(完整)人工智能复习总结讲解,推荐文档

合集下载

【2024版】人工智能导论复习

【2024版】人工智能导论复习

可编辑修改精选全文完整版《人工智能导论》期末复习一、题型:填空题、简答题、计算题、论述题二、复习重点:第一章:1.什么是人工智能?人工智能的三种观点分别是什么?2.实现人工智能的技术路线是哪四种?3.人工智能要研究的三个主要问题是什么?4.人工智能有哪些主要研究领域?第二章:1.什么是知识?何谓知识表示?2.用谓词逻辑表示法表示猴子摘香蕉问题。

3.产生式系统推理机的推理形式有哪三种?4.产生式系统一般由哪三个基本部分组成?5.用语义网络表示:“苹果树枝繁叶茂,上结了很多苹果,有大的,也有小的,有红的,也有绿的” 。

6.用与 / 或树方法表示三阶Hanoi 塔问题。

第三章:1.推理的含义是什么?2.应用归结原理求解下列问题:任何兄弟都有同一个父亲, John 和Peter 是兄弟,且 John 的父亲是 David ,问 Peter 的父亲是谁?第四章:1.可信度方法:例 4.1 ,例 4.22.主观 Bayes 方法:例 4.8 ,例 4.93.证据理论中描述证据和结论的不确定性采用哪两个函数度量?第五章:1.什么叫搜索?搜索的两层含义是什么?2.用全局最佳优先搜索方法求解以下八数码问题。

3.用代价树的深度优先搜索求解下面的推销员旅行问题。

第六章:1.什么是机器学习?机器学习研究的目标是什么?研究机器学习的意义何在?2.机器学习有哪些主要学习策略?3.机器学习系统的基本模型包含哪四个基本环节?4.实例学习的含义是什么?它包含哪两个空间模型?对规则空间进行搜索的方法有几种?第七章:1.什么是自然语言理解?自然语言理解过程有哪些层次?各层次的功能如何?2.对汉语语料库加工的方法是什么?汉语自动分词的方法有哪些?其难点何在?第八章:1.什么是专家系统?它有哪些基本特点?一般专家系统由哪些基本部分构成?2.知识获取的主要任务是什么?3.有哪几类专家系统开发工具?各有什么特点?第九章:1.解答 B-P 学习算法的流程图,并说明其优缺点。

《人工智能导论》期末复习知识点

《人工智能导论》期末复习知识点

《人工智能导论》期末复习知识点
人工智能导论知识点总结
一、定义:
人工智能(Artificial Intelligence,AI)是指研究如何实现机器的智能,即使用计算机来模拟或提高人类的智能表现和能力。

基于此,人工智能的主要任务是解决一些超出传统计算能力的问题,其中包括学习、推理和解决一些挑战。

二、技术:
人工智能技术可分为三个主要技术领域:
1、机器学习:机器学习是一种研究机器如何学习,并从这些学习中学习及其反馈环境的解决实际问题的学科。

包括规则学习、支持向量机以及深度学习。

2、自然语言处理:自然语言处理是指人工智能技术在处理人类自然语言的理解和翻译方面的应用研究。

它将注重语言应用的学习、理解、表达和使用,以及语言识别、概念识别和分析。

3、计算机视觉:计算机视觉是指使用计算机的视觉系统来处理可视化的图像、图片、视频信息,以及关于图像的相关内容的研究。

它是一种智能系统,包括图像处理、识别和分析等功能。

三、应用:
人工智能在各行各业都有广泛的应用,有助于改善工作效率,提高工作质量,提升企业竞争力,节省成本。

1、机器人:工业机器人、服务机器人等用于工厂生产线和服务行业,可以大大提高工作效率。

人工智能 复习要点汇总

人工智能 复习要点汇总

人工智能第一章1、什么是人工智能?从学科角度来看:人工智能是计算机科学中涉及研究、设计和应用智能机器的一个分支。

它的近期主要目标在于研究用机器来模仿和执行人脑的某些智能功能,并开发相关理论和技术。

从能力角度来看:人工智能是智能机器所执行的通常与人类智能有关的功能,如判断、推理、证明、识别、感知、理解、设计、思考、规划、学习和问题求解等思维活动。

2、物理符号系统的六种基本功能信息处理系统又叫符号操作系统(Symbol Operation System)或物理符号系统(Physical Symbol System)。

一个完善的符号系统应具有下列6种基本功能:(1)输入符号(input);(2)输出符号(output);(3)存储符号(store);(4)复制符号(copy);(5)建立符号结构:通过找出各符号间的关系,在符号系统中形成符号结构;(6)条件性迁移(conditional transfer):根据已有符号,继续完成活动过程。

人和计算机具备这6种功能。

3、知识表示(Knowledge Representation)主要方法有:状态空间法、问题归约法、谓词逻辑法、语义网络法、框架表示法、本体表示法、过程表示法、神经网络表示法等。

第二章1、谓词逻辑。

2、设有3个传教士和3个野人来到河边,打算乘一只船从右岸渡到左岸去。

该船的负载能力为两人。

在任何时候,如果野人人数超过传教士人数,那么野人就会把传教士吃掉。

他们怎样才能用这条船安全地把所有人都渡过河去?答:设X:传教士人数,Y:野人人数;设D(X,Y) 为运输过程,当X,Y为正时,表示去程;当X,Y为负时,表示返程。

另外还必须满足:,(X为0时除外)第三章1、1)宽度优先搜索定义: 以接近起始节点的程度逐层扩展节点的搜索方法。

特点:一种高代价搜索,但若有解存在,则必能找到它。

2)深度优先搜索定义:首先扩展最新产生的(即最深的)节点。

与宽度优先搜索算法最根本的不同在于:将扩展的后继节点放在OPEN表的前端。

人工智能考试复习总结学习资料.doc

人工智能考试复习总结学习资料.doc

实用文档人工智能第一章1 、智能( intelligence)人的智能是他们理解和学习事物的能力,或者说,智能是思考和理解能力而不是本能做事能力。

2 、人工智能(学科)人工智能研究者们认为:人工智能(学科)是计算机科学中涉及研究、设计和应用智能机器的一个分支。

它的近期主要目标在于研究用机器来模仿和执行人脑的某些智力功能,并开发相关理论和技术。

3 、人工智能(能力)人工智能(能力)是智能机器所执行的通常与人类智能有关的智能行为,这些智能行为涉及学习、感知、思考、理解、识别、判断、推理、证明、通信、设计、规划、行动和问题求解等活动。

4 、人工智能:就是用人工的方法在机器上实现的智能,或者说,是人们使用机器模拟人类的智能。

5、人工智能的主要学派:符号主义:又称逻辑主义、心理学派或计算机学派,其原理主要为物理符号系统(即符号操作系统)假设和有限合理性原理。

代表人物有纽厄尔、肖、西蒙和尼尔逊等。

连接主义:又称仿生学派或生理学派,其原理主要为神经网络及神经网络间的连接机制与学习算法。

行为主义:又称进化主义或控制论学派,其原理为控制论及感知—动作模式控制系统。

6 、人类认知活动具有不同的层次,它可以与计算机的层次相比较,见图思维策略计算机程序计算机语言初级信息处理生理过程计算机硬件人类计算机图:人类认知活动与计算机的比认知活动的最高层级是思维策略,中间一层是初级信息处理,最低层级是生理过程,即中枢神经系统、神经元和大脑的活动,与此相对应的是计算机程序、语言和硬件。

研究认知过程的主要任务是探求高层次思维决策与初级信息处理的关系,并用计算机程序来模拟人的思维策略水平,而用计算机语言模拟人的初级信息处理过程。

7 、人工智能研究目标为:1、更好的理解人类智能,通过编写程序来模仿和检验的关人类智能的理论。

2、创造有用和程序,该程序能够执行一般需要人类专家才能实现的任务。

一般来说,人工智能的研究目标又可分为近期研究目标和远期研究目标两种。

人工智能重点知识总结

人工智能重点知识总结

人工智能重点知识总结
人工智能(Artificial Intelligence,简称AI)是一种模拟人类智
能的技术,包括机器研究、自然语言处理、计算机视觉等领域。


面是人工智能的重点知识总结:
1. 机器研究
机器研究是人工智能的重要分支,通过让计算机从数据中研究
和改进,来实现自主完成任务。

常见的机器研究算法包括决策树、
支持向量机、神经网络等。

机器研究在图像识别、语音识别、推荐
系统等领域有广泛应用。

2. 自然语言处理
自然语言处理是研究计算机与人类自然语言之间的交互的领域。

它包括文本分类、机器翻译、情感分析等任务。

自然语言处理的技
术可以帮助计算机理解和处理人类语言,从而实现智能的对话和交流。

3. 计算机视觉
计算机视觉是研究如何使计算机理解和解释图像和视频的领域。

它包括图像分类、目标检测、图像生成等任务。

计算机视觉的应用
非常广泛,包括人脸识别、车牌识别、图像搜索等。

4. 深度研究
深度研究是一种机器研究的方法,通过构建具有多个隐层的神
经网络,使计算机可以从大量数据中研究特征和模式。

深度研究在
人脸识别、语音识别等领域取得了重大突破,被广泛应用于各个行业。

5. 强化研究
强化研究是一种通过试错和反馈机制来训练智能体的研究方法。

智能体通过与环境交互,根据奖励信号来调整自己的行为。

强化研
究在游戏、机器人等领域有重要应用。

以上是人工智能的重点知识总结,希望对您有所帮助。

人工智能复习总结讲解

人工智能复习总结讲解

LIKE(x,y): x 喜欢 y。
Meihua 表示梅花,Juhua 表示菊花,
(x)(MAN(x) ∧ LIKE(x, Meihua))∧
(y)(MAN(y) ∧ LIKE(y, Juhua))∧
(z)(MAN(z) ∧(LIKE(z, Meihua)
∧LIKE(z,Juhua)))
(6)他每天下午都去打篮球。
公式。 Computer(zhangxh)∧ ¬Like(zhangxh, programming) Higher(lixp, father(lixp)) 例 2:设有下列语句,请用相应的谓词公式把它们表示出来: (1)人人爱劳动。 (2)自然数都是大于零的整数。 (3)西安市的夏天既干燥又炎热。 (4)喜欢读《三国演义》的人必读《水浒》。 (5)有的人喜欢梅花,有的人喜欢菊花,有的人既喜欢梅花又喜欢菊花。 (6)他每天下午都去打篮球。
例: 一个用来描述硕士生有关情况的框架 Frame <硕士生>
姓名: 单位(姓,名) 性别:范围(男,女)
默认:男 年龄:单位(岁)
条件:岁>16 学习专业:单位(专业名)
研究方向:单位(方向名) 导师姓名:单位(姓,名) 参加课题:范围(国家级,省部级,其他)
默认:国家级 学籍:<硕学籍> 住址:单位(楼号,房间号) 电话:单位( (区号),话机号) 入学时间:单位(年,月) 学制:单位(年)
➢ 张晓辉是一名计算机系的学生,但他不喜欢编程序。 ➢ 李晓鹏比他父亲长得高。 请用谓词公式表示这些知识。 (1)定义谓词及个体。 Computer(x):x 是计算机系的学生。 Like(x,y):x 喜欢 y。 Higher(x,y):x 比 y 长得高。 这里涉及的个体有:张晓辉(zhangxh),编程序(programming), 李晓鹏(lixp),以及函数 father(lixp)表示李晓鹏的父亲。 ➢ 第二步:将这些个体代入谓词中,得到 Computer(zhangxh) ¬Like(zhangxh, programming) Higher(lixp, father(lixp)) 第三步:根据语义,用逻辑联结词将它们联结起来,就得到了表示上述知识的谓词

人工智能重点总结正式版pdf

人工智能重点总结正式版pdf

人工智能重点总结(正式版).pdf 人工智能重点总结一、人工智能概述人工智能(ArtificialIntelligence,AI)是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。

人工智能是计算机科学的一个分支,旨在生产出一种能以人类智能相似的方式做出反应的智能机器。

人工智能领域的研究包括机器人、语言识别、图像识别、自然语言处理、专家系统等。

二、人工智能发展历程人工智能的发展经历了多个阶段。

最初,人工智能的概念和理论开始萌芽,并在20世纪50年代达成了初步的共识。

从20世纪60年代开始,人工智能进入了第一个繁荣期,但这个阶段的人工智能技术还比较初级。

在20世纪70年代,人工智能遭遇了瓶颈期,因为当时的计算机技术和算法无法满足人工智能的发展需求。

直到20世纪80年代,随着计算机技术的进步和神经网络的提出,人工智能再次迎来了发展高峰。

进入21世纪,随着大数据和云计算技术的发展,人工智能得到了更广泛的应用和发展。

三、人工智能的技术和应用人工智能的技术包括机器学习、深度学习、自然语言处理、计算机视觉等。

机器学习是一种通过让机器从数据中学习规律和模式,从而完成特定任务的方法。

深度学习是机器学习的一种,通过构建深度神经网络来实现。

自然语言处理是一种将自然语言转化为计算机语言的方法,使得计算机能够理解和处理自然语言。

计算机视觉是一种通过图像和视频等视觉信息进行识别和分析的技术。

人工智能的应用非常广泛,包括机器人、智能家居、自动驾驶、医疗保健、金融等。

人工智能在机器人领域的应用可以实现自主行动和智能交互。

在智能家居领域,人工智能可以提高家居设备的智能化程度,提高生活质量和节约能源。

在自动驾驶领域,人工智能可以实现车辆的自主驾驶和安全驾驶。

在医疗保健领域,人工智能可以帮助医生进行疾病诊断和治疗计划的制定。

在金融领域,人工智能可以进行风险评估和投资策略的制定等。

四、人工智能的未来发展随着技术的不断进步和发展,人工智能的未来发展前景非常广阔。

人工智能知识点总结

人工智能知识点总结

人工智能知识点总结
一、AI技术的分类
1、模式识别
模式识别是人工智能的基础,主要处理有形实体及其模式之间的关系,大致可分为结构模式识别与表示模式识别。

结构模式识别以特征提取作为
基础,其拟合方式通常包括统计模型、模板匹配、算法拼接等,表示模式
识别则基于抽象表示,其研究关注如何用可以有效计算的抽象表示实体以
及它们之间的关系,包括深度学习、半监督学习、概率图模型等。

2、机器学习
机器学习是人工智能的重要研究领域,主要关注如何让机器通过数据
发现规则,从而做出智能化决策和推理。

它包括规则学习、学习、聚类学习、联合学习及其他未知学习方法,在机器学习的基础上,还有生成式模型、强化学习等方法。

3、计算机视觉
计算机视觉是人工智能的重要研究分支,它的目标是使计算机能够理
解图像和视频信息,大致可以归纳为图像分类与识别、图像检索、目标检
测与跟踪、图像分割、视频识别、视觉导航等。

4、自然语言处理
自然语言处理主要关注如何让计算机能够理解自然语言文本,主要包
括文本分析、语义分析、情感分析、语音识别等。

5、机器人技术。

人工智能重点总结

人工智能重点总结

人工智能重点总结
一、人工智能概述
人工智能(Artificial Intelligence,简称AI)是指以计算机为基础,使用人工智能和人工智能技术对动物、人类、机器人、系统等进行智能控制和自主操作的一组系统。

它的最终目标是开发机器具备人类智能,即机器具有识别、判断、分析、规划和自主行动等功能,给人们创造更优质的生活环境。

二、人工智能发展历程
1960年,丹麦数学家斯诺提出了AI诞生的第一个理论:可以使用有限的算法在有限的时间内解决任何复杂的问题。

1966年,美国计算机科学家斯坦福大学的教授约翰·古德里安提出了人工智能,被定义为“利用自然语言处理、机器视觉、语音识别、机器学习和机器思维等技术,使计算机具有人类智慧的研究领域”。

1976年,经美国国家科学基金会联合基金会的资助,美国麻省理工学院正式开设人工智能课程。

1984年,英国著名科学家克劳斯·斯特鲁普提出了“模式识别”的概念,详细定义了人工智能的基本概念和技术细节,并提出了人工智能的发展目标。

1989年,伯克利大学计算机与科学研究所的英国科学家山德森将智能机器比作同位素,开发出观察、建模、推理和学习的智能机器,发表的《机器智能:它的结构。

人工智能复习总结讲解

人工智能复习总结讲解

➢ 综合数据库,用于存放求解过程中各种当前信息的数据结构,如问题是的初始状态、
事实或证据、中间推理结论和最后结果等。
➢ 规则库,用于存放与求解问题有关的某个领域知识的规则之集合及其交换规则。

其基本形式为

IF 前提 THEN 结论
➢ 控制策略的作用是说明下一步应该选用什么规则。
2.2.4 语义网络法
3.3 启发式搜索 ➢ 盲目搜索的不足:效率低,耗费过多的计算空间与时间。 ➢ 宽度优先、深度优先搜索,或代价树搜索算法,其主要的差别是 OPEN 表中待扩展节 点的顺序问题。人们就试图找到一种方法用于排列待扩展节点的顺序,即选择最有 希望的节点加以扩展,那么,搜索效率将会大为提高。 ➢ 启发信息:进行搜索技术一般需要某些有关具体问题领域的特性的信息。 ➢ 把利用启发信息的搜索方法叫做启发式搜索方法。 ➢ 启发式搜索策略 ➢ 启发信息用于决定要扩展的下一个节点, ➢ 这种搜索总是选择“最有希望”的节点作为下一个被扩展的节点。
(4)喜欢读《三国演义》的人必读《水浒》。
定义谓词:
MAN(x):x 是人。
LIKE(x,y):x 喜欢读 y。
(x)(MAN(x)∧LIKE(x, 《SANGUOYANYI》)
→LIKE(x, 《SHUIHU》))
(5)有的人喜欢梅花,有的人喜欢菊花,有的人既喜欢梅花又喜欢菊花。
定义谓词:
MAN(x):x 是人。
例: 一个用来描述硕士生有关情况的框架 Frame <硕士生>
姓名: 单位(姓,名) 性别:范围(男,女)
默认:男 年龄:单位(岁)
条件:岁>16 学习专业:单位(专业名)
研究方向:单位(方向名) 导师姓名:单位(姓,名) 参加课题:范围(国家级,省部级,其他)

人工智能知识点总复习(附答案)

人工智能知识点总复习(附答案)

知识点1.什么是人工智能?它的研究目标是什么?人工智能的研究目标远期目标揭示人类智能的根本机理,用智能机器去模拟、延伸和扩展人类的智能涉及到脑科学、认知科学、计算机科学、系统科学、控制论等多种学科,并依赖于它们的共同发展近期目标研究如何使现有的计算机更聪明,即使它能够运用知识去处理问题,能够模拟人类的智能行为。

相互关系远期目标为近期目标指明了方向近期目标则为远期目标奠定了理论和技术基础2.人工智能有哪几个主要学派?各自的特点是什么?人工智能研究的三大学派:随着人工神经网络的再度兴起和布鲁克(R.A.Brooks)的机器虫的出现,人工智能研究形成了符号主义、联结主义和行为主义三大学派。

符号主义学派是指基于符号运算的人工智能学派,他们认为知识可以用符号来表示,认知可以通过符号运算来实现。

例如,专家系统等。

联结主义学派是指神经网络学派,在神经网络方面,继鲁梅尔哈特研制出BP网络之后,人工神经网络研究掀起了第二次高潮。

之后,随着模糊逻辑和进化计算的逐步成熟,又形成了“计算智能”这个统一的学科范畴。

行为主义学派是指进化主义学派,在行为模拟方面,麻省理工学院的布鲁克教授1991年研制成功了能在未知的动态环境中漫游的有6条腿的机器虫。

智能科学技术学科研究的主要特征(1)由对人工智能的单一研究走向以自然智能、人工智能、集成智能为一体的协同研究;(2)由人工智能学科的独立研究走向重视与脑科学、认知科学、等学科的交叉研究;(3)由多个不同学派的独立研究走向多学派的综合研究;(4)由对个体、集中智能的研究走向对群体、分布智能的研究;(5)智能技术应用已渗透到人类社会的各个领域。

知识表示的类型按知识的不同存储方式:陈述性知识:知识用某种数据结构来表示;知识本身和使用知识的过程相分离。

过程性知识:知识和使用知识的过程结合在一起。

知识表示的基本方法非结构化方法:一阶谓词逻辑产生式规则结构化方法:语义网络框架知识表示的其它方法状态空间法和问题归约法。

人工智能期末考试知识点(考点)总结

人工智能期末考试知识点(考点)总结

1、智能所包含的能力(1) 感知能力(2)记忆与思维能力(3)学习和自适应能力(4)行为能力2、人工智能分为五个阶段:(1) 孕育期(2)形成期(3)知识应用期(4)从学派分立走向综合(5)智能科学技术学科的兴起3、人工智能研究的基本内容(1)与脑科学和认知科学的交叉研究(2)智能模拟的方法和技术研究4、人工智能研究中的不同学派(三大学派)(1)符号主义(2)联结主义(3)行为主义5、机器学习机器学习是机器获取知识的根本途径,同时也是机器具有智能的重要标志。

有人认为,一个计算机系统如果不具备学习功能,就不能称其为智能系统。

机器学习有多种不同的分类方法,如果按照对人类学习的模拟方式,机器学习可分为符号学习、联结学习、知识发现和数据挖掘等。

6、演绎推理与归纳推理的区别演绎推理与归纳推理是两种完全不同的推理。

演绎推理是在已知领域内的一般性知识的前提下,通过演绎求解一个具体问题或证明一个给定的结论。

这个结论实际上早已蕴涵在一般性知识的前提中,演绎推理只不过是将其揭示出来,因此它不能增殖新知识。

而在归纳推理中,所推出的结论是没有包含在前提内容中的。

这种由个别事物或现象推出一般性知识的过程,是增殖新知识的过程。

7、确定性知识确定性知识是指其真假可以明确给出的知识,其表示方法主要包含谓语逻辑表示法、产生式表示法、语义网络表示法、框架表示法等。

8、谓语逻辑表示方法P299、语义网络表示法P3410、框架表示法(鸟框架)P4111、产生式推理的基本结构产生式推理的基本结构如图所示,它包括综合数据库、规则库和控制系统三个重要组成部分。

12、谓语公式P6913、状态空间的盲目搜索根据状态空间采用的数据结构的不同,它可分为图搜索算法和树搜索算法。

树搜索算法包括一般树和代价树的盲目搜索算法。

一般树的盲目搜索主要包括广度优先搜索算法和深度优先搜索算法两种。

14、广度优先搜索算法和深度优先搜索算法的区别P7915、八数码难题P7916、代价树的广度优先搜索也称为分枝界限算法P8017、城市交通难题P8118、什么是估价函数用来估计节点重要性的函数称为估价函数。

人工智能复习总结

人工智能复习总结

1.深度优先方法特点:属于图搜索;是一个通用的搜索方法;如果深度限制不合适,有可能找不到问题的解;(4)不能保证找到最优解2.置换:通用有序对的集合s={t1/v1,…,tn/vn}来表任一置换,置换集的元素ti/vi的含义是表达式中的变量vi处处以项ti来替换,用s对表达式E作置换后的例简记为Es。

一般说,置换是不可交,两个置换合成的结果与置换使用的次序有关4.产生式:产生式规则基本形式:P-Q或P是产生式的前提(前件),用于指出该产生式是否可用的条件Q是一组结论或操作(后件),用于指出当前提P所指示的条件满足时,应该得出的结论或应该执行的操作产生式规则的语义:如果前提P被满足,则可推出结论Q或执行Q所规定的操作7、产生式系统的组成1)产生式规则库:描述相应领域知识的产生式规则集2)数据库:(事实的集合)存放问题求解过程中当前信息的数据结构(初始事实、外部数据库输入的事实、中间结果事实和最后结果事实)3)推理机:(控制系统)是一个程序,控制协调规则库与数据库的运行,包含推理方式和控制策略9.已知 W={P(f(x,g(A,y)),z),P(f(x,z),z)},求 MGU: k=0;S0=S;5 0=£;S0 不是单元素集,求得差异集D0={g(A,y)},z},其中z是变元,g(A,y)是项,且z不在g(A,y)中出现°k=k+1=1, 有5 1=5 0 ・{g(A,y)/z } = £・{ g(A,y)/z } = { g(A,y)/z },S1=S0 ・{ g(A,y)/z } = {P(f(x,g(A,y)),g(A,y))},S1 是单元素集。

根据求MGU 算法,MGU=5 1={g(A,y)/z}10.证明G是否是F1、F2的逻辑结论;①」P(x) VQ(x).从F1变换②」P(y) VR(y).从F1变换③P(a).从F2变换④S(a).从F2变换⑤」S(z)V「R(z)结论的否定⑥R(a).②③归结{a/y}⑦」R(a) .④⑤归结{a/z}⑧□.⑥⑦归结得证.11.谓词公式G通过8个步骤所得的子句集合S,称为G的子句1)消去蕴含式和等价式一,<->2)缩小否定词的作用范围,直到其作用于原子公式:3)适当改名,使量词间不含同名指导变元和约束变元。

ai总结书的知识点

ai总结书的知识点

ai总结书的知识点一、人工智能的基本概念1. 人工智能的定义和特点2. 人工智能的分类及主要技术手段3. 人工智能系统的构成和基本结构二、人工智能的发展历史1. 人工智能的起源和发展背景2. 人工智能发展的一般历程3. 人工智能发展的里程碑事件及主要成果三、人工智能的主要应用领域1. 人工智能在医疗健康领域的应用2. 人工智能在金融领域的应用3. 人工智能在制造业领域的应用4. 人工智能在交通运输领域的应用5. 人工智能在农业领域的应用四、人工智能的未来发展趋势1. 人工智能技术的发展方向和趋势2. 人工智能在未来各领域的发展前景3. 人工智能可能带来的社会影响和变革本书将从以上四个方面对人工智能的相关知识点进行详细的分析和总结,旨在帮助读者更全面地了解人工智能技术的各个方面,为读者进一步学习和深入研究人工智能领域提供指导和参考。

同时,本书还将介绍各种人工智能技术在实际应用中的案例和解决方案,以及人工智能技术发展的相关政策和法规,帮助读者更好地了解人工智能技术的实际现状和应用前景,为读者深入理解和掌握人工智能技术提供必要的知识支持。

在编写本书的过程中,作者团队秉承客观、全面和深入的原则,通过搜集、整理和分析大量的相关文献和资料,力求对人工智能的相关知识点进行全面、系统和客观的总结,确保本书的权威性和可靠性。

希望本书能为读者提供有益的帮助,为读者进一步了解和学习人工智能技术提供有效的参考。

总之,人工智能技术是当今世界科技领域的热点之一,其发展对于推动社会经济发展和改善人民生活水平具有重要意义。

因此,对于人工智能技术的深入了解和研究不仅是科技工作者和研究者的迫切需求,也是广大社会公众的切身利益所在。

希望通过本书的出版,能够为广大读者提供有效的知识支持和参考,使读者更好地了解和掌握人工智能技术,为人工智能技术的进一步发展和应用做出应有的贡献。

《人工智能》知识点整理

《人工智能》知识点整理

《人工智能》知识点整理
一、人工智能介绍
人工智能(Artificial Intelligence, AI)是计算机科学的一个分支,它企图了解智能的实质,并利用计算机模拟或延伸人的智能。

人工智能在机器学习、计算机视觉、语音识别、机器人技术等多个领域展现出惊人的发展和进步。

人工智能的技术领先程度被称为“AI热潮”或“AI革命”,并受到了世界各国的高度关注。

人工智能既是一种技术,也是一种学科,它涉及了多学科交叉的广泛与深入的理论研究和实践应用。

二、人工智能的分类
1、通用AI
通用AI是指拥有能力完成多种任务的AI,它可以在不同的任务和领域中有效地解决问题。

2、深度学习
深度学习(Deep learning)是一种机器学习技术,它利用计算机仿真神经网络的行为,从大量原始数据中学习有用知识和特征。

深度学习可以用于认知科学、图像处理、语音识别、机器翻译等研究领域。

3、机器学习
机器学习(Machine Learning)是AI中的一个分支,它是利用计算机系统从大量数据中发现有用的知识,而不需要人为干预。

机器学习包括聚类、线性回归、决策树、神经网络等技术。

4、自然语言处理
自然语言处理(Natural Language Processing, NLP)是计算机科学的一个研究领域,它研究如何理解和处理自然语言中的文本。

人工智能技术知识点总结

人工智能技术知识点总结

人工智能技术知识点总结1. 人工智能的基本概念和历史人工智能的基本概念是指模拟和实现人类的认知、推理、学习等智能行为的计算机系统。

人工智能技术的发展可以追溯到20世纪50年代,经历了符号主义时期、连接主义时期、深度学习时期等阶段。

在符号主义时期,人工智能研究者主张通过符号逻辑来模拟人类的智能行为;而在连接主义时期,人工智能研究者则更注重模拟神经网络的结构和功能;深度学习则是在连接主义的基础上继续发展而来的。

2. 人工智能的技术应用人工智能技术已经在各个行业得到了广泛应用,包括医疗、金融、交通、教育等领域。

在医疗领域,人工智能技术可以帮助医生快速而准确地诊断疾病,辅助手术操作等;在金融领域,人工智能技术可以帮助银行和金融机构更好地识别欺诈行为和风险管理等;在交通领域,人工智能技术可以实现无人驾驶技术,提高交通安全性,减少交通拥堵,在教育领域,人工智能技术可以根据学生的学习情况,给出个性化的学习建议等。

3. 人工智能的技术原理人工智能技术的核心是机器学习(Machine Learning)和深度学习(Deep Learning)技术。

机器学习是指利用数据和数学模型,使计算机系统可以自动地“学习”和提高性能。

深度学习则是一种机器学习的子集,利用深度神经网络对数据进行识别和分析。

深度学习技术最早由Hinton等人提出,并在语音识别、图像识别、自然语言处理等领域取得了巨大成功。

此外,人工智能技术还包括了语音识别、机器视觉、自然语言处理、知识表示、自动推理、规划等技术。

语音识别是指让计算机能够识别和理解人类语音信息,从而实现智能语音交互;机器视觉是通过计算机系统识别和理解图像和视频信息,实现智能图像识别;自然语言处理技术是帮助计算机系统理解和处理人类语言信息,包括文本分析、信息检索等。

4. 人工智能的发展趋势人工智能技术的发展已经深入到我们生活的方方面面,未来,人工智能技术将继续在医疗、金融、交通、教育等领域发挥着重要作用,并在智能家居、智能制造等领域得到更广泛的应用。

(完整版)人工智能知识点总结

(完整版)人工智能知识点总结

人工智能:Artificial Intelligence,简称AI,主要研究如何使用人工的方法和技术,使用各种自动化机器或智能化机器模仿、延伸和扩展人的智能,实现某些机器思维或脑力劳动自动化。

人工智能的研究目标及其意义:1目标:远期目标是要制造智能机器;近期目标是实现机器智能。

2意义:普遍的计算机智能低下,无法满足社会需求;研究AI是当前信息化社会的迫切需求;智能化是自动化发展的必然趋势;研究AI,对人类自身的智能的奥秘也提供有益的帮助。

人工智能的科学范畴:当前的人工智能既属于计算机技术的一个前沿领域,也属于信息处理和自动化技术的一个前沿领域。

还涉及到智能科学、认知科学、心理科学等,是一门综合性的交叉学科和边缘学科。

人工智能的研究途径与方法:1心里模拟,符号推演2生理模拟,神经计算3行为模拟,控制进化4群体模拟,仿生计算5博采广鉴,自然计算6原理分析,数学建模人工智能的基本技术:1表示2运算3搜索人工智能基于应用的领域:1难题求解2自动规划、调度与配置3机器定理证明4自动程序设计5机器翻译6智能控制7智能管理8智能决策9智能通信10智能仿真11智能CAD12智能制造等人工智能的分支领域:1搜索与图解2学习与发现3知识与推理4发明与创造5感知与交流6记忆与联想7系统与建造8应用与工程人工智能正式诞生于1956年夏,在达特莫斯大学的研究会上,麦卡锡提议正式采用了“AI”这一术语。

麦卡锡---AI之父AI的现状与发证趋势:1多种途径齐头并进,多种方法协作互补2新思想、新技术不断涌现,新领域新方向不断开拓3理论研究更加深入,应用研究愈加广泛4研究队伍日益壮大,社会影响越来越大。

以上展现了AI繁荣景象和光明前景,虽有困难,问题和挑战,但前进和发展毕竟是大势所趋。

产生式系统的组成:产生式规则库、推理机和动态数据库状态转换规则(操作operator):1引起状态中某些分量发生改变,从而使一个具体状态变化到另一个具体状态的作用;2它可以是一个机械性的步骤、过程、规则或算子。

人工智能复习资料

人工智能复习资料

一、选择填空1.产生式系统由综合数据库,规则库,控制策略三个部分组成2.α-β剪枝中,极大节点下界是α,极小节点是β。

3.发生β剪枝的条件是祖先节点β值〈=后辈节点的α值。

4.发生α剪枝的条件是后辈节点β值<=祖先节点的α值.5.在证据理论中,信任函数Bel(A)与似然函数Pl(A)的关系为0〈=Bel(A)<=Pl (A)〈=1。

6.深度优先算法的节点按深度递减的顺序排列OPEN中的节点。

7.宽度优先算法的节点按深度递增的顺序排列OPEN中的节点。

8.A 算法失败的充分条件是OPEN 表为空。

9.A算法中OPEN中的节点按f值从小到大排序。

10.爬山算法(不可撤回方式)是只考虑局部信息,没有从全局角度考虑最佳选择.f(n)= g(n)只考虑搜索过的路径已经耗费的费用11.分支界限算法(动态规划算法):f(n)= h(n)只考虑未来的发展趋势.仅保留queue中公共节点路径中耗散值最小的路径,余者删去,按g 值升序排序。

12.回溯策略是试探性地选择一条规则,如发现此规则不合适,则退回去另选其它规则。

定义合适的回溯条件①新产生的状态在搜索路径上已经出现过.②深度限制(走到多少层还没有到目标,就限制往回退) ③当前状态无可用规则。

13.A*选中的任何节点都有f(n)〈=f*(s)<f(t)。

14.h(n)与h*(n)的关系是h(n)>=h*(n),g(n)与g*(n)的关系是g(n) ≥g*(n)。

15.求解图的时候,选择一个正确的外向连接符是顺着现有的连接符的箭头方向去找,不能逆着箭头走。

16.根节点:不存在任何父节点的节点。

叶节点:不存在任何后继节点的节点。

17.两个置换s1,s2的合成置换用s1s2表示.它是s2作用到s1的项.18.LS和LN两个参数之间应该满足LS、LN>=0,不独立,LS、LN可以同时=1,LS、LN不能同时〉1或〈1。

19.语义网络:一般用三元组(对象,属性,值)或(关系,对象1,对象2)20.反向推理方法:定义:首先提出假设,然后验证假设的真假性,找到假设成立的所有证据或事实。

人工智能重点总结

人工智能重点总结

人工智能重点总结第一章:发展简史(此处为简答题)1.人工智能的萌芽(1956年以前)1936年,图灵创立了自动机理论(后人称为图灵机),提出一个理论计算机模型,为电子计算机设计奠定了基础,促进了人工智能,特别是思维机器的研究。

麦克洛克和皮茨于1943年提出“拟脑模型”是世界上第一个神经网络模型(MP模型),开创了从结构上研究人类大脑的途径。

1948年维纳发表《控制论—关于动物与机器中的控制与通信的科学》,不但开创了近代控制论,而且为人工智能的控制学派树立了里程碑。

1、古希腊伟大的哲学家思想家亚里士多德的主要贡献是为形式逻辑奠定了基础。

形式逻辑是一切推理活动的最基本的出发点。

在他的代表作《工具论》中,就给出了形式逻辑的一些基本规律,如矛盾律、排中律,并且实际上已经提到了同一律和充足理由律。

此外亚里士多得还研究了概念、判断问题,以及概念的分类和概念之间的关系判断问题的分类和它们之间的关系。

其最著名的创造就是提出人人熟知的三段论。

2、英国的哲学家、自然科学家 Bacon(培根)(1561-1626),他的主要贡献是系统地给出了归纳法,成为和 Aristotle 的演绎法相辅相成的思维法则。

Bacon 另一个功绩是强调了知识的作用。

Bacon 的著名警句是"知识就是力量"。

3、德国数学家、哲学家 Leibnitz(莱布尼茨)(1646-1716),他提出了关于数理逻辑的思想,把形式逻辑符号化,从而能对人的思维进行运算和推理。

他曾经做出了能进行四则运算的手摇计算机4、英国数学家、逻辑学家 Boole(布尔)(1815-1864),他初步实现了布莱尼茨的思维符号化和数学化的思想,提出了一种崭新的代数系统--布尔代数。

5、美籍奥地利数理逻辑学家Godel(哥德尔)(1906-1978),他证明了一阶谓词的完备性定理;任何包含初等数论的形式系统,如果它是无矛盾的,那么一定是不完备的。

此定理的意义在于,人的思维形式化和机械化的某种极限,在理论上证明了有些事是做不到的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
➢ 张晓辉是一名计算机系的学生,但他不喜欢编程序。 ➢ 李晓鹏比他父亲长得高。 请用谓词公式表示这些知识。 (1)定义谓词及个体。 Computer(x):x 是计算机系的学生。 Like(x,y):x 喜欢 y。 Higher(x,y):x 比 y 长得高。 这里涉及的个体有:张晓辉(zhangxh),编程序(programming), 李晓鹏(lixp),以及函数 father(lixp)表示李晓鹏的父亲。 ➢ 第二步:将这些个体代入谓词中,得到 Computer(zhangxh) ¬Like(zhangxh, programming) Higher(lixp, father(lixp)) 第三步:根据语义,用逻辑联结词将它们联结起来,就得到了表示上述知识的谓词
第 1 章 概述 1、重点掌握人工智能的几种定义。 2、掌握目前人工智能的三个主要学派及 其认知观。 3、一般了解人工智能的主要研究范围和 应用领域。 人工智能的三大学派及其认知观: (1)符号主义: 认为人工智能起源于数理逻辑。 (2)连接主义: 认为人工智能起源于仿生学,特别是对人脑模型的研究。 (3)行为主义: 认为人工智能起源于控制论。 第 2 章 确定性知识系统
(4)喜欢读《三国演义》的人必读《水浒》。
定义谓词:
MAN(x):x 是人。
LIKE(x,y):x 喜欢读 y。
(x)(MAN(x)∧LIKE(x, 《SANGUOYANYI》)
→LIKE(x, 《SHUIHU》))
(5)有的人喜欢梅花,有的人喜欢菊花,有的人既喜欢梅花又喜欢菊花。
定义谓词:
MAN(x):x 是人。
重点掌握用谓词逻辑法、产生式表示、语义网络法、框架表示法来描述问题,解决 问题;
重点掌握归结演绎推理方法 谓词逻辑法
➢ 一阶谓词逻辑表示法适于表示确定性的知识。它具有自然性、精确性、严密性及 易实现等特点。
➢ 用一阶谓词逻辑法表示知识的步骤如下: (1)定义谓词及个体,确定每个谓词及个体的确切含义。 (2)根据所要表达的事物或概念,为每个谓词中的变元赋以特定的值。 (3)根据所要表达的知识的语义,用适当的连接符号将各个谓词连接起来,形成谓词公式。 例 1:设有下列事实性知识:
定义谓词及个体:
设 TIME(x):x 是下午。
PLAY(x,y):x 去打 y,
Liming 表示李明,
Basketball 表示足球,则:
(x)TIME(x)PLAY(Liming,Basketball)
产生式系统
产生式系统的组成
产生式系统由 3 个部分组成,即全局数据库、规则库和控制策略,
24
2.2.4 框架表示 ➢ 1974 年,由 Minsky 在“A framework for representing knowledge”中提出。 ➢ 框架是一种描述所论对象属性的数据结构。 ➢ 所论对象可以是一个事物、一个事件或者一个概念 ➢ 。一个框架由若干个“槽”组成,每个“槽”又可划分为若干个“侧面”。 一个槽用于描述所论及对象的某一方面的属性,一个侧面用于描述相应属性 的一个方面。槽和侧面所具有的属性值分别称为槽值和侧面值。槽值可以是 逻辑型或数字型的,具体的值可以是程序、条件、默认值或是一个子框架。 ➢ (1)框架的基本结构 ➢ 一个框架通常由若干个称为“槽”的结构组成 ➢ 每一个槽又可以根据实际情况拥有若干个“侧面” ➢ 每一个侧面也可以拥有若干个“侧面值” ➢ 框架的槽值和侧面值,可以是数字、字符串、布尔值,也可以是一个在满 足某个给定条件时需执行的动作或过程,还可以是另外一个框架。 ➢ 槽或侧面值可附加约束信息。
➢ 语义网络是 1968 年 J.R.Quillian 在研究人类联想记忆时提出的心理学模型。
➢ 语义网络的概念
每个语义基元可表示为三元组:
(结点 1,弧,结点 2)
节点代表实体
弧是有方向和标注的
方向体现了结点所代表的实体的主次关系
标注表示它所连接的两个实体之间的语义联系
连接的两个节点间的某种语义联系或语义关系。
语义网络表示一元关系、二元关系和多元关系:
多元关系表示方法:通过增加关系结点、动作结点、事件结点或情况结点等
的方法把多元关系转化为多个二元关系。
例 1、用一个语义网络表示下列命题。
(1) 树和草都是植物;
(2) 树和草是有根有叶的;
(3) 水草是草,且长在水中;
(4) 果树是树,且会结果;
(5) 苹果树是果树中的一种,它结苹果。
分析:
问题涉及的对象有:
植物、树、草、水草、果树、苹果树
各对象的属性:长在水中;
果树的属性:会结果;
苹果树的属性:结苹果。
植物 AKO
树 AKO
果树 AKO
有根 有叶
会结果
苹果树 结苹果
AKO

有根 有叶
AKO
水草 长在水中
例2:这只小燕子从春天到秋天占有一个巢。 占有
LIKE(x,y): x 喜欢 y。
Meihua 表示梅花,Juhua 表示菊花,
(x)(MAN(x) ∧ LIKE(x, Meihua))∧
(y)(MAN(y) ∧ LIKE(y, Juhua))∧
(z)(MAN(z) ∧(LIKE(z, Meihua)
∧LIKE(z,Juhua)))
(6)他每天下午都去打篮球。
➢ 综合数据库,用于存放求解过程中各种当前信息的数据结构,如问题是的初始状态、
事实或证据、中间推理结论和最后结果等。
➢ 规则库,用于存放与求解问题有关的某个领域知识的规则之集合及其交换规则。

其基本形式为

IF 前提 THEN 结论
➢ 控制策略的作用是说明下一步应该选用什么规则。
2.2.4 语义网络法
解:(1)人人爱劳动。
定义谓词如下:
Man(x):x 是人。
Love(x,y):x 爱 y。
(x)(Man(x)→Love(x,劳动))
解:(1)人人爱劳动。
定义谓词如下:
Man(x):x 是人。
Love(x,y):x 爱 y。
(x)(Man(x)→Love(x,劳动))
(2)自然数都是大于等于零的整数。
定义谓词如下:
N(x):x 是自然数。
I(x):x 是整数。
GZ(x):x 大于等于零。
(x)(N(x)→(GZ(x)∧I(x)))
(3) 西安市的夏天既干燥又炎热。
定义谓词:
SUMMER(x):x 处于夏天。
DRY(x):x 很干燥。
HOT(x):x 很炎热。
SUMMER(Xi’an)→DRY(Xi’an)∧HOT(Xi’an)
公式。 Computer(zhangxh)∧ ¬Like(zhangxh, programming) Higher(lixp, father(lixp)) 例 2:设有下列语句,请用相应的谓词公式把它们表示出来: (1)人人爱劳动。 (2)自然数都是大于零的整数。 (3)西安市的夏天既干燥又炎热。 (4)喜欢读《三国演义》的人必读《水浒》。 (5)有的人喜欢梅花,有的人喜欢菊花,有的人既喜欢梅花又喜欢菊花。 (6)他每天下午都去打篮球。
相关文档
最新文档