2016年山东省春季高考数学试题
济南市2016-2017学年度上学期春季高考联考数学试题
济南市中职学校文化课联合考试数学试题注意事项:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分120分,考试时间120分钟。
考试结束后,将本试卷和答题卡一并交回。
2、本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精确的到0.01。
第Ⅰ卷(选择题,共60分)一.选择题(本大题20个小题,每小题3分,共60分。
在每小题列出的四个选项中,只有一项符合题目要求,请将该选项的字母代号填涂在答题卡上) 1.“b c a 2=+”是“a,b,c ”成等差数列的( )A.充分不必要条件B.必要不充分条件C. 充要条件D. 既不充分也不必要条件 2.设命题p :∅=0,q :3≥2,则下列结论正确的是( ). A .p q ∨为真B .p q ∧为真C .p 为真D . q ⌝为真3.设全集{}12345,,,,U =,集合{}1234,,,A =,集合{}1345,,,B =,则()U C A B ⋂的所有子集个数是( )A.1B.2C.4D.8 4.两个数的等比中项为8,等差中项为10,则这两个数为( ) A.8、8 B.4、16 C.2、18 D.6、14 5.若m >n >0,0<a <1,则下列各式成立的是( )A.a m ≥a nB.a m ≤a nC.log a m >log a nD.log a m <log a n 6.不等式012>--x 的解集是 ( ) A .{x x >-1} B .{xx <3}C .{x x >3或x <-1} D .{x-1<x <3}7.若函数()f x 满足(1)23f x x +=+,则(0)f =( )A .3B .1C .5D .32-8.函数x y 21-=的定义域是( )A .]0,(-∞B .),0[+∞C .),1[+∞D .]1,(-∞9.已知函数)1,0)((log ≠>+=a a b x y a 的图象过两点(0,0)和(1,1),则 A .a =2,b =1 B .a =1,b =2 C .a =2,b =2 D .a =1,b =1 10.下列函数中,在定义域上为奇函数的是( )A .x y lg =B .x x y sin =C .x xy +-=11lg D .x x y cos +=11.函数32++=bx ax y 在]1,(--∞上是增函数,在),1[+∞-上是减函数,则( ) A .00<>a b 且 B .02<=a b C .02>=a b D .02<-=a b12.已知奇函数)(x f 在),0(+∞上是增函数,且0)2(=f ,则0)(>x f 的解集为( ) A . )2,0( B .)0,2(- C .)0,2(-Y ),2(+∞D .)2,2(-13.如图:若0<a <1,函数y =a x 与y =x +a 的图像可能是( ).A .B .C .D .14.已知c bx x x f ++=2)(的对称轴是1=x ,则)3()0(f f 与的大小( ) A .)3()0(f f = B .)3()0(f f > C .)3()0(f f < D .无法比较 15.若x ,a ,2x ,b 成等比数列,则ba的值为( )A.22B.2C.2D.2116.已知数列的通项公式为a n =2n-1-1,则2047是这个数列的第( )项 A.10 B.11 C.12 D.1317.已知角α的终边经过点P (2,m), 若sin α=-54,则m 的值为( ).A.-38B.38C.±38D.-8318.已知tan (π+α)= 2,则cos 2α等于( ). A .54B .53C .52 D . 51 19.使sinx=a 2-1有意义的a 的取值范围是( )A .[-2,2]B .[0,2]C .[0,2]D .[-2,2] 20.已知函数f(x)=3sin ωx +cos ωx(ω>0)的图像与直线y=2的两个相邻的交点的距离等于π,则f(x)的单调增区间( )A .[k π-12π,k π+125π](k ∈Z)B .[k π+125π,k π+1211π](k ∈Z)C .[k π-3π,k π+6π](k ∈Z)D .[k π+6π,k π+32π](k ∈Z)第Ⅱ卷(非选择题,共60分)二.填空题(本大题共5个小题,每小题4分,共20分)21.若不等式ax 2+ax +a +3>0对一切实数x 恒成立,则实数a 的取值范围是_____________22.若函数f(x)是定义在R 上的偶函数,且图像经过点(-1,2),则f(-1)+f(1)= 23.已知f(x)=x 2+mx+1,若对任意实数x ∈R ,都有f(1+x)=f(1-x),m= ______.24.设等比数列{}n a 的q=2,且248a a =,则17a a =_____________ 25.函数f(x)=cos2x +3sinx 的值域为_________三.解答题(本大题共5个小题,共40分)26.一种车床变速箱8个齿轮的齿数成等差数列,其中首末两个齿轮的齿数分别是24和45,求其余各齿轮的齿数。
最新山东省春季高考数学试题
机密★启用前山东省2016年普通高校招生(春季)考试数学试题注意事项:1.本试卷分卷一(选择题)和卷二(非选择题)两部分。
满分120分,考试时间120分钟,考试结束后,请将本试卷和答题卡一并交回。
卷一(选择题,共60分)一、选择题(本大题20个小题,每小题3分,共60分。
在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母代号选出,并填涂在答题卡上)1.已知集合A={1,3},B={2,3},则A⋃B等于()A.ΦB. {1,2,3}C. {1,2}D. {3}2 . 已知集合A,B.则“A⊆B”是“A=B的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3. 不等式|x+2|>3的解集是()A.(-∞,-5)⋃(1,+∞)B. (-5,1)C. (-∞,-1) ⋃(5,+ ∞)D. (-1,5)4. 若奇函数y=在(0,+∞)上的图像如图所示,则该函数在(-∞,0)上的图像可能是()5.若函数a>0,则下列等式成立的是( )A. (-2)2-=4B. 2a3-=321aC. (-2)0=-1D. (a41-)4=a16. 已知数列{}是等比数列。
其中=2,=16,则该数列的公比q等于( )A.314B. 2C. 4D. 87. 某职业学校的一个数学兴趣小组有4名男生和3名女生,若从这7名学生中任选3名参加数学竞赛,要求及有男生又有女生,则不同选法的种数是( )A.60B. 31C. 30D.108. 下列说法正确的是()A.函数y=(x+a)2+b的图像经过点(a,b)B.函数(a>0且a≠1)的图像经过点(1,0)C.函数y=logax(a>0且a≠1)的图像经过点(0,1)D.函数y=(a∈R)的图像经过点(1,1)9. 如图所示,在平行四边形OABC 中,点A (1,-2),C (3,1),则向量坐标是( )A. (4,-1)B. (4,1)C. (1,-4)D. (1,4) 10.过点P (1,2)与圆+=5相切的直线方程是( )A. x-2y+3=0B. x-2y+5=0C. x+2y-5=0D. x+2y-5=0 11.表1中数据是我国各种能源消耗量占当年能源消耗总量的百分率,由表1可知,从2011年到2014年,消费量占比增长率最大的能源是( )A. 天然气B. 核能C. 水利发电D. 再生能源 表1 我国各种能源消费的百分率 原油(% 天然气(%) 原煤(%) 核能(%) 水利发电(%) 再生能源(%) 2011 17.7 4.5 70.4 0.7 6.0 0.7 2014 17.5 5.6 65.0 1.0 8.1 0.8 12. 若角α的终边过点P(-6,8),则角α的终边与圆+=1的交点坐标是( )A.(-53,54)B.(54,-53)C.( 53,-54)D. (-54,53)13.关于x ,y 的方程y=mx+n 和 + =1在同一坐标系中的图像大致是( )14.已知nx )2(-的二项展开式有7项,则展开式中二项式系数最大的项的系数是( )A. -280B. -160C.160D. 56015. 若有7名同学排成一排照相,恰好甲,乙两名同学相邻,并且丙,丁两名同学不相邻的概率是( )A.214 B. 211 C. 141 D. 7216. 函数y=Sin (2x+)在一个周期内的图象可能是( )17.在∆ABC 中,若||=||=|CA |=2, 则等于AB •BC 等于( )、A. -23B. 23C. -2D. 218.如图所示,若x ,y 满足约束条件则目标函数Z=x+y 的最大值是( ) A.7 B.4 C.3 D.119.已知α表示平面,l,m,n,表示直线,下列结论正确的是( ) A.若l ⊥ n ,m ⊥n ,则l ∥m B.若l ⊥ n ,m ⊥n ,则l ⊥m C.若l ∥α,m ∥α,则 l ∥m D. 若l ⊥α,m ∥α,则l ⊥m 20.已知椭圆+=1的焦点分别是,,点M 在椭圆上,如果•=0,那么点M 到x 轴的距离是( ) A.2 B.3 C.223 D.1二、填空题(本大题共5个小题,每小题4分,共20分)21.已知 tan α=3,则ααααcos sin cos sin -+的值是___________22.若表面积为6的正方体内接于球,则该球的表面积等于__________ 23.如果抛物线=8x 上的点M 到y 轴的距离是3,那么点M 到该抛物线焦点F 的距离是_________.24.某职业学校有三个年级,共有1000名学生,其中一年级有350名,若从全校学生中任意选出一名学生,则恰好选到二年级学生的概率是0.32,现计划利用分层抽样的方法,从全体学生中选出100名参加座谈会,那么需要从三年级学生中选出________名25.设命题p :函数f(x)=x 2+(a-1)x+5在(-∞,1]上是减函数; 命题q :x ∈R,lg(x 2+2ax+3)0若p q ⌝∨是真命题,p q ⌝∧是假命题,则实数a 的取值范围是_________三、简答题(本大题共5个小题,共40分)26.(本小题6分)已知某城市2015年底的人口总数为200万,假设此后该城市人口的年增长率为1%(不考虑其他因素)(1)若经过x 年该城市人口总数为y 万,试写出y 关于x 的函数关系式;(2)如果该城市人口总数达到210万,那么至少需要经过多少年(精确到1年)27.(本小题8分)已知数列{}的前n 项和=2-3,求:(1)第二项(2)通项公式28.(本小题8分)如图所示,已知四边形ABCD是圆柱的轴截面,M是下底面圆周上不与点A,B重合的点(1)求证:平面DMB⊥平面DAM(2)若∆AMB是等腰三角形,求该圆柱与三棱锥D-AMB体积的比值29.(本小题8分)如图所示,要测量河两岸P,Q两点之间的距离,在与点P同侧的岸边选取了A,B两点(A,B,P,Q四点在同一平面内),并测得AP=20m,BP=10m,∠APB=60, ∠PAQ=105, ∠PBQ=135试求PQ两点之间的距离30. (本小题10分)如图所示,已知双曲线的中心在坐标原点O ,焦点分别是(-2,0),(2,0),且双曲线上任意一点到两个焦点的距离之差的绝对值等于2 (1)求该双曲线的标准方程,离心率及渐近线方程(2)若直线L 经过双曲线的右焦点,并与双曲线交于M,N两点,向量=(2,-1)是直线L的法向量,点P是双曲线左支上的一个动点,求∆PMN面积的最小值。
2016春季高考数学真题
xx2016年普通高校招生(春季)考试数学试题注意事项:1.本试卷分卷一(选择题)和卷二(非选择题)两部分。
满分120分,考试时间120分钟。
考试结束后,请将本试卷和答题卡一并交回。
2.本次考试允许使用函数型计算器,凡使用计算器的题目,除题目有具体要求外,最后结果精确到0.01。
卷一(选择题,共60分)一、选择题(本大题20个小题,每小题3分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母代号选出,并填涂在答题卡上)1.已知集合,,则等于()A.B.C.D.【答案】B【解析】因为,,所以.2.已知集合A,B,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】 B 【解析】又,“”是“”的必要不充分条件.3.不等式的解集是()A.B.C.D.【答案】A【解析】,即不等式的解集为.4.若奇函数在上的图像如图所示,则该函数在上的图像可能是()第4题图GD21GD22GD23GD24GD25【答案】D【解析】因为已知是奇函数,根据奇函数的性质是关于原点对称,根据选项只能选D.5.若实数a>0,则下列等式成立的是()A.B.C.D.【答案】D【解析】Axx,Bxx,Cxx,故D选项正确.6.已知数列是等比数列,其中,,则该数列的公比q等于()A.B.4D.8【答案】 B【解析】,,,则q=2.7.某职业学校的一个数学兴趣小组有4名男生和3名女生,若从这7名学生中任选3名参加数学竞赛,要求既有男生又有女生,则不同选法的种数是()A.60B.30 D.10【答案】C【解析】由题知,有两种选法①两名男生一名女生种,②两名女生一名男生种,所以一共有种.8.下列说法正确的是( )A.函数的图像经过点(a,b)B.函数(a>0且a≠1)的图像经过点(1,0)C.函数(a>0且a≠1)的图像经过点(0,1)D.函数()的图像经过点(1,1)【答案】D【解析】Axx,函数的图像经过点(-a,b);Bxx,函数(a>0且a≠1)的图像经过点(0,1);Cxx,函数(a>0且a≠1)的图像经过点(1,0);Dxx,把点代入,可知图象必经过点.9.如图所示,在平行四边形OABCxx,点A(1,-2),C(3,1),则向量的坐标是()第9题图GD26A.(4,-1)B.(4,1)C.(1,-4)D.(1,4)【答案】A【解析】A(1,-2),C(3,1),,又,.10.过点P(1,2)与圆相切的直线方程是()A. B.C. D.【答案】B【解析】将点代入圆方程,可知点在圆上,又因为将点代入C,D等式不成立,可排除C,D,又因为直线与圆相切,所以圆心到直线的距离等于半径,又圆心为(0,0),半径为,即圆心到直线的距离,圆心到直线的距离,则只有B符合.11.表中数据是我国各种能源消费量占当年能源消费总量的百分率,由表可知,从2011年到2014年,消费量占比增长率最大的能源是()A.天然气B.核能C.水利发电D.再生能源表我国各种能源消费的百分率【答案】D【解析】根据表1可知,从2011年到2014年,天然气:,核能:,水力发电:,再生能源:,则消费量占比增长率最大的能源是再生能源.12.若角的终边过点,则角的终边与圆的交点坐标是()A.B.C.D.【答案】A【解析】因为,所以xx为,设交点为,又因为圆的半径为,因此有,,又因为终边在第二象限,所以选A.13.关于x,y的方程和在同一坐标系中的图象大致是()GD27GD28GD29GD30【答案】D【解析】当的图象为椭圆时,,则的图象单调递增,且与y轴的截距大于0,A、B均不符;当的图象为双曲线时,当时,双曲线的焦点在y轴上,的图象单调递减,且与y轴的截距大于0;当时,双曲线的焦点在x轴上,的图象单调递增,且与y轴的截距小于0,综上所述,选项D正确.14.已知的二项xx有7项,则xx中二项式系数最大的项的系数是()A.-280B.-.160D.560【答案】B【解析】的二项xx有7项,,,又xx中二项式系数最大的项为第4项,则,则其系数为.15.若有7名同学排成一排照相,恰好甲、乙两名同学相邻,并且丙、xx两名同学不相邻的概率是()A.B.C.D.【答案】A【解析】先利用捆绑法将甲乙进行捆绑并全排列,有种排列方法,将甲乙作为一个整体,除去丙丁将其他人进行全排列,有种排列方法,再利用插空法将丙丁进行插空,有种排列方法;总共有种排列方法,所以概率为.16.函数在一个周期内的图像可能是()GD31GD34GD32GD33【答案】A【解析】B选项中当,C选项中当时,,D选项中,当.17.在xx,若,则等于()A.B.C.-2D.2【答案】C【解析】因为,所以是等边三角形,所以各个角均为,.18.如图所示,若满足约束条件则目标函数的最大值是()第18题图 GD35A.7B.3D.1【答案】B【解析】由图可知,目标函数在点(2,2)处取得最大值,即.19.已知表示平面,表示直线,下列结论正确的是()A.若则B.若C.若D.若16.D【解析】A,B,C选项,直线l与m相交、平行、异面都有可能;D选项,∵,∴存在一个平面,使得且,∵∴,.20.已知椭圆的焦点分别是,点在椭圆上,如果,那么点到轴的距离是()A.B.C.D.【答案】B【解析】椭圆,即,设点的坐标为,又,点又在以原点为圆心,半径为2的圆上,圆方程为,即①,又②,联立①②得,点到轴的距离是.卷二(非选择题,共60分)二、填空题(本大题5个小题,每小题4分,共20分.请将答案填在答题卡相应题号的横线上)21.已知,则的值是.【答案】【解析】分式上下同除以得,把代入得原式=2.22.若表面积为6的正方体内接于球,则该球的表面积等于.【答案】【解析】设正方体的边长为,,则边长为,所以正方体上下两个面的斜线长为,则圆的直径为,.23.如果抛物线上的点M到y轴的距离是3,那么点M到该抛物线焦点F的距离是.【答案】【解析】因为抛物线上的点M到y轴的距离是3,所以点的横坐标为3,再将代入得到,所以点,又因为,准线,则点M到该抛物线焦点F的距离是5.24.某职业学校有三个年级,共有1000名学生,其中一年级有350名,若从全校学生中任意选出一名学生,则恰好选到二年级学生的概率是0.32.现计划利用分层抽样的方法,从全体学生中选出100名参加座谈会,那么需要从三年级学生中选出名.【答案】33【解析】恰好选到二年级学生的概率是0.32,恰好选到一年级学生的概率是0.35,则选到三年级学生的概率是1-0.35-0.32=0.33,那么需要从三年级抽取100×0.33=33人.25.设命题p;函数在上是减函数;命题q:.若是真命题,是假命题,则实数a的取值范围是.【答案】或【解析】是真命题,是假命题,pq同为真或pq同为假,当pq同为真时,函数在上是减函数,函数的对称轴为,即,,即xx成立,设,即,则;同理,当pq同为假时,或,综上所述得,实数a的取值范围为或.三、解答题(本大题5小题,共40分)26.(本小题6分)已知某xx2015年底的人口总数为200万,假设此后该xx人口的年增长率为1%(不考虑其他因素).(1)若经过x年该xx人口总数为y万,试写出y关于x的函数关系式;(2)如果该xx人口总数达到210万,那么至少需要经过多少年(精确到1年)?【解】(1)由题意可得;(2)如果该xx人口总数达到210万,则,那么至少需要经过5年.27.(本小题8分)已知数列的前n项和.求:(1)第二项;(2)通项公式.【解】(1)因为,所以,,,所以.( 2 ),.28.(本小题8分)如图所示,已知四边形ABCD是圆柱的轴截面,是下底面圆周上不与点重合的点.(1)求证:平面DMB平面DAM;(2)若是等腰三角形,求该圆柱与三棱锥D-AMB体积的比值.GD36第28题图【解】(1)∵是下底面圆周上不与点重合的点,∴在一个平面上,又∵四边形是圆柱的轴截面,∴边过圆心,平面,,根据定理以直径为斜边的三角形为直角三角形,所以,∵平面,且,∴平面,又∵平面,∴平面平面.(2)设底面圆的半径为,圆柱的高为,又∵是等腰直角三角形,所以两个直角边长为,所以,所以,所以.29.(本小题8分)如图所示,要测量xx两岸P,Q两点之间的距离,在与点P同侧的岸边选取了A,B两点(A,B,P,Q四点在同一平面内),并测得AP=,BP=,,,.试求P,Q两点之间的距离.SH17第29题图【解】连接AB,又,AP=,BP=,则,则,又,,,在xx,由正弦定理得,,即,在中,由余弦定理得,,,P,Q两点之间的距离为米.30.(本小题10分)如图所示,已知双曲线的中心在坐标原点O,焦点分别是,且双曲线上的任意一点到两个焦点的距离之差的绝对值等于2.(1)求该双曲线的标准方程、离心率及渐近线方程;(2)若直线l经过双曲线的右焦点,并与双曲线交于M,N两点,向量是直线l的法向量,点P是双曲线左支上的一个动点.求面积的最小值.GD39第30题图【解】(1)根据题意设双曲线的标准方程为,双曲线上的任意一点到两个焦点的距离之差的绝对值等于2,,即,则该双曲线的标准方程为,离心率,渐近线方程为;(2)向量是直线l的法向量,直线的斜率,又直线l经过双曲线的右焦点,即直线l的方程为,设,又双曲线的方程为,即,,则,要使面积的最小值,即点P到直线l的距离最小,则点P坐标为,,则.。
最新山东省春季高考数学试题
机密★启用前山东省2016年普通高校招生(春季)考试数学试题注意事项:1.本试卷分卷一(选择题)和卷二(非选择题)两部分。
满分120分,考试时间120分钟,考试结束后,请将本试卷和答题卡一并交回。
卷一(选择题,共60分)一、选择题(本大题20个小题,每小题3分,共60分。
在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母代号选出,并填涂在答题卡上)1.已知集合A={1,3},B={2,3},则A⋃B等于()A.ΦB. {1,2,3}C. {1,2}D. {3}2 . 已知集合A,B.则“A⊆B”是“A=B的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3. 不等式|x+2|>3的解集是()A.(-∞,-5)⋃(1,+∞)B. (-5,1)C. (-∞,-1) ⋃(5,+ ∞)D. (-1,5)4. 若奇函数y=在(0,+∞)上的图像如图所示,则该函数在(-∞,0)上的图像可能是()5.若函数a>0,则下列等式成立的是( )A. (-2)2-=4B. 2a3-=321aC. (-2)0=-1D. (a41-)4=a16. 已知数列{}是等比数列。
其中=2,=16,则该数列的公比q等于( )A.314B. 2C. 4D. 87. 某职业学校的一个数学兴趣小组有4名男生和3名女生,若从这7名学生中任选3名参加数学竞赛,要求及有男生又有女生,则不同选法的种数是( )A.60B. 31C. 30D.108. 下列说法正确的是()A.函数y=(x+a)2+b的图像经过点(a,b)B.函数(a>0且a≠1)的图像经过点(1,0)C.函数y=logax(a>0且a≠1)的图像经过点(0,1)D.函数y=(a∈R)的图像经过点(1,1)9. 如图所示,在平行四边形OABC 中,点A (1,-2),C (3,1),则向量坐标是( )A. (4,-1)B. (4,1)C. (1,-4)D. (1,4) 10.过点P (1,2)与圆+=5相切的直线方程是( )A. x-2y+3=0B. x-2y+5=0C. x+2y-5=0D. x+2y-5=0 11.表1中数据是我国各种能源消耗量占当年能源消耗总量的百分率,由表1可知,从2011年到2014年,消费量占比增长率最大的能源是( )A. 天然气B. 核能C. 水利发电D. 再生能源12. 若角α的终边过点P(-6,8),则角α的终边与圆+=1的交点坐标是( )A.(-53,54)B.(54,-53) C.( 53,-54) D. (-54,53)13.关于x ,y 的方程y=mx+n和 + =1在同一坐标系中的图像大致是( )14.已知nx )2(-的二项展开式有7项,则展开式中二项式系数最大的项的系数是( )A. -280B. -160C.160D. 56015. 若有7名同学排成一排照相,恰好甲,乙两名同学相邻,并且丙,丁两名同学不相邻的概率是( )A.214 B. 211 C. 141 D. 7216. 函数y=Sin (2x+)在一个周期内的图象可能是( )17.在∆ABC 中,若||=||=||=2, 则等于∙等于( )、A. -23B. 23C. -2D. 218.如图所示,若x ,y 满足约束条件则目标函数Z=x+y 的最大值是( )A.7B.4C.3D.119.已知α表示平面,l,m,n,表示直线,下列结论正确的是( ) A.若l ⊥ n ,m ⊥n ,则l ∥m B.若l ⊥ n ,m ⊥n ,则l ⊥m C.若l ∥α,m ∥α,则 l ∥m D. 若l ⊥α,m ∥α,则l ⊥m 20.已知椭圆+=1的焦点分别是,,点M 在椭圆上,如果∙=0,那么点M 到x 轴的距离是( ) A.2 B.3 C.223 D.1二、填空题(本大题共5个小题,每小题4分,共20分)21.已知 tan α=3,则ααααcos sin cos sin -+的值是___________22.若表面积为6的正方体内接于球,则该球的表面积等于__________ 23.如果抛物线=8x 上的点M 到y 轴的距离是3,那么点M 到该抛物线焦点F 的距离是_________.24.某职业学校有三个年级,共有1000名学生,其中一年级有350名,若从全校学生中任意选出一名学生,则恰好选到二年级学生的概率是0.32,现计划利用分层抽样的方法,从全体学生中选出100名参加座谈会,那么需要从三年级学生中选出________名25.设命题p :函数f(x)=x 2+(a-1)x+5在(-∞,1]上是减函数;命题q :x ∈R,lg(x 2+2ax+3)0若p q ⌝∨是真命题,p q ⌝∧是假命题,则实数a 的取值范围是_________ 三、简答题(本大题共5个小题,共40分)26.(本小题6分)已知某城市2015年底的人口总数为200万,假设此后该城市人口的年增长率为1%(不考虑其他因素)(1)若经过x 年该城市人口总数为y 万,试写出y 关于x 的函数关系式;(2)如果该城市人口总数达到210万,那么至少需要经过多少年(精确到1年)27.(本小题8分)已知数列{}的前n 项和=2-3,求:(1)第二项 (2)通项公式28.(本小题8分)如图所示,已知四边形ABCD 是圆柱的轴截面,M 是下底面圆周上不与点A,B 重合的点(1)求证:平面DMB ⊥平面DAM(2)若∆AMB 是等腰三角形,求该圆柱与三棱锥D-AMB 体积的比值29.(本小题8分)如图所示,要测量河两岸P,Q两点之间的距离,在与点P同侧的岸边选取了A,B两点(A,B,P,Q四点在同一平面内),并测得AP=20m,BP=10m,∠APB=60, ∠PAQ=105, ∠PBQ=135试求PQ两点之间的距离30. (本小题10分)如图所示,已知双曲线的中心在坐标原点O,焦点分别是(-2,0),(2,0),且双曲线上任意一点到两个焦点的距离之差的绝对值等于2 (1)求该双曲线的标准方程,离心率及渐近线方程(2)若直线L 经过双曲线的右焦点,并与双曲线交于M,N两点,向量=(2,-1)是直线L的法向量,点P是双曲线左支上的一个动点,求 PMN面积的最小值。
山东省春季高考数学模拟试题三
2016年山东省春季高考数学模拟试题(三)一、选择题1.设全集U={x│4≤x≤10,x∈N},A={4,6,8,10},则CuA=()。
A {5}B {5,7}C {5,7,9}D {7,9}2.“a>0且b>0”是“a·b>0”的()条件。
A 充分不必要B 必要不充分C 充分且必要D 以上答案都不对3.如果f(x)=ax2+bx+c(a≠0)是偶函数,那么g(x)=ax3+bx2-cx是()。
A 偶函数B 奇函数C 非奇非偶函数D 既是奇函数又是偶函数4.设函数f(x)=lo g a x(a>0且a≠1),f(4)=2,则f(8)等于()。
A 2B 12C 3 D135. sin80°-3cos80°-2sin20°的值为()。
A 0B 1C -sin20°D 4sin20°6.已知向量a的坐标为(1,x),向量b的坐标为(-8,-1),且a b+与a b-互相垂直,则()。
A x=-8B x=8C x=±8D x不存在7.等比数列的前4项和是203,公比q=13-,则a1等于()。
A -9B 3C 13D 98.已知2123()()32y x-=,则y的最大值是()。
A -2B -1C 0D 19.直线l1:x+ay+6=0与l2:(a-2)x+3y+a=0平行,则a的值为()。
A -1或3B 1或3C -3D -110.抛物线y2=-4x上一点M到焦点的距离为3,则点M的横坐标为()。
A 2B 4C 3D -211.已知正方体ABCD-A1B1C1D1,则A1C1与B1C所成的角为()。
A 45°B 60°C 30°D 90°12.现有5套经济适用房分配给4户居民(一户居民只能拥有一套经济适用房),则所有的分法种数为( )。
A 5!B 20C 45D 54 13.在△ABC 中,若a=2,b=2,c=3+1,则△ABC 是( )。
2016山东春季高考数学试题与详细讲解答案解析
省2015年普通高校招生(春季)考试数学试题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分120分,考试时间120分钟.考试结束后,将本试卷和答题卡一并交回.2.本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精确到0.01.第Ⅰ卷(选择题,共60分)一、选择题(本大题20个小题,每小题3分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母选出,填涂在答题卡上)1.若集合A={1,2,3},B={1,3},则A∩B等于()(A){1,2,3} (B){1,3} (C){1,2} (D){2}2.|x-1|<5的解集是()(A)(-6,4) (B)(-4,6)(C) (-∞, -6)∪(4, +∞) (D)(-∞, -4 )∪(6,+∞)3.函数y=x+1 +1x的定义域为()(A){x| x≥-1且x≠0} (B){x|x≥-1}(C){x x>-1且x≠0} (D){x|x>-1}4.“圆心到直线的距离等于圆的半径”是“直线与圆相切”的(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件5.在等比数列{a n}中,a2=1,a4=3,则a6等于()(A)-5 (B)5 (C)-9 (D)96.如图所示,M 是线段OB 的中点,设向量→OA =→a ,→OB =→b ,则→AM 可以表示为( ) (A )→a + 12→b(B ) -→a + 12→b(C )→a - 12→b (D )-→a - 12→b7.终边在y 轴的正半轴上的角的集合是( ) (A ){x |x =π2+2k π,k ∈Z }(B ){x |x =π2+k π}(C ){x |x =-π2+2k π,k ∈Z }(D ){x |x =-π2+k π,k ∈Z }8.关于函数y =-x 2+2x ,下列叙述错误的是( ) (A )函数的最大值是1(B )函数图象的对称轴是直线x =1(C )函数的单调递减区间是[-1,+∞)(D )函数图象过点(2,0)9.某值日小组共有5名同学,若任意安排3名同学负责教室的地面卫生,其余2名同学负责教室外的走廊卫生,则不同的安排方法种数是( ) (A )10(B )20(C )60(D )10010.如图所示,直线l 的方程是( ) (A )3x -y -3=0 (B )3x -2y -3=0(C )3x -3y -1=0(D )x -3y -1=011.对于命题p ,q ,若p ∧q 为假命题”,且p ∨q 为真命题,则( ) (A )p ,q 都是真命题(B )p ,q 都是假命题 (C )p ,q 一个是真命题一个是假命题 (D )无法判断12.已知函数f (x )是奇函数,当x >0时,f (x )=x 2+2,则f (-1)的值是( ) (A )-3 (B )-1 (C )1 (D )313.已知点P (m ,-2)在函数y =log 13x 的图象上,点A 的坐标是(4,3),则︱→AP ︱的值是( ) (A )10(B )210(C )6 2(D )5 2BOMA14.关于x ,y 的方程x 2+m y 2=1,给出下列命题:①当m <0时,方程表示双曲线;②当m =0时,方程表示抛物线;③当0<m <1时,方程表示椭圆;④当m =1时,方程表示等轴双曲线;⑤当m >1时,方程表示椭圆。
2016年山东省春季高考数学模拟试题(二)
2016年山东省春季高考数学模拟试题(二)一、 选择题1、设全集R U =,集合{}{}2,3<=<=x x B x x A ,则=B C A U ( ) A.{}32<≤x x B.{}32≤<x x C.{}32≥<x x x 或 D.R2、下列函数中,为奇函数的是( )A. x x y sin +=B.x y 3log =C.x x y 232-=D.xy ⎪⎭⎫ ⎝⎛=31 3、设,25=a 则用a 表示4log 5为( )A.a 2B.2aC.a 21D.21a4、()x x x f cos 4sin 3+=,则( )A.有最大值7,周期πB.有最小值7,周期π2C.有最大值5,周期πD.有最大值5,周期π25、下列函数中,其图像可由函数x y 2sin =的图像平移向量⎪⎭⎫ ⎝⎛-0,43π得到的是( ) A.⎪⎭⎫ ⎝⎛+=π232sin x y B.⎪⎭⎫ ⎝⎛-=π232sin x y C.⎪⎭⎫ ⎝⎛+=π432sin x y D.⎪⎭⎫ ⎝⎛-=π432sin x y 6、不等式153<-x 的解集是( ) A.)(2,∞- B.⎪⎭⎫ ⎝⎛+∞,34 C.()⎪⎭⎫ ⎝⎛+∞∞-,342, D.⎪⎭⎫ ⎝⎛2,347、数列{}n a 中的首项为2011、公差为-2的等差数列,则它的前2012项的和是( ) A.2012 B.2011 C.0 D.2011-8、设向量()(),6,4,3,2-=-=→→CD AB 则四边形ABCD 是( )A.矩形B.菱形C.平行四边形D.梯形9、实数3log 2与2log 3的大小关系是( )A.2log 3log 32>B.2log 3log 32<C.2log 3log 32=D.不能确定10、设,1:<x p ,11:>xq 则P 是q 的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件11、在ABC ∆中,,7,5,3===c b a 则ABC ∆形状是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形12、设向量b a ,的坐标分别为()1,2-和()2,3-,它们的夹角是( )A.零角或平角B.锐角C.钝角D.直角13、设,5.0,4.0log 4.05.0==b a 则b a 、的大小关系是( )A.b a <B.b a =C.b a >D.不能确定14、与 956-角终边相同的最小正角是( )A. 34B. 56C. 124D. 21415、()x a y -=2在其定义域内是减函数,则a 的取值范围是( )A.()1,0B.()2,1C.()3,2D.()2,1-16、若A={1、2、3、4},B={0、2、4、6、},则A B 为( )A 、{2}B 、{0、1、2、3、4、6}C 、{2、4、6}D 、{2、4}17、下列关系不成立是( )A 、a>b ⇔a+c>b+cB 、a>b ⇔ac>bcC 、a>b 且b>c ⇔a>cD 、a>b 且c>d ⇔a+c>b+d18、下列函数是偶函数的是( )A 、Y=X 3B 、Y=X 2C 、Y=SinXD 、Y=X+119、斜率为2,在Y 轴的截距为-1的直线方程为( )A 、2X+Y -1=0B 、2X -Y -1=0C 、2X -Y+1=0D 、2X+Y+1=020、圆X 2+Y 2+4X=0的圆心坐标和半径分别是( )A 、(-2,0),2B 、(-2,0),4C 、(2,0),2D 、(2,0),4二、填空题21、已知全集{},N x x U ∈=,集合{},,,,3,2,1 n A C U =则集合=A 22、已知,534tan =⎪⎭⎫ ⎝⎛+απ则αtan 的值是 23、设向量()(),2,1,0,2-=-=b a 则向量b a 76+=2,7==→→AD →→+25、等比数列{}n a 中,,5,151==a a 则=3a三、解答题:26.设函数()()()()x x x g x x x f -+-=-+=5log 1log ,13log 777,()()()x g x f x F += (1)求函数()x F 的定义域;(2)若(),1>a F 求a 的取值范围;27.已知,833sin )6sin(=⎪⎭⎫ ⎝⎛+∙+παπα求α4cos 的值 28.已知数列{}n a 的前n 项和为n S 且满足21),2(0211=≥=∙+-a n S S a n n n (1)求证:⎭⎬⎫⎩⎨⎧n S 1是等差数列;(2)求n a 的表达式; 29.在ABO ∆中,已知,21,31→→→→==OB OD OA OC AD 与BC 相交于点E ,设→→→→==BC BE AD AE μλ,. (1)用向量→OA 和→OB 表示向量→OE ;(2)求λ和μ的值;(3)若()()4,3,3,4B A -,求点E 的坐标;30.过双曲线1322=y x -右焦点作倾角为45°的弦AB ,求AB 的长。
最新山东省春季高考数学模拟试题(六)
2016年山东省春季高考数学模拟试题(六)第I 卷(选择题 共60分)一、选择题(本大题共20个小题,每小题3分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项选出)1. 若全集{}12345U =,,,,,集合{}{}2334M N ==,,,,则集合()U C M N 等于A .{}13,B .{}15,C .{}35,D .{}45,2. 设p q ,是两个命题,且p q ⌝∧是真命题,则下列命题为真命题的是 A .p q ∧ B .p q ⌝⌝∧C .()p q ⌝∨D .p q ⌝⌝∨3. 函数y =A .()35-,B .()()35-∞+∞,,C .RD .∅4. 二次函数243y x x =--+的最大值和对称轴分别是 A .7,2x =-B .7,2x =C .3,2x =-D .3,4x =5. 下列函数中,既是奇函数又是增函数的是 A .3xy =B .y x =C .0.5log y x =D .2y x =6. ()()AB MB BO BC OM ++++等于 A .BCB .ABC .ACD .AM7. 若()()sin 0cos 0παπα->+>,,则α是 A .第一象限角B .第二象限角C .第三象限角D .第四象限角8. 已知数列{}n a ,若12a =且112n n a a +=,则该数列的前5项的和为 A .298B .252C .318D .49. 已知直线10mx y ++=与210x y ++=互相垂直,则m 等于A .12B .12-C .2-D .210. 如图所示,函数xy a =与1log ay x =的图像可能是11. 已知()542a b ==,,,且a 与b 同向,则a 的坐标是 A.(B.(- C.(或(-D.或(-12. 已知点()()1234M N ,,,,则以线段MN 为直径的圆的标准方程是 A .()()22232x y +++= B .()()22232x y -+-= C .()()22238x y +++=D .()()22238x y -+-=13. 函数2sin cos 22x x y ⎛⎫=+ ⎪⎝⎭的最小正周期是A .4πB .2πC .πD .2π14. 在10件产品中有7件正品,3件次品,从这10件产品中任取3件,则至少有一件次品的概率是 A .724B .1724C .310D .71015. 已知双曲线224x y -=的两条渐近线与直线3x =围成一个三角形区域,那么表示该区域的不等式组是A .0003x y x y x -≥⎧⎪+≥⎨⎪≤≤⎩B .0003x y x y x -≥⎧⎪+≤⎨⎪≤≤⎩C .0003x y x y x -≤⎧⎪+≤⎨⎪≤≤⎩D .0003x y x y x -≤⎧⎪+≥⎨⎪≤≤⎩16. 在ABC ∆中,若::2a b c =,则该三角形是 A .直角三角形B .锐角三角形C .钝角三角形D .等边三角形17. 如图所示是指数函数①xy a =,②xy b =,③xy c =,④xy d =的图像,则a b c d ,,,与1的大小关系是A .1a b c d <<<<B .1b a d c <<<<C .1a b c d <<<<D .1a b d c <<<<A .B .18. 若抛物线的顶点是双曲线22312x y -=的中心,而焦点是双曲线的左顶点,则该抛物线的标准方程是 A .24y x =-B .28y x =-C .29y x =-D .218y x =-19. 某企业有职工150人,其中高级职称的15人,中级职称45人,一般职员90人,现在用分层抽样的方法抽取30名代表,则样本中各职称人数分别为 A .5,10,15B .3,9,18C .3,10,17D .5,9,1620. 如图,扇形的中心角是90︒,弦AB 将扇形分成两部分,AOB ∆及扇形去掉AOB ∆剩余的部分分别以AO 为轴旋转一周,所得到的旋转体的体积1V 与2V 之比等于 A .1:1B.1: C .1:2D.1:第II 卷(非选择题 共60分)二、填空题(本大题5小题,每小题4分,共20分.请将答案填在答题卡相应题号的横线上) 21. 已知()f x 是奇函数,且0x >时,()2f x x x =+,则0x <时,()f x =____________.22. 若等差数列{}n a 的前n 项和为n S ,535a a =,则95S S =____________. 23. 电视台连续播放4个不同的商业广告和2个不同的公益广告,要求首尾必须播放公益广告,则不同的播放方式种数共有____________.24. 已知正方体1111ABCD A B C D -,则直线1BD 与平面ABCD 所成角的正弦值是_________.25.121x ⎫⎪⎭的二项展开式中常数项等于____________(用数字表示).三、解答题(本大题5小题,共40分.请在答题卡相应的题号处写出解答过程)26. (本小题8分)试利用函数单调性的定义证明:函数()()2325f x x =--在()2+∞,上是增函数.AOB27. (本小题8分)已知函数2cos 2sin sin y x x x =++,求y 的最大值和最小值,并求在[]ππ-,内,当y取得最大值和最小值时相对应的x 的值.28. (本小题8分)某商场购进一批单价为16元的日用品.经试销发现,若按每件20元的价格销售,则每月可卖出360件,若按每件25元的价格销售,则每月可卖出210件.假定每月销售件数y (件)是价格x (元/件)的一次函数.(1)试求y 与x 之间的函数关系式;(2)在商品不积压,且不考虑其它因素的情况下,问销售价格定为多少时,才能使每月获得最大利润?每月的最大利润是多少?29. 30. (本小题8分)已知菱形ABCD ,P 为平面ABCD 外一点,且PA ABCD ⊥面.求证:(1)BD PAC ⊥面(2)若AB 4=,DAB 120∠=,3PA =,求二面角P BD A --的正弦值. 31.32. (本小题8分)已知椭圆2212x y +=,过点()10M ,作直线l 交椭圆于A ,B 两点,且交y 轴于点N ,若AN BM =,求直线l 的方程.P AB C D。
2016山东春季高考数学试题与详细讲解答案解析
省2015年普通高校招生(春季)考试数学试题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分120分,考试时间120分钟.考试结束后,将本试卷和答题卡一并交回.2.本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精确到0.01.第Ⅰ卷(选择题,共60分)一、选择题(本大题20个小题,每小题3分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母选出,填涂在答题卡上)1.若集合A={1,2,3},B={1,3},则A∩B等于()(A){1,2,3} (B){1,3} (C){1,2} (D){2}2.|x-1|<5的解集是()(A)(-6,4) (B)(-4,6)(C) (-∞, -6)∪(4, +∞) (D)(-∞, -4 )∪(6,+∞)3.函数y=x+1 +1x的定义域为()(A){x| x≥-1且x≠0} (B){x|x≥-1}(C){x x>-1且x≠0} (D){x|x>-1}4.“圆心到直线的距离等于圆的半径”是“直线与圆相切”的(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件5.在等比数列{a n}中,a2=1,a4=3,则a6等于()(A)-5 (B)5 (C)-9 (D)96.如图所示,M 是线段OB 的中点,设向量→OA =→a ,→OB =→b ,则→AM 可以表示为( ) (A )→a + 12→b(B ) -→a + 12→b(C )→a - 12→b (D )-→a - 12→b7.终边在y 轴的正半轴上的角的集合是( ) (A ){x |x =π2+2k π,k ∈Z }(B ){x |x =π2+k π}(C ){x |x =-π2+2k π,k ∈Z }(D ){x |x =-π2+k π,k ∈Z }8.关于函数y =-x 2+2x ,下列叙述错误的是( ) (A )函数的最大值是1(B )函数图象的对称轴是直线x =1(C )函数的单调递减区间是[-1,+∞)(D )函数图象过点(2,0)9.某值日小组共有5名同学,若任意安排3名同学负责教室的地面卫生,其余2名同学负责教室外的走廊卫生,则不同的安排方法种数是( ) (A )10(B )20(C )60(D )10010.如图所示,直线l 的方程是( ) (A )3x -y -3=0 (B )3x -2y -3=0(C )3x -3y -1=0(D )x -3y -1=011.对于命题p ,q ,若p ∧q 为假命题”,且p ∨q 为真命题,则( ) (A )p ,q 都是真命题(B )p ,q 都是假命题 (C )p ,q 一个是真命题一个是假命题 (D )无法判断12.已知函数f (x )是奇函数,当x >0时,f (x )=x 2+2,则f (-1)的值是( ) (A )-3 (B )-1 (C )1 (D )313.已知点P (m ,-2)在函数y =log 13x 的图象上,点A 的坐标是(4,3),则︱→AP ︱的值是( ) (A )10(B )210(C )6 2(D )5 2BOMA14.关于x ,y 的方程x 2+m y 2=1,给出下列命题:①当m <0时,方程表示双曲线;②当m =0时,方程表示抛物线;③当0<m <1时,方程表示椭圆;④当m =1时,方程表示等轴双曲线;⑤当m >1时,方程表示椭圆。
山东春季高考数学真题含答案
山东春季高考数学真题含答案The following text is amended on 12 November 2020.山东省2016年普通高校招生(春季)考试数学试题注意事项:1.本试卷分卷一(选择题)和卷二(非选择题)两部分。
满分120分,考试时间120分钟。
考试结束后,请将本试卷和答题卡一并交回。
2.本次考试允许使用函数型计算器,凡使用计算器的题目,除题目有具体要求外,最后结果精确到。
卷一(选择题,共60分)一、选择题(本大题20个小题,每小题3分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母代号选出,并填涂在答题卡上)1.已知集合A={}2,3,则A B等于1,3,B={}()A. ∅B. {}1,2 D. {}31,2,3 C. {}【答案】B【解析】因为A={}=.1,2,31,3,B={}2,3,所以A B{}2.已知集合A,B,则“A B⊆”是“A B=”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】 B 【解析】A B A B =⇒⊆,又A B A B A B ⊆⇒=或,∴“A B ⊆”是“A B =”的必要不充分条件. 3.不等式23x +>的解集是( ) A. ()(),51,-∞-+∞ B. ()5,1-C. ()(),15,-∞-+∞ D.()1,5-【答案】A 【解析】23123235x x x x x +>>⎧⎧+>⇒⇒⎨⎨+<-<-⎩⎩,即不等式的解集为 ()(),51,-∞-+∞.4.若奇函数()y f x =在()0,+∞上的图像如图所示,则该函数在(),0-∞上的图像可能是( )第4题图GD21GD22GD23GD24GD25【答案】D 【解析】因为已知是奇函数,根据奇函数的性质是关于原点对称,根据选项只能选D.5.若实数a >0,则下列等式成立的是( )A. ()224--= B. 33122a a -=C. ()021-=- D. 4141a a-⎛⎫= ⎪⎝⎭【答案】D 【解析】A 中()2124--=,B 中33122a a-=,C 中()021-=,故D 选项正确.6.已知数列{}n a 是等比数列,其中3a 2=,6a 16=,则该数列的公比q 等于 ( )A.143.2 C 【答案】 B 【解析】 3a 2=,6a 16=,333631628a a q q q ∴=⇒==,,则q=2.7.某职业学校的一个数学兴趣小组有4名男生和3名女生,若从这7名学生中任选3名参加数学竞赛,要求既有男生又有女生,则不同选法的种数是( ).31 C【答案】C 【解析】由题知,有两种选法①两名男生一名女生2143C C 18=种,②两名女生一名男生1243C C 12=种,所以一共有181230+=种.8.下列说法正确的是( ) A.函数()2y x a b =++的图像经过点(a ,b ) B.函数x y a =(a >0且a ≠1)的图像经过点(1,0)C.函数log a y x =(a >0且a ≠1)的图像经过点(0,1)D.函数a y x =(∈R α)的图像经过点(1,1)【答案】D 【解析】A 中,函数()2y x a b =++的图像经过点(-a ,b );B 中,函数x y a =(a >0且a ≠1)的图像经过点(0,1);C 中,函数log a y x =(a >0且a ≠1)的图像经过点(1,0);D 中,把点()1,1代入,可知图象必经过点()1,1.9.如图所示,在平行四边形OABC中,点A(1,-2),C(3,1),则向量OB的坐标是()第9题图GD26A.(4,-1)B.(4,1)C.(1,-4)D.(1,4)【答案】A【解析】A(1,-2),C(3,1),()(),,,,∴=-=OA OB1231又OA CB=,()∴=+=+=-.4,1OB OC CB OC OA10.过点P(1,2)与圆225+=相切的直线方程是()x yA. 230-+= C. 250+-= D.x yx y-+= B. 250x y+=x y250【答案】B【解析】将点P()1,2代入圆方程,可知点P在圆上,又因为将点代入C,D等式不成立,可排除C,D,又因为直线与圆相切,所以圆心到直线的距离等于半径,又圆心为(0,05230 x y-+=的距离d=≠,圆心到直线250x y-+=的距离d'==,则只有B符合.11.表中数据是我国各种能源消费量占当年能源消费总量的百分率,由表可知,从2011年到2014年,消费量占比增长率最大的能源是()A.天然气B.核能C.水利发电D.再生能源表我国各种能源消费的百分率【答案】D【解析】根据表1可知,从2011年到2014年,天然气:5.6 4.5100%24.4%4.5-⨯≈,核能:1.00.7100%42.9%0.7-⨯≈,水力发电:8.1 6.0100%35%6.0-⨯=,再生能源:1.80.7100%157.1%0.7-⨯≈,则消费量占比增长率最大的能源是再生能源.12.若角α的终边过点()6,8P -,则角α的终边与圆221x y +=的交点坐标是( )A. 34,55⎛⎫- ⎪⎝⎭B. 43,55⎛⎫- ⎪⎝⎭C. 34,55⎛⎫- ⎪⎝⎭D. 43,55⎛⎫- ⎪⎝⎭【答案】A 【解析】因为()6,8P -,所以长度为226810+=,设交点为()11,x y ,又因为圆的半径为1,因此有11141085y y =⇒=,1131065x ==,又因为终边在第二象限,所以选A.13.关于x ,y 的方程y mx n =+和221x y m n+=在同一坐标系中的图象大致是( )GD27GD28GD29GD30【答案】D 【解析】 当221x y m n+=的图象为椭圆时,00m n >>,,则y mx n =+的图象单调递增,且与y 轴的截距大于0,A 、B 均不符;当221x y m n+=的图象为双曲线时,○1当00m n <>,时,双曲线的焦点在y 轴上,y mx n =+的图象单调递减,且与y 轴的截距大于0;○2当00m n ><,时,双曲线的焦点在x 轴上,y mx n =+的图象单调递增,且与y 轴的截距小于0,综上所述,选项D 正确.14.已知()2nx -的二项展开式有7项,则展开式中二项式系数最大的项的系数是( )A.-280B.-160C.160【答案】B 【解析】()2nx -的二项展开式有7项,6n ∴=,()616C 2kk kk T x -+=-,又展开式中二项式系数最大的项为第4项,则()3363346C 2160T xx -=-=-,则其系数为160-. 15.若有7名同学排成一排照相,恰好甲、乙两名同学相邻,并且丙、丁两名同学不相邻的概率是( )A.421 B. 121C. 114D. 27【答案】A 【解析】先利用捆绑法将甲乙进行捆绑并全排列,有22A 种排列方法,将甲乙作为一个整体,除去丙丁将其他人进行全排列,有44A 种排列方法,再利用插空法将丙丁进行插空,有25A 种排列方法;总共有77A 种排列方法,所以概率为24224577A A A 4A 21⋅⋅=.16.函数sin 24y x π⎛⎫=+ ⎪⎝⎭在一个周期内的图像可能是( )GD31GD34GD32GD33【答案】A 【解析】B 选项中当,18x y π==,C 选项中当0x =时,2y =,D 选项中,当2,4x y π==. 17.在ABC △中,若2AB BC CA ===,则AB BC ⋅等于( )A. 3-3-2【答案】C 【解析】因为2AB BC CA ===,所以ABC △是等边三角形,所以各个角均为60︒,cos1202AB BC AB BC ⋅=⋅⋅︒=-.18.如图所示,若,x y 满足约束条件0210220x x x y x y ⎧⎪⎪⎨--⎪⎪-+⎩≥≤≤≥则目标函数z x y =+的最大值是( )第18题图 GD35.4 C【答案】B 【解析】 由图可知,目标函数z x y =+在点(2,2)处取得最大值,即max 224z =+=.19.已知α表示平面,,,l m n 表示直线,下列结论正确的是( ) A.若,,l n m n ⊥⊥则l m ∥ B.若,,l n m n l ⊥⊥⊥则m C.若,,l m l αα∥∥则∥m D.若,,l m l αα⊥⊥∥则m【解析】A,B,C 选项,直线l 与m 相交、平行、异面都有可能;D 选项,∵,m α∥,∴存在一个平面β,使得αβ∥,且m β∈,∵,l α⊥∴l β⊥,l m ⊥.20.已知椭圆22126x y+=的焦点分别是12,F F,点M在椭圆上,如果120FM F M⋅=,那么点M到x轴的距离是()B.C.2D. 1【答案】B【解析】椭圆22126x y+=,即2a b c====,设点M的坐标为00()x y,,又12F M F M⋅=,∴点M又在以原点为圆心,半径为2的圆上,圆方程为224x y+=,即22004x y+=①,又2200126x y+=②,联立①②得y=M到x卷二(非选择题,共60分)二、填空题(本大题5个小题,每小题4分,共20分.请将答案填在答题卡相应题号的横线上)21.已知tan3α=,则sin cossin cosαααα+-的值是 .【答案】2【解析】分式上下同除以cosα得sin costan1cossin cos tan1cosαααααααα++=--,把tan3α=代入得原式=2.22.若表面积为6的正方体内接于球,则该球的表面积等于 .【答案】3π【解析】设正方体的边长为x ,2661x x =⇒=,则边长为1,,243S r =π=π球. 23.如果抛物线28y x =上的点M 到y 轴的距离是3,那么点M 到该抛物线焦点F 的距离是 .【答案】5【解析】因为抛物线28y x =上的点M 到y 轴的距离是3,所以点M 的横坐标为3,再将3x =代入得到y =±(3,M ±,又因为28y x =,准线22px =-=-,则点M 到该抛物线焦点F 的距离是5. 24.某职业学校有三个年级,共有1000名学生,其中一年级有350名,若从全校学生中任意选出一名学生,则恰好选到二年级学生的概率是.现计划利用分层抽样的方法,从全体学生中选出100名参加座谈会,那么需要从三年级学生中选出 名.【答案】33【解析】恰好选到二年级学生的概率是,恰好选到一年级学生的概率是,则选到三年级学生的概率是,那么需要从三年级抽取100×=33人. 25.设命题p ;函数()()215f x x a x =+-+在(],1-∞上是减函数;命题q :()2,lg 230x x ax ∀∈++>R .若p q ∨⌝是真命题,p q ∧⌝是假命题,则实数a 的取值范围是 .【答案】(1-或()2⎡-∞+∞⎣,,【解析】 p q ∨⌝是真命题,p q ∧⌝是假命题,∴pq 同为真或pq 同为假,当pq 同为真时,函数()()215f x x a x =+-+在(],1-∞上是减函数,函数()f x 的对称轴为12a x -=-,即1112a a --⇒-≤≥,()2,lg 230x x ax ∀∈++>R ,即2231x ax ++>恒成立,设222y x ax =++,即()22420a a ∆=-⨯<⇒<,则1a -<<pq 同为假时,a a ≤a 的取值范围为(1-或()2⎡-∞+∞⎣,,. 三、解答题(本大题5小题,共40分)26.(本小题6分)已知某城市2015年底的人口总数为200万,假设此后该城市人口的年增长率为1%(不考虑其他因素).(1)若经过x 年该城市人口总数为y 万,试写出y 关于x 的函数关系式;(2)如果该城市人口总数达到210万,那么至少需要经过多少年(精确到1年)【解】(1)由题意可得()20011%xy =+;(2)如果该城市人口总数达到210万,则()20011%x+210=5x ⇒≈,那么至少需要经过5年.27.(本小题8分)已知数列{}n a 的前n 项和223n S n =-.求:(1)第二项2a ;(2)通项公式n a .【解】(1)因为223n S n =-,所以11231a S ==-=-,222235S =⨯-=,()22121516a S S S a =-=-=--=,所以26a =.( 2 )()22123213n n S n S n -⎧=-⎪⎨=--⎪⎩①②,①-②=142n n S S n --=-. 28.(本小题8分)如图所示,已知四边形ABCD 是圆柱的轴截面,M 是下底面圆周上不与点,A B 重合的点.(1)求证:平面DMB ⊥平面DAM ;(2)若AMB ∆是等腰三角形,求该圆柱与三棱锥D-AMB 体积的比值.GD36第28题图【解】(1)∵M 是下底面圆周上不与点,A B 重合的点,∴,,A M B 在一个平面上,又∵四边形ABCD 是圆柱的轴截面,∴边AB 过圆心,DA ⊥平面AMB ,DA BM ⊥,根据定理以直径为斜边的三角形为直角三角形,所以AM BM ⊥, ∵,DA AM ⊂平面DAM ,且DA AM A =,∴BM ⊥平面DAM ,又∵BM ⊂平面DMB ,∴平面DMB ⊥平面DAM . (2)设底面圆的半径为x ,圆柱的高为h ,又∵AMB △是等腰直角三角形,所以两个直角边长为2x ,所以221(2)2ABMS x x ==△,所以2133D AMB AMB x h V S h -=⋅=△,2V S h x h =⋅=π圆柱 所以2233D AMBV x hx h V -π==π圆柱. 29.(本小题8分)如图所示,要测量河两岸P ,Q 两点之间的距离,在与点P 同侧的岸边选取了A ,B 两点(A ,B ,P ,Q 四点在同一平面内),并测得AP =20m ,BP =10m ,60APB ∠=︒,105PAQ ∠=︒,135PBQ ∠=︒.试求P ,Q 两点之间的距离.SH17第29题图【解】 连接AB ,又60APB ∠=︒,AP =20m ,BP =10m ,则90ABP ∠=︒,则AB ==,又135PBQ ∠=︒,45ABQ ∴∠=︒,3601056013560AQB ∠=︒-︒-︒-︒=︒,在ABQ △中,由正弦定理得,sin sin AQ ABABQ AQB =∠∠,即sin 45AQ AQ =⇒==︒,在APQ △中,由余弦定理得,2222cos PQ AP AQ AP AQ QAP =+-⋅∠2220220cos105400=+-⨯⨯︒=+,10(110PQ =+=+P ,Q两点之间的距离为10+.30.(本小题10分)如图所示,已知双曲线的中心在坐标原点O ,焦点分别是()()122,02,0F F -,,且双曲线上的任意一点到两个焦点的距离之差的绝对值等于2. (1)求该双曲线的标准方程、离心率及渐近线方程;(2)若直线l 经过双曲线的右焦点2F ,并与双曲线交于M ,N 两点,向量()2,1n =-是直线l 的法向量,点P 是双曲线左支上的一个动点.求PMN △面积的最小值.GD39第30题图【解】(1)根据题意设双曲线的标准方程为22221x y a b-=,()()122,02,0F F -,,双曲线上的任意一点到两个焦点的距离之差的绝对值等于2,2221c a a ∴===,,,即222213b c a =-=-标准方程为2213y x -=,离心率221c e a ===,渐近线方程为33b y a =±== (2)向量()2,1n =-是直线l 的法向量,∴直线的斜率2k =,又直线l 经过双曲线的右焦点()22,0F ,即直线l 的方程为()2224240y x x x y =-=-⇒--=,设()()1122M x y N x y ,,,,又双曲线的方程为2213y x -=,即2213240y x x y ⎧-=⎪⎨⎪--=⎩216190x x ⇒-+=,12121619x x x x +==,,则2121MN k x =+-30===,要使PMN △面积的最小值,即点P 到直线l 的距离最小,则点P 坐标为()10-,,5d ∴==,则113022PMN S MN d =⨯=⨯=△。
(2021年整理)2016年山东省春季高考数学模拟试题(一)
2016年山东省春季高考数学模拟试题(一)2016年山东省春季高考数学模拟试题(一)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016年山东省春季高考数学模拟试题(一))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016年山东省春季高考数学模拟试题(一)的全部内容。
2016年山东省春季高考数学模拟试题(一)2016年山东省春季高考数学模拟试题(一) 一、选择题 1.两条直线为异面直线指的是 ( )A 、不同在任何一个平面内的两条直线B 、在空间内不相交的两条直线C 、在空间内不平行的两条直线D 、平面内的一条直线和这个平面外的一条直线。
2. 垂直于同一条直线的两条直线一定 ( )A 、平行B 、相交C 、异面D 、以上都有可能3。
经过两点P (1。
,3)和Q (5,—K )点的直线的斜率等于1那么K 的值( )A. —7 B 。
4 C. 1 D. —14。
如果直线ax + 2y + 2 = 0与3x -y -2 = 0直线平行,那么a = ( ) A -3 B -6 C -23 D 325。
直线3420x y +-=经过的象限是 ( )A 。
一、二、三B 一、三、四C 一、二、四D 二、三、四6.满足条件 的两个平面互相平行 ( )A 、一个平面内的一条直线平行于另一个平面B 、一个平面内的两条直线平行于另一个平面C 、一个平面内的两条相交直线平行于另一个平面D 、一个平面内的一条直线平行于另一个平面的一条直线7。
下列命题不正确的是 ( )A 、如果一条直线垂直于一个平面内的任何一条直线,则这条直线和这个平面垂直B 、如果一条直线和一个平面垂直,则这条直线垂直于这个平面内所有直线C 、如果一条直线和平面内的两条平行直线都垂直,则这条直线和这个平面垂直D 、如果一条直线和平面内的两条相交直线都垂直,则这条直线和这个平面垂直8、圆锥的轴截面是一个等腰直角三角形,母线长为2,则它的侧面积( )A 、4πB 、22πC 、42πD 、8π9。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016山东春考数学试题
一、选择题
1. 已知集合{}{}1,3,2,3A B ==,则A
B =( )
A. ∅
B. {}1,2,3
C. {}1,2
D. {}3 2. 已知集合,A B ,则“A B ⊆”是“A B =”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D. 既不充分也不必要条件 3.不等式23x +>的解集是( ) A.()
(),51,-∞-+∞ B.()5,1- C. ()(),15,-∞-+∞ D. ()1,5-
4.若奇函数()y f x =在()0,+∞上的图象如图所示,则该函数在(),0-∞上的图象可能是(
A
B
C
D
5.若实数0a >,则下列等式成立的是( ) A.()
2
24--= B.3
3122a a -= C.()021-=- D.4
141a a -⎛⎫= ⎪⎝⎭
6.已知数列{}n a 是等比数列,其中362,16a a ==,则该数列的公比q =( ) A.
14
3
B.2
C. 4
D.8 7.某职业学校的一个数学兴趣小组有4名男生和3名女生,若从这7名学生中任选3名参加数学竞赛,要求既有男生又有女生,则不同的选法种数为( ) A.60 B.31 C.30 D.10 8.下列说法正确的是( )
A.函数()2
y x a b =++的图象经过点(),a b B.函数()0,1x
y a
a a =≠>的图象经过点()1,0
C.函数()log 0,1x
a
y a a =≠>的图象经过点()0,1 D.函数()y x R αα=∈的图象经过点()1,1
9.如图所示,在平行四边形OABC 中,点()()1,2,3,1A C -,则向量OB = A.()4,1- B. ()4,1 C. ()1,4- D. ()1,4
10.过点()1,2P 与圆2
2
5x y +=相切的直线方程是( )
A.230x y -+=
B. 250x y -+=
C. 250x y +-=
D. 20x y +=
11.下表中数据是我国各种能源消费量占当年能源消费总量的百分率,由表可知,从2011年到2014年,消费量占比增长率最大的能源是( )
A.天然气
B.核能
C.水力发电
D.再生能源
12.若角α的终边经过点()6,8P -,则角α的终边与圆2
2
1x y +=的交点坐标是( ) A.34,
55⎛⎫- ⎪⎝⎭ B. 43,55⎛⎫- ⎪⎝⎭ C. 34,55⎛⎫
- ⎪⎝⎭ D.
43,55⎛⎫
- ⎪⎝⎭
13.关于,x y 的方程y mx n =+和
22
1x y
+=在同一坐标系中的图象大致是( )
A
B
D
14.已知()2n
x -的二项展开式有7项,则展开式中二项式系数最大的项的系数是( ) A.-280
B.-160
C.160
D.560
15.若有7名同学排成一排照相,恰好甲、乙两名同学相邻,并且丙、丁两名同学不相邻的概率是( ) A.
421 B. 1
21
C. 114
D. 27
π⎛
⎫
在一个周期内的图象可能是( )
A B C D 17.在ABC ∆中,若2AB BC CA ===,则AB BC ⋅=( ) A.- B. C.-2 D.2
18.如图所示,若,x y满足约束条件
2
10
220
x
x
x y
x y
≥
⎧
⎪≤
⎪
⎨
--≤
⎪
⎪-+≥
⎩
,则目标函数z x y
=+
A.7
B.4
C.3
D.1
19.已知α表示平面,,,
l m n表示直线,下列结论正确的是()
A.若,,
l n m n l m
⊥⊥则 B.若,,
l n m n l m
⊥⊥⊥
则
C.若,,
l m l m
αα则 D.若,,
l m l m
αα
⊥⊥
则
20.已知椭圆
22
1
26
x y
+=的焦点分别是
12
,
F F,点M在椭圆上,如果
12
FM F M
⋅=,那么点M到x轴的距离是()
B. C.
2
D.1
二、填空题(5小题,每题4分,共20分)
21.已知tan3
α=,则sin cos
sin cos
αα
αα
+
=
-
;
22.若表面积为6的正方体内接于球,则该球的表面积为;
23.如果抛物线28
y x
=上的点M到y轴的距离是3,那么点M到该抛物线焦点F的距离是;
24.某职业学校有三个年级,共有1000名学生,其中一年级有350名。
若从全校学生中任意选出一名学生,则恰好选到二年级学生的概率是0.32.现计划利用分层抽样的方法,从全体学生中选出100名参加座谈会,那么需要从三年级学生中选出名;
25.设命题()()
2
:15
p f x x a x
=+-+
函数在(],1
-∞上是减函数;
命题()
2
:,lg230
q x R x ax
∀∈++>
若p q
∨⌝是真命题,p q
∧⌝是假命题,则实数a的取值范围是。
三、解答题(5小题,共40分)
26.已知某城市2015年底的人口总数为200万,假设此后该城市人口的年增长率为1%(不考虑其他因素)
⑴若经过x年该城市人口总数为y万,试写出y关于x的函数关系式;
⑵如果该城市人口总数达到210万,那么至少需要经过多少年(精确到1年)?
27.已知数列{}n a 的前n 项和2
23n S n =-,求
⑴第二项2a ;⑵通项公式n a 。
28.如图所示,已知四边形ABCD 是圆柱的轴截面,M 是下底面圆周上不与点,A B 重合的点
⑴求证:DMB DAM ⊥平面平面;
⑵若AMB ∆是等腰三角形,求该圆柱与三棱锥D AMB -体积的比值。
29.如图所示,要测量河两岸,P Q 两点之间的距离,在与点P 同侧的岸边选取了,A B 两点(,,A B P Q
,四点在同一平面内),并测得20,=10,60,105,135AP cm BP cm APB PAQ PBQ =∠=︒∠=︒∠=︒,试求,P Q 两点之间的距离
30.如图所示,已知双曲线的中心在坐标原点O ,焦点分别是()()122,0,2,0F F -,且双曲线上的任意一点到两个焦点的距离之差的绝对值为2,
⑴求该双曲线的标准方程、离心率及渐近线方程;
⑵若直线l 经过双曲线的右焦点2F ,并与双曲线交于,M N 两点,向量()2,1n =-是直线l 的法向量,点P 是双曲线左支上的一个动点,求PMN ∆面积的最小值
A
B
C
D
M
A B
P
Q。