关于反函数定理

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
−1 fx (f (x)) = x; −1 f fx (y ) = y,
Nl|C/vW 87B^F
)#: }W YW
|/RL5QlW
FP *
∀y ∈ B.
−1 V fx ) dRc^X7+. ' [1] P"{C/ x\cR 1996-09-06, zcR 1997-07-09 g |%< O9 vpd nz`( | wt+G
,
0
1 v f Z x0 7 Taylor |7w5 ' [1] l$ r ≥ γ(f,x ) . J α0 ] v Smale d R Newton A.?b /= [2] p7$I | W:R 0.1307.Biblioteka BaiduIRZ/=p α0 7 ]k ' [3] √ 1 l$ α0 = 4 (13 − 2 17) = 0.1576 · · ·. −1 IR E = F = C, ' [4] `l$ fx Z f (x0 ) 7 Taylor |7w5 P ]
424
}
S
9 HD
9 ?P
⊂ f B x0 , 1 − √ 2 1 2 γ
41
#
l f : B (x0 , r) → F
B f (x0 ),
α0 γ f (x0 )−1
,
rp γ = γ (f, x0 ). VZ~G7%Xp Zc2
r
−1 fx 0
*ZV)
1 n−1
1 f (x0 )−1 f (n) (x0 ) γ (f, x0 ) = sup n ! n≥2
bZ
o
. +
|,;7
r2 = r2 (α0 ).
[6]
.
y ∈ B f (x0 ),
α0 f (x0 )−1
,
x0 ∈ B (x0 , r2 )\B (x0 , r1 ),
KJ
√ 3−2 2 B f (x0 ), γ f (x0 )−1
0
√ 2 1 ⊂ f B x0 , 1 − 2 γ
.
−1 VZjr~G7%Xp fx *ZV) GjZ a x0 71 %XpO
g (x) = f x0 +
1 (x − x0 ) γ
CJ7l| g >{C/ 1 7 h h =vC/ S 7 ]w 1) α0 7P ,+5}+)L r7QG .5}.)L {b 3) ~G,+5}+)L 2 lI γ > 0, f P>{
K'
B
{xn } w5 V x = lim xn ∈ B (x0 , r1 ). Z xn 7CJrpZ~( 6 f (x) = y. −1 "@ √?hA fx Z {%Xp) D hA IRZy'X7 2 x0 , 1 − 2 . Ov
0
y,
>{jr7
x ∈
I − f (x0 )−1 f (x) = ≤
f (x0 )−1 f (x) ≤ 2 (1 − x − x0 )3 (∗)
7K 474| ]IbI α0 , 0 < α0 < 3 − 2
B f (x0 ), α0 f (x0 )−1
√ 2,
?P
⊂ f (B (x0 , r1 (α0 ))), √ 2 1+ α0 . 2
rp
α0 < r1 (α0 ) =
_s l
xn−1 − x0 < r1 .
Z Taylor _r
1 0
f (x) = f (x0 ) + f (x0 )(x − x0 ) +
(1 − τ )f (x0 + τ (x − x0 ))(x − x0 )2 dτ,
√ 2 , ∀x ∈ B x0 , 1 − 2
pn x = xn−1 , E
=41 =2 1998 3
# Q NX
ACTA MATHEMATICA SINICA
~
:
:
Vol.41, No. 2 March, 1998
(n
s,
OU4 2&.
U0 ( ! ns
310028)
Z3M S'7LT Smale DXI α H?),3M%ZGY' >0" FW/16 R!<:#16=K5 *J 7LN9-BQ+$EV@P Banach A8 ,3M(C α H?
B f (x0 ), α0 f (x0 )−1 ∩ f (B (x0 , r2 (α0 ))\B (x0 , r1 (α0 ))) = ∅,
7 k + 1 474| ]P 1 7 =!3 I k > 1, )EfI<hA f >{
2
7
rp
2 2
3
√ 1 + α0 + (1 + α0 )2 − 8α0 1 2 < r2 (α0 ) = < . 2 4 2 √ 1 α0 < 2 (7 − 3 5) = 0.1458 · · · ] - iNl 1−
f (x0 )−1 f (i) (x0 ) ≤ i!γ i−1 , f (x0 )−1 f (k+1) (x) ≤ i = 2, · · · , k; (k + 1)!γ k (1 − γ x − x0 )k+2
h = A8P( ) 4T 4v^?Z77 B(C"` 7 K'Zcr77 2 !8}U7C ) |7m 4 m bq / 7 h 2 (Wi7].4C/) lZ%X B x0 , 1 2 p f P > { (∗) 7K 4 7 4 | ] I b √ q α0 , 0 < α0 < 3 − 2 2, P (C"
L7 &3r l E o F vp7{Y7 Banach * IR* p7? x of| ρ, E B (x, ρ) s a x ρ 7%X *L XM B (x, ρ) s E L(E, F) s) E 5 F 7)447 x7 B <E L(En, F) s) En 5 F 747 n- )4 x7 l f CJZ E 7E^YV D JZ F pZk7l| {b x ? l f Z D Frechet IJ) VE f : D → L(E, F) S4| I x ∈ D, f (x) : E → F v47)4 x 3 f * n () o E f (n) : D → L(En, F) S n (4| −1 , e f (x)−1 *Z Nl|C/H=*ZB^CJR a f (x) 7E^%X B 7Nl| fx >{
f (x0 )−1 f (x) ≤ 2γ (1 − γ x − x0 )3
V 2) ;r kd
7K 474| ]P
1
7 =!3
2
Q
1t
eSOm}D0
427
MT 1 hAp* 7)4 x )hA h = C/ S o 1 p f 7T -h K 47) 3 lIfe| k o γ > 0, f P>{
.f xn 7CJp
1 0
'<5 x1 7CJ
?65
xn = x1 − f (x0 )−1
1 0
(1 − τ )f (x0 + τ (xn−1 − x0 ))(xn−1 − x0 )2 dτ.
xn − x1 ≤
(1 − τ ) f (x0 )−1 f (x0 + τ (xn−1 − x0 )) dτ · xn−1 − x0
R
upj
{tn }
>{
t0 = 0,
t 1 = α0 ,
tn − t1 =
t2 n−1 . 1 − tn−1
E1_VP %_ {tn } w5R r1 . |9 {tn} 7w544m?9 {xn } yw5 upj O xn o xn−1 7CJ ?P
xn − xn−1 = −
1 0 0 1
f (x0 )−1 f (x0 + σ (xn−2+τ − x0 ))(xn−2+τ − x0 )(xn−1 − xn−2 )dσdτ,
MR(1991) O177.91 58C15, 46E15 On the Inverse Function Theorem
Wang Xinghua Han Danfu (Department of Mathematics, Hangzhou University, Hangzhou 310028, China)
1 0 1 0
f (x0 )−1 f (x0 + τ (x − x0 ))(x − x0 )dx
1 2 x − x0 dτ = − 1 < 1. (1 − τ x − x0 )3 (1 − x − x0 )2
−1 fx 0
EO Banach C/ f (x) )M h 1 ( k4o) OC/7hA J&$ pF*Z 2 ) 1 l f Z x0 √
xn − x0 ≤ x1 − x0 + xn−1 − x0 < α0 + (r1 − α0 ) = r1 .
a\7 {xn } ⊂ B (x0 , r1 ) Dzh h7 =k {E A {xn } w5 2\ A8 {xn } Zp|* vw57 c2 {tn} v f = h, y = s, x = t oI t0 = 0 o s = −α0 1 O s = −1 − 2t + 1− t , 0 ≤ t < 1 CJ
c2 xn−2+τ = xn−2 + τ (xn−1 − xn−2 ). EfI<P
xn − xn−1 ≤
1 0 0 1
2 xn−2+τ − x0 · xn−1 − xn−2 dσdτ (1 − σ xn−2+τ − x0 )3
426
1 0 1 0 1 0 1
}
≤ =
0
9
9
41
#
2tn−2+τ (tn−1 − tn−2 ) dσdτ (1 − σtn−2+τ )3 h (σtn−2+τ )tn−2+τ (tn−1 − tn−2 )dσdτ = tn − tn−1 .
Abstract In the hypthesis that f is analytic, Smale gave an estimation of the size of the radius of the ball in which the inverse function exists, by using the criterion α. In this paper we not only make this estimation more precise, but also weaken the hypothesis to the second continuous differentiable. Keywords Banach space, The inverse function theorem, α-criterion 1991 MR Subject Classification 58C15, 46E15 Chinese Library Classification O177.91
0
r≥
√ 3−2 2 . γ f (x0 )−1
c%_vZ =* p7C/ S 7 ]3r 7 l U+ K 47) [5] . ? B * IC/ S ]w V 7 5Nl| uI K 47) D I v@&/;)4 x f (x) : E2 → F. C/p B - yq W w 6V YY √ 2 1 (Nl|C/) lZ%X B x0 , 1 − 2 p f P>{
α0 , 0 < α0 < 3 − 2
Z X
√ 3−2 2 B f (x0 ), f (x0 )−1
KJ)L$&W Wi7 B h C/ 2. VZ x0 7 Taylor |w5XKoc^ | "Bm ]IbI 2 o γ = γ (f, x0 ), P
B f (x0 ), α0 γ f (x0 )−1 ⊂ f B x0 , r1 (α0 ) 1 γ ,
xn = xn−1 − f (x0 )−1 (f (xn−1 ) − y ), n = 1, 2, · · · .
2
Q
1t
eSOm}D0
425
? hA {xn } ⊂ B (x0, r1 ), '& r1 = r1 (α0 ). y$ O x1 7CJo y 7ZLP
x1 − x0 ≤ f (x0 )−1 α0 f (x0 )−1 = α0 < r1 .
2
.
.fC/7
?65
xn − x1 ≤
1 0
2(1 − τ ) dτ xn−1 − x0 (1 − τ xn−1 − x0 )3
2
=
xn−1 − x0 2 . 1 − xn−1 − x0
dG>h g
xn−1 − x0 < r1 ,
]jrDG < r1 − α0 . EZ' l"HP
7B^" w {tn } $7 c2 h : t → s
1 + α0 −
(1 + α0 )2 − 8α0 > 4
KJ
√ 3−2 2 B f (x0 ), f (x0 )−1
0
√ 2 ⊂ f B x0 , 1 − 2
.
−1 VZjr~G7%Xp fx *ZV) ?&Za\4<hAC/ ' bZ
y ∈ B f (x0 ),
α0 f (x0 )−1
.
C"9_r> <a\?9 {xn }:
相关文档
最新文档