高等数学教学ppt离散数学_集合论_映射_关系

合集下载

离散数学关系-PPT

离散数学关系-PPT
离散数学关系
基本要求和重难点:
• 基本要求
了解序偶与笛卡尔积,掌握关系得性质和运算,重 点掌握关系闭包运算得求法和偏序关系及哈斯图 得正确画法。
• 重难点
关系5种性质得判断,关系得闭包运算和偏序关系 得性质及特殊元素得判断。
引言
日常生活中,大家熟知一些常见关系, 例:家庭集合,有父子关系、夫妻关系等。 全校同学作为一个集合,有同班关系,同组关系。 在计算机科学中,在计算机逻辑设计中,应用了等 价关系,相容关系。 在编译原理、关系数据库、数据结构、数学中也有 关系。
例题
返回第5、3节目录
五、传递性例题
例: A={1,2,3,4} R={<1,4>,<4,3>,<1,3>,<3,1>,<1,2>,<3,2>,<2,3>, <4,2>,<1,1>,<3,3>} R不就是传递得
返回传递性
返回第5、3节目录
六、举 例
自反性 反自反性 对称性 反对称性 传递性
任何集合上得
返回总目录
一、自反性
自反性
定义: 若xA,均有xRx,那么称R就是自反得。
A上关系R就是自反得x(xA xRx)
在关系矩阵中,反映为主对角线元素均为1 在关系图中,反映为每结点都有自回路 例1: A={1,2,3},R={<1,1>,<2,2>,<3,3>,<1,2>}
1 23
例2:“=”关系和“≤”关系就是自反得吗?
S={<4,2>,<2,5>,<3,1>,<1,3>}

离散数学ppt课件

离散数学ppt课件

02
集合论基础
集合的基本概念
总结词
集合是离散数学中的基本概念, 是研究离散对象的重要工具。
详细描述
集合是由一组确定的、互不相同 的、可区分的对象组成的整体。 这些对象称为集合的元素。例如 ,自然数集、平面上的点集等。
集合的运算和性质
总结词
集合的运算和性质是离散数学中的重要内容,包括集合的交、并、差、补等基本运算,以及集合的确定性、互异 性、无序性等性质。
生,1表示事件一定会发生。
离散概率论的运算和性质
概率的加法性质
如果两个事件A和B是互斥的,那么P(A或B)等于P(A)加上 P(B)。
概率的乘法性质
如果事件A和B是独立的,那么P(A和B)等于P(A)乘以P(B) 。
全概率公式
对于任意的事件A,存在一个完备事件组{E1, E2, ..., En}, 使得P(Ai)>0 (i=1,2,...,n),且E1∪E2∪...∪En=S,那么 P(A)=∑[i=1 to n] P(Ai)P(A|Ei)。
工程学科
离散数学在工程学科中也有着重要的 应用,如计算机通信网络、控制系统 、电子工程等领域。
离散数学的重要性
基础性
离散数学是数学的一个重要分支 ,是学习其他数学课程的基础。
应用性
离散数学在各个领域都有着广泛的 应用,掌握离散数学的知识和方法 对于解决实际问题具有重要的意义 。
培养逻辑思维
学习离散数学可以培养人的逻辑思 维能力和问题解决能力,对于个人 的思维发展和职业发展都有很大的 帮助。
详细描述
邻接矩阵是一种常用的表示图的方法,它是 一个二维矩阵,其中行和列对应于图中的节 点,如果两个节点之间存在一条边,则矩阵 中相应的元素为1,否则为0。邻接表是一 种更有效的表示图的方法,它使用链表来存 储与每个节点相邻的节点。

离散数学(集合论)ppt课件

离散数学(集合论)ppt课件
0 1 n n C C ... C 2 n n n
15
幂 集 定义
P(A) = { B | BA }
设 A={a,b,c},则 P(A)={,{a},{b},{c},{a,b},{a,c},{b,c}{a,b,c}}
计数: 6
2.真子集: A B A B A B
真包含
3.集合相等: A B A B 且 B A
14
n元集,m元子集
含有n个元素的集合简称n元集,它的含有m 个(m≤n)元素的子集称为它的m元子集. 例题3.2:A={a,b,c},求A的全部子集. 0元子集,即空集,只有1个. 1 1元子集,即单元集, c 个 {a},{b},{c} 3 2 元子集 个 {a,b},{a,c}{b,c} 2 3元子集1个c 3 {a,b,c} n元集的集合个数为:
2
当时德国数学家康托尔试图回答一些涉及无穷量 的数学难题,例如“整数究竟有多少?”“一个 圆周上有多少点?”0—1之间的数比1寸长线段 上的点还多吗?”等等。而“整数”、“圆周上 的点”、“0—1之间的数”等都是集合,因此对 这些问题的研究就产生了集合论。
3
1903年,一个震惊数学界的消息传出:集合论 是有漏洞的!这就是英国数学家罗素提出的著名 的罗素悖论。 可以说,这一悖论就象在平静的数 学水面上投下了一块巨石,而它所引起的巨大反 响导致了第三次数学危机。
19
集合基本运算的定义

交 相对补 对称差
AB = { x | xA xB }
AB = { x | xA xB } AB = { x | xA xB } AB = (AB)(BA) = (AB)(AB)
绝对补

离散数学 第三章 关系与映射 课件

离散数学    第三章    关系与映射    课件

则有
c) ( R 2 R3 ) R 4 R 2 R 4 R3 R4 d ) ( R 2 R3 ) R 4 R 2 R 4 R3 R4
定理2 已知集合 X , Y , Z , W ,
X Y Z W
R1 R2 R3
则有
(R 1 R 2 ) R 3 R 1 (R 2 R 3 )
MR 3
MR 4
2.关系的运算
1)关系的交、并、补、差
前已述及,关系是序偶(有序对)的集合,
因此可以对关系进行运算。若R, SAB,则 R∪S,R∩S,~R,R-SAB.
2)复合关系 设 R 是从集合 X 到 Y 的关系 , S 是从 Y 到 Z 的关系,把 X 到 Z 的关系定义为 R S
R 6 { a, a , a, b , b, b , c, c }
R 7 { a, b , b, c , a, c } R 8 { a, b , b, c , c, a } R 9 { a, b , a, c } R 10 { a, b }
A上关系R是反自反的 x (xAxRx)
该定义表明了,一个反自反的关系R中, 不应包括有任何相同元素的有序对。
由定义说明中,可知真包含关系是反自
反的,但包含关系不是反自反的;小于关系<
是反自反的,而≤不是反自反的。
应该指出,任何一个不是自反的关系,未
必是反自反的;反之,任何一个不是反自反的
(3,1),(3,2),(2,1)}
0 1 MR 1 1
0 0 1 1
0 0 0 1
0 0 0 0
优点 便于在计算机上表达, 自动判定R的性质. 缺点 X中元素个数较大时 不方便,不便于判定传递关系.

【精品】离散数学(集合、关系、函数、集合的基数)PPT课件

【精品】离散数学(集合、关系、函数、集合的基数)PPT课件

第1章 集合
1.3 集合的运算
1.3.2 集合的交运算
定理1.3
设A,B,C是三个集合,则下列分配律成立: A∩(B∪C)=(A∩B)∪(A∩C) A∪(B∩C)=(A∪B)∩(A∪C)
定理1.4 设A,B为两个集合,则下列关系式成立: A∪(A∩B)=A A∩(A∪B)=A
这个定理称为吸收律,读者可以用文氏图验证。
A=B,C=D
第1章 集合
1.2 集合之间的关系
定理1.1 集合A和集合B相等的充分必要条件是A⊆B且B⊇A。 定义1.3 如果集合A是集合B的子集,但A和B不相等,也就 是说在B中至少有一个元素不属于A,则称A是B的真子集,记作
A⊂B 或 B⊃A 例如:集合A={1,2},B={1,2,3},那么A是B的真子集
A∩B={1,3,5}
第1章 集合
1.3 集合的运算
1.3.2 集合的交运算 集合的交运算的文氏图表示,见图3.2,其中阴影部分就是A∩B。
U
A
B
第1章 集合
1.3 集合的运算
1.3.2 集合的交运算 由集合交运算的定义可知,交运算有以下性质: (1)幂等律:A∩A=A (2)同一律:A∩U=A (3)零律:A∩= (4)结合律:(A∩B)∩C=A∩(B∩C) (5)交换律:A∩的运算
1.3.2 集合的交运算 定义1.7 任意两个集合A、B的交记作A∩B,它也是一个集合, 由所有既属于A又属于B的元素构成,即
A∩B ={x | x属于A且x属于B} 例如,A={a,b,c},B={b,c,d,e},则
A∩B={b,c} 又如,A={1,2,3,4,5},B={1,3,5,7,9},则
定义1.4 若集合U包含我们所讨论的每一个集合,则称U是所讨论 问题的完全集,简称全集。

离散数学高等里离散数学课件-CHAP

离散数学高等里离散数学课件-CHAP
图论
图的基本概念

连接两个节点的线段称为边。
简单图与多重图
只含一条边的图称为简单图, 含有相同端点的多条边称为多 重边。
节点
图中的顶点称为节点。
定向图与无向图
如果边有方向,则称为定向图; 如果边无方向,则称为无向图。
有限图与无限图
节点和边都有限的图称为有限 图,节点或边至少有一个为无 限的图称为无限图。
发展
随着计算机科学的快速发展,离散数学也得到了迅速的发展 。许多新的分支如组合数学、离散概率论等不断涌现,并广 泛应用于计算机科学、工程学、物理学等领域。
离散数学的应用领域
计算机科学
离散数学在计算机科学中有着广泛的 应用,如算法设计、数据结构、计算 机图形学、数据库系统等。
工程学
离散数学在工程学中也有着广泛的应 用,如电子工程、通信工程、机械工 程等。
要点二
详细描述
集合可以用列举法、描述法、图示法等多种方法来表示。 列举法是将集合中的所有元素一一列举出来,适用于元素 数量较少的集合。描述法是用数学符号和逻辑表达式来描 述集合中的元素,适用于元素数量较多且具有共同特征的 集合。图示法则是用图形来表示集合,直观易懂,适用于 具有明显包含关系的集合。
03
如果图中任意两个节点之间都存在一 条路径,则称该图为连通图。
路径与回路
欧拉回路与哈密顿回路
如果一条回路恰好经过图中的每条边 一次,则称为欧拉回路;如果一条回 路恰好经过图中的每个节点一次,则 称为哈密顿回路。
连接两个节点的序列称为路径,如果 路径的起点和终点是同一点,则称为 回路。
04
离散概率论
离散概率的基本概念
图的表示方法
邻接矩阵
用矩阵表示图中节点之 间的关系,如果节点i与 节点j之间存在一条边, 则矩阵中第i行第j列的 元素为1,否则为0。

离散数学的ppt课件

离散数学的ppt课件

科学中的许多问题。
03
例如,利用图论中的最短路径算法和最小生成树算法
等,可以优化网络通信和数据存储等问题。
运筹学中的应用
01
运筹学是一门应用数学学科, 主要研究如何在有限资源下做 出最优决策,离散数学在运筹 学中有着广泛的应用。
02
利用离散数学中的线性规划、 整数规划和非线性规划等理论 ,可以解决运筹学中的许多问 题。
并集是将两个集合中的所有元素合 并在一起,形成一个新的集合。
详细描述
例如,{1, 2, 3}和{2, 3, 4}的并集是 {1, 2, 3, 4}。
总结词
补集是取一个集合中除了某个子集 以外的所有元素组成的集合。
详细描述
例如,对于集合{1, 2, 3},{1, 2}的 补集是{3}。
集合的基数
总结词
)的数学分支。
离散数学的学科特点
03
离散数学主要研究对象的结构、性质和关系,强调推
理和证明的方法。
离散数学的应用领域
计算机科学
01
离散数学是计重要的工具和方法。
通信工程
02
离散数学在通信工程中广泛应用于编码理论、密码学、信道容
量估计等领域。
集合的基数是指集合中元素的数量。
详细描述
例如,集合{1, 2, 3}的基数是3,即它包含三个元素。
03 图论
图的基本概念
顶点
图中的点称为顶点或节点。

连接两个顶点的线段称为边。
无向图
边没有方向,即连接两个顶点的线段可以是双向 的。
有向图
边有方向,即连接两个顶点的线段只能是从一个顶 点指向另一个顶点。
研究模态算子(如necessity、possibility)的语义和语法。

《离散数学讲义》课件

《离散数学讲义》课件
离散概率分布的定义
离散概率分布是描述随机事件在有限或可数无限的可 能结果集合中发生的概率的数学工具。
离散概率分布的种类
常见的离散概率分布包括二项分布、泊松分布、几何 分布等。
离散概率分布的应用
离散概率分布在统计学、计算机科学、物理学等领域 都有广泛的应用。
参数估计和假设检验
参数估计
参数估计是根据样本数据推断总体参数的过 程,包括点估计和区间估计两种方法。
假设检验
假设检验是用来判断一个假设是否成立的统计方法 ,包括参数检验和非参数检验两种类型。
参数估计和假设检验的应 用
在统计学中,参数估计和假设检验是常用的 数据分析方法,用于推断总体特征和比较不 同总体的差异。
方差分析和回归分析
方差分析
方差分析是一种用来比较不同组数据的平均值是否存在显著差异 的统计方法。
《离散数学讲义》ppt课件
目 录
• 离散数学简介 • 集合论 • 图论 • 离散概率论 • 逻辑学 • 离散统计学 • 应用案例分析
01
离散数学简介
离散数学的起源和定义
起源
离散数学起源于17世纪欧洲的数学研 究,最初是为了解决当时的一些实际 问题,如组合计数和图论问题。
定义
离散数学是研究离散对象(如集合、 图、树、逻辑等)的数学分支,它不 涉及连续的变量或函数。
联结词:如与(&&)、或(||)、非(!)等,用 于组合简单命题。
03
04
命题公式:由简单命题通过联结词组合而 成的复合命题。
命题逻辑的推理规则
05
06
肯定前件、否定后件、析取三段论、合取 三段论等推理规则。
谓词逻辑
个体词
表示具体事物的符号。

精品课程《离散数学》PPT课件(全)(1)

精品课程《离散数学》PPT课件(全)(1)
13
1.1 命题符号化及联结词
命题与命题变项象程序语言中常量与变量的关系一样。
例:5是一个常量,是一个确定的数字,而x是一个变量, 赋给它一个什么值它就代表什么值,即x的值是不定的。
例3:判断下列句子是否为命题?
1.张校长的头发有一万根。
(是)
2.我所说的是假的。
(否)
14
1.1 命题符号化及联结词
式公式。 (2)称A是n+1(n≥0)层公式是指下列情况之一:
(a) A= B,B是n层公式; (b)A=B∧C,其中B,C分别为i层和j层公式,且n=max(i,j) ; (c) A=B ∨ C,其中B,C的层次及n同(b); (d) A=B ∨ C,其中B,C的层次及n同(b); (e) A=B C,其中B,C的层次及n同(b); (f) A=B C,其中B,C的层次及n同(b);
4
第一章 命题逻辑
❖ 数理逻辑是研究推理(即研究人类思维的形式 结构和规律)的科学,起源于17世纪,它采用 数学符号化的方法,因此也称为符号逻辑。
❖ 从广义上讲,数理逻辑包括四论、两演算—— 即集合论、模型论、递归论、证明论和命题演 算、谓词演算,但现在提到数理逻辑,一般是 指命题演算和谓词演算。本书也只研究这两个 演算。
6
第一章 命题逻辑
❖ 数理逻辑与计算机学、控制论、人工智能的相 互渗透推动了其自身的发展,模糊逻辑、概率 逻辑、归纳逻辑、时态逻辑等都是目前比较热 门的研究领域。
❖ 本篇我们只从语义出发,对数理逻辑中的命题 演算与谓词演算等作一简单的、直接的、非形 式化的介绍,将不涉及任何公理系统。
7
1.1 命题符号化及联结词
运算规则:
p
q
p q

离散数学课件ppt

离散数学课件ppt

随机性与概率
随机性表示试验结果的不 确定性,概率则表示随机 事件发生的可能性大小。
统计数据的收集和整理
数据来源
数据质量
数据可以来源于调查、实验、观测、 查阅文献等多种途径。
数据质量包括数据的准确性、可靠性 、完整性等方面,是数据分析的前提 和基础。
数据整理
数据整理包括数据的分类、排序、分 组、编码等步骤,以便更好地进行数 据分析。
必然事件
概率值为1的事件。
03
04
不可能事件
概率值为0的事件。
互斥事件
两个或多个事件不能同时发生 。
概率的加法原理和乘法原理
加法原理
对于任意两个互斥事件A和B,有 P(A∪B)=P(A)+P(B)。
乘法原理
对于任意两个事件A和B,有 P(A∩B)=P(A)×P(B|A)。
条件概率和独立性
要点一
条件概率
离散数学课件
目录 CONTENTS
• 离散数学简介 • 集合论基础 • 图论基础 • 离散概率论基础 • 离散统计学基础 • 离散数学中的问题求解方法
01
离散数学简介
离散数学的起源
19世纪初
集合论的提出为离散数学的起源 奠定了基础。
20世纪中叶
随着计算机科学的兴起,离散数 学逐渐受到重视和应用。
子集、超集和补集
总结词
子集、超集和补集是集合论中的重要概念,它们描述了集合之间的关系。
详细描述
子集是指一个集合中的所有元素都属于另一个集合,超集是指一个集合包含另一 个集合的所有元素,补集是指属于某个集合但不属于其子集的元素组成的集合。
集合的运算性质
总结词
集合的运算性质包括并集、交集、差集等,这些运算描述了 集合之间的组合关系。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1相关定义
• 定义9:函数复合,不同函数对原像的多重 映射。
2.2练习
•determin whether each of these functions is a bijection from R to R a)f(x)=-3x+4 b)f(x)=-3x^2+7 c)f(x)=(x+1)/(x+2) d)f(x)=x^5+1
• 定义6:对于共域(codomain)中的每一个元 素,都能在定义域(domain)找到它的原像, 这样的函数 被称为满射
• 定义7:如果函数既是单射也是满射,那么 他被称为双射(或一一映射)
• 定义8:一一映射f的反函数就是以共域中的 元素为原像,映射到f的定义域中的唯一元 素的函数,记做: f 1 (用y表示x,然后 变量替换即可)
• 定义6:有序n元组就是由n个有序元素组成 的结构(排列与组合)
• 定义7:集合A与集合B的笛卡尔积记为 AxB(结果是一个集合,集合元素是一个二 元组,不满足交换律)
1.2集合的相关操作
• 并集 • 交集 • 差集:A-B,在A中并且不在B中的元素 • 德摩根律: ------------- --- ---
集合与映射
1.1相关定义
• 定义1:一组无序,不重复的元素的集合 • 定义2:如果集合包含元素完全相同,那么
集合相等;反之也成立 • 定义3:如果集合A的任意一个元素都是集
合B的元素,那么A是B的子集 • 定义4:集合有n个不同的元素(n>=0),
集合被称为有限集且集合的基数为n
1.1相关定义
• 定义5:集合S的幂集(power set),就是集 合所有子集的集合,用P(S)表示
2.2练习
•Let f be a function from the set A to the set B. Let S and T be subsets of A. Show that a) f (S ∪ T ) = f (S) ∪ f (T ). b) f (S ∩ T ) ⊆ f (S) ∩ f (T).
2.2练习
• Find f ◦ g and g ◦ f , where f (x) = x^2 + 1 and g(x) = x + 2, are functions from R to R.
• Find f + g and fg for the functions f and g given in the question above
3.1关系
•A与B的二元关系就是AxB中的元素组成的集 合(本质上是一个二元组的集合) •集合A上的关系就是从集合A到集合A的二元 关系 •关系的四个性质:自反性,对称性,反对称 性,传递性 •区分对称性和反对称性 对称性: ab((a,b) R (b, a) R) 反对称性:ab(((a,b) R) ((b, a) R) a b)
A B A B
• 吸收律:并(大)交(小) • 交换律or结合律:同号结合律,异号分配律
多个集合的交集表示:
n
A1
A2
...
An
1
An
n
A1
A2
...
An
1
An
2.1相关定义
•定义1:如果A,B是非空集合,f通过一定的规 则将A中的元素映射到B中的一个元素上,f就 称为从集合A到集合B上的函数(映射,转换), 记为: f:A->B(注:A中的元素要全部参与) 定义2(接1):我们称A为函数f的定义域, B为函数f的共域(并不是值域);原像与像 定义3:(f1 + f2)(x) = f1(x) + f2(x)
(f1*f2)(x) = f1(x) * f2(x) (向量运算)
2.1相关定义
•定义4:当且仅当f(a)=f(b)蕴藏a=b(a, b在函 数f的定义域中)时,函数f是单射 •定义5:函数的递增和严格递增,递减和严 格递减 命题逻辑的表示形式:
xy(x y f (x) f ( y))
2.1相关定义
3.2关系的表示
• 维护一个矩阵来表示集合与集合之间的二 元关系
• 假设|A|=n,那么集合A上的关系可以用一 个n*n的方阵来表示
• 用有向图来表示关系(因为元组中的元素 是有序的)
• 边由前一个顶点元素指向后一个顶点元素
3.3关系矩阵的一些结论
•对称位置上的元素都为1,关系具有对称性 •有且只有对角线上的元素为1,关系具有对 称性和反对称性 •对角线上的元素全为1,关系具有自反性 •不存在同时为1的并且处于对称位置的元素, 关系具有反自反性
相关文档
最新文档