美加814大停电原因、过程、危害、启示
美加814大停电介绍以及启
15:45:33,Canton-Tidd 345kv线路跳闸,16:05:57 Sammis-Star (345kv)线路由于距离三段保护感受低阻抗,并误认为是短路故障而 跳闸(这时并不是由于线路的树闪接地引起的)。这条线路断开后, 从俄亥俄州东南至俄亥俄州北部的345kv线路完全断开,只留下三条 路径输电至俄亥俄州西部:
图
18 South Canton-Star
17 Juniper-Hanna 16 Harding-Chamberlin
闸
线路 跳
图 图
闸
线路 跳
图19 FE地区345kv潮流变化曲线
图20 FE地区345kv电压变化曲线
图21 FE地区138kv电压变化曲线
(4)第四阶段:15:39到16:08俄亥俄州北部138输电线系统崩溃
图2 美国三大电网分布
图3 美国电网十大地区性委员会及其所辖范围
4
图 北 美 大 停 电事 故 中 心
图5 北美大停电涉及的电网系统
图6 俄亥俄州部分地图
图7 事故中心潮流的大致分布 图8 事故中心潮流的数值及其流向
“8.14”大停电的发生过程
一:事故累积阶段 电网运行状况逐步恶化的累积效应是大面积停电的前奏,影响电网运行状
<1> 由宾夕法尼亚洲西北沿伊利湖至俄亥俄州北部;
<2> 由俄亥俄州西南至俄亥俄州东北;
<3> 由密歇根东部和安大略。
大停电事故及其教训
简要经过和原因分析 :
伦敦大停电事件 :
➢ 2003年8月28日下午英国伦敦经历了16年来第1次大停电。英国国家电网公司所属的伦敦南 部电力传输系统出现故障,导致该系统从18:20至18:57电力供应中断。停电影响了EDF能源 公司的410000个用户,事故主要发生在伦敦南部地区,停电共损失负荷724MW,约为当时 整个伦敦负荷的20%。
➢ 英国国家电网公司在事故后进行了调查,故障出现的原因是在2001年更换老设备时安装了一 个不正确的保护继电器,致使自动保护设备误启动,而切除Hurst变电所的变压器不是造成 本次事件的直接原因,它使伦敦电力供应量瞬间减少了五分之一。由于电力缺额过大造成了 这次大停电。
北欧大停电事件 :
➢ 2003 年9月23 日北欧电网中的瑞典中部和南部电网及丹麦的东部电网发生大面积停电,停 电区包括瑞典首都斯德哥尔摩,重要城市马尔及丹麦首都哥本哈根。瑞典东部奥斯卡斯汉姆 核电厂3号机(1135MW)及西部林哈尔斯核电厂3号机(920MW)及4号机(885MW)停运。
可吸取的教训:
❖ 元件的故障或扰动,在局部系统内部采取措施来消除影响,不使其扩散到局部系统外; ❖ 区域系统之间输电断面上的故障,切除故障元件后尽量保持输电断面的完整性; ❖ 反应元件运行异常的保护应与系统的安全自动装置协调动作,保证网络连接的强壮性,尽量
满足输电能力与输电需求的平衡,切不可独立、无序乱动; ❖ 互联系统失稳后,应按功率尽可能平衡的原则有序解列,避免大面积停电,并有利快速恢复。
巴西大停电事件 :
大停电事故资料
向北出宾夕法尼亚通过纽约、安大略到密歇根的冲击 潮流的结果是,4s后这四条线路相继跳开,将纽约与宾夕 法尼亚分离。 这种情况下,东部互联电网的北部(它仍包括密歇根 东部、俄亥俄北部迅速减小的负荷)仍通过2个位置(1.在 东部,通过纽约与新泽西的联络线;2.在西部,通过安大 略、马尼托巴、明尼苏达之间的230 kV线路)与互联电网 其它部分相连。很大的潮流通过纽约与新泽西联络线向北 移。
12:05:44 – 1:31:34 PM 发电机切机
1)
2) 3)
12:05:44 – Conesville#5 (额定值375 MW) 1:14:04 – Greenwood #1 (额定值785 MW) 1:31:34 – Eastlake #5 (额定值597 MW)
Conesville电厂位于俄亥俄州中央;
Fostoria Central-Galion线路形成从俄亥俄中部到北部通道 的一部分,此路径由于4:08:58 Galion-Muskingum-Ohio Central 线路跳闸以及4:09:06 East Lima-Fostoria Central线路跳闸而阻 塞。 靠近宾夕法尼亚边界,位于Erie湖南岸的Perry 1核电站机 组,以及靠近Cleveland 的Avon Lake电厂#9机组几乎在同一 时间跳开。当连接Cleveland和Toledo地区的Beaver-Davis Besse 345 kV线路跳开后,使Cleveland地区与东部互联电网分离。 Cleveland地区最初由于低频减载动作而自动甩负荷,最终由 于线路跳开而甩负荷。
线路是从俄亥俄州西南 部至俄亥俄州北部输电 通道的一部分, 由于线路经过部分地区 发生灌木着火而导致线 路断开(着火产生的过 热空气使线路上方空气 电离而发生导线短路)。
美加814大停电介绍以及启示
2:事故连锁效应阶段
从8月14日下午12:15开始,FE(第一能源公司)和AEP(美国 电力公司)的控制区内发生了一系列的突发事件,这些时间最终导致 了东北部电网的大停电,按照一些重要事件的发生顺序,事故的演变 过程可以分成以下几个阶段。
(1)第一阶段;12:05到14:04,其间有两个重要事件发生
图1 美加大停电地理区域
二:“8.14”大停电的后果
• 1: “8.14”大停电造成美国东北部和加拿大东部机场瘫痪 、 公共交通瘫痪 、航班延迟 、成千上万的人被困在地铁 、电 梯 、火车和高速公路上,超过5000万人的失去电力供应,停 电时间29h后才完全恢复电力 ;
• 2: “8.14”大停电给美国经济带来严重影响 ,据美国经济专 家预测 ,此次美国历史规模最大的停电事故,所造成的经济 损失可能多达300亿美元/d,而据纽约市政厅估计 ,此次停电 造成纽约市财政减收7.5亿美元 ,税收减少4000万美元 ;而 加拿大方面,其经济损失也高达23亿加元;
• 西部电网包括美国西部、加拿大的两个省以及墨西哥北部地区, 区内是WECC(西部电力协调委员会)协作区。
• 得克 三大联合电力网非同步运行,相互之间通过背靠背直流系统联 络。
• “8.14”大停电主要发生在北美大联合电力系统,其是世界上 最大的联合系统,到2007年总装机容量超过13亿kw,覆盖美国、 加拿大和墨西哥的一部分,由4个同步电网组成:东部电网、 西部电网、德克萨斯电网和魁北克电网。
图6 俄亥俄州部分地图
图7 事故中心潮流的大致分布 图8 事故中心潮流的数值及其流向
“8.14”大停电的发生过程
一:事故累积阶段 电网运行状况逐步恶化的累积效应是大面积停电的前奏,影响电网运
美加大停电简介.pdf
18.14美加大停电
的经过和启示
内容摘要
1.基本情况
2.事故起始及发展过程
3.事故过程中的分析
4.事故原因初步分析
5.北美可靠性委员会采取措施细节
6.美加大停电的启示
1.基本情况
美国东部时间2003年8月14日16时11分(北京时间8月15日4时11分)开始,美国和加拿大东北部联合电网发生大面积停电事故。
美国发生事故的电网,总装机容量为6.59亿千瓦。
在事故发生的最初3分钟内,就有21个电厂停止运行。
此后共造成约100个发电厂,其中包括22个核电站被迫停止运行。
停电范围约240万平方公里,美国8个州约70万平方公里受影响的居民人数共计5千万,加拿大两省约170万平方公里的地区受影响人口达1000万。
1.
1.基本情况(续)
¾PJM互联电网:400万千瓦(宾州-新泽西-马里兰联合电力系统)
¾中西部ISO:1850万千瓦
¾魁北克水电:10万千瓦
¾安大略IMO:2100万千瓦
¾新英格兰ISO :250万千瓦
¾纽约ISO:2440万千瓦
1.。
(完整版)8.14美加大停电事故原因分析及启示
8.14美加大停电事故原因分析及启示美加大停电事故原因作初步分析(1)电网结构方面北美电网包括三个独立电网①东部互联电网,包括美国东部的地区和加拿大从萨斯喀彻温省向东延伸至沿海省份的地区②西部互联电网,包括美国西部的地区不含阿拉斯加州和加拿大阿尔伯达省、不列颠哥伦比亚省以及墨西哥的一小部分③相对较小的德克萨斯州电网。
这三个互联系统在电气上相互独立,通过少数几条输送容量较小的直流联络线相连。
这次发生大面积停电事故在东部地区。
被认为造成大停电的主要导火线是包括底特律、多伦多和克利夫兰地区的Erie 湖大环网,沿该环网流动的潮流经常无任何预警地发生转向,造成下方城市负荷加重。
此次系统潮流突然发生转向时,控制室的调度员面对这一情况束手无策。
(2)电网设备方面美国高压主干电网至少已有四五十年的历史,一些早期建设的线路及设备比较陈旧,而更新设备又需要大量资金投入。
投资电网建设的资金回报周期长、回报率低。
例如在20世纪90年代,投资发电厂资金回报率常常在12%~15%,而投资输电线路只有8%左右。
因此,只有当供电可靠性问题非常严重,或是供电要求迫切时,电力公司才会考虑投资修建输电线路。
另外,环保方面的限制也增加了输电线路建设的难度。
(3)电网调度方面由于没有统一调度的机制,各地区电网之间缺乏及时有效的信息交换,因此在事故发展过程中,无法做到对事故处理的统一指挥,导致了事故蔓延扩大。
国际电网公司(ITC)追踪到大停电以前1h 5min的数据,认为如果能够早一点得到系统发生事故的一些异常信号,就可能及时采取应急措施,制止大停电事故的发生。
(4)保护控制技术方面美国电网结构复杂,容易造成运行潮流相互窜动,增加了电网保护、控制以及解列的难度。
这次停电事件中,在事故发生初期FE与AEP公司的多条联络线跳闸(有些在紧急额定容量以下),对事故扩大起到推波助澜的作用。
NERC在对事故记录的调查中发现许多“时标”不准确,原因是记录信息的计算机发生信息积压,或者是时钟没有与国家标准时间校准。
美加_8_14_大停电事故初步分析以及应吸取的教训_印永华
10
Power System Technology
Vol. 27 No. 10
及时有效的信息交换,因此在事故发展过程中,无法 做到对事故处理的统一指挥,导致了事故蔓延扩大。 国际电网公司(ITC)追踪到大停电以前 1h 5min 的数 据,认为如果能够早一点得到系统发生事故的一些异 常信号,就可能及时采取应急措施,制止大停电事故 的发生。
美加“8·14”大停电事故初步分析以及应吸取的教训
印永华,郭剑波,赵建军,卜广全
(中国电力科学研究院,北京 100085)
PRELIMINARY ANALYSIS OF LARGE SCALE BLACKOUT IN INTERCONNECTED NORTH AMERICA POWER GRID ON AUGUST 14 AND LESSONS TO BE DRAWN
美加大停电与加州电力危机的深层教训
美加大停电及加州电力危机的深层教训2511203077崔荣坤本文介绍了2003年8月14日美国东北部和加拿大部分地区发生大面积停电。
这次历史上最大规模的停电波及美国纽约等许多城市,加拿大安大略省的部分城市也受到影响。
停电影响了地铁、电梯以及机场的正常运营,在一些地方造成交通拥堵,影响了5000万人口的正常生活,损失达300亿美元。
他反映出许多共性的教训是深刻而沉重的【关键词】电力危机停电深层分析如果没有加州电力危机,如果没有美加大停电,我们很有可能对某些问题的认识还统一不起来,并为此支付学费。
我们必须改革和发展电力工业,我们希望少走弯路,少付点学费。
2003年8月14日美国东北部和加拿大部分地区发生大面积停电。
这次历史上最大规模的停电波及美国纽约等许多城市,加拿大安大略省的部分城市也受到影响。
停电影响了地铁、电梯以及机场的正常运营,在一些地方造成交通拥堵,影响了5000万人口的正常生活,损失达300亿美元。
美国从20世纪60年代以来,大停电至少有6次,其中5次都是美加大停电。
1965年11月9日发生的美国纽约市、加拿大安大略省等地的大停电,影响了3000万个用户,持续时间13个小时;1977年7月13日纽约市大停电,影响了900万人口,持续时间达26小时;1996年7月2日美国加利福尼亚等西部与加拿大艾伯特等地的大停电,影响200万人口,持续时间从几分钟到几个小时;1996年8月10日几乎与上次停电同样的地方,影响人口750万,持续时间长达9小时;1998年6月25日美国明尼苏达州等地和加拿大的安大略等地又发生大停电,影响15.2万人,持续19小时。
除了这些大停电事故外,还有为数众多的事故和故障,美国能源部在2000年曾对以上各次停电事故和故障作过研究,提出了不少有见地的措施,但都没有能够阻止停电事故的发生。
联系美国加州电力危机,它反映出许多共性的教训是深刻而沉重的。
一、对加州电力危机教训的深层分析1. 经过近年来的反思和调查研究,发现加州所发生的电力危机不是偶然的,而是许多因素集合促成的,这些因素有:(1)电力需求预测严重偏低,发输电设施没有增长,造成严重缺电。
8.14美加大停电事故原因分析及启示
8.14美加大停电事故原因分析及启示第一篇:8.14美加大停电事故原因分析及启示8.14美加大停电事故原因分析及启示美加大停电事故原因作初步分析(1)电网结构方面北美电网包括三个独立电网①东部互联电网,包括美国东部的地区和加拿大从萨斯喀彻温省向东延伸至沿海省份的地区②西部互联电网,包括美国西部的地区不含阿拉斯加州和加拿大阿尔伯达省、不列颠哥伦比亚省以及墨西哥的一小部分③相对较小的德克萨斯州电网。
这三个互联系统在电气上相互独立,通过少数几条输送容量较小的直流联络线相连。
这次发生大面积停电事故在东部地区。
被认为造成大停电的主要导火线是包括底特律、多伦多和克利夫兰地区的Erie 湖大环网,沿该环网流动的潮流经常无任何预警地发生转向,造成下方城市负荷加重。
此次系统潮流突然发生转向时,控制室的调度员面对这一情况束手无策。
(2)电网设备方面美国高压主干电网至少已有四五十年的历史,一些早期建设的线路及设备比较陈旧,而更新设备又需要大量资金投入。
投资电网建设的资金回报周期长、回报率低。
例如在20世纪90年代,投资发电厂资金回报率常常在12%~15%,而投资输电线路只有8%左右。
因此,只有当供电可靠性问题非常严重,或是供电要求迫切时,电力公司才会考虑投资修建输电线路。
另外,环保方面的限制也增加了输电线路建设的难度。
(3)电网调度方面由于没有统一调度的机制,各地区电网之间缺乏及时有效的信息交换,因此在事故发展过程中,无法做到对事故处理的统一指挥,导致了事故蔓延扩大。
国际电网公司(ITC)追踪到大停电以前1h 5min 的数据,认为如果能够早一点得到系统发生事故的一些异常信号,就可能及时采取应急措施,制止大停电事故的发生。
(4)保护控制技术方面美国电网结构复杂,容易造成运行潮流相互窜动,增加了电网保护、控制以及解列的难度。
这次停电事件中,在事故发生初期FE与AEP公司的多条联络线跳闸(有些在紧急额定容量以下),对事故扩大起到推波助澜的作用。
美加814大停电原因、过程、危害、启示
美加8.14大停电电力实09马剑2003年8月14日,美国中西部、东北部及加拿大安大略省遭受了大面积停电事件。
事故开始于美国东部时间16时左右,在美国部分地区,电力供应在4日后仍未恢复,而在全部电力供应恢复之前,安大略省部分地区的停电持续了一个多星期。
一、事件全过程1、事故的发展过程[1]:事件发生前,停电地区中西部正值高温天气,电网负荷很大。
潮流方向是从印第安纳州和俄亥俄州南部通过密歇根州和俄亥俄州北部向底特律地区送电,并通过底特律地区送往加拿大的安达略省。
14时左右,俄亥俄北部属FE电网公司的Eastlake5号机组(597MW)跳闸。
15时05分,俄亥俄南北联络断面上送克里夫兰的一条345千伏线路跳闸,其输送的功率转移到相邻的345kV线路(Hanna–Juniper)上。
15时32分,俄亥俄另一条南北联络线Ohio Hanna—Juniper345千伏线路因对树放电跳闸,这是因为上一事件引起该线路长时间过热并下垂,从而接触线下树木。
当时由于警报系统失灵没能及时报警并通知运行人员,15:32该线路因短路故障而跳闸,使得克利夫兰失去第二回电源线,系统电压降低。
[2] 15时41分,俄亥俄又有两条南北联络线相继跳闸,克里夫兰地区出现严重低电压。
16时06分,俄亥俄南北联络断面又有一条345千伏线路跳闸。
此时潮流反向从底特律地区向俄亥俄州北部送电。
16时09分,俄亥俄南北联络最后两条345千伏联络线跳闸。
俄亥俄州南北联络断面全部断开,潮流发生大范围转移,通过印第安纳州经密歇根州与底特律地区向俄亥俄州北部送电。
大约30-45秒后,因电压下降,密歇根州中部电网大约180万千瓦机组相继跳闸,密歇根州中部电网电压开始崩溃。
16时10分,底特律地区电压全面快速崩溃,在8秒钟之内约30条密歇根州和底特律间的联络线跳闸,潮流再次发生大范围转移,从俄亥俄州南部经宾西法尼亚、纽约州、安达略、底特律向克里夫兰送电。
美国东北部和加拿大联合电网停电事故案例分析1500字
美国东北部和加拿大联合电网停电事故案例分析1500字2003-08-14美国、加拿大电网事故的发展过程2003-08-14,美国东部时间16:11开始,美国东北部电网和加拿大联合电网发生了有史以来影响最大的电网停电事故(以下简称"8·14"事故),事故波及美国东部电网和加拿大电网,美国的密西根州、纽约州、新泽西州、马萨诸塞等八个州和加拿大的安大略、魁北克省都受到了严重的影响。
"8·14"停电事故的发展过程为:15:06,处于俄亥俄州Chambeilain至Harding的一条345kV线路不明原因跳闸;15:32,由于负荷过重,Hanna至Juniper又一条345kV的线路下垂并放电跳闸;15:41,Star至S.canton的又一条345kV的线路跳闸;15:46,Tidd至CantonCtrl的一条345kV的线路跳闸;16:06,Sammis至Star的一条345kV的线路跳闸并重合成功;以上线路位于俄亥俄州克利夫兰市附近。
16:08,美国东部电网和加拿大电网发生振荡;16:10,Cambell3号机跳闸;16:10,Hampton至Thenford的一条345kV线路跳闸;16:10,Oneida至Majestic的一条345kV线路跳闸;16:11,Avon9号机组跳闸;16:11,Beaver至DavisBesse的一条345kV线路跳闸;16:11,Midway至Lemoyne/Foster的一条138kV线路跳闸;16:11,Perr1号机组跳闸;16:11,美国东北部电网与加拿大解列;16:15,Sammis至Star的一条345kV线路跳闸并重合成功;16:17,Fermi核电站停机;16:17~16:21,密西根州数条线路跳闸。
事故共计损失负荷6180万kW。
事故中,美、加共有超过100座电厂停机,其中包括22座核电站。
美国加州“8.14”大停电事故学习及对电网安全运行的思考
美国加州“8.14”大停电事故学习及对电网安全运行的思考发表时间:2020-11-20T14:25:24.987Z 来源:《中国电业》2020年7月第19期作者:杨军[导读] 2020年8月14日-15日,美国加州发生大规模停电事故,期间超过60万用户受到影响。
本文在介绍美国加州电网的杨军国网安徽省电力有限公司宿州市供电公司安徽省宿州市 234000摘要: 2020年8月14日-15日,美国加州发生大规模停电事故,期间超过60万用户受到影响。
本文在介绍美国加州电网的基本情况的基础上,对本次大停电事故发展的各个阶段进行了分析,总结了大停电事故的原因,并以此对电网安全运行提出了一些想法和措施。
关键词:大停电;美国加州;安全运行1美国加州电网概况美国电网按地理分为三大系统:东部电网、西部电网和德州电网。
加州电网位于美国最西部,主要由圣地亚哥电气公司、南加州爱迪生公司、太平洋电气公司等三大供电公司供电,由加州电力调度控制中心统一调度。
加州电网与美国西部电网其他部分通过7回500千伏交流和1回500千伏直流互联,有10个负荷中心,其中洛杉矶盆地和大湾区负荷约占加州电网总负荷的61%。
2“8.14”大停电事故过程2.1加州电网运行情况。
美国加州近20年内最大负荷处于4000~5000万千瓦左右,历年中2006年负荷最大,达到5027万千瓦;可再生能源持续增长,2019年5月5日占总负荷比例峰值达到80.3%;2020年6月29日光伏峰值达1201万千瓦(占总负荷51%)。
2020年8月14日,加州电网最大负荷4678万千瓦,当天可再生能源峰值占总发电的31%,燃机出力占总发电的57%。
2.2事故发展过程(1)8月14日14点56分,一台燃机跳闸,装机49.4万千瓦,当时出力47.5万千瓦,之后加州电力调度控制中心紧急恢复事故备用;15点20分,因所有可用措施用尽之后,系统仍然不能提供满足预期的发电需求,加州电力调度控制中心启动二级紧急状态,请求区外支援。
大停电事故
4:10:00 – 4:10:38 PM 穿过密歇根及俄亥俄州北部的线路跳开,密歇 根北部、俄亥俄北部发电机跳开,俄亥俄北部与宾 夕法尼亚分离
13) 4:10 – Harding-Fox 345 kV线路
14) 4:10:04 – 4:10:45 –俄亥俄州北部 沿Erie 湖的20台发电机(共带负荷 2174MW) 15) 4:10:37 – West-East Michigan345 kV线路 16) 4:10:38 – Midland Cogeneration Venture (共带负荷1265 MW) 17) 4:10:38 – 底特律西北输电系统分 离
18) 4:10:38 – Perry-Ashtabula-Erie West 345 kV线路
4:10:04 –4:10:45期间,俄亥俄州北部Erie 湖沿岸的20台发 电机(共带负荷2174MW)跳开。这些发电容量的损失,加大 了向俄亥俄州北部及歇根州东部负荷中心送电的剩余通道的潮 流,包括穿越密歇根的由西向东的送电线路。接着在4:10:37, 密歇根由西向东的345 kV送电线路跳开,密歇根东部只剩一条 围绕密歇根北部的迂回路径连接,这条线路以及安大略与俄亥 俄北部的联络线在1s后跳开。调查人员仍在研究由此导致的潮 流。 4:10:38,Midland Cogeneration Venture (MCV)发电机(共 带负荷1265MW)跳开。这给剩余系统强加了更重的潮流,使 俄亥俄州北部及密歇根州东部有很大的电压降。从东北部到底 特律地区的剩余输电通道被分离。4:10:38 Perry-Ashtabula-Erie West 345 kV线路跳闸,使沿Erie湖南岸从宾夕法尼亚到俄亥俄 州北部的路径情况恶化。
线路是从俄亥俄州西南 部至俄亥俄州北部输电 通道的一部分, 由于线路经过部分地区 发生灌木着火而导致线 路断开(着火产生的过 热空气使线路上方空气 电离而发生导线短路)。
(完整版)关于814美加大停电事故起因和建议的最终报告(中文_部分)
(完整版)关于814美加大停电事故起因和建议的最终报告(中文_部分)美加电力系统停电事故特别调查组关于2003年8月14日美国-加拿大停电事故起因和建议的最终报告2004年4月美加电力系统停电事故特别调查组2004年3月31日尊敬的总统和总理阁下:我们非常高兴地向你们提交美加电力系统停电事故特别调查组的最终报告。
在你们的直接授权下,特别调查组已经完成了对2003年8月14日停电事故起因的彻底调查,并且对所应采取的措施提出了建议,以便降低将来发生类似规模事故的可能性。
报告表明,本次事故应该能够避免,并且美国和加拿大都必须立即采取措施以保证我们的电力系统更加可靠。
最重要的是,必须使可靠性准则成为强制规定,并对不遵守准则的行为进行实际的处罚。
我们希望两国继续合作以落实报告中提出的措施。
如果不执行这些建议,将会威胁到供电可靠性,而这对经济、能源和国家安全至关重要。
特别调查组的所完成的工作,是两国政府间密切而有效合作的典型例证。
这种合作还将在我们努力实施报告中建议的过程中得到延续。
我们决心同国会、议会、各州(省)及所有股东合作,确保北美电网的坚强和可靠。
在此我们还要感谢特别调查组的全体成员和各工作组的努力工作和大力支持,使我们完成了停电事故调查并得到最终调查报告。
所有参与者都对此作出了重要的贡献。
我们提交此报告并乐观地认为此报告的建议将会使我们两国人民获得更好的电力供给。
美国能源部部长:Spencer Abraham 加拿大自然资源部部长:John Efford目录第一章.简介 (4)第二章.北美电力系统及相关可靠性组织简介........... 错误!未定义书签。
第三章.停电事故.................................. 错误!未定义书签。
第四章.大停电事故前北美东北部电网的状态........... 错误!未定义书签。
第五章.大停电从俄亥俄州开始的过程和原因........... 错误!未定义书签。
北美电网停电事件
第一部分案例描述摘要:2003年8月14日下午,美国东北部和加拿大安大略省电网发生大面积停电事故。
事故原因为一系列偶然事件的叠加,该事故是北美历史上最大规模的停电事故,经济损失高达300亿美元,5000万人的生活受到影响,大停电至少造成8人死亡,21座发电站受损。
一、背景信息在美国东北部地区,这里是美国的心脏,是全美工商业最为发达的地区,拥有世界上最大的都市群——纽约市。
在其北部的加拿大安大略省,这里是加拿大的制造业中心,是加拿大工业的命脉,并且有着渥太华等大都会。
电力能源是21世纪最重要的能源,美国是世界上最大的电力消费国。
在美国,有着不同于中国的电网运营模式,美国没有所谓的公有制的“国家电网”公司,只有2家大型电网和3个小型电网组成,分别是北美东部电网、北美西部电网两大同步电网,德克萨斯州电网、阿拉斯加电网和加拿大魁北克电网三个规模较小的运营公司,这5大电网覆盖了本土48个州、超过3200套配电设施、1万多个发电机组、数十万里的输配电线和数百万用电客户,而这5大网络又存在为数众多的运营管理者。
国电网的运行主要是由电力可靠性组织(Electric Reliability Organization, ERO)统筹。
ERO是电力行业的自律机构,受联邦能源调整委员会 (Federal Energy Regulatory Commission, FERC)委托实施对电网的监管职能,它有美电力可靠性委员会(NERC)等下设机构来加强电网的可靠性和安全性,北美电力可靠性委员会(NERC)在北美设立了18个可靠性协调员,如MISO。
二、情境导入俄亥俄州的克利夫兰市与阿克伦市这两个地方,在2003年夏天有一个共同点,即该地区的电压异常不稳定,而负责运营这一地区电力的第一能源公司对此事无动于衷。
判断一个地区的电力供应是否处于可靠状态是十分重要的,美国电网在设计之初就考虑到了未来可能面临的意外状况,制定了一整套机制与标准来对抗意外情况(如大型发电机组或者关键变电设备的故障)。
814大停电原因及分析
美加“8.14大停电”原因及分析北美电力可靠性委员会(NERC)对有关8.14大停电原因的报告以及有关方面的资料清晰地给出了此次事故的起因和发展过程,现简述如下。
从2003年8月14日下午美国东部时间(EDT,下述均为此时间)15时06分开始,美国俄亥俄州的主要电力公司第一能源公司(First Energy Corp.,以下简记为FE)的控制区内发生了一系列的突发事件。
这些事件的累计效应最终导致了大面积停电。
其影响范围包括美国的俄亥俄州、密执安州、宾夕法尼亚州、纽约州、佛蒙特州、马萨诸塞州、康涅狄格州、新泽西州和加拿大的安大略省、魁北克省,损失负荷达61.8 Gw,影响了近5千万人口的用电。
事故演变过程可分为如下几个阶段:(1)事故发生前的阶段。
图1中,各系统之间靠345kV和138kV线路构成一个交直流混联的巨大电网,其总体潮流为自南向北传送。
属于事故源头的第一能源(FE)系统因负荷高,受入大量有功,系统负荷约为12.635GW,受电约2.575GW(占总负荷的21%),导致大量消耗无功。
尽管此时系统仍然处于正常的运行状态,但无功不足导致系统电压降低。
其中FE管辖的俄亥俄州的克力夫兰-阿克伦(Cleveland-Akron)地区为故障首发地点。
在事故前,供给该地区有功及无功的重要电源:机组戴维斯-贝斯机组(Davis-Besse)和东湖4号机(Eastlake4)已经停运。
在13∶31东湖5号机(Eastlake5)的停运,进一步耗尽了克力夫兰-阿克伦地区的无功功率,使该系统电压进一步降低。
(2)短路引起的线路开断阶段。
15∶05俄亥俄州的一条345kV(Chamberlin-Harding)输电线路在触树短路后跳闸(线路开断前潮流仅为正常裕量的43.5%),致使由南部向克力夫兰-阿克伦地区送电的另外3条345kV线路(Hanna-Juniper、Star-South Canton和Sammis-Star,如图2所示)的负荷加重(其中Hanna-Juniper线路上增加的负荷最多,同时向该地区送电的138kV线路的潮流也随之增加,如图3所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
美加8.14大停电电力实09马剑2003年8月14日,美国中西部、东北部及加拿大安大略省遭受了大面积停电事件。
事故开始于美国东部时间16时左右,在美国部分地区,电力供应在4日后仍未恢复,而在全部电力供应恢复之前,安大略省部分地区的停电持续了一个多星期。
一、事件全过程1、事故的发展过程[1]:事件发生前,停电地区中西部正值高温天气,电网负荷很大。
潮流方向是从印第安纳州和俄亥俄州南部通过密歇根州和俄亥俄州北部向底特律地区送电,并通过底特律地区送往加拿大的安达略省。
14时左右,俄亥俄北部属FE电网公司的Eastlake5号机组(597MW)跳闸。
15时05分,俄亥俄南北联络断面上送克里夫兰的一条345千伏线路跳闸,其输送的功率转移到相邻的345kV线路(Hanna–Juniper)上。
15时32分,俄亥俄另一条南北联络线Ohio Hanna—Juniper345千伏线路因对树放电跳闸,这是因为上一事件引起该线路长时间过热并下垂,从而接触线下树木。
当时由于警报系统失灵没能及时报警并通知运行人员,15:32该线路因短路故障而跳闸,使得克利夫兰失去第二回电源线,系统电压降低。
[2] 15时41分,俄亥俄又有两条南北联络线相继跳闸,克里夫兰地区出现严重低电压。
16时06分,俄亥俄南北联络断面又有一条345千伏线路跳闸。
此时潮流反向从底特律地区向俄亥俄州北部送电。
16时09分,俄亥俄南北联络最后两条345千伏联络线跳闸。
俄亥俄州南北联络断面全部断开,潮流发生大范围转移,通过印第安纳州经密歇根州与底特律地区向俄亥俄州北部送电。
大约30-45秒后,因电压下降,密歇根州中部电网大约180万千瓦机组相继跳闸,密歇根州中部电网电压开始崩溃。
16时10分,底特律地区电压全面快速崩溃,在8秒钟之内约30条密歇根州和底特律间的联络线跳闸,潮流再次发生大范围转移,从俄亥俄州南部经宾西法尼亚、纽约州、安达略、底特律向克里夫兰送电。
16时10分,底特律和安达略交界地区大量机组和线路跳闸,安达略电网和底特律电网解列,底特律和俄亥俄州北部地区系统全部崩溃,系统瓦解,所有负荷损失。
同时,安达略省和纽约电网开始崩溃,负荷几乎完全或大部分损失。
2、供电恢复过程:截止到8月14日19:30,共恢复负荷1340MW,其中PJM电网800MW、魁北克水电局40MW、新英格兰500MW。
截止到8月14日23:00,共恢复负荷21300MW,其中PJM电网1400MW、魁北克水电局100MW、新英格兰1200MW、纽约13600MW、安大略5000MW。
截止到8月15日5:00,共恢复负荷41100MW,其中PJM电网4000MW、魁北克水电局100MW、新英格兰2400MW、纽约18400MW、安大略8500MW、其他地区7700MW。
截止到8月15日11:00,共恢复负荷48600MW。
大部分跳闸线路和停运机组都恢复了运行,绝大部分受影响的居民恢复了正常用电。
2003年8月17日17:00,除了密歇根至安大略的线路外,所有在大停电中停运的线路都投入了运行。
需要指出的是:退出运行的核电站需要几天时间才能逐步并网运行,其它一些退出运行的火电机组在几个小时内就可以并网运行。
二、事故原因直接原因:14时左右的俄亥俄北部属FE电网公司的Eastlake5号机组(597MW)过载跳闸[3]。
还有一种说法是由软件错误所导致[4]。
著名安全机构security Focus的调查数据表明,位于美国俄亥俄州的第一能源(First Energy)公司下属的电力监测与控制管理系统“XA/21”出现软件错误,是北美大停电的罪魁祸首。
专家对这套广泛分布的系统进行了持续数周的极为细致的代码检查,以便找出导致错误的程序所在。
根据第一能源公司发言人提供的数据,由于系统中重要的预警部分出现严重故障,负责预警服务的主服务器与备份服务器接连失控,使得错误没有得到及时通报和处理,最终多个重要设备出现故障导致大规模停电。
深层原因:(1)电网结构方面北美电网包括三个独立电网:①东部互联电网,包括美国东部的地区和加拿大从萨斯喀彻温省向东延伸至沿海省份的地区②西部互联电网,包括美国西部的地区不含阿拉斯加州和加拿大阿尔伯达省、不列颠哥伦比亚省以及墨西哥的一小部分③相对较小的德克萨斯州电网。
这三个互联系统在电气上相互独立,通过少数几条输送容量较小的直流联络线相连。
这次发生大面积停电事故在东部地区。
被认为造成大停电的主要导火线是包括底特律、多伦多和克利夫兰地区的Erie湖大环网,沿该环网流动的潮流经常无任何预警地发生转向,造成下方城市负荷加重。
此次系统潮流突然发生转向时,控制室的调度员面对这一情况束手无策。
(2)电网设备方面美国高压主干电网至少已有四五十年的历史,一些早期建设的线路及设备比较陈旧,而更新设备又需要大量资金投入。
投资电网建设的资金回报周期长、回报率低。
例如在20世纪90年代,投资发电厂资金回报率常常在12%~15%,而投资输电线路只有8%左右。
因此,只有当供电可靠性问题非常严重,或是供电要求迫切时,电力公司才会考虑投资修建输电线路。
另外,环保方面的限制也增加了输电线路建设的难度。
(3)电网调度方面由于没有统一调度的机制,各地区电网之间缺乏及时有效的信息交换,因此在事故发展过程中,无法做到对事故处理的统一指挥,导致了事故蔓延扩大。
国际电网公司(ITC)追踪到大停电以前1h5min的数据,认为如果能够早一点得到系统发生事故的一些异常信号,就可能及时采取应急措施,制止大停电事故的发生。
(4)保护控制技术方面美国电网结构复杂,容易造成运行潮流相互窜动,增加了电网保护、控制以及解列的难度。
这次停电事件中,在事故发生初期FE与AEP公司的多条联络线跳闸(有些在紧急额定容量以下),对事故扩大起到推波助澜的作用。
NERC在对事故记录的调查中发现许多“时标”不准确,原因是记录信息的计算机发生信息积压,或者是时钟没有与国家标准时间校准。
(5)电力市场化体制方面电力市场化也存在一些负面影响,例如电力放松管制后,电网设备方面的投资相应减少。
据美国有关方面的统计资料显示,在过去10年内,美国负荷需求增加了30%,但输电能力仅增加了15%,由此使高压线路的功率输送裕度减少,电网常常工作在危险区或边缘区。
此外,在现有电网条件下虽可以采用一些新技术来提高电网输送容量,以防止事故扩展到全网,但这种投资回报率低,难以吸引足够的投资。
(6)厂网协调方面由于未建立起厂网协调的继电保护和安全稳定控制系统,使得在系统电压下降时,许多发电机组很快退出运行,加剧了电压崩溃的发生。
(7)系统计算分析和仿真试验方面此次事故从第一回线路跳开至系统崩溃历时1个多小时,由于未及时采取措施而导致了事故扩大。
如果事先对这类运行方式作好充分的系统计算分析或仿真试验,采取相应的防范措施,是可以防止事故扩大的。
但由于计算分析和仿真试验方面存在不足,未能作好充分的反事故预案准备。
(8)经济性和安全性统筹考虑方面本次大停电根本原因在于:美国社会以追求经济利益的最大化为唯一目标。
尽管也有保证电网安全的呼声,但是比较微弱。
而具有公用事业性质的电网公司只能在现有的条件下来管理,在安全性方面存在较多的隐患。
这次大停电给社会、经济秩序造成的损失使公众加深了对电网安全重要性的认识,将引起各方面的深刻反思。
三、事故危害大停电给美国经济所造成的损失每天达300亿美元。
[5]停电事件影响到约5000万人口,造成美国俄亥俄、密歇根、宾西法尼亚、佛蒙特、马萨诸塞、康涅狄格、新泽西以及加拿大安大略等地区约61800MW的负荷损失,停电范围9300多平方英里。
四、分析与启示分析启示之前,再补充另外历史上美加东北部电网发生的两次大停电事故。
1)1965年美加东北部电网11.9大停电事故1965年11月9日17:16开始发生事故,影响范围包括美国纽约和东北部6个州以及加拿大安大略省。
(1)事故发生前电网情况美加东北部电网包括25家美国电力公司和加拿大安大略水电局,其南部通过6条230kV及115kV线路与PJM系统相连。
东北部电网各公司电网间有345kV、230kV和138kV联络线,但无联营组织,各单位各自为政。
事故前各地区发电及负荷基本平衡,潮流流向为美国向加拿大送电310MW。
(2)事故发生的原因事故起因是线路保护定值整定有误,当水电多发,使线路潮流增大到360MW 时,后备保护动作,跳开了从安大略Beck水电厂至多伦多地区的5条230kV线路中的1条,当潮流在剩余4条线路中瞬间重新分配时,其余4条线路相继跳闸。
此后Beck水电厂原来北送的1530MW功率突然改变方向,南送美国东北部电网,使南送功率突增至3340MW,经两条345kV线路及若干230kV线路送出,结果造成暂态稳定破坏,电压和功率大幅度波动,联络线和发电机组先后相继跳闸,从事故开始经过12min就扩大为美国东北部及加拿大安大略省大面积停电事故。
(3)事故造成的影响停电区域20万平方公里,损失负荷21000MW,影响居民3000万人。
在恢复供电过程中,由于缺乏备用电源,电厂的辅机需靠外来电源供电,恢复较慢,停电最长持续时间为13h。
2)1977年纽约7.13大停电事故1977年7月13日20:37,美国纽约发生了大面积停电事故。
(1)事故发生前电网情况1977年7月13日,负荷高峰出现在15:00~16:00,最大负荷达到7248MW。
到20:30时负荷降至5868MW,其中2860MW由外部提供,另外3008MW由爱迪生供电区域内部的发电机组提供。
(2)事故发生的原因当天20:37至21:24,大风暴横扫系统北部,一系列的故障导致6条345kV 线路相继退出运行,从而使剩下的2条138kV线路也因严重过载而跳闸。
爱迪生公司的供电区域与系统解列,形成孤岛,系统频率急剧下降,低频减载装置动作切除了部分负荷,但发电机组仍然由继电保护跳闸。
21:34爱迪生供电系统全部停电。
(3)事故造成的影响事故总计损失负荷约6000MW,停电最长持续时间为25h,900万人受到影响。
华尔街银行业在7月14日停业,影响到全美国的金融市场。
虽然事故都缘起与小的故障或失误,但这些不可控的小事件不可能不发生。
如果启示仅仅是小心操作,不发生小事故,那是不负责任的。
我们的重点应该是怎样高效地应对这些小事件,并快速防止大事故的发生。
可以参考2003年9月4日上海电网经受的一次未遂大停电事故[6],加深理解。
在比美国第一能源公司(First Energy,FE)的树害引发线路跳闸更为严重的早高峰期中,吴径电厂一台600MW的大机组发生突然跳闸。
但调度人员运用统一调度手段,紧急调动各种紧急支持手段,包括新安江水电快速增负荷、天荒坪抽水蓄能立即转入发电运行方式、福建—上海的联络线紧急加大输送功率、上海地区需求侧管理技术(Demand Side Management,DSM)中商定的上千家用户实行短时断电或减电等措施。