减振器选型设计计算书原

合集下载

4-1汽车减振器的选型设计.

4-1汽车减振器的选型设计.

4-1汽车减振器的选型设计.汽车减振器的选型设计东风汽车⼯程研究院陈耀明2010年11⽉12⽇⽬录⼀、汽车减振器的作⽤和功能---------------------------41、减振器的作⽤--------------------------------------42、减振器的功能--------------------------------------4 (1)对⾃然振动--------------------------------------4 (2)对强迫振动--------------------------------------6⼆、汽车减振器选型设计的任务-------------------------8三、汽车减振器额定阻⼒和⼯作缸直径的选择-------------91、线性减振器的阻尼特性------------------------------92、实际减振器的⾮线性--------------------------------93、减振器⽰功试验的标准规范-------------------------104、悬架系统相对阻尼系数与减振器阻尼系数的关系-------115、计算额定阻⼒-------------------------------------126、选择减振器⼯作缸直径-----------------------------13四、验算悬架系统在各种⼯况下的振动特性--------------14五、减振器⾏程和长度的确定--------------------------141、减振器最⼤压缩(上跳)⾏程-----------------------142、减振器最⼤拉伸(下跳)⾏程-----------------------153、减振器的总⾏程和长度-----------------------------15六、减振器上、下端连接⽅式和安装⾓度----------------161、减振器橡胶铰接头的最⼤转⾓-----------------------162、减振器的安装⾓度---------------------------------16七、特殊结构的减振器--------------------------------171、带有反向限位的减振器-----------------------------172、阻尼可调的减振器---------------------------------17⼋、试验和使⽤验证----------------------------------18汽车减振器的选型设计⼀、汽车减振器的作⽤和功能1、减振器的作⽤减振器是⼀种粘性阻尼元件,它能产⽣与运动⽅向相反,与运动速度成⽐例的阻⼒。

减震器的设计(学术参考)

减震器的设计(学术参考)

产品设计项目说明书一号宋体,居中汽车减震器的研究设计三号粗黑体,居中院(系)机械工程学院专业机械工程及自动化班级创新班学生姓名指导老师2015 年 01 月 05 日目录摘要 (3)第一章绪论 (4)1.1概述 (4)1.2 双筒液压减震器工作原理及优点 (5)1.3项目名称和要求 (6)1.4项目分析 (7)1.4.1双筒式减振器的外特性设计原则 (7)1.4.2减震器参数 (7)第二章参数的计算 (9)比亚迪S6主要参数 (9)2.1悬架静挠度的计算 (9)2.2相对阻尼系数 (10)2.3阻尼系数的确定 (11)2.4最大卸载力的计算 (12)2.5工作缸直径和减震器活塞行程的确定 (12)2.6减振器活塞行程的确定 (13)2.7 液压缸壁厚、缸盖、活塞杆和最小导向长度的计算 (14)2.7.1、液压缸的壁厚的计算 (14)2.7.2、液压缸的稳定性验算 (15)2.7.3、缸盖厚度的计算 (16)2.7.4、活塞杆的计算 (17)2.7.5、对杆强度进行 (17)2.7.6最小导向长度的确定 (18)2.8 活塞及阀系的尺寸计算 (18)第三章液压缸的结构设计 (19)3.1、缸体与缸盖的连接形式 (19)3.2、活塞杆与活塞的连接形式 (19)3.3、活塞杆导向部分的结构 (19)3.4、活塞及活塞杆处密封圈的选用 (19)3.5、液压缸的安装连接结构 (20)3.6、活塞环 (20)3.7、液压缸主要零件的材料和技术要求 (20)3.8弹簧片的选择 (20)3.9 密封元件和工作油液的确定 (21)3.9.1油封设计 (21)3.9.2密封元件 (21)3.9.3、油液的选取 (21)第四章使用说明 (23)4.1匹配技巧 (23)4.2故障维修与检测 (23)4.3漏油故障编辑 (25)总结 (26)参考文献 (27)附录 (28)摘要为改善汽车行驶平顺性,悬架中与弹性元件并联安装减振器,为衰减振动,汽车悬架系统中采用减振器多是液力减振器。

减振选型计算

减振选型计算

1、风机型号:GISO 80X65-160 11/2转速:2900rpm 净重:225Kg 选配6只减振器总重:W=225Kg*1.5+367Kg=704.5Kg (1.5为设备安全系数)单只载荷:P=W/6=704.5Kg/6=118Kg/只(选配YDS/KL-17)变形量:h=P/Kz=118/8=14.75mm(YDS/KL-17竖向刚度为8KG/mm)fn=n/60=2900/60=48.4Hzfo=(9800/h)1/2/2π=5HzT A={1-1/[(48.4/5)2-1]}*100%=98.9%2、风机型号:GISO 100X80-160 18.5/2转速:2900rpm 净重:239Kg 选配6只减振器总重:W=239Kg*1.5+416Kg=774.5Kg (1.5为设备安全系数)单只载荷:P=W/6=774.5Kg/6=129Kg/只(选配YDS/KL-17)变形量:h=P/Kz=129/8=16.13mm(YDS/KL-17竖向刚度为8KG/mm)fn=n/60=2900/60=48.4Hzfo=(9800/h)1/2/2π=4HzT A={1-1/[(48.4/4)2-1]}*100%=99.3%3、风机型号:GISO 100X80-160 15/2转速:2900rpm 净重:218Kg 选配6只减振器总重:W=218Kg*1.5+403Kg=730Kg (1.5为设备安全系数)单只载荷:P=W/6=730Kg/6=122Kg/只(选配YDS/KL-17)变形量:h=P/Kz=122/8=15.25mm(YDS/KL-17竖向刚度为8KG/mm)fn=n/60=2900/60=48.4Hzfo=(9800/h)1/2/2π=4HzT A={1-1/[(48.4/4)2-1]}*100%=99.3%4、风机型号:GISO 250X200-400 75/4转速:1450rpm 净重:1134Kg 选配6只减振器总重:W=1134Kg*1.5+1750Kg=3451Kg (1.5为设备安全系数)单只载荷:P=W/6=3451Kg/6=575Kg/只(选配YDS-560)变形量:h=P/Kz=575/37=15.6mm(YDS-560竖向刚度为37KG/mm)fn=n/60=1450/60=24.2Hzfo=(9800/h)1/2/2π=4HzT A={1-1/[(24.2/4)2-1]}*100%=97.9%5、风机型号:GISO 250X200-315 75/4转速:1450rpm 净重:1050Kg 选配6只减振器总重:W=1050Kg*1.5+1600Kg=3175Kg (1.5为设备安全系数)单只载荷:P=W/6=3175Kg/6=529Kg/只(选配YDS-560)变形量:h=P/Kz=529/37=14.3mm(YDS-560竖向刚度为37KG/mm)fn=n/60=1450/60=24.2Hzfo=(9800/h)1/2/2π=4.2HzT A={1-1/[(24.2/4.2)2-1]}*100%=96.9%。

选型·减震器

选型·减震器

一·已知条件机器总自重1065kg10650N运行重量1128.9kg11289N转速1470r/min压缩机转速?基座重量879kg8790N二、计算单个减振器荷重静载荷:19440N机器总自重(+基座重量)动载荷:639N方法有三种,3.运行重量-机器自重总载荷:20079N减震器个数:8个单个减震器静载荷:2430N单个减震器动载荷:79.875N单个减振器总载荷:2509.875N三、计算干扰频率干扰频率24.5HZ转速(r/min)/60四、初选减振器减振器频率必须不大于17.32673HZ,减震器才有效果减振器频率不大于9.8HZ推荐频率在 4.9HZ左右。

查样本初选减振器型号、及参数型号XX240刚度850N/cm阻尼比0.05。

减振器固有频率 2.95717HZ 2.956561988.454028或计算得 2.95717HZ公式改成5/SQRT(c14/b25)减震器原始高度cm减震器(预压)高度12cm减震器预压量 1.9cm五、校核隔振效率频率比8.284947。

无阻尼的传振效率 1.478%.=abs(1/(1-频率比^2))有阻尼的传振效率 1.920%.=sqrt((1+(2*阻尼比*频率比)^2)/((1-频率比^2)^2+(2*阻六、校核设备振动量设备振动速度0.185135cm/s公式要改成.=设备干扰力(非动载荷之和)/所有减震器竖向刚度1.851352mm/s七、计算减震器的安装高度安装高度0cm0mm B29-C14/B2511.04118cm110.4117647mm B30-C14/B25+B311.128665296V05 a0.066 x4 d00.3 (2.3369036032.727272727B14改c14)/((1-频率比^2)^2+(2*阻尼比*频率比)^2))荷之和)/所有减震器竖向刚度之和(N/cm)*振动传递效率*2π*设备转动频率。

(整理)减震器设计说明书.

(整理)减震器设计说明书.

密级:摘要汽车已成为人们日常生活必备的交通工具,汽车减震器在汽车零部件中占有极其重要地位。

减震器是汽车悬架系统中的关键部件,减震器的性能就决定了悬挂系统的许多性能参数。

而且减震器的好坏直接决定了汽车的乘坐舒适性和行驶的平顺性。

随着计算机在软、硬件上的快速发展,虚拟设计无论是在理论,还是在计算技术方面都已取得巨大的进步。

虚拟设计是较先进的现代设计方法。

虚拟设计不仅可以大大降低开发成本,还缩短了开发周期,提高了企业的竞争力。

所以,虚拟化设计越来越受到企业的欢迎。

本文主要讲述了利用CAD软件UG对减震器各个零部件进行实体建模,然后着重分析了减震器的制造生产工艺,最后在UG软件的制图模块获得了完整的工程图纸。

根据实践情况,利用通用有限元软件ANSYS对减震器的阀片进行有限元建模、计算、应力分析、应变分析,根据分析结果对减震器的阀片受力变形情况进行了解。

关键词:汽车减震器,建模,产品设计AbstractAutomobile has become an indispensable transportation means of our daily life , and the shock absorber is an important part of the car. Shock absorber is play as an important role in the automobile suspension system, because it decide automobile suspension system performance. And it also decide the Vehicle Ride Comfort and Vehicle Ride Comfort.With the computer in software and hardware on the rapid development of virtual design, whether in theory or in the calculation of the virtual design have made tremendous progress. Virtual design is a modern design method. Virtual design can help us to reduce development costs and shorten the development cycle,so it is more and more popular by the enterprise.This article introduces the modeling of the shock absorber by CAD software, study on the production of the shock absorber and get the engineering drawing in UG software. At last, according to practice, use the general-purpose finite element software ANSYS to finite element modeling, calculation, stress analysis, strain analysis, based on an analysis of the results of the valves of the shock absorber deformation understanding of the situation.Keywords:shock absorber three-dimensional modeling product design目录摘要 (I)Abstract .......................................................................................................................... I I 绪论.. (1)1.1选题的依据及意义 (1)1.2减震器的结构及原理 (2)1.2.1减震器的结构及分类 (2)1.2.2双向作用筒式减震器的工作原理 (3)1.3国内外减震器产品的发展状况及趋势 (5)1.3.1 国内汽车减震器产品的发展 (5)1.3.2国外汽车减震器产品的发展 (6)1.4本课题研究内容 (7)第二章减震器零部件的三维建模 (8)2.1UG软件介绍 (8)2.2减震器各零部件的建模 (9)2.2.1减震器各零部件的结构分析 (9)2.2.2减震器油封组件的三维建模 (9)2.2.3减震器导向器组件的三维建模 (10)2.2.4减震器储油缸组件的三维建模 (10)2.2.5减震器工作缸的三维建模 (11)2.2.6减震器活塞连杆组件的三维建模 (11)2.2.7减震器底阀组件的三维建模 (15)2.2.8减震器防尘盖组件的三维建模 (17)2.2.9减震器弹簧盘的三维建模 (17)2.2.9减震器实体模型的总装配 (18)2.3本章小结 (19)第三章汽车减震器的设计与工艺 (20)3.1 零件的设计与工程制图 (20)3.1.1 零件的设计与工艺 (20)3.1.2 工程制图 (20)3.2在UG的Drafting模块下制作制图模板 (21)3.3汽车减震器中连杆的设计与工艺分析 (22)3.3.1连杆的设计 (23)3.3.2连杆的工艺分析 (23)3.4汽车减震器中工作缸的设计与工艺分析 (25)3.4.1工作缸的设计 (25)3.4.2工作缸的工艺分析 (25)3.5汽车减震器中活塞的设计与工艺分析 (27)3.5.1活塞的设计 (27)3.5.2活塞的工艺分析 (27)3.6本章小结 (29)第四章减震器的有限元分析 (30)4.1有限元分析软件ANSYS的介绍 (30)4.2伸张阀和压缩阀阀片的有限元分析 (31)4.2.1阀片有限元模型的建立 (31)4.2.2网格的划分 (32)4.2.3接触对的创建 (33)4.2.4添加载荷和约束 (34)4.2.5计算并分析结果 (35)4.3本章小结 (37)总结和展望 (39)5.1全文总结 (39)5.2 展望 (39)参考文献(References) (40)致谢 (40)绪论1.1选题的依据及意义近年来,随着我国经济的不断发展,人们的生活水平也不断提高。

弹簧减震器怎样来选型

弹簧减震器怎样来选型

弹簧减震器怎样来选型
1.减振器承载应包括减振设备(设备整机+机座+设备附件)总重W(kg),选择支承点以偶数为佳,最低应不少于四个,单只减振器承载静载荷P0=W/N(kg);
单只减振器承载动荷载P=P0+(1.5R(kg))/9.8; N---减振设备系统支承点数;R为设备扰力(N);
在一般震动要求不严又难于取得制备扰力时,可以近似采设备静载荷P0乘动荷系数p来代替:动载荷:P=pP0; 动荷系数p一般情况下取p=1.1-1.4;可以根据设备总重W及设备干扰频率f的大小确定,W大f小时p值可取大些,W小f大时p值可取小些;
2.确定减振器型号:按单只减振器承载这P1<=P<=P3,选择减振器;应当首先选择P值与P2值较接近型号的减振器; P1---减振器的最小荷载(kg),P2--减振器的最佳荷载(kg),P3---减振器的极限荷载(kg);
3.为满足减振效果,对高速转动种承受循环载荷减振器,需进行共振验算;其验算工具公式为:设备干扰频率f与减振器自振频率f0的频率比f/f0应大于2,即:f/f0>=2;设备干扰频率:f=n/60(Hz);n--设备转速(转/分);
4.选择减振器是,应注意设备动态情况下的总重量的变化,在设备动载时重心不稳定时,应选用6个或6个以上减振器来稳定设备。

减震器。

汽车减震器的设计

汽车减震器的设计

汽车减震器的设计汽车减震器的设计1 绪论 (1)1.1 本课题设计的目的 (3)1.2 设计的主要研究内容 (5)2 减震器阻尼值计算和机械结构设计 (5)2.1 相对阻尼系数和阻尼系数的确定 (5)2.1.1 悬架弹性特性的选择 (5)2.1.2 相对阻尼系数ψ的选择 (6)2.1.3 减震器阻尼系数δ的确定 (7)F的确定 (7)2.2 最大卸荷力02.3 缸筒的设计计算 (8)2.4 活塞杆的设计计算 (8)2.5 小结 (8)3 减震器其他部件的设计 (8)3.1 固定连接的结构形式 (8)3.2 减震器油封设计 (10)3.3 O型橡胶密封圈 (10)3.5 弹簧片和减震器油的选择 (11)3.5.1 弹簧片的选择 (11)3.5.2 减震器油的选择 (11)3.6 小结 (12)4 活塞杆的强度校核 (12)4.1 强度校核 (12)4.2 稳定性的校核 (12)5 全文总结及展望 (13)参考文献 (13)谢辞................................................... 错误!未定义书签。

1 绪论社会不断在进步,人们对出行的要求也越来越高。

汽车作为越来越普及的出行方式受到了人们的关注。

于是人们对包括对汽车平顺性,舒适性的要求也是不断在加大,而减震器则是提供舒适性的一个很关键的部位。

减震器是汽车悬挂系统的重要组成部件。

如果把发动机比喻为汽车的“心脏”,变速器为汽车的“中枢神经”,那么底盘及悬挂系统就是汽车的“骨骼骨架”。

悬挂系统不仅决定了一辆汽车的舒适性与操控性同时对车辆的安全性起到很大的决定作用,从而成为衡量汽车质量及档次的重要指标之一。

设计师们一直不断对汽车的各种性能进行优化为了提供更好的驾驶体验。

一个好的减震器可以使驾驶员感觉到更加舒服,可以提供更好的驾驶体验。

世界上第一个有记载、比较简单的减震器是1897由两个姓吉明的人发明的。

他们把橡胶减震块与叶片弹簧的端部相连,当悬架杯完全压缩时,橡胶减震块就碰到连接在汽车大梁上的一个螺栓,产生止动。

减振器选型设计计算书(原)

减振器选型设计计算书(原)

减振器选型设计计算书一、减振器阻力的计算1. 相对阻尼系数Ψ的选择对于空气悬架,取Ψ=0.25~0.35,取Ψ=0.32. 减振器阻力系数γ的计算 CM ψ=2γ= 14181式中:C 悬架系统垂直刚度(为: 139667 N/m )M 悬架的簧载质量(为: 4000 Kg )3. 减振器阻力F 的计算n v F ⋅=γ= 7374 N式中:v=0.52m/s 减振器活塞运动速度,(通常在v=0~1.0m/s 的范围内取n=1)为了减小路面不平传递给车身的冲击,减振器拉伸行程和压缩行程的阻力Fr 和Fc 取值有所不同,一般按下式计算:拉伸行程阻力F Fr 8.0~7.0==0.8F = 5899 N , 压缩行程阻力F Fc 2.0== 1475 N 减振器的复原阻力 =5899±1160 N ,压缩 =1475±276N二、减振器结构参数的计算1、缸筒的设计计算根据拉伸行程的最大阻力Fr 计算工作缸直径D [])1(42λπ-=p F D r = 47~57 (1.1) 式中,[]p 为工作缸最大允许压力,取3~4Mpa ;λ为连杆直径与缸筒直径之比,双筒式减振器取λ=0.40~0.50;减振器的工作缸直径D 有20、30、40、(45)、50、65mm 等几种。

选取时应按标准选用。

取D=Φ50mm ,壁厚取为,2.5mm ,工作缸外径为Φ55mm, 材料选35#冷拔精密无缝钢管 贮油缸直径c D =(1.35~1.50)D ,壁厚取为3mm ,材料选Q235直缝焊管。

c D =Φ70mm ,贮油缸外径取Φ76mm2、活塞杆的设计计算活塞杆直径g d 可按下式计算经验数据: g d =(0.4~0.5)D ,则g d =Φ20mm.材质为:冷拉45#圆钢,热处理:表面高频淬火,硬化层深0.7~1.2mm,硬度45~50HRC ,淬火后校直。

直线度为0.02mm,并去应力回火;表面处理:表面镀硬铬20um 以上,铬层硬度要求HV900以上。

(完整版)减震器选型方法

(完整版)减震器选型方法

隔振器自身的刚度作用是在振动时会产生一个与振动位移成正比的恢复力,同时隔振器自身阻尼的作用是在振动时会产生一个和振动速度成正比的阻尼力。

在被动隔振中, 良好的隔振设计可使大部分的基座或基础运动都由隔振器来吸收,即隔振的目的就是减少振动的传递率使基座或基础的运动干扰尽量不向被保护的仪器或设备传播,并使仪器或设备的振动响应尽量保持最小。

隔振器最终的设计应该使隔振系统的固有频率低,有可变的阻尼特性,使系统既不会有显著的共振放大,同时又有良好的隔振效率,而且抗冲击性能和稳定性要好,因此, 在设计隔振器的阻尼时应同时考虑隔振系统的隔振效率和共振放大率,而隔振器的设计就是要适当选择系统隔振器的阻尼及刚度橡胶垫由于自身安装比较方便,形状可以根据需求制作,因此,微捷联惯组的隔振器尺寸是根据惯组的实际安装尺寸来设计车栽环境中振动噪声上妾是臬屮在10 Hz -120 Hz以及吏跖的频率驗根据减版原理,墓想隔离詠的抿动噪声,就必须使陌掘系统的固有频率在THz以下,即由隔振传递率曲线nJ甸当就提频率与園有鮒率的比大于时才会有隔振效果.而在实际工程中-股取该频率比为25^4,5・听以系统的固仃频率的范围兄2H2^4H2.同样隔离10Hz以上的推动嗥声时累统的训肓頤举确定的方法同上.即在一定范嵐内.所设计的隔振系统的固角频咿的偵越低,族动噪声被隔离的频段就越竜,因此,庄设计隔振系统时应使隔振丟统的固有频率辱凰偏低,微捷联惯组和其安驶支架的总质呈大约足50倔左彩,因此,耍采用四级对称式的安装方式,每组隔抿褂的平均承重质駄应该足1N以上,即每俎的隔扼器承重的质煨是在125g以上*通过以上分析.结薛微捶联惯组的宴际尺寸展终确定的隔振索统ffi隔撮器的結构歷卖际尺寸如图3.5所示,为r便惯组在各个方向上b耦,逸择r四组硅橡股垫,毎组棟由仿貞结果術报结构的同冇频净来看•隔振糸统的一阶同冇频率为65.204Hz.孙沖如图4.4 (a)所示,惯性組合在垂直方向上却沿Y轴产生了线振动,隔振系统的:阶固有频率为66.796Hz,振型如上图4.4(b)所示,惯性组合沿X轴产生了线振动;隔振系统的二阶固〃频率为66.8671k, fti型如上IW4.4 (c)所示,惯性组合沿乙轴心生了线振动•由丁振动耦合容易给系统引入伪运幼倍号,从而会彩响惯导系统的测量稻度,因此避免或尽吊•减小报动耦介通常是捷联惯导系统術抿设计的V耍耍求,仿真结果农明:在线般动输入的情况下,隔扳系统的前三阶固有频率为66Hz左右即在三轴匕儿乎不存任按动朗介,川以实现对岛频拓动的仃效袁减。

汽车减震器设计

汽车减震器设计

摘要减振器是汽车悬架系统的一个重要组成部件,特别是磁流变减振器,其良好的阻尼可调性,技术发展与理论研究早已引起了人们的广泛关注.本论文对减振器及其试验进行了分析和概述,根据国家机械工业部标准的要求选取了传感器、试验台,减振器等试验部件和设备。

主要任务是设计一个减振器试验台,试验台结构简单,拆装方便,便于采集信号进行磁流变减振器的阻尼特性试验,文中主要对立柱、横梁、托盘等重要部件进行了多次的改进和分析,同时对横梁及其连接螺栓、圆柱销等重要部件的受力进行了校核。

设计采用力传感器和位移传感器采集信号,通过计算机对信号进行处理得出磁流变减振器的示功特性、速度特性、温度特性等特性曲线。

该减振器试验台同时可进行四分之一悬架试验。

关键词:试验装置;磁流变减振器;阻尼特性;目录1汽车悬架及减振器1.1汽车悬架系统的概述 (1)1.2汽车悬架的分类 (1)1.3减振器的概述 (3)1.3.1被动液阻减振器技术的发展 (5)1.3.2可调阻尼减振器技术的发展 (7)1.4磁流变减振器 (10)1.4.1 磁流变液及其特征 (11)1.4.2磁流变减振器的工作原理 (12)1.4.3磁流变减振器的构造及工作示意图 (14)1.4.4磁流变阻尼器在悬架系统中的应用和发展情况 (16)2.磁流变减振器试验2.1汽车振动系统对减振器特性的要求 (19)2.2磁流变减振器试验内容和意义 (20)2.3磁流变减振器试验方法及试验系统 (23)示功试验 (23)………………………………………2 42.3.3温度特性试验 (25)2.3.4试验系统 (26)3.实验装置的设计3.1振动台等设备的选取 (27)3.1.1减振器 (27)振动台 (27)力传感器 (27)导轨的选用 (30)感器 (30)螺栓及螺钉 (31)3.2立柱的设计 (32)3.3托盘的设计 (33)3.4横梁的设计及校核 (34)3.5圆柱销的设计及校核 (37)3.6整体的装配 (38)结论 (39)致谢 (40)参考文献 (41)1汽车悬架及减振器1.1汽车悬架系统的概述悬架是车架与车桥(或车轮)之间一切传力连接装置的总称。

L26层设备层减振设备及支吊架深化校核计算1(2)

L26层设备层减振设备及支吊架深化校核计算1(2)
kg
阀门重量W3
kg
总重W
(管材+介质+阀门)
kg
支架承受
荷载(kg)
板换支管处:
HR-L26-1~6双工况主机供冷板换,共6台,以1台为例
1#单支
单支
1
250
7
273
259
2.9
45.9
133
0.15
1000
153
160
446
446
2#双层双支双吊
上层双支
1
250
7
273
259
1.8
45.9
83
0.09
坐地
11
1260
6
66
210
7.80
26.9
3.04
7.95
0.016
98.4
8
L-L26-2
坐地
11
1260
6
66
210
7.80
26.9
3.04
7.95
0.016
98.4
9
L-L26-3
坐地
11
1260
6
66
210
7.80
26.9
3.04
7.95
0.016
98.4
11
HR-L26-1~3
坐地
3
3584
5.6、支吊架A-A-06计算书…………………………………………………………45
5.7、支吊架C-C计算书……………………………………………………………49
5.8、支吊架B-B-01计算书…………………………………………………………56
5.9、支吊架B-B-02计算书…………………………………………………………59

轻型货车悬架减震器匹配计算与结构设计说明书

轻型货车悬架减震器匹配计算与结构设计说明书

摘要减振器主要用来抑制弹簧吸振后反弹时的振荡及来自路面的冲击。

在经过不平路面时,虽然吸振弹簧可以过滤路面的振动,但弹簧自身还会有往复运动,而减振器就是用来抑制这种弹簧跳跃的。

减振器太软,车身就会上下跳跃,减振器太硬就会带来太大的阻力,妨碍弹簧正常工作。

本次设计题目为轻型货车减振器设计,考虑轻型货车的用途主要是用来运输货物,所以本设计的减振器首先考虑需要满足载重量的需要,在满足货车载重量的前提下设计,本次设计采用的方案为双作用式液力减振器。

这种减振器作用原理是当车架与车桥做往复相对运动时,减振器中的活塞在钢桶内也做往复运动,则减振器壳体内的油液便反复地从一个内腔通过一些狭小的孔隙流入另一内腔。

此时,孔壁与油液间的摩擦及液体分子内摩擦便形成对振动的阻尼力,使车身和车架的振动能量转化为热能,而被油液和减振器壳体所吸收,然后散到大气中。

减振器的阻尼力越大,振动消除得越快,但却使并联的弹性元件的作用不能充分发挥,同时,过大的阻尼力还可能导致减振器连接零件及车架损坏。

本次设计综合分析整体工作状况,设计合理减振器结构及尺寸,最终绘制装配图及零件图。

关键词:货车;悬架;减振器;设计;匹配。

AbstractKey words: Goods; suspension; shock absorber; design; match.目录第1章绪论 (1)1.1减振器的简介 (1)1.2减振器的主要结构型式及工作原理 (2)1.2.1双作用式减振器 (2)1.2.2单作用式减振器 (4)1.3减振器研究动态及发展趋势 (5)1.3.1充气式减振器 (5)1.3.2阻力可调式减振器 (7)1.3.3电液减振器 (7)1.3.4电控减振器 (7)第二章减振器设计理论及结构设计 (8)2.1振器外特性设计理论依据 (8)2.1.1车身振动模型 (8)2.1.2固有频率、阻尼系数及阻尼比 (10)2.2减振器受力分析 (11)2.3主要尺寸的选择 (13)2.3.1活塞杆直径的确定 (13)2.3.2工作缸直径的确定 (15)2.3.3贮油缸直径的确定 (16)2.4减振器结构设计 (18)2.4.1活塞阀系设计 (18)2.4.2底阀系设计 (21)第三章主要零件加工工艺过程 (23)3.1活塞杆加工工艺过程 (23)3.2活塞加工工艺过程 (23)3.3定位环加工工艺过程 (23)3.4伸张阀加工工艺过程 (24)第四章结论 (24)参考文献 (25)致谢 (26)附录一相关程序 (27)附录二专业外文翻译 (29)第1章绪论1.1减振器的简介悬架系统中由于弹性元件受冲击产生振动,为改善汽车行驶平顺性,悬架中与弹性元件并联安装减振器,为衰减振动,汽车悬架系统中采用减振器多是液力减振器,其工作原理是当车架(或车身)和车桥间受振动出现相对运动时,减振器内的活塞上下移动,减振器腔内的油液便反复地从一个腔经过不同的孔隙流入另一个腔内。

客车设计 - 减振器的设计与计算

客车设计 - 减振器的设计与计算

减振器的设计
相对阻尼系数ψ 对于无摩擦的弹性元件(如螺旋弹簧)悬架,取ψ=0.25--0.35 对于有摩擦的钢板弹簧悬架,相对阻尼系数可取小些,如解放ψ前=0.13 ψ压缩=(0.25-0.5)ψ伸张 ψ=(ψ压缩+ψ伸张)/2 减振器的阻尼系数δ δ=2mψω*i*i/(cosα*cosα) 最大卸荷力F0=δ0*Vx(已知伸张行程时的δ0) VX=AωCOSα/i A--车身振幅,取40mm Vx--卸荷速度,一般为0.15--0.3m/s; ω--悬架固有振动频率。 [P]--缸内最大容许压力,取3--4MPa, λ --缸筒直径与连杆直径比, 双筒式减振器,λ=0.4-0.5, 单筒式减振器,λ=0.3-0.35, 国标确定的工作缸直径为20、30、40、50、65mm 筒式减振器工作缸直径D的确定 D=SQRT(4F0/(π*P*(1-λ*λ)) 计算部分(JS6110S后悬参数) 修正版为Vx0.2 , ψ伸为0.3 f c ω ψ ψ伸 m簧载质量 5250 0.093 553225.8 1.633773 0.2 0.3 λ 0.5 i 1 α 0
减振器的设计
相对阻尼系数ψ 对于无摩擦的弹性元件(如螺旋弹簧)悬架,取ψ=0.25--0.35 对于有摩擦的钢板弹簧悬架,相对阻尼系数可取小些,如解放ψ前=0.13 减振器的阻尼系数δ δ=2mψω*i*i/(cosα*cosα) 最大卸荷力F0=δ0*Vx(已知伸张行程时的δ0) VX=AωCOSα/i A--车身振幅,取40mm Vx--卸荷速度,一般为0.15--0.3m/s; ω--悬架固有振动频率。 [P]--缸内最大容许压力,取3--4MPa, λ --缸筒直径与连杆直径比, 双筒式减振器,λ=0.4-0.5, 单筒式减振器,λ=0.3-0.35, 国标确定的工作缸直径为20、30、40、50、65mm 筒式减振器工作缸直径D的确定 D=SQRT(4F0/(π*P*(1-λ*λ)) 计算部分(JS6110S后悬参数) f c ω m簧载质量 5250 0.093 553225.8 1.633773 i 1 α 0 δ 2100

减震器设计

减震器设计

设计这类减震器时,压缩、复原行程的阻尼力Fc、Fr 应依据悬架系统所需的阻尼特性曲线确定。

因此,设计工作变为基于以上表达式的逆次求解。

因此,可以将设计研发重点分为两个方面,其一是确定D与d;其二为确定阀的参数以获得适宜的压力差△P。

设计阶段,可参阅现有的产品初步选定D与d,在设计过程中再作一定调整相比照拟容易一些。

然而节流阀的设计较为繁琐,因为它对油液特性、温度的变化等较为敏感,需要在初步设计根底上进展一定量的试验来确定。

1、设计参数分析假设由减震器上、下部的输入导致缸筒与连杆间的相对运动速度为V=X1-X2,那么通过节流阀的流量为Qc=V·Ar依据流体力学理论,油液流过小圆孔时所产生的压降△P为△P=〔Kiu+Kou+Kc〕þV2∕ 2 〔3〕式中K△为流体流过节流孔时的沿程损失系数;Kout、Kiu分别为节流孔出、入口的压力损失系数,紊流状态下Kout、Kin的影响很小,可忽略不计;þ为油液密度,Q为流速,与流量Qc与节流断面积A 之间的关系为V=Qc∕A。

紊流状态下,沿程压力损失系数Kc与雷诺数N,水力半径R与流通管道长度L之间的关系为;0.316 LKc=———·——(4)N0.25 4R式中N=4RV∕r,r为油液的运动粘度。

由此得到:0.0279L·þ Ar△Pc=——————〔——〕7∕4·r1∕4·V7∕4 (5)R5∕4 A或:0.0279L·þ△Pc= —————·r1∕4·Qc7∕4〔6〕R3∕4·A7∕4式〔6〕可用于初始设计阶段,主要是依据所选择油液的特性,在已经确定的D与d根底上初选节流阀的L与A,预算出△P ,使其满足悬架系统阻尼特性曲线的要求;而式〔5〕可用于调整设计参数,与式〔1〕一起调整D与d的大致范围,以及节流阀的有关参数。

2、阀体参数的选择分析对双作用筒式减震器而言,提供阻尼力的大小取决于工作时相对速度V,当减震器工作在低速工作段时,阻尼力主要由单个阀的节流产生;当V值处在中高速段时,同时有两组(或以上)的阀起节流作用。

减振器机构类型及主要参数的选择计算

减振器机构类型及主要参数的选择计算

减振器机构类型及主要参数的选择计算4.7.1分类悬架中用得最多的减振器是内部充有液体的液力式减振器。

汽车车身和车轮振动时,减振器内的液体在流经阻尼孔时的摩擦和液体的粘性摩擦形成了振动阻力,将振动能量转变为热能,并散发到周围空气中去,达到迅速衰减振动的目的。

如果能量的耗散仅仅是在压缩行程或者是在伸张行程进行,则把这种减振器称之为单向作用式减振器,反之称之为双向作用式减振器。

后者因减振作用比前者好而得到广泛应用。

根据结构形式不同,减振器分为摇臂式和筒式两种。

虽然摇臂式减振器能够在比较大的工作压力(10―20mpa)条件下工作,但由于它的工作特性受活塞磨损和工作温度变化的影响大而遭淘汰。

筒式减振器工作压力虽然仅为2.5~5mpa,但是因为工作性能稳定而在现代汽车上得到广泛应用。

筒式减振器又分为单筒式、双筒式和充气筒式三种。

双筒充气液力减振器具有工作性能稳定、干摩擦阻力小、噪声低、总长度短等优点,在轿车上得到越来越多的应用。

设计减振器时应满足用户的基本建议就是,在采用期间确保汽车高速行驶平顺性的性能平衡。

4.7.2相对阻尼系数?减振器在卸荷阀打开前,减振器中的阻力f与减振器振动速度v之间有如下关系f??v(4-51)式中,?为减振器阻尼系数。

图4―37b示出减振器的阻力-速度特性图。

该图具有如下特点:阻力-速度特性由四段近似直线线段组成,其中压缩行程和伸张行程的阻力-速度特性各占两段;各段特性线的斜率是减振器的阻尼系数??f/v,所以减振器有四个阻尼系数。

在没有特别指明时,减振器的阻尼系数是指卸荷阀开启前的阻尼系数而言。

通常压缩行程的阻尼系数?y?fy/vy与伸张行程的阻尼系数?s?fs/vs不等。

图4―37减振器的特性a)阻力一位移特性b)阻力一速度特性汽车悬架存有阻尼以后,簧上质量的振动就是周期膨胀振动,用相对阻尼系数?的大小去测评振动膨胀的快慢程度。

?的表达式为2cms(4-52)式中,c为悬架系统垂直刚度;ms为簧上质量。

盈建科减震设计手册

盈建科减震设计手册

盈建科减震设计手册第一章:减震设计概述减震是指在建筑结构中采用各种减震装置,通过减小结构振动内能和地震能的耗散,从而减小结构振动,提高结构抗震性能的一种技术措施。

盈建科减震设计手册旨在为工程师和设计师提供减震设计的详细步骤和方法,保证建筑结构在地震情况下的安全性和稳定性。

第二章:减震设计原理本章将介绍盈建科减震设计手册所采用的减震原理,包括摩擦阻尼、液体阻尼、弹簧阻尼等各种减震原理的应用。

同时还将介绍不同减震原理的适用范围和优缺点,帮助工程师根据具体情况选择合适的减震方案。

第三章:减震设计步骤该章节将详细介绍盈建科减震设计的具体步骤,包括减震设计前的结构分析与评估、减震方案选择和优化、减震设备的配置及安装等环节。

同时还将介绍减震设计过程中需要注意的细节和常见问题的解决方法。

第四章:减震设计实例本章将以具体工程案例为例,介绍盈建科减震设计手册在实际工程中的应用。

通过对不同类型建筑结构的减震设计案例进行分析与总结,为工程师提供实际操作中的参考依据和经验。

第五章:减震设备选型与安装该章节将介绍减震装置的各种类型和选型原则,包括摩擦阻尼器、液体阻尼器、弹簧阻尼器等减震装置的特点和适用范围,以及其在建筑结构中的安装和维护方法。

第六章:减震设计的经济性评价本章将重点介绍减震设计在经济性方面的评价、比较和优化方法。

通过对不同减震方案的成本分析和效益评估,帮助工程师在减震设计中取得经济效益和社会效益的双重收益。

结尾语盈建科减震设计手册为工程师和设计师提供了一套系统化的减震设计方法和实用技术,旨在通过科学合理的减震方案,确保建筑结构在地震情况下的安全运行。

希望本手册能够为从事建筑结构设计与抗震设计工作的专业人员提供指导和帮助。

5.3减振器设计

5.3减振器设计

5.3 减振器匹配与设计5.3.1 车辆悬架减振器发展情况减振器是汽车悬架系统中的阻尼元件,其性能对车辆的乘坐舒适性、操纵性能等有直接的影响,其数学模型的建立一直是国内汽车动力学领域中的重要研究课题,就被动悬架减振器的研究而言,已经建立了三类数学模型:第一类为复杂非线性模型,该类模型是应用流体力学中的定律,根据减振器内部有也的流动情况建立的。

模型中参数较多,如Segel 及Lang 模型有82个参数。

该类模型可用于研究减振器本身的特性,但不能方便的用于汽车动力学系统的仿真。

第二类是线性化模型,如Wallaschek 模型,该类模型不能比较准确的描述减振器的特性。

第三类是简单非线性模型。

该类墨西哥你是通过试验的方法建立的,模型虽然仅含有较少参数,但能比较准确地描述减振器的性能,又能方便的用于汽车动力学系统仿真。

该类模型的代表是剑桥大学Besinger 等人的7参数模型。

该模型在10Hz 以内与试验结果比较吻合,标志减振器数学模型研究的最新进展。

本文从研究减振器的阀片入手,首先应用弹性力学理论建立阀片的力学及数学模型,解决圆环薄板的大挠曲近似求解问题,然后,建立内外特性关系的数学模型,最后以桑塔纳前减振器为例,验证理论模型的逼真程度。

5.3.2 车辆悬架液压双筒减振器阀片精确建模汽车所使用的双筒液压减振器仿真分析建模的最重要工作集中在减振器阀片建模、油液假设、油液流经所有孔隙情况下的流体力学建模及方程的求解等问题上。

在所有这些问题上,减振器阀片挠曲计算对仿真结果的影响是最大的。

鉴于已经有很多减振器方面的研究,本文仅就减振器阀片挠曲变形的计算进行研究,其它内容的研究借用前人的研究成果。

1目前减振器阀片挠曲变形的情况目前汽车主要使用双筒液压减振器和单筒充气式减振器两种,双筒液压减振器在轿车上的使用率为100%。

对双筒液压减振器而言,其核心元件是环形阀片。

因为对圆环形薄板的大挠曲问题还不能求得其精确解,因而迄今为止对阀片的变形仍沿用圆环形小挠度理论求解。

扭转减震器设计说明书

扭转减震器设计说明书

为了降低汽车传动系的振动,通常在传动系中串联一个弹性阻尼装置,它就是装在离合器从动盘上的扭转减振器。

其弹性元件用来降低传动系前端的扭转刚度,从而降低传动系扭转系统的某阶(通常为三阶)固有频率,改变系统的固有振型,使之尽可能避开由发动机转矩主谐量激励引起的共振,其阻尼元件用来消耗扭振能量,从而可有效降低传动系的共振载荷、非共振载荷及噪声。

本文介绍了扭转减振器的原理、工作过程及设计过程。

并对其进行了简单的解释、分析。

关键词:离合器;扭转减振器;扭转弹簧;从动盘AbstractIn order to reduce the vibration of vehicle transmission system, usually in the transmission lines in series a damping device, it is installed in the clutch driven plate on the reverse shock absorber. The elastic element used to reduce the torsional stiffness of the front driveline, thereby reducing the powertrain system, a reverse order (usually third-order) the natural frequency, changing the system's inherent vibration mode, so that the engine torque by as much as possible to avoid the main harmonic resonance caused by the amount of incentives, the torsional vibration damping device is used to consume energy, which can effectively reduce the transmission system of the resonance load, non-resonant load and noise. This article describes the principle of reversing the shock absorber, work process and the design process. And gain a simple explanation and analysis.Key words: Clutch ;Torsional absorber;Torsion spring ; Driven plate1概述 (3)2扭转减振器的结构类型 (4)3扭转减振器的组成及功用 (5)4扭转减振器的基本尺寸选择 (6)5设计计算 (7)T (7)5.1.扭转减振器的极限转矩jk (8)5.2.扭转角刚度ϕT (9)5.3.阻尼摩擦转矩μT (9)5.4.预紧转矩nR (10)5.5.减振弹簧的位置半径Z (10)5.6.减振弹簧个数jF (10)5.7.减振弹簧总压力∑ϕ (11)5.8.极限转角j6.结论 (12)7参考文献 .......................................................................................... 错误!未定义书签。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

减振器选型设计计算书
一、减振器阻力的计算
1. 相对阻尼系数Ψ的选择
对于空气悬架,取Ψ=0.25~0.35,取Ψ=0.3
2. 减振器阻力系数γ的计算 CM ψ=2γ= 14181
式中:C 悬架系统垂直刚度(为: 139667 N/m )
M 悬架的簧载质量(为: 4000 Kg )
3. 减振器阻力F 的计算
n v F ⋅=γ= 7374 N
式中:v=0.52m/s 减振器活塞运动速度,(通常在v=0~1.0m/s 的范围内取n=1)
为了减小路面不平传递给车身的冲击,减振器拉伸行程和压缩行程的阻力Fr 和Fc 取值有所不同,一般按下式计算:
F F F c r =+
拉伸行程阻力F Fr 8.0~7.0==0.8F = 5899 N , 压缩行程阻力F Fc 2.0== 1475 N 减振器的复原阻力P f =5899±1160 N ,压缩P y =1475±276N
二、减振器结构参数的计算
1、缸筒的设计计算
根据拉伸行程的最大阻力Fr 计算工作缸直径D [])
1(42λπ-=p F D r = 47~57 (1.1) 式中,[]p 为工作缸最大允许压力,取3~4Mpa ;λ为连杆直径与缸筒直径之比,双筒式减振器取λ=0.40~0.50;
减振器的工作缸直径D 有20、30、40、(45)、50、65mm 等几种。

选取时应按标准选用。

取D=Φ50mm ,壁厚取为,2.5mm ,工作缸外径为Φ55mm, 材料选35#冷拔精密无缝钢管
贮油缸直径c D =(1.35~1.50)D ,壁厚取为3mm ,材料选Q235直缝焊管。

c D =Φ70mm ,贮油缸外径取Φ76mm
2、活塞杆的设计计算
活塞杆直径g d 可按下式计算经验数据: g d =(0.4~0.5)D ,则g d =Φ20mm. 材质为:冷拉45#圆钢,
热处理:表面高频淬火,硬化层深0.7~1.2mm,硬度45~50HRC ,淬火后校直。

直线度为0.02mm,并去应力回火;
表面处理:表面镀硬铬20um 以上,铬层硬度要求HV900以上。

3、活塞杆的强度校核
活塞杆材料选用45钢,取[σ]= p σ,而p σ =635MPa ,ρ=7. 9g/cm3,E =210×910 Pa,有如下关系:
(3.1)
一般设计时加速度a=(1~3)g ,取a =2g ,max s P =5899N ,M =4000(Kg )
A min =π4×(0.02)2 代入(3.1)式得
σ=393.3Mp a ≤[σ]
4、减振器行程选择
减振器总行程S 由拉伸行程S1,压缩行程S2两部分组成,即:S= S1+ S2 a 、 压缩行程:S1=L3-Lmin b 、拉伸行程:S2=Lmax-L3
L3为汽车满载时减振器两吊耳处中心距。

S1应略大于悬架系统满载上行程(假设缓冲块脱落),由于减振器可承受一部分反跳拉力,所以S2只要
略大于弹簧的静挠度。

结构形式如下图:
L3=434mm,压缩行程S1=90mm,拉伸行程:S2=98mm
Lmin=L3-S1=524±4mm Lmax=L3+S1+S2=622±4mm
5导向座宽度和活塞宽度的设计计算±
如果导向长度过小,将使液压缸的初始挠度(间隙引起的挠度)增大,影响液压缸的稳定性,因此设计时必须保证有一定的最小导向长度。

又因为在减振器工作时,活塞杆与导向座之间是相对滑动的。

在导向座内设计一衬套,在减少活塞杆的摩擦的同时也使活塞杆滑动轻便,迅速[8]。

活塞的宽度B,一般取B=(0.6~1.0)D;缸盖滑动支承面的长度
l, 根
1
据液压缸内径D而定:
当D<80mm时,取
l=(0.6~1.0)D;
1
即:导向座的长度:
l=0.6⨯50=30mm,活塞宽度:B=0.6⨯50=30mm
1。

相关文档
最新文档