高考数学-求数列通项的特殊方法归纳猜想
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
高考数学-求数列通项的特殊方法归纳猜想
归纳猜想:给出或求出了数列的前几项可以根据前几项的规律,归纳猜想出数列的通项公式,然后再用数学归纳法证明之.
例1、已知点的序列*
),0,(N n x A n n ∈,其中01=x ,)0(2>=a a x ,3A 是线段21A A 的中点,4A 是线段32A A 的中点,…,n A 是线段12--n n A A 的中点,…,⑴写出n x 与21,--n n x x 之间的关系式(3≥n );⑵设n n n x x a -=+1,计算321,,a a a ,由此推测{}n a 的通项公式,并加以证明.
解:(1)∵ n A 是线段32--n n A A 的中点, ∴12
(3)2
n n n x x x n --+=≥;
(2)由题意,得a a x x a =-=-=0121,
21
23222
x x a x x x +=-=
-=2111()22x x a --=-,3234332x x a x x x +=-=-=3211
()24
x x a --=,
猜想*)()
2
1
(1
N n a a n n ∈-=-,下面用数学归纳法证明:
(1)当n=1时,a a =1显然成立;
(2)假设n=k 时命题成立,即*)()
2
1(1
N k a a k k ∈-=-,则当n=k+1时,
k k k k k k x x x x x a -+=
-=++++21121=k k k a x x 2
1)(211-=--+=1111
()()()222k k a a ---=-,
∴ 当n=k+1时命题也成立,故命题对任意*
N n ∈都成立.
练习:已知数列{}n a 满足189
a =
,122
8(1)(21)(23)n n n a a n n ++=+
++,求通项n a .
答案:22425
a =
,34849a =
,48081
a =
,猜测22
(21)1(21)n n a n +-=
+,
(1)当1n =时,189
a =
,所以等式成立;
(2)假设当n k =时等式成立,即22
(21)1(21)
k k k a +-+=
, 1n k =+时等式也成立.