩,则即是该向量组的秩;再在原矩阵中找非零的阶子式,则包含的个列(或行)向量即是的列(或行)向量组的一个极大无关组.方法2 将列(或行)向量组排成矩阵如(*)式,并用初等行(或列)变换化为行(或列)阶梯形矩阵(或),则(或)中非零行(或列)的个数即等于向量组的秩,且是该向量组的一个极大无关组,其中是(或)中各非零行(或列)的第1个非零元素所在的列(或行).方法3 当向量组中向量个数较少时,也可采用逐个选录法:即在向量组中任取一个非零向量作为,再取一个与的对应分量不成比例的向量作为,又取一个不能由和线性表出的向量作为,继续进行下去便可求得向量组的极大无关组。
对于抽象的向量组,求秩与极大无关组常利用一些有关的结论,如“若向量组(Ⅰ)可由向量组(Ⅱ)线性表示,则(Ⅰ)的秩不超过(Ⅱ)的秩",“等价向量组有相同的秩”,“秩为的向量组中任意个线性无关的向量都是该向量组的极大无关组"等.例1 求向量组,,,,的秩与一个极大无关组。
解法1,所以向量组的秩为3;又中位于1,2,4行及1,2,4列的3阶子式故是向量组的一个极大无关组(可知;均可作为极大无关组)。
法2由于的第1,2,4个行向量构成的向量组线性无关,故是向量组的一个极大无关组.例2 求向量组,,,的秩和一个极大无关组。
解(1)当且时,,故向量组的秩为3,且是一个极大无关组;(2)当时,,故向量组的秩为3,且是一个极大无关组;(3) 当时,若,则,此时向量组的秩为2,且是一个极大无关组。
若,则,此时向量组的秩为3,且是一个极大无关组.例3 设向量组的秩为.又设,,求向量组的秩.解法1 由于,且所以故向量组与等价,从而的秩为.法2 将看做列向量,则有其中可求得,即可逆,从而可由线性表示,故这两个向量组等价,即它们有相同的秩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题4.3
1.
(1) []12,1,
3,1T
α=-, []23,1,2,0T
α=-,
[]31,3,4,2T
α=-,[]44,3,1,1T
α=-.
(2) []11,1,1,1T
α=, []21,1,
1,1T
α=--,
[]31,1,1,1T α=--,[]41,1,1,1T
α=---.
(3) []11,
1,2,4T α=-, []20,3,1,2T α=,[]33,0,7,14T
α=,
[]41,1,2,0T
α=-,[]52,1,5,6T
α=.
分析 向量组的秩等于该向量组构成的矩阵的秩, 所以求向量组的秩可以转化为求矩阵的秩. 先把向量构成矩阵通过矩阵的初等行变换成阶梯形, 通过阶梯形便可得到矩阵的秩, 它也就是该向量组的秩, 而阶梯形的阶梯头所在的列对应的向量便构成该向量组的一个极大线性无关组.
解 (1) []1
23
423141133113301123241000010210000αααα--⎡⎤⎡⎤⎢⎥⎢⎥
---⎢⎥⎢
⎥=−−→⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦
, 所以该向量组的秩为2, 且1α, 2α为它的一个极大线性无关组.
(2) []1
23
4111111
1111110
1011111001111110
01αααα--⎡⎤⎡⎤⎢⎥⎢⎥---⎢⎥⎢
⎥=−−→⎢⎥⎢⎥
---⎢⎥⎢⎥--⎣⎦⎣⎦
, 所以该向量组的秩为4, 且1α,2α,3α,4α为它的一个极大线性无关组.
(3) []1
234
51
03121
312130110110121725000104
2140
60
000
0ααααα⎡⎤⎡⎤⎢⎥⎢⎥--⎢
⎥⎢⎥=−−→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦
, 所以该向量组的秩为3, 且1α,2α,4α为它的一个极大线性无关组.
2.计算下列向量组的秩,并判断该向量组是否线性相关. (1) []11,
1,2,3,4T α=-,[]23,7,8,9,13T
α=-,
[]31,3,0,3,3T α=----,[]41,9,6,3,6T
α=-
.
(2) []11,
3,2,1T β=--, []22,1,5,3T β=-,[]34,3,7,1T
β=-,
[]41,11,8,3T
β=---,[]52,12,30,6T
β=-.
解 (1) []1
23
4131
11
3111739011228
06000039330
000413
360000αααα--⎡⎤⎡⎤
⎢⎥⎢⎥----⎢
⎥⎢⎥⎢⎥⎢⎥=−−→⎢
⎥⎢
⎥
-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦
所以该向量组的秩为2, 小于向量的个数4, 所以线性相关.
(2)
[]1
234
51241212
41
2313111201
548257830001111313600
00
0βββββ----⎡⎤⎡⎤⎢⎥⎢⎥-----⎢⎥⎢
⎥=−−→⎢⎥⎢⎥-⎢⎥⎢⎥--⎣⎦⎣⎦
所以该向量组的秩为3, 小于向量的个数5, 所以线性相关.
3.设[]11,
2,1T α=-, []22,4,T αλ=, []31,,1T
αλ=.
(1) λ取何值时1α,2α,3α线性相关? λ取何值时1α,2α,3α线性无关? 为什么
? (2) λ取何值时3α能经1α,2α线性表示? 且写出表达式
.
解 (1)[]1
2
31211
212402211002αααλλλλ⎡⎤⎡⎤⎢⎥⎢⎥=−−→+⎢⎥⎢⎥
⎢⎥⎢⎥--⎣⎦⎣⎦
当2λ≠且2λ≠-时, 矩阵的秩为3与向量个数相同, 所以此时该向量组线性无关.
当2λ=或2λ=-时, 矩阵的秩为2小于向量个数, 所以此时向量组线性相关. (1) 当2λ=时, 秩([]1
2αα)=秩([]123ααα)=2, 此时3α能经1α,2α线性表
示.
表达式的系数为方程组[]1
23X ααα=的解, 而此时该方程组的解为120,1.2
x x =⎧⎪
⎨=⎪⎩
所以表达式为3α=21
2
α. 当2λ=-时, 秩([]1
2αα)=1, 秩([]123ααα)=2, 两者不相等, 所以不能
线性表示.
当2λ≠且2λ≠-时, 秩([]1
2αα)=2, 秩([]123ααα)=3, 两者不相等,
所以不能线性表示.
4.下述结论不正确的是( ),且说明理由.
(A) 秩为4的4×5矩阵的行向量组必线性无关. (B) 可逆矩阵的行向量组和列向量组均线性无关. (C) 秩为r(r<n)的m ×n 矩阵的列向量组必线性相关. (D) 凡行向量组线性无关的矩阵必为可逆矩阵.
解 (A) 正确. 如果行向量组线性相关则行向量组的秩必小于行向量的个数4, 即矩阵的行秩小于4, 而矩阵的行秩等于矩阵的秩, 因此矩阵的秩小于4, 这与矩阵的秩为4矛盾! 所以行向量组必线性无关.
(B) 正确. 可逆矩阵必为满秩矩阵, 即n n ⨯的可逆矩阵的秩为n , 而矩阵的秩等于行秩和列秩, 所以矩阵的行秩=列秩=n , 因此行向量组的秩和所含向量个数相同, 据此可知该行向量组必线性无关; 同理列向量组也必线性无关.
(C) 正确. 列向量组含有n 个向量, 又由于列向量组的秩(即列秩)等于矩阵的秩r , 而r<n , 即列向量组的秩小于向量组所含向量的个数, 据此列向量组必线性相关.
(D) 设111001A ⎡⎤
=⎢⎥⎣⎦
, 易知该矩阵的行向量组线性无关, 但是它不是方阵, 所以不是
可逆矩阵. 所以该选项不正确.
综上所述应选D.。