纳米镍粉的形貌与磁性能_王大鹏

合集下载

纳米钕铁硼磁粉

纳米钕铁硼磁粉

纳米钕铁硼磁粉通常是指由纳米级钕铁硼颗粒组成的磁性粉末。

钕铁硼磁粉由纳米级颗粒构成,具有优异的磁性能和热稳定性,因此在制备高性能永磁材料中具有重要应用价值。

纳米钕铁硼磁粉具有以下特点和应用:
1.高磁能积:纳米级颗粒具有较高的比表面积,有利于提高磁性能,使得纳米钕铁硼磁粉
具有较高的磁能积,适合用于制备高性能永磁材料。

2.热稳定性好:纳米级颗粒的热稳定性较好,能够在较高温度下保持良好的磁性能,适合
用于制备需要在高温环境下工作的永磁材料。

3.应用领域:纳米钕铁硼磁粉广泛应用于制备各类永磁材料,包括风力发电机、电动汽车
驱动电机、工业马达等需要高磁能积和高温稳定性的领域。

纳米钕铁硼磁粉的制备技术和应用研究是当前永磁材料领域的热点之一,对于推动永磁材料的性能和应用领域的发展具有重要意义。

镍纳米粉和纳米线的化学还原法制备及吸波性能研究

镍纳米粉和纳米线的化学还原法制备及吸波性能研究

文章编 号 :0 19 3 ( 0 8 0 — 5 90 1 0 -7 1 2 0 )9 1 4 -3
1 引 言
随着 电子 技术 的飞 速 发 展 , 电视 广 播 、 达 技 术 、 雷
1mi 得 到浅 黄绿 色 的 NiOH) 前 躯体 , 0 n后 ( 。 然后 将体
微 波暗室 等技 术 普 及应 用 , 们 生 活 中 电磁 辐 射不 断 人 增多, 同时为适 应 现代 战争 的需 要 , 吸波 材 料 在军 事 中 的应 用 日益 广泛 [ ] 1 。研究 具 有 良好 性 能 的 吸 波材 料
对 于军用 和 民用都 有极 大 的实用 价 值 。根 据对 电磁 波 吸收机 制 的不 同 , 吸波材 料 主要 可 分为 电阻损 耗 型 , 介 电损耗 型和磁 损 耗 型 3大类 。 电 阻损 耗 型 如 炭 黑 、 导
系升温至 8  ̄9 ℃, 0 5 逐滴加入 8 的水合肼, o 反应 一 定时 间 , 液逐 渐 澄 清 后 , 止 反 应 , 得 镍 粉 分别 用 溶 停 所 蒸馏水 、 水 乙醇 和丙 酮超 声清 洗数 次后 , 无 干燥保 存 。 用 S R UP A 5 型 场 发 射 扫 描 电 子 显 微 镜 5 ( E E 观 察 镍 粉 的尺 寸 和 形 貌 , Sme sD 0 0 F S M) 用 i n 5 0 型 X射线 衍射 仪对 镍 粉进行 结构 分 析 , 7 2 S网 HP 8 2 E 络一 体化 矢量 分 析仪对 镍 纳米 粉和 纳米 线 的吸 波性 能
进行 测试 。
电石 墨 、 电高分 子 、 化硅 纤维 、 属 短纤 维 等 , 导 碳 金 主要 特点 是 具有较 高 的 电损耗 角 正 切 , 靠 介 质 的 电子 极 依 化 或界 面极化 的 衰 减来 吸 收 电磁 波 ; 电损 耗 型包 括 介 氮化 硅 和氮化 铁 等 , 种 强 介 电损 耗 是 由界 面极 化 引 这 起 的 , 面极 化 源 于悬 挂 键 形 成 的 电偶 极 矩 。磁 损 耗 界 型 吸波材 料包 括 铁 氧体 、 细 金 属 粉 、 基 铁 粉 等 , 超 羰 具 有较 高 的磁损 耗正切 角 , 利用 磁滞 损 耗 、 畴壁 共 振 和 自 然共 振 、 效损 耗等磁 极 化机 制衰 减 吸 收 电磁 波[ 。 后 3 ] 纳米磁 性金 属 粉 的表 面效 应 、 积 效 应 及 量 子 尺 体

不同形貌硫化镍纳米材料的可控合成及电化学性能研究

不同形貌硫化镍纳米材料的可控合成及电化学性能研究

不同形貌硫化镍纳米材料的可控合成及电化学性能研究郎雷鸣【摘要】该文主要采用简单的溶剂热和水热法通过控制不同条件如硫源和表面活性剂合成了多种形貌的硫化镍纳米材料,在使用L-胱氨酸,硫代乙酰胺作为硫源以及PEG2000作为表面活性剂时,分别获得了规整的硫化镍实心球,海胆状硫化镍空心微球以及由纳米粒子组成的空心球,分别测定了三者的电化学性能,结果表明海胆状硫化镍空心微球的循环性能较好,循环30次以后放电容量保持在200mAhg^-1左右.%Nickel sulfide nanomaterials with different morphologies were synthesized by solvothermal and hydrothermal methods under different reaction conditions, such as different surfactants and sulfur sources. Regular NiS microspheres, urchin-like mierospheres and hollow spheres were obtained by using L-cystine and TAA as sulfur sources and PEG2000 as surfactant respectively. Electrochemical performance of the samples was analyzed as a cathode of lithium-ion batteries. The results indicated that the cyclic performance of urchin-like NiS hollow micro- spheres was better than that of NiS microspheres and hollow spheres. The discharge capacity of 200 mA h g- ^-1 still remained after 30 cycles.【期刊名称】《南京晓庄学院学报》【年(卷),期】2012(000)006【总页数】5页(P60-64)【关键词】硫化镍;可控合成;电化学【作者】郎雷鸣【作者单位】南京晓庄学院生物化工与环境工程学院,江苏南京211171【正文语种】中文【中图分类】O6140 引言低维结构的纳米材料由于具有独特的物理、化学和光电性能一直以来就受到学者们的关注.随着纳米材料的快速发展,已经成功合成出不同形貌的低维结构的纳米材料[1-6],这些材料在催化、药物传输、光学材料和电池材料等领域表现出极大的潜在应用价值[7-9].不同形貌和结构的材料在性能方面有很大的差异,进而表现出不同的实际应用价值,为了合成性能更为优越的纳米材料,实现对形貌和结构的可控合成是材料合成的关键,因此,材料的不同形貌和结构对其性能的影响一直是科研工作者关注的焦点.在众多的材料中,金属硫化物由于具有特殊的光学、磁学以及催化性质而成为研究的热点.硫化镍除了具有在临界温度时,高温相NiS由顺磁性的导体转变为反铁磁性的半导体这种特殊的性质外,它还在太阳能电池、加氢脱硫催化反应,以及光电导材料和锂电池电极材料等方面都有着广泛的应用[10],因而备受关注.目前,多种形貌的NiS纳米材料被相继合成出来,如纳米晶、纳米棒、三角状纳米棱柱、薄膜、空心球以及通过自组装方法获得的由纳米针或纳米片组成的三维花状或海胆状NiS微球[11-16].但以L-胱氨酸为硫源合成很规整的硫化镍纳米材料还未见报导,此外,系统研究各种因素对硫化镍形貌的影响以及对不同形貌硫化镍纳米材料电化学性能的研究都较为少见.本文主要采用简单的溶剂热法以L-胱氨酸为硫源成功合成了形貌规整的NiS微球,并研究了不同硫源、表面活性剂以及配体对硫化镍形貌的影响,以形貌较好的海胆状NiS空心微球,NiS实心微球和由纳米粒子组成的空心球为电极材料,对其进行了锂离子充放电性能测试,海胆状NiS微球显示出了较好的充放电性能和循环性能.1 实验部分1.1 硫化镍纳米材料的制备准确称取氯化镍和硫源各2 mmol,在磁力搅拌下溶于20 ml乙二醇中,待固体全部溶解后,加入2.0 ml乙二胺,搅拌片刻后将澄清透明溶液转移到高压釜中,将高压釜放入烘箱190℃加热反应24小时得尺寸均一的硫化镍纳米材料.自然冷却到室温,取出反应釜,在1000转/分的转速下离心分离产品并用无水乙醇洗涤产品3—4次.真空干燥后备用.在相同的实验方法下使用不同硫源和表面活性剂合成不同形貌的硫化镍微纳米材料.1.2 锂离子电池电极材料的制备和电化学性能测试将活性物质按NiS∶碳黑∶聚四氟乙烯(PTFE)=8∶1∶1(质量比)的比例均匀混合后,涂在宽度为8mm的铜箔表面,在100℃下真空干燥至少8 h,即可得工作电极.采用金属锂作为对电极,1 mol·L-1 LiPF6的碳酸乙烯(EC)、碳酸二甲酯(DMC)和碳酸二乙酯(DEC)的混合溶液(EC∶DMC∶DEC=1∶1∶1)作为电解液,在氩气保护的手套箱(Labconco glovebox)中进行电池组装,构筑锂离子电池进行充放电容量和循环性能测试.电化学性能测试时采用的是两电极体系,在充放电测试系统(Land CT2001)上进行充放电实验和循环性能测试,相应的充放电电流密度为0.2 mA/cm2,电势范围为3.0~0.1 V.图1 硫化镍微球的a-b)SEM图片,c)XRD和d)EDS谱图2 结果与讨论2.1 硫化镍微球SEM、XRD、EDS分析图1是以L-胱氨酸为硫源合成的NiS微球的扫描电镜图片、XRD以及EDS谱图,图1a是大面积的扫描电镜图,图中可以看到制备的NiS都为形貌规整的球形结构,大小均一,图1b是放大的SEM图片,可以清楚地看到NiS微球尺寸非常均一,平均直径为2—3 μm,从图中NiS微球某些破损处可以看到,所制备的产品有形成空心结构的趋势.物质的相结构通过XRD来进行表征.图1c是制备的硫化镍XRD 图,从图中可以看出所制备的产品为纯六方相(α)的 NiS,XRD 图谱中在2θ角为30.4°、34.7°、45.9°、53.7°处分别对应于α 相 NiS 的(100)、(101)、(102)、(110)特征晶面,与标准卡片(JCPDS 75-0613)完全一致.图1d是NiS的EDS谱图,图中显示产物中只含有硫和镍两种元素,两个小的杂峰来源于基底的碳和氧,镍和硫的原子个数比接近于1∶1,与硫化镍化学式中元素个数比相吻合.2.2 不同硫源、表面活性剂对硫化镍形貌的影响为了比较不同硫源对硫化镍纳米材料形貌的影响,我们使用硫代乙酰胺、硫代氨基脲、硫脲、硫代硫酸钠以及硫化钠替代L-胱氨酸,当使用硫代乙酰胺为硫源时,合成的产品全为大小比较均一的由针状纳米棒组成的海胆状球形结构,图2是海胆状NiS微球的扫描电镜图片和XRD谱图,图2a是大面积的扫描电镜图,图中可以看到制备的NiS微球大小非常均一,图2b是放大的SEM照片,可以清楚地看到NiS微球表面是由针状纳米棒组装而成的海胆状结构,平均直径为6 μm左右,将单个微球进行放大,针状纳米棒和空心结构清晰可见,纳米棒的直径为40 nm左右(图2c).图2d是制备的硫化镍XRD图,从图中可以看出硫化镍产物中存在两种相结构,斜方六面体相(β)的NiS和六方相(α)NiS,前者的2θ 角为18.5°、30.4°、32.8°、35.8°、40.6°、48.9°分别对应(110)、(101)、(300)、(021)、(211)、(131)特征晶面,与标准卡片(JCPDS 12-0041)相一致.后者的2θ角为30.4°、34.7°、45.9°、53.7°分别对应于α 相 NiS 的(100)、(101)、(102)、(110)特征晶面,与标准卡片(JCPDS 75-0613)完全一致.这与使用L-胱氨酸为硫源制备产品的XRD图有很大区别,说明硫源的不同对产品的相结构有很大的影响.图2 海胆状硫化镍空心球的a-c)SEM图片以及d)XRD谱图将硫源换为硫脲后,获得很多由较粗的纳米棒组成的花状结构(图3a),但大小不一,有部分其他不规整的形貌出现.当使用硫代氨基脲后,得到的则是杂乱无章、大小不一的粒子以及少量由针状纳米棒组成的海胆状结构(图3b),但都欠规整.使用硫代硫酸钠作为硫源时,得到的硫化镍则为长短不一、粗细不等的短棒(图3c),短棒平均直径在3微米左右,而使用硫化钠合成的产品都为杂乱无章的粒子(图3d),由此可见,硫源对硫化镍纳米材料的形貌有着极其重要影响.图3 使用不同硫源合成的NiS纳米材料的SEM图片:a)硫脲,b)硫代氨基脲,c)硫代硫酸钠,d)硫化钠表面活性剂在材料合成中常用来控制产品的形貌,不同表面活性剂的使用可以获得形貌相差很大的硫化镍产品,在使用L-胱氨酸作为硫源,水作为溶剂,用PVP和PEG2000作为表面活性剂时,得到了如图4两种形貌的硫化镍纳米材料,图4a是使用PVP作为表面活性剂合成产品的TEM图片,从图中可以看出制备的硫化镍为大小比较均一的球形粒子,平均尺寸在50 nm左右,而使用PEG2000合成的产品则为由许多小粒子组成的空心球结构(图4b),空心球球壁很薄,直径为100 nm左右.通过以上实验说明在相同条件下,使用不同的表面活性剂会得到形貌截然不同的产品,因此可以通过控制表面活性剂的种类来控制产品的形貌.2.3 电化学性能测试锂离子电池是20世纪90年代出现的绿色高能环保电池,由于具有突出的优点而有着广泛的应用.目前,锂离子电池的电极材料也发展非常迅猛,有许多不同物质的或新的结构的电极材料被研制出来,但以金属硫化物为电极材料的研究并不多见,而NiS由于其具有较高的理论容量在锂离子电池中也有着潜在的应用价值.图4 a)NiS纳米粒子和b)NiS空心球的TEM图片因此,我们分别以海胆状硫化镍空心微球(图2)、纳米粒子组成的硫化镍空心球(图4b)和硫化镍微球(图1)为工作电极,金属Li作为对电极,构筑了Li离子电池,测试了三者的锂离子充放电性能.图5a为海胆状硫化镍空心微球的循环性能图,图中显示首次放电容量超过900 mA h g-1,高于文献所报道的NiS电极材料的理论放电容量[17],但电池充放电容量衰减较快,循环四次以后容量衰减到350 mA h g-1左右,随着循环次数的增加逐渐趋于稳定,当循环到30次以后放电容量依然能保持在200 mA h g-1左右.而用硫化镍微球作为电极首次放电容量只有不到500 mA h g-1,循环30次以后稳定在150 mA h g-1左右(图5b),低于海胆状硫化镍空心微球,但相对比较稳定,衰减率不高.虽然NiS空心球首次放电容量也达到800 mA h g-1左右,但电池容量衰减也较快,循环30次以后容量只有不到80 mA h g-1(图5c),循环性能要明显差于前两者.性能出现以上差异主要是由于海胆状NiS空心微球具有空心的内腔和分级结构的壳,有较大的界面面积和方便的扩散通道,有利于电化学充放电过程的进行,因而循环性能较好,而NiS空心球球壁由许多小粒子组成,球壁较薄,结构比较疏松,循环过程中结构易遭破坏而导致充放电容量的显著衰减.NiS微球充放电容量不高主要是由于其实心结构阻碍了锂离子的嵌入与释放,但其结构相对比较稳定,所以放电容量衰减较慢.由此可见,材料的形貌对锂离子充放电性能有显著的影响,结构稳定、界面面积大的材料可获得更高的充放电容量和更好的循环性能.3 小结图5 a)海胆状NiS空心微球、b)NiS微球和c)NiS空心球的循环性能图(电流密度为0.2 mA/cm2,电势范围为3.0-0.1 V)本文主要通过简单的溶剂热法和水热法制备了多种形貌的硫化镍纳米材料,通过控制不同的硫源成功合成了海胆状空心微球、大小均一的实心微球以及纳米棒等形貌的硫化镍,使用不同的表面活性剂获得了球形粒子和空心球,实现了硫化镍纳米材料形貌的可控合成.分别对海胆状空心微球等三种形貌硫化镍进行了电化学性能测试,结果表明海胆状硫化镍空心微球首次放电容量和循环性能都要好于实心微球和由纳米粒子组成的空心球,循环30次以后放电容量保持在200 mAhg-1左右,显示了较好的循环性能,但放电容量相对还较低,如何通过改进实验条件获得形貌新颖,结构稳定,性能优越的纳米材料将是本课题进一步努力的方向.参考文献:【相关文献】[1]Zhu G,Xu Z.Controllable Growth of Semiconductor Heterostructures Mediated by Bifunctional Ag2S Nanocrystals as Catalyst or Source-Host[J].J.Am.Chem.Soc.,2011,133(1):148.[2]Hu J,Bando Y,Zhan J,et al.Fabrication of Silica-Shielded Ga-ZnS Metal-Semiconductor Nanowire Heterojunctions[J].Adv.Mater.,2005,17(16):1964.[3]Liu B,Zeng H C.Fabrication of ZnO“Dandelions”via a Modifi ed Kirkendall Process [J].J.Am.Chem.Soc.,2004,126(51):16744.[4]Zhou J,Ding Y,Deng S Z,et al.Three-Dimensional Tungsten Oxide Nanowire Networks[J].Adv.Mater.,2005,17(17):2107.[5]Xu L,Ding Y-S,Chen C-H,et al.3D Flowerlike α-Nickel Hydroxide with Enhanced Electrochemical Activity Synthesized by Microwave-Assisted Hydrothermal Method [J].Chem.Mater.,2008,20(1):308.[6]Cheng Y,Wang Y S,Jia C,et al.J.Phys.Chem.B,MnS Hierarchical Hollow Spheres with Novel Shell Structure[J].2006,110(48):24399.[7]Cao A M,Hu J S,Liang H P,et al.Self-Assembled VanadiumPentoxide(V2O5)Hollow Microspheres from Nanorods and Their Application in Lithium-Ion Batteries[J].Angew.Chem.Int.Ed.,2005,44(28):4391.[8]Hu J,Ren L,Guo Y,et al.Mass Production and High Photocatalytic Activity of ZnS Nanoporous Nanoparticles[J].Angew.Chem.Int.Ed.,2005,44(8):1269.[9]Lou X W,Deng D,Lee J Y,et al.Self-Supported Formation of NeedlelikeCo3O4Nanotubes and Their Application as Lithium-Ion Battery Electrodes[J].Adv.Mater.,2008,20(2):258.[10]Wong E,Sheeleigh C W,Rananvare S B.Proceedings of the Sixth Annual Conference on Fossil Energy Materials[A].Oak Ridge:Tennessee NETL Publications,1992.[11]Zhang B,Ye X,Dai W,Hou W,Xie Y.Biomolecule-Assisted Synthesis and Electrochemical Hydrogen Storage of Porous Spongelike Ni3S2Nanostructures Grown Directly on Nickel Foils[J].Chem.Eur.J.2006,12(8),2337.[12]Ghezelbash A,Sigman M B Jr,Korgel B A.Solventless Synthesis of Nickel Sulfide Nanorods and Triangular Nanoprisms[J].Nano Lett.,2004,4(4):537.[13]Yu S H,Yoshimura M.Fabrication Powders of Thin Films of Various Nickel Sulfides by Soft Solution-Processing Routes[J].Adv.Funct.Mater.,2002,12(4):277.[14]Zhang W Q,Xu L Q,Tang K B,et al.Solvothermal Synthesis of NiS 3D Nanostructures[J].Eur.J.Inorg.Chem.,2005(4):653.[15]Xu F,Xie Y,Zhang X,et al.From polymer-metal complex framework to 3D architectures:growth,characterization and formation mechanism of micrometer-sized α-NiS[J].New J.Chem.,2003,27(9):1331.[16]Wu Z,Pan C,Li T,Yang G,et al.Formation of Uniform Flowerlike Patterns of NiS by Macrocycle Polyamine Assisted Solution-Phase Route [J].Crystal Growth.Des.,2007,7(12):2454.[17]Han S C,Kim K W,Ahn H J,et al.Charge-discharge mechanism of mechanically alloyed NiS used as a cathode in rechargeable lithium batteries[J].J.Alloys Compd.,2003,361(1-2):247.。

10四氧化三铁磁性纳米材料具有辣根过氧化物酶活性

10四氧化三铁磁性纳米材料具有辣根过氧化物酶活性

四氧化三铁磁性纳米材料具有辣根过氧化物酶活性高利增1 庄洁1 聂棱2 张锦彬1 张宇3 顾宁3 王太宏2杨东玲1 冯静1 Sarah Perrett1 阎锡蕴1,*(1中国科学院生物物理研究所 生物大分子国家重点实验室 北京 100101;中国科学院物理研究所 北京 100190; 3东南大学 生物电子学国家重点实验室 南京 210096)摘要: 磁性纳米材料一直被认为是一种惰性材料,被广泛的应用于生物分离、核磁成像等多个领域。

我们首次发现Fe3O4磁性纳米材料具有辣根过氧化物酶的活性,能够催化过氧化氢发生氧化还原反应。

通过对Fe3O4磁性纳米材料与辣根过氧化物酶的酶动力学特性进行比较,发现Fe3O4磁性纳米材料具有和辣根过氧化物酶类似的催化活性。

Intrinsic Peroxidase-like Activity of Ferromagnetic NanoparticlesGAO Lizeng 1,2,5, ZHUANG Jie1,2,5 , NIE Leng3,5, ZHANG Jinbin 1,2,5,ZHANG Yu 4, GU Ning4, WANG Taihong3, FENG Jing 1,2,YANG Dongling 1,2, Sarah Perrett1,* and YAN Xiyun1,2*(1National Laboratory of Biomacromolecules and 2Chinese Academy of Sciences – University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China. 3Institute of Physics, Chinese Academy of Sciences, Beijing 10080, China. 4State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China. 5Graduate School of the Chinese Academy of Sciences, Beijing, 100049, China.)Abstract: Nanoparticles have been used increasingly in medical and technological applications. Nanoparticles containing magnetic materials, such as magnetite (Fe3O4), are particularly powerful in imaging or separation techniques. These nanoparticles are generally considered to be biologically and chemically inert. Typically, the nanoparticle surface is functionalised by conjugation with antibodies or enzymes, or coating with metal catalysts. Here, we report a nanomaterial that can be used directly as an enzyme mimetic.We found that magnetite nanoparticles possess intrinsic peroxidase activity, which is pH, temperature, particle-size and H2O2 concentration dependent. The activity shows typicalMichaelis-Menten kinetics and double-reciprocal plots indicate a ping-pong mechanism.We found that magnetite nanoparticles could be coated with dextran to improve作者简介:阎锡蕴,女,医学博士,中国科学院生物物理研究所研究员,博士生导师;主要研究肿瘤新型靶分子和抗体的作用机制,结合纳米材料和技术研制新型肿瘤免疫诊断和靶向治疗的方法。

纳米磁性材料ppt课件

纳米磁性材料ppt课件

3. 1988年,法国巴黎大学教授研究组首先在Fe/Cr纳米结构的多 层膜中发现了巨磁电阻效应,引起国际上的反响。此后,美国、 日本和西欧都对发展巨磁电阻材料及其在高技术中的应用投入很 大的力量,兴起纳米磁性材料的开发应用热。1988年,由非晶态 FeSiB退火通过掺杂Cu和Nb控制晶粒,获得了新型的纳米晶软磁材 料; 4. 1988年,人们发现了磁性多层膜的巨磁电阻效应,并由此产生 一门新兴学科:自旋电子学。 5. 1993年,人们通过理论研究发现,纳米级的软磁和硬磁颗粒复 合将综合软磁Ms高,硬磁Hc高的优点获得磁能积比现有最好NdFeB 高一倍的新型纳米硬磁材料。 6. 进人21世纪以来,利用模板生长一维磁性纳米丝的研究很活跃, 材料包括单一金属、合金、化合物、多层材料、复合材料等,应 用目标也从存储介质到细胞分离,多种多样。
(4)生成磁性液体的必要条件 生成磁性液体的必要条件是强磁性颗粒要足够小,
在致可以削弱磁偶极矩之间的静磁作用,能在基液中作无 规则的热运动。基液包括:水基、煤油基、短基、二醋基、 聚苯基、硅油基、氟碳基等。
(5)磁性液体的特点
在磁场作用下可以被磁化,可以在磁场作用下运动, 但同时它又是液体,具有液体的流动性。
二、纳米磁性材料的定义
纳米磁性材料是指材料尺寸限度 Nano Material
在纳米级,通常在1-100nm的准
0D
零维超细微粉,一维超细纤维
(丝)或二维超薄膜或由它们组
成的固态或液态磁性材料。当传
1D
统固体材料经过科技手段被细化
到纳米级时,其表面和量子隧道

4、 磁性液体
(1)磁性液体的定义 磁性液体是由纳米磁性微粒包复一层长链的有机表
面活性剂,高度弥散于一定基液中,而构成稳定的具有 磁性的液体。其中磁性微粒尺寸通常小于10nm,呈超顺 磁性。

强磁性Ni掺杂Fe3O4纳米磁粉的制备及性能研究

强磁性Ni掺杂Fe3O4纳米磁粉的制备及性能研究

一 3 旦 誊
窘 三
图3 掺杂纳米磁粉的红外吸收图
舸p拳煎放 ·,■um●■‘■“^t■a■I“m研
2005年(第四届)中田纳米科技西安研讨会论文集
Nano∞ienee&髓曲肭蛔r 2,11115 the 4蛆Chinese SYml砌aUm Oll
2.3掺杂纳米磁粉的透射电子显徽镜(TEM)测试 从掺杂Fe304纳米磁粉的透射电镜照片可以看出,掺杂Fe30。纳米粒子的粒径基本上在20nm左右,与由谢乐公
嬲the20惦年(第四届)中田纳米科技西安研讨会论文集 4恤Chln雠¥ymimattm on N*n懈elenee&Teehnology
薯墨圈_蕾皇曩焉圈_置冒冒——_置墨—墨_薯瞄囊_—一1 1"
li
强磁性Ni掺杂Fe304纳米磁粉的制备及性能研究
王芸1 马季玫1’2沈新元1 (1.东华大学材料科学与工程学院,东华大学纤维材料改性国家重点实验室,上海200051)
神、铀眷煎放 —,^■N■j‘I●“■t■,■■∞研
21105年(第四届)中田纳米科技西善£研讨会}论文jI

2005 the 4'k Chinese Symposium on Nauoscience&Tecimology
NiCl2·6H:O
Fe3+
2+
Fe
图1掺杂磁流体的制备流程图 1.3试剂及仪器
·286·一
厂/一一
.f

萼£a)一loq叮蠲叠0霉‘ -、|
. 一—一//
州icfield(G) 3500 ua000-2500-2'00_3·1500 1000—500

3∞加∞15∞2000 2500珊Ⅺ3500
图5掺杂纳米磁粉的饱和磁化曲线

一种纳米陶瓷涂层锅具的鉴别方法

一种纳米陶瓷涂层锅具的鉴别方法

第42卷第6期2023年11月大连工业大学学报J o u r n a l o fD a l i a nP o l y t e c h n i cU n i v e r s i t yV o l .42N o .6N o v .2023收稿日期:2022-05-10.基金项目:国家重点研发计划(2018Y F C 1603203).作者简介:王贵滨(1984-),男,高级工程师;通信作者:王秋艳(1974-),女,研究员.D O I :10.19670/j .c n k i .d l g yd x x b .2023.0612一种纳米陶瓷涂层锅具的鉴别方法王贵滨1, 万 超1, 孙 赟1, 王秋艳1, 孙晓飞1, 赵彤彤1, 刘华权2(1.大连海关技术中心,辽宁大连 116001;2.南京卓康医药科技有限公司,江苏南京 210009)摘要:为鉴定市场在售的进口纳米陶瓷涂层锅具涂层材料的真实性,寻找一种简单㊁有效的鉴别检测方法㊂采用红外光谱㊁波长色散X 荧光光谱㊁X 射线衍射光谱和扫描电子显微镜技术相结合的方法检测进口纳米陶瓷涂层锅具的涂层材料㊂对盲采的市面上销售的5种声明为纳米陶瓷涂层锅具涂层材料进行定性分析,结果表明,Z 1-32c m ㊁C 1-18c m ㊁B 1-24c m 三种锅具为纳米陶瓷涂层,其余两种为聚四氟乙烯涂层㊂该方法的建立为食品接触材料中纳米陶瓷涂层的鉴别提供了一种高效的㊁准确的检测途径㊂关键词:纳米陶瓷;涂层;锅具;鉴别方法中图分类号:T Q 630.7文献标志码:A文章编号:1674-1404(2023)06-0452-04A m e t h o d f o r i d e n t i f y i n g na n o c e r a m i c c o a t e d c o o k w a r e W A N G G u ib i n 1, W A N C h a o 1, S U N Y u n 1, W A N G Q i u ya n 1,S U N X i a o f e i 1, Z H A O T o n g t o n g 1, L I U H u a qu a n 2(1.D a l i a nC u s t o m sT e c h n o l o g y Ce n t e r ,D a l i a n 116001,C h i n a ;2.N a n j i n g C h o i p h a r mT e c h n o l o g y C o m p a n y L i m i t e d ,N a n j i n g 210009,C h i n a )A b s t r a c t :T o i d e n t i f y t h e a u t h e n t i c i t y o f i m p o r t e dn a n oc e r a m i c c o a t e dc o o k w a r e c o a t i n g ma t e r i a l so n t h em a r k e t a n df i n das i m p l ea n de f f e c t i v e i d e n t i f i c a t i o n m e t h o d .Ac o mb i n a t i o no f I R ,w a v e l e n gt h d i s p e r s i v eXr a y f l u o r e s c e n c es p e c t r o s c o p y ,Xr a y d i f f r a c t i o ns p e c t r o s c o p y,a n dS E M w e r eu s e dt o d e t e c t t h ec o a t i n g m a t e r i a l so fi m p o r t e d n a n oc e r a m i cc o a t e dc o o k w a r e .Q u a l i t a t i v ea n a l ys i s w a s c o n d u c t e do n5d e c l a r e dn a n oc e r a m i c c o a t i n g m a t e r i a l s f o r c o o k w a r e s o l d i nb l i n ds a m p l i n g ma r k e t .T h e r e s u l t s h o w e d t h a t Z 1-32c m ,C 1-18c ma n dB 1-24c m w e r en a n o c e r a m i c c o a t i n gs ,w h i l e t h eo t h e r t w ow e r e p o l y t e t r a f l u o r o e t h y l e n ec o a t i n g s .T h i sm e t h o d p r o v i d e sa ne f f i c i e n t a n da c c u r a t ed e t e c t i o n a p p r o a c h f o r n a n o c e r a m i c c o a t i n gs i d e n t i f i c a t i o n i n f o o d c o n t a c tm a t e r i a l s .K e y wo r d s :n a n o -c e r a m i c ;c o a t i n g ;c o o k w a r e ;i d e n t i f i c a t i o nm e t h o d 0 引 言纳米陶瓷是一种通过有效分散㊁复合使异质相纳米颗粒均匀㊁弥散地保留于陶瓷基质结构中而得到的复合材料[1],其极小的粒径㊁大的比表面积和优异的化学性能,显著降低了材料的烧结致密化程度,使材料的组成晶粒结构致密化㊁均匀化㊂另外,纳米陶瓷晶界数量大幅度增加,改善陶瓷材料的性能,使其在硬度㊁韧性㊁耐磨性㊁结合强度㊁抗蚀性㊁致密度等方面得到显著提高,具有十分广阔的应用前景[2]㊂目前市场上常见的炉式加热纳米陶瓷涂层锅具使用陶瓷材料主要包括二氧化硅纳米颗粒㊁二氧化钛纳米颗粒和纳米黏土,具有耐磨损㊁耐高温㊁耐酸碱腐蚀㊁超疏水抗菌性能等优点[3]㊂传统聚四氟乙烯涂层不粘厨具在使用温度超过300ħ时会发生分解㊂纳米陶瓷涂层不粘炊具作为聚四氟乙烯涂层不粘产品的替代品,能够较好克服聚四氟乙烯涂层的使用缺陷[4]㊂此类商品还没有配套的产品标准,导致市售商品真伪难辨,价格差异巨大,存在较大的使用安全风险,因此亟须建立一套科学的鉴别方法,以促进纳米陶瓷涂层产品行业发展㊂本实验运用系列光谱技术结合扫描对市售进口纳米陶瓷不粘厨具进行材料鉴别,建立了一种准确㊁快速的鉴别方法㊂1实验1.1材料Z1-32c m陶瓷不粘长柄炒锅,德国;C1-18c m 陶瓷涂层汤锅,韩国;O1-28c m无盖陶瓷涂层煎锅,日本;B1-24c m陶瓷不粘煎锅,意大利;B2-28c m陶瓷不粘平底锅,德国㊂1.2方法1.2.1红外光谱检测用刀片将涂层从锅具表面剥离,研磨成粉末,与溴化钾以体积比1ʒ10混合研磨后压片㊂用红外光谱仪透射模式进行测试,波数4000~ 400c m-1,根据谱库进行分析㊂1.2.2波长色散X荧光光谱检测将锅具机械裁剪为直径3.5c m平整样片,涂层面向上放入测样模具㊂X光管激发电压45k V,电流45m A,准直器面罩孔径30m m,峰位测量时间40s,背景测量时间20s,氩-甲烷气体50m L/m i n,真空光路全扫描,根据谱库进行比对半定量分析涂层主要元素㊂1.2.3 X射线衍射检测将锅具机械裁剪为直径3c m平整样片,涂层面向上放入进样槽㊂扫描角(2θ)5ʎ~70ʎ,连续扫描,扫描速度20ʎ/m i n,铜靶材,管压40k V,管流40m A,根据谱图匹配分析陶瓷涂层晶型元素㊂1.2.4扫描电镜检测用刀片将涂层从锅具表面剥离,研磨成粉末后将其与铂(P t)粉末混合采用离子溅射镀膜法将其均匀喷涂在观测台上㊂二次电子探测器加速电压25k V,放大倍数3000~20000倍,运用L i v e A n a l y s i s进行E D S分析㊂2结果与讨论2.1红外光谱对锅具及其涂层材料分析图1(a)中,锅具涂层在1115.67c m-1处为硅-氧键特征峰,1274.70c m-1处为甲基硅特征峰㊂在776和2968c m-1的峰表明这类涂层中存在 C H2和 C H3[5],与聚甲基硅氧烷的标准谱图相近(图1(d))㊂在1008c m-1处有一个吸收峰,与硅-氧键的伸缩振动[6]特征吸收峰对应㊂与赛默飞世尔科技公司的商用谱库比对,与图1(a)中涂层红外匹配度最好的是聚二甲基硅氧烷,匹配度72.20%㊂图1(b)和图1(c)中,陶瓷涂层红外匹配度最高的均为硅酸钠/铝,匹配度分别为74.36%和72.63%㊂在1000~1100c m-1有一个吸收峰,对应官能团为硅-氧键,在1250~ 1300c m-1有甲基硅特征峰㊂图2(a)中,涂层在1146.35和1200.61c m-1处为碳-氟伸缩振动峰,637.5和553.4c m-1处为碳-氟弯曲振动峰,与聚四氟乙烯的标准谱图特征吸收峰对应(图2(c)),图2(b)和图2(c)也具有相同的特征峰㊂图2(a)和图2(b)中,两种锅具涂层材料均为聚四氟乙烯(特氟龙T M),匹配度分别为93.30%和90.81%㊂2.2X荧光光谱仪对锅具涂层和基材元素的分析利用波长色散X荧光光谱仪对Z1-32c m㊁C1-18c m和B1-24c m三种锅具的涂层和基材元素进行分析,结果见表1㊂从表1可以看出,三种锅具涂层中的主要元素均为硅(S i),其他主要成分为钛(T i)㊁铝(A l),表明涂层主要以硅㊁铝㊁钛等化合物形式存在㊂2.3X射线衍射仪对锅具晶体结构分析通过X射线衍射仪对三种锅具进行晶体结构分析,如图3所示㊂图3(a)中, 1 为镁铬尖晶石, 5 为钴镁硅酸盐,图3(b)中存在明显的铝铬合金晶体和氧化钛晶体,图3(c)中存在明显的硅铝合金晶体和氧化钛晶体,与天然沸石结构相近[7]㊂2.4扫描电镜对涂层进行微观形貌表征选择具有陶瓷涂层特征的Z1-32c m锅具涂层进行微观形貌表征,如图4所示㊂涂层碎片放大到3000倍,可观察到涂层表面的团状物和微小的孔洞结构(图4(a));放大到20000倍,可以354第6期王贵滨等:一种纳米陶瓷涂层锅具的鉴别方法(a )Z 1-32cm (b )C 1-18cm(c )B 1-24cm (d)聚甲基硅氧烷标准品图1 Z 1-32c m ㊁C 1-18c m ㊁B 1-24c m 三种锅具涂层与聚甲基硅氧烷标准品红外谱图比对F i g .1 C o m p a r i s o no f i n f r a r e d s p e c t r a o f Z 1-32c m ,C 1-18c m ,B 1-24c mc o a t i n g s a n d p o l y m e t h yl s i l o x a ne (a )O 1-28c m(b )B 2-28c m(c)聚四氟乙烯标准品图2 O 1-28c m ㊁B 2-28c m 两种锅具涂层与聚四氟乙烯标准品红外谱图比对F i g .2 C o m p a r i s o no f i n f r a r e d s p e c t r a o fO 1-28c ma n dB 2-28c mc o a t i n g s a n d p o l y t e t r a f l u o r o e t h yl e n e表1 涂层和基材主要元素分析T a b .1 A n a l y s i s o f c o a t i n g an d s u b s t r a t e e l e m e n t s 品名涂层基材元素w /%元素w /%Z 1-32c mC 1-18c mB 1-24c mS i 71T i10F e 7C r 6S i73A l7T i6F e6S i74T i24A l2F e 79C r 18A l 88S i 8A l 76F e14观察到明显的纳米级颗粒,粒径分布在80~330n m (图4(b ))㊂对碎片使用能谱仪进行元素分析可知其主要成分为硅㊁氧㊁碳元素㊂结合色散X 荧光光谱仪和X 射线衍射,可以看出涂层是由嵌入钛㊁铬和铝颗粒的硅酸盐基质组成㊂通过不同方法检测的锅具材料见表2㊂Z 1-32c m ㊁C 1-18c m ㊁B 1-24c m 三种锅具涂层具有较为明显的无机硅结构[8],并伴有多种金属(钛㊁铝㊁铬)氧化物[9]以纳米级颗粒的形态分布,可能是以碳化硅(S i C )或天然陶土㊁矿石粉末为基体材料结合了三氧化二铝㊁二氧化钛等分散相,以水性涂料的形式低温固化制成的复相纳米陶瓷涂层产品[10],或以纳米级聚甲基硅氧烷为载体结合了具有功能的无机晶体的复相纳米陶瓷涂层产品,产454大 连 工 业 大 学 学 报第42卷(a)Z1-32c m(b)C1-18c m(c)B1-24c m图3三种涂层的X射线衍射图谱F i g.3 Xr a y d i f f r a c t i o n p a t t e r n s o f t h e t h r e e c o a t i n gs(a)放大3000倍(b)放大20000倍图4Z1-32c m锅具涂层不同放大倍数的扫描电镜照片F i g.4 S E Mo f Z1-32c mc o a t i n g a t d i f f e r e n tm a g n i f i c a t i o n s表2锅具的材料分析T a b.2 M a t e r i a l a n a l y s i s o f p u r c h a s e d p a n s品名原产国涂层类型基材类型Z1-32c m德国天然陶土(含镁铬尖晶石,钴镁硅酸盐)不锈钢C1-18c m韩国聚甲基硅氧烷嵌入铝铬合金晶体和氧化钛晶体铝合金O1-28c m日本聚四氟乙烯铝合金B1-24c m意大利天然矿石(含硅铝合金晶体和氧化钛晶体)不锈钢(与涂层的接触面)/铝合金B2-28c m德国聚四氟乙烯铝合金品符合纳米陶瓷涂层概念基本要求㊂O1-28c m和B2-28c m两种锅具涂层均为标准的聚四氟乙烯涂层,运用石材纹理或晶体色泽填料的喷涂技术给消费者带来视觉上的误导,冒充纳米陶瓷材料㊂3结论扫描电镜与能谱仪结合使用可以直接㊁精确地进行纳米级涂层颗粒分析㊂选取几款市售具有代表性的主流纳米陶瓷涂层锅具产品,使用定性检测方法从材料类别角度对纳米陶瓷涂层锅具进行了快速㊁准确㊁简便的定性分析㊂参考文献:[1]郑衡,宋宜诺,王建明,等.纳米陶瓷的应用及发展趋势[J].化工文摘,2008(2):42-44.[2]武创,郗雨林,王其红,等.纳米陶瓷涂层的性能及应用[J].材料开发与应用,2011,26(3):78-83.[3]高党鸽,赵洲洋,吕斌,等.超疏水抗菌表面的研究进展[J].精细化工,2021,38(5):874-881.[4]A D D O N T I M S,N O R R I SS,S C O T TK,e t a l.C o n-s u m e ru s ee f f e c t so nn a n o p a r t i c l er e l e a s ef r o m c o m-m e r c i a l l y a v a i l a b l ec e r a m i cc o o k w a r e[J].F o o dC o n-t r o l,2018,87:31-39.[5]R O S S I S,G A IG,D EB E N E D E T T O R.F u n c t i o n a la n d p e r c e p t i v e a s p e c t s o f n o n-s t i c kc o a t i n g s f o r c o o k-w a r e[J].M a t e r i a l s&D e s i g n,2014,53:782-790.[6]于宏伟,解立斌,白良魁,等.硅氧树脂变温傅里叶变换衰减全反射红外光谱研究[J].精细石油化工进展,2015,16(4):54-57.[7]M E L C H I O R M T,V A U G HA N D E W,J A C O B-S O N A J.C h a r a c t e r i z a t i o no ft h es i l i c o n-a l u m i n u md i s t r i b u t i o n i ns y n t he t i cf a u j a s i t e sb y h ig h-r e s o l u t i o ns o l i d-s t a t e s i l i c o n-29NM R[J].J o u r n a l o f t h eA m e r i-c a nC h e m i c a l S o c i e t y,1982,104(18):4859-4864.[8]周宁琳.聚二甲基硅氧烷/蒙脱土纳米复合材料的合成㊁结构及性能[D].南京:南京工业大学,2003.[9]卢林,马壮,王富耻,等.等离子喷涂纳米和微米A l2O3-T i O2涂层摩擦磨损性能研究[J].北京理工大学学报,2010,30(7):878-882.[10]侯桂芹,高水静.纳米陶瓷涂料介绍及其应用现状[J].科技视界,2014(12):135.(责任编辑:郝淼闻)554第6期王贵滨等:一种纳米陶瓷涂层锅具的鉴别方法。

纳米晶软磁材料的磁性能

纳米晶软磁材料的磁性能

15 2007/1 总第197期 国内统一刊号 CN31-1424/TB
学术论文 Academic Papers
引起晶体自由能的改变,即引起畴壁体积能或畴壁面 积能的改变。这些能量的改变就是畴壁位移必须克服 的晶体内部的阻滞。
影响畴壁位移的因素: 内应力不均匀对畴壁位移的阻滞作用表现在:(1)对 畴壁能密度的影响。(2)体积效应对90°畴壁位移的影 响。(3)使畴壁弯曲。(4)产生内退磁场等。
3.3 磁导率与纳米晶粒间磁畴作用的关系 纳米合金受磁化的过程,就是外加磁场对磁畴的
作用过程,也就是外加磁场把各个磁畴的磁矩方向转 到外磁场方向(或近似外磁场方向)的过程。它是通 过二种形式进行的,一是磁畴壁的迁移,一是磁畴的 旋转。在磁化过程中有时只是一种形式起作用,有时 是二种形式同时起作用。磁畴的形状、大小、分布及 各畴的磁化方向决定于材料的内禀性能,如:交换能 密度,各向异性,磁致伸缩,晶体不完整性(如内应 力、夹杂的大小和分布)及温度等,同时还受晶粒的 形状、大小、表面取向、外应力和外加磁场的影响。
此外,磁致伸缩和磁弹性能也影响畴壁位移过程, 因为壁移也会引起材料某一方向的伸长,另一方向则 要缩短。
所以,要提高磁导率,必须减小如上所述的对壁 移产生的各种阻滞作用。 3.4 Pcm~T曲线的特征
从图2中可知,样品在低温段损耗较大,而在高温 段的损耗尤其大,在 140℃~200℃温度段的损耗为最 低。
fecunbsib合金在中频感应炉熔炼成锭一采用单辊法制各非晶薄带然后在一定温度下脆化处理一处理后的薄带破碎加工成非晶粉末一非晶粉末与粘结剂绝缘剂均匀混合压制成粉一粉末坯进行微晶化处理获得纳米晶组织一磁粉芯样品表面喷塑处理一进行磁性能检测
学术论文 Academic Papers

纳米磁性材料制备方法PPT课件

纳米磁性材料制备方法PPT课件

根据应用需求选择合适的制备方法
高纯度、高性能要求
对环境友好
选择化学制备方法,如溶胶-凝胶法, 可以得到纯度高、粒径均匀的纳米磁 性材料。
选择物理制备方法更为合适,因为这 种方法不涉及化学反应,对环境影响 较小。
大规模生产
选择物理制备方法或化学制备方法均 可,但化学制备方法更具有优势,可 以大规模生产且成本较低。
随着个性化需求的增加,定制化纳米磁性 材料的需求也将增加,制备方法将更加灵 活多样。
对未来研究的展望
新材料探索
寻找具有优异性能的新型纳米 磁性材料,以满足不断发展的
应用需求。
跨学科融合
结合其他领域的技术和方法,如 生物学、化学等,为纳米磁性材 料的制备提供新的思路和途径。
智能化与自动化
利用先进技术实现制备过程的 智能化和自动化,提高生产效 率和产品质量。
利用酶催化制备纳米磁性材料
酶催化制备纳米磁性材料是一种高效、环保 的生物制备方法。该方法利用酶的催化作用 ,通过化学反应制备出具有磁性能的纳米材 料。
酶催化制备纳米磁性材料常用的酶有氧化还 原酶、水解酶、裂合酶等,其中氧化还原酶 最为常用。酶催化制备纳米磁性材料的过程 一般包括酶催化反应、分离纯化等步骤。在 制备过程中,可以通过调节反应条件、优化 酶的筛选和纯化工艺等方法来提高材料的产
化学气相沉积法
化学气相沉积法是一种制备纳米磁性 材料的方法,通过将反应气体在一定 条件下进行化学反应,生成所需的纳 米磁性材料。该方法具有制备温度低、 可控制备薄膜的成分和厚度等优点。
VS
化学气相沉积法的缺点是设备成本高、 反应气体具有毒性或腐蚀性,且制备 过程中需要严格控制反应条件。
液相法制备纳米磁性材料
液相法制备纳米磁性材料是一种常用的方法,通过控制溶液中的反应条件,如温度、pH值、浓度等,使金属离子或化合物在 溶液中发生反应,生成所需的纳米磁性材料。该方法具有操作简单、成本低、可批量生产等优点。

液相还原法制备纳米镍粉

液相还原法制备纳米镍粉

液相还原法制备纳米镍粉张涛;刘洋;赵凯;孙凤莲【摘要】In order to optimize the preparation process of nano-nickel powder by liquid phase reduction method, reaction rate, product purity, and product particle diameter were selected as key research aspects when using nickel sulfate as main salt and hydrazine hydrate as reducing agent in water bath at 75 ℃. Effects of the addition of NaOH, solvent types, presence or absence of dispersant, molar ratio of reactants, and feed sequences of reactants on the preparation of nickel powder were studied. The product nickel powder was characterized by XRD and TEM methods. The results showed that the addition of NaOH could affect the composition of the product, the solvent type could affect the particle diameter of the product, dispersant could affect the agglomeration of product particles, the molar ratio of the reactants and feed sequences of the reactants determined the reaction time. In order to prepare relatively pure, small, and well dispersed nickel nanosphere powder at a higher reaction ra te, PVP, NaOH, N2H4·H2O, Ni SO4·6H2O were added in sequence into the solvent of C2H5 OH and C2H6O2. The amount of Na OH addition should be controlled precisely (0. 015 mol to 0. 02 mol), which can produce intermediate product and provide alkaline condition for follow-up reactions. Relatively high reaction rate was obtained with the molar ratio of main salt and reducing agent (N2H4: Ni2 +)of 4: 1.%为优化纳米镍粉的液相还原法制备工艺, 本文以硫酸镍为主盐, 水合肼为还原剂, 水浴75℃条件下, 选取产物纯度、产物粒径、反应速率等关键指标开展工艺优化试验, 分别研究了Na OH 加入量、溶剂种类、有无分散剂, 反应物摩尔比, 加料顺序五个变量对于镍粉制备的影响.采用XRD和TEM对产物镍粉进行了表征.结果表明, Na OH的加入量影响产物组成, 溶剂种类影响产物粒径大小, 分散剂对产物的团聚状态有影响, 反应物摩尔比以及加料顺序影响体系的反应速率.最终获得如下的优化工艺:Na OH的加入量在0. 015~0. 02 mol, 乙醇和乙二醇做反应溶剂, 加入分散剂PVP, 反应物摩尔比为4:1以及采用氢氧化钠与水合肼混合后再向混合溶液中加入硫酸镍溶液的顺序可以获得较为纯净、粒径较小、分散性好的球形纳米镍粉, 并且有较快的反应速率.【期刊名称】《材料科学与工艺》【年(卷),期】2018(026)006【总页数】6页(P51-56)【关键词】液相还原法;纳米镍粉;粒径;对比试验【作者】张涛;刘洋;赵凯;孙凤莲【作者单位】哈尔滨理工大学材料科学与工程学院,哈尔滨 150040;哈尔滨理工大学材料科学与工程学院,哈尔滨 150040;哈尔滨理工大学材料科学与工程学院,哈尔滨 150040;哈尔滨理工大学材料科学与工程学院,哈尔滨 150040【正文语种】中文【中图分类】TM241镍作为常见的合金化组分被广泛应用.在电子制造领域的互连材料和镀层大量使用镍及其合金.纯镍具有十分优良的耐高温性能、耐腐蚀性能,良好的焊接和加工性能,镍还具有铁磁性,区别于常规的镍粉,纳米镍粉由于具有比表面积大,表面活性高,催化活性好,良好的导电导磁等物理化学性能而被广泛应用于高性能电池材料、高效催化剂、导电浆料、磁流体、医学、火箭固体燃料推进剂等领域[1-7].同化学气相沉积法[8]、羟基镍分解法[9]、等离子体离子沉积法[10] 、电沉积法等[11]纳米镍粉的制备方法相比,液相还原法由于工艺简单、实验成本相对较低、产物粒径与形貌容易控制等优点成为常用的纳米镍粉的制备方法.但是在液相还原法制备纳米镍粉的研究工作中,研究者一般将溶剂种类、分散剂、还原剂,搅拌方式,反应体系温度和PH值等因素作为影响纳米镍粉形貌与粒径的研究重点[12-14],而对于还原剂与Ni2+的摩尔比、加料顺序对实验结果的影响研究很少,因此我们还研究了还原剂与Ni2+的摩尔比以及加料顺序两个变量对反应时间与反应速率的影响.这对于后续研究者开展纳米镍粉制备的工作具有一定的参考价值.1 试验1.1 试验试剂和仪器实验所用化学试剂有硫酸镍、无水乙醇、乙二醇、去离子水、氢氧化钠、水合肼以及聚乙烯吡咯烷酮(PVP).主要仪器有恒温水浴锅(DF-101S型,巩义市予华仪器有限责任公司),电动搅拌器(JJ-1型,常州国华电器有限公司)、电子分析天平(FA20048型,上海精密科学仪器有限公司)、真空干燥箱(DHG-9055A型,上海一恒科技有限公司)、高速离心机(TDL-S-A型,ANKE公司),真空泵(RS-2旋片型,上海树立仪器仪表有限公司).制备的纳米镍粉使用FEI公司的通用型扫描电子显微镜 Quanta200,以及荷兰帕纳科多功能粉末X射线衍射仪进行了表征.1.2 纳米镍粉的制备在三口烧瓶中加入一定量的硫酸镍,并量取一定量的去离子水加入烧瓶用玻璃棒搅拌至分散均匀,再称取一定量的聚乙烯吡咯烷酮(PVP)加入烧瓶中,将烧瓶连接电动搅拌器置于75 ℃的水浴锅中并对烧瓶中的溶液进行搅拌.将预先准备好的水合肼溶液缓慢滴加至三口烧瓶中,之后加入氢氧化钠溶液对PH值进行调节,待溶液颜色变为黑色时再继续反应,以保证反应进行完全,此时的溶液即是含纳米镍粉的溶液.最后将三口烧瓶中的溶液倒入离心管中,在离心机转速为8 000 r/min,离心时间5 min的条件下分别用去离子水、无水乙醇各自离心洗涤3次.在洗涤干净的纳米镍粉中倒入一定量的无水乙醇,然后将其置于真空度为10 Pa,温度为60 ℃的真空干燥箱中充分干燥处理,最终得到纳米级镍粉.2 结果与讨论本文采用液相还原的实验方法制备纳米镍粉,通过还原剂将可溶性镍盐溶液中的Ni2+还原为镍的晶核,生成镍粉的过程可以看成由3个部分组成:(1)预成核阶段(反应诱导期);(2)成核阶段:Ni2+被还原形成镍晶核;(3)晶核生长阶段:Ni2+被镍晶核表面吸附,进一步被还原,使镍晶核长大.制备的镍粉粒径和形貌与反应过程中的形核和长大密切相关.理论上为了获得粒径小且均匀分布的纳米镍粉需要对形核和长大两个过程加以控制,而影响形核与长大的因素很多,本文着重从NaOH加入量、反应溶剂种类、分散剂、还原剂与Ni2+的摩尔比、加料顺序这五个方面进行了研究.2.1 氢氧化钠加入量对反应产物的影响氢氧化钠的加入量对反应体系有着很大的影响,它在反应体系中主要有两个方面的作用.由反应方程式:NiSO4+2NaOH=Ni(OH)2↓+Na2SO4 ,N2H4·H2O+2Ni(OH)2=2Ni+N2↑+5H2O.可知,NaOH一方面作为反应物参加反应体系,另一方面提供水合肼还原Ni2+所需要的碱性环境,因为在酸性介质中N2H4·H2O的还原电位为+0.23 V,在碱性介质中的还原电位为-1.6 V,而Ni2++2eNi的标准电极电位为-0.23 V,因此水合肼只有在碱性条件下才能将Ni2+还原为镍粉.由此知道氢氧化钠加入量是影响反应体系的一个非常重要的因素,如果加入量过少,会导致碱性环境达不到水合肼还原的条件,从而产生还原不彻底的问题;如果加入量过多,则会导致反应体系生成多余的氢氧化镍沉淀.无论是哪一种,都会对反应产物镍粉的纯度造成不利影响. 通过控制其它量(初始镍盐为0.01 mol,浓度为0.25 mol/L,还原剂与Ni2+摩尔比为20,分散剂含量为主盐质量的10%,水浴温度为75 ℃)不变的情况下,单一改变NaOH(浓度为1 mol/L)的加入量.取3组变量分别为0.015、0.02和0.025 mol,即NaOH与Ni2+的摩尔比分别为0.75∶1、1∶1和1.25∶1,进行对比实验.然后利用X射线衍射仪对产物进行了物相分析以及半定量分析,图1为NaOH 量含量为0.015、0.02和0.025 mol时产物的衍射峰与标准PDF卡片比对图.如图1(a)所示,当NaOH加入量为0.015 mol时,产物中含有两种物质,NiSO4·3N2H4和Ni.其中NiSO4·3N2H4是水合肼加入硫酸镍溶液中生成的中间产物,其在溶液中的颜色为粉色,按照化学反应机理可知随后其将与NaOH继续发生反应.由于NaOH加入量不足,导致产物中存在部分NiSO4·3N2H4.如图1(b)所示,当NaOH加入量为0.02 mol时,产物中也含有两种物质,Ni(OH)2和Ni.并且Ni(OH)2的相对含量为90%,而Ni的相对含量为10%,由此可知NaOH已经过量,推测如果进一步添加NaOH,那么将会全部生成Ni(OH)2沉淀.如图1(c)所示,当NaOH加入量为0.025 mol时,可知其产物中只存在一种物质Ni(OH)2,从而证明了上述猜测的正确性.从实验结果可知NaOH加入量过多时会产生浅绿色Ni(OH)2,加入量过少时会产生紫色絮状物NiSO4·3N2H4.图1 当NaOH 含量为(a) 0.015 mol; (b) 0.02 mol; (c) 0.025 mol时产物的XRD 谱图Fig.1 XRD spectra of as-prepared products when the NaOH content was (a) 0.015 mol; (b) 0.02 mol; (c) 0.025 mol从以上实验结果分析可知,要想获得纯净的镍粉,必须严格控制NaOH的含量,而在本实验条件下当1 mol/L NaOH的加入量在0.015~0.02 mol时才能获得相对纯净的镍粉.2.2 溶剂种类对反应产物的影响通过控制其他量(还原剂N2H4与Ni2+摩尔比为4∶1,溶液PH值为11,分散剂含量为主盐质量分数的10%,水浴温度为75 ℃)不变的条件下,分别用去离子水、乙醇和乙二醇作为反应溶剂研究了其对纳米镍粉粒径的影响.表1分别为水、乙醇和乙二醇作为反应溶剂时计算生成镍粉的粒径所需的数据,其中衍射峰角度θ和半高宽B由XRD数据所得.谢乐公式又名Scherrer公式,是常用的XRD分析晶粒尺寸公式,通过该公式来计算制备的纳米镍粉的尺寸.上式中K为谢乐常数,它的数值为0.89;D为晶粒垂直于晶面方向的平均厚度;B是积分的半高宽;λ是X射线的波长,其数值等于0.154 056 nm,θ为半衍射角.表1 计算不同反应溶剂下镍粉粒径所需数据Table 1 Data required for calculating particle size of nickel powders under different reaction solvents溶剂种类衍射峰角度θ/(°)半高宽B/rad去离子水44.4430.005 451.9030.007 876.3340.007 6乙醇44.6320.006 351.7450.011 176.5080.011 1乙二醇44.4970.006 651.7900.011 976.3820.011 2由表1通过计算可知,水作溶剂时反应得到的镍粉在(111)、(200)和(222)3个晶面上的平均粒径分别为28.34、28.49和30.42 nm.乙醇作溶剂时镍粉3个晶面上的平均粒径分别为30.57、20.23和53.50 nm.乙二醇作反应溶剂时得到的镍粉3个晶面上的平均粒径分别为29.14、18.43和53.04 nm.由上述计算所得的平均粒径大小可知,不同的反应溶剂会对产物镍粉的平均粒径产生影响.其中水作为溶剂时,粒径变化较稳定.乙二醇作为溶剂时,可以得到较小的粒径,从溶剂本身的性质来说,乙二醇具有两个—OH集团,可与镍相互作用,使镍粉表面形成一层薄的保护膜,所以推测乙二醇作为溶剂时可以防止纳米镍粉的长大和团聚,其分散性应该是优于水作为溶剂时的分散性.乙醇和乙二醇作为反应溶剂时得到的镍粉粒径大小相差不大.2.3 聚乙烯吡咯烷酮(PVP)对反应产物的影响聚乙烯吡咯烷酮(PVP)是常用的分散剂和保护剂.实验过程中通过控制其它量(还原剂与Ni2+摩尔比为4∶1,溶液PH值为11,水浴温度为75 ℃)不变,在反应时不添加PVP,对反应产物镍粉进行了XRD衍射分析,通过分析结果计算了镍粉的平均粒径,并与添加PVP时的情况做了对比,如表2所示.表2 水作溶剂不加分散剂时计算粒径所需数据Table 2 Data required for calculating particle size of nickel powders with water as solvent and without dispersant衍射峰角度θ/(°)半高宽B/rad44.4650.002 751.6720.003 576.5820.009 2根据谢乐公式,由表2可知,镍粉3个晶面上的平均粒径分别为71.15、63.17和64.22 nm.对比表2和表1,用水作溶剂不加分散剂PVP时,其3个衍射晶面上的平均粒径都大于添加PVP时的平均粒径.由此可知反应时加入分散剂PVP,可以减少纳米镍粒子团聚,得到较小粒径的产物.这是因为在反应过程中溶液中的PVP吸附在已经还原出来的Ni晶核特定的晶棱晶角上,降低其晶面结合能,减少了晶棱晶角对镍原子的吸附作用,使其生长速度减慢.并且在溶液中形成镍粒子后,PVP的疏水端长链烷基端通过物理作用吸附到镍颗粒的表面,亲水端则扩展到溶液中,从而阻碍了颗粒之间的吸附和团聚,最终得到分散性较好的纳米镍粉.所以理论上推测不加或加入PVP过少,反应将进行得很快,但所得的颗粒团聚会很严重,并且晶粒较粗;而如果PVP加入过多,因为PVP在溶剂中的溶解度是一定的,将会导致部分PVP不溶于溶剂而阻碍反应的进行,使反应不完全.2.4 还原剂N2H4与主盐Ni2+摩尔比对反应速率的影响还原剂水合肼在碱性条件下,会发生以下反应:N2H4·H2O+2Ni(OH)2→2Ni+N2↑+5H2O.(1)当水合肼过量时:Ni2++3N2H4·H2O+3OH-[Ni(NH3)6]2- +6H2O.(2)N2H4·H2O+2[Ni(NH3)6]2-+4OH-N2↑+2Ni+5H2O+12NH3.(3)副反应:3N2H4N2↑+4NH3↑.(4)由式(1)和式(3)可知,这两种反应都会生成Ni粉,还原Ni粉的还原剂与镍主盐的摩尔比为1∶2.但是在实际反应过程中由于副反应的存在所消耗的还原剂会增多.通过控制其它量(Ni2+浓度为0.25 mol/L,溶液PH值为11,水浴温度为75 ℃)不变,在N2H4∶Ni2+摩尔比为2∶1、4∶1、8∶1、12∶1、14∶1、18∶1、20∶1的条件下记录了反应所消耗的时间,结果如图2所示.图2 不同N2H4∶Ni2+摩尔比条件下完成反应所需时间Fig.2 Reaction time under different N2H4∶Ni2+ molar ratios由图2可知,随着还原剂的含量增多,反应完成的时间呈现出先减小后增大的趋势.当还原剂量过少时,反应虽然能进行,但是其消耗的时间很长,随着还原剂含量的增加,反应完成所需的时间缩短,但是随着还原剂的继续加入,反应时间不但没有进一步减少,反而有所增加.推测是还原产物与Ni2+生成了某种配位物附着在镍晶核上面而抑制了晶核的长大,从而使反应完成的时间延长.由实验结果可知,N2H4与Ni2+的摩尔比为4∶1时反应时间最短,图3为制备的纳米镍粉的透射照片,统计结果显示其平均粒径小于100 nm.2.5 加料顺序对反应速率的影响加料顺序同样也会对实验结果造成一定的影响,为了探讨不同加料顺序对反应速率产生的影响,在还原剂与Ni2+摩尔比为4∶1,溶液PH值为11,水浴温度为75 ℃的情况下,设计了3组不同的加料顺序:(a)硫酸镍溶液中加入氢氧化钠混合,再向混合溶液中加入水合肼;(b)氢氧化钠与水合肼混合,再向混合溶液中加入硫酸镍溶液;(c)硫酸镍溶液与水合肼混合,再向混合溶液中加入氢氧化钠溶液;按照(a)方式加料时,当氢氧化钠溶液与硫酸镍溶液混合时会产生浅蓝色沉淀氢氧化镍,加入水合肼之后,反应所需的诱导时间(溶液颜色有变化时)较(b)长15 min左右,同时其反应所需的时间也是最长的.图3 纳米镍粉的TEM图Fig.3 TEM image of nano-nickel powders按照(b)方式加料时,氢氧化钠与水合肼的混合溶液是澄清的,再向混合溶液中加入硫酸镍溶液时,溶液中会短暂出现紫蓝色的絮状物,继而变黑,由于整个反应体系中只有镍粉的颜色为黑色,从而可以知道变黑的原因是镍粉被还原出来,这种加入方式反应速率很快,制备完成的溶液较为澄清和透明,其还原的机理是镍的络合物和镍离子同时被还原,因此它的还原率也较高,反应时间为45 min左右.按照(c)方式加料时,会先形成水合肼与镍的紫色络合物,随后加入氢氧化钠溶液后,发生还原反应,生成镍粉,以该方式加料时反应时间介于上述两种方式之间,反应时间为50 min左右.图4是加料顺序与反应时间之间的关系.通过对加料顺序的研究可知,以氢氧化钠与水合肼混合,再向混合溶液中加入硫酸镍溶液的方式可以得到较快的反应速率.3 结论本文在水浴加热条件下进行还原反应制备纳米级镍粉.对影响纳米镍粉形貌与粒径的因素进行了分析,结果表明:1)NaOH的加入量会对产物的纯度造成影响.在本文较优工艺下,1 mol/L的NaOH加入量在0.015~0.02 mol时会获得相对纯净的产物.图4 加料顺序与反应时间的关系Fig.4 Relationship between the feed sequences and reaction time2)溶剂种类和分散剂会影响产物的粒径以及分散情况.水作为溶剂时,反应所得的粒径尺寸较为均匀,乙醇和乙二醇作为溶剂时产物粒径大小很接近,与水相比它们能在一定程度上阻碍镍粉的团聚.反应体系中加入PVP时会降低产物镍粉的团聚现象,获得分散和细小的颗粒.3)还原剂与主盐的摩尔比以及加料顺序对反应速率有影响.随着还原剂与主盐摩尔比的增加,反应时间呈现出先减小后增大的趋势,摩尔比为4∶1时,体系有最快的反应时间.同时,氢氧化钠与水合肼混合后,再向混合溶液中加入硫酸镍溶液的加料顺序可以得到较快的反应速率.参考文献:【相关文献】[1] EL-NAGAR G A, DERR I, FETYAN A, et al. One-pot synthesis of a high performance chitosan-nickel oxyhydroxide nanocomposite for glucose fuel cell and electro-sensing applications[J]. Applied Catalysis B: Environmental, 2017, 204: 185-199.DOI:10.1016/j.apcatb.2016.11.031[2] WANG J, LIU Z, ZHOU Z. Regulation of the catalytic behavior of pullulanases chelated onto nickel (II)-modified magnetic nanoparticles[J]. Enzyme and Microbial Technology, 2017, 101: 9-16.DOI:10.1016/j.enzmictec.2017.02.009[3] JIANG Z,XIE J, JIANG D, et al. Modifiers-assisted formation of nickel nanoparticles and their catalytic application to p-nitrophenol reduction[J]. Cryst Eng Comm, 2013, 15(3): 560-569.DOI:10.1039/C2CE26398J[4] MARGHESCU C I, DRUMEA A, MIHAILESCU B T. Investigation on current capabilities of Ni-based conductive pastes for PCB repair[C]//Electronics Technology (ISSE), 2015 38th International Spring Seminar on. IEEE, 2015: 324-328.DOI:10.1109/ISSE.2015.7248015[5] USHAKOV M V, OSHTRAKH M I, FELNER I, et al. Magnetic properties of iron oxide-based nanoparticl es: Study using Mössbauer spectroscopy with a high velocity resolution and magnetization measurements[J]. Journal of Magnetism and Magnetic Materials, 2017, 431: 46-48.DOI:10.1016/j.jmmm.2016.09.054[6] 王胜难, 崔跃, 袁志山, 等. 医用金属材料离子释放机制、致病机理及防护[J]. 稀有金属材料与工程, 2015, 44(2): 509-513.WANG Shengnan, CUI Yue, YUAN Zhishan, et al. Metal ions release mechanism from metallic biomaterials and their pathogenic mechanism and protection[J]. Rare Metal Materials and Engineering, 2015, 44(2): 509-513.[7] REESE D,GROVEN L, SON S, et al. Intermetallic compounds as fuels for composite rocket propellants[C]//47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 2011: 5865.DOI:10.2514/6.2011-5865[8] 张淑英. 化学气相沉积法制备超细镍粉的研究[D]. 长沙: 中南大学, 2009.ZHANG Shuying.Research on the preparation of ultrafine nickel powder by chemical vapor deposition[D]. Changsha:Central South University,2009.DOI:10.7666/d.y1536105[9] 屈子梅. 羰基法生产纳米镍粉[J].粉末冶金工业,2003,13(5):16-19QU Zimei. Production of nanometer nickel powder by carbony lation[J].Powder Metallurgy Industry,2003,13(5):16-19DOI:10.3969/j.issn.1006-6543.2003.05.004[10] 蒋渝, 衡俊华, 刘明, 等. 等离子体法制备纳米Ni粉中热泳问题及其影响[J]. 稀有金属材料与工程, 2005, 34(12): 1901-1904.JIANG Yu, HENG Junhua, LIU Ming, et al. Thermo-natatorial phenomena and influence in preparing nano Ni powder by plasma arc spraying method[J]. Rare Metal Materials and Engineering,2005, 34(12): 1901-1904.DOI:10.3321/j.issn:1002-185X.2005.12.014[11] 张凯锋, 丁水, 王国峰. 电沉积制备纳米镍的拉伸变形行为[J]. 材料科学与工艺, 2007, 15(1): 35-39.ZHANG Kaifeng,DING Shui,WANG Guofeng. Tensile behavior of electrodeposited nanocrystalline Ni[J].Materials Science and Technology, 2007, 15(1): 35-39.DOI:10.3969/j.issn.1005-0299.2007.01.009[12] 李鹏, 官建国, 张清杰, 等. 1, 2 丙二醇液相还原法制备纳米镍粉的研究[J]. 材料科学与工艺, 2001, 9(3): 259-262.LI Peng, GUAN Jianguo,ZHANG Qingjie, et al. Preparation of nanosized nickel powders by reduction in 1, 2-propanediol[J]. Materials Science and Technology, 2001, 9(3): 259-262. DOI:10.3969/j.issn.1005-0299.2001.03.011[13] LI Lei,DU Jinghong,GAN Guoyou, et al. Study on preparation technology of nickel powder with liquid phase reduction method[J]. Rare Metal Materials and Engineering, 2015, 44(1): 36-40.DOI:10.1016/S1875-5372(15)30008-4[14] 李忠平, 俞宏英, 孙冬柏, 等. 制备条件对纳米镍粉电化学性能的影响[J].中国有色金属学报, 2006, 16(7): 1288-1294.LI Zhongping, YU Hongying, SUN Dongbai, et al. Effect of preparation condition on electrochemical property of nano-nickel powders[J]. The Chinese Journal of Nonferrous Metals, 2006, 16(7): 1288-1294.DOI:10.3321/j.issn:1004-0609.2006.07.025[15] 刘银. 一种微反应制备纳米镍粉的研究[J]. 化学工程与装备, 2015 (5): 3-6.LIU Yin. Study on preparation of nanometer nickel powder by micro reaction[J]. Chemical Engineering & Equipment, 2015 (5): 3-6.[16] 王晓春,张希艳.材料现代分析与测试技术[M].北京:国防工业出版社,2009:82. WANG Xiaochun,ZHANG Xiyan.Modern material analysis and testingtechniques[M].Beijing: National Defense of Industry Press,2009: 82.[17] 覃涛, 叶红齐, 吴超, 等. PVP 对液相还原法制备微米级银粉颗粒性能的影响[J]. 中南大学学报(自然科学版), 2013,44(7): 2675-2680.QIN Tao, YE Hongqi ,WU Chao, et al. Effects of PVP on properties of micro-sized silverpowders prepared by liquid phase reduction method[J]. Journal of Central South University(Science and Technology), 2013, 44(7): 2675-2680.。

射频等离子体球化处理氢化钕铁硼粉末

射频等离子体球化处理氢化钕铁硼粉末

射频等离子体球化处理氢化钕铁硼粉末毛瑞奇;郝俊杰;郭志猛;舒进锋;王建军【摘要】Spherical powders were prepared by radio frequency (RF) plasma with irregular hydrogenated Nd-Fe-B powders. The morphology, elemental distribution, phase composition and particle size distribution of the powders before and after spheroidization were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and laser micron sizer (LMS). The results show that dehydrogenation decomposition and spheroidization processing of the irregular hydrogenated Nd-Fe-B powders can be finished with one step in the plasma. Powders after plasma processing have good spherical shape and dispersity, and their spheroidization ratio is almost 100%. The particle size distribution becomes narrow after spheroidizing, and the average size decreases slightly. The spherical powders consist of Nd2Fe17(B) andα-Fe phases. The analysis of element distribution by EDS indicates that slight element segregation exists on the cross section of powders after plasma processing. The spheroidization ratio gradually decreases with increasing the carrier gas flow rate. Results of numerical simulation through FLUENT software show that change of carrier gas flow rate has a great influence on the temperature field of plasma torch.%利用氩气射频等离子体球化处理形状不规则的氢化钕铁硼粉末。

正交相五氧化二铌纳米材料制备及在锂离子超级电容器中的应用研究

正交相五氧化二铌纳米材料制备及在锂离子超级电容器中的应用研究
图6是电流密度为0.5A /g时分别测得的质量比 (T-Nb2O5:AC)为1:1、1:2、1:3的充放电曲线对比图。图中 1:2的曲线有最长的放电时间。配比为1:1时比容量为16.7F/ g、1:2时22.167F/g、配比为1:3时9.47F/g,说明配比为1:2的 样本相比于1:1和1:3的比容量高。
图9 是电压窗口为 0 ~3V,扫速 在10 ~10 0 mV/s条 件下质 量比(T-Nb2O5:AC)为1:2的锂离子超级电容器的CV曲线。 从CV曲线的形状可知:锂离子超级电容器的CV曲线的不对 称性并随着扫描速度的增加呈现逐渐偏离理想矩形的趋 势,这说明了锂离子超级电容器的储能机理是T-Nb2O5的 锂离子 嵌 入 反 应和AC电极与电解质界面处的快 速 离子吸 附相结合。
30L的T BA·OH溶液,将混合溶液置于往复振荡摇床上 振 荡7d,期间大体 积的有机 胺 分 子 T BA·O H 会 嵌 入 到层 状 H4N b 6 O17的层间并 引入大 量的水分 子,扩大 块 体的层间 距,使其在机械振荡的过程中更容易发生剥离获得高质量 的纳米片。剥离后的胶体悬浮液在 2 0 0 0 r pm下进 行离心除 去少量未剥离的块体,取上清液冷冻干燥即可制备出含有 机胺分子的铌酸纳米片;向离心后的胶体悬浮液中加入1M 的HCl溶液并搅拌,用H+离子置换出纳米片中的有机胺,搅 拌一段时间后静置,纳米片的悬浮液发生絮凝,离心后收集 产物;并 冷冻干 燥,获得酸化的纳米管。最 后在5 0 0℃空气 条件下煅烧1h,得到T-Nb2O5纳米管。 1.3 材料表征
1 实验 1.1 药品:试剂与材料
所有实验 试 剂与药品均为分析 纯 且没有任 何杂质。五 氧化二铌(Nb2O5,99.5 %),碳酸钾(K2CO3,99.9 %),四 丁基氢氧化铵(TBA·OH,40 wt. %水溶液),盐酸(HCl, 36%~38 %),N-甲基-2-吡咯烷酮(NMP,99.9%),聚偏二 氟乙烯(P V DF,Mw>53 0,0 0 0),乙炔 炭 黑(碳 含 量 >9 9), 活 性 炭(碳 含 量 > 9 5%),无 水乙醇(9 5%),超 纯 水(电导 18.2MΩ),涂炭铜箔,涂炭铝箔。 1.2 T-Nb2O5纳米材料的制备
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

纳米镍粉的形貌与磁性能*王大鹏,俞宏英,孙冬柏,王旭东,樊自拴,孟惠民(北京科技大学材料科学与工程学院北京表面纳米技术工程研究中心,北京100083)摘 要: 采用多元醇液相还原法,在乙二醇中还原制备出了球形、刺球形、线形、花状4种形貌的镍纳米材料。

通过XRD和FESEM对镍粉的结构、形貌进行了分析,并用振动样品磁强计对不同形貌的纳米镍粉进行了磁性能分析。

结果表明所制备的纳米镍粉为面心立方的单晶结构,晶粒尺寸在10~30nm之间,颗粒直径在200~300nm之间,主要为球形、刺球形、线形、花状4种形貌。

线形纳米镍粉的矫顽力最高,刺球形和花状次之,球形的矫顽力最小。

关键词: 镍纳米粉;液相还原法;磁性能中图分类号: TQ031.6;TQ050.4文献标识码:A 文章编号:1001 9731(2008)03 0499 041 引 言磁性金属纳米材料由于具有优异的磁学性能,在高密度磁记录、隐身材料、催化剂、靶向给药等领域有着广泛的应用前景[1]。

低维镍纳米材料作为一类常用的磁性材料,在高效催化剂、光吸收材料、高密度磁记录材料、高性能电极材料等领域具有广阔的用途,成为材料科学和凝聚态物理领域中的重要研究课题[2]。

目前,纳米材料的液相制备方法主要包括溶剂热法和氧化还原法[3~5]。

溶剂热法制备出的纳米材料形貌较好,然而该法的制备条件比较苛刻,一般在密闭体系和高温高压条件下进行,成本较高,不利于批量生产。

多元醇还原法的制备条件温和,制备的纳米材料分散性较好,形貌易于控制,成本较低[6~12]。

本文以水合肼为还原剂,在乙二醇溶剂中还原镍的无机盐,成功制备了不同形貌的,分散性较好的镍的低维纳米材料,并对它们的磁性能进行了分析比较。

2 实 验2.1 试剂与实验分析纯试剂包括六水合硫酸镍、乙二醇、水合肼、乙醇、丙酮、氢氧化钠。

实验以乙二醇为溶剂,用两个烧杯各自量取一定体积的乙二醇,然后分别加入一定量的NiSO4 6H2O 和NaOH,室温下置于超声波清洗器中超声20~ 30m in,得到二者的乙二醇溶液。

在60的恒温水浴中加热并磁力搅拌,将溶解完全的两种溶液混合保温10m in后得到浅黄绿色的Ni(OH)2前躯体,然后将体系升温至80~95,逐滴加入80%的水合肼,反应一定时间,溶液逐渐澄清后,停止反应,所得镍粉分别用蒸馏水、无水乙醇和丙酮超声清洗数次后,干燥保存。

用SU PRA55型场发射扫描电子显微镜(FESEM)观察镍粉的尺寸和形貌,用Sim ens D5000型X射线衍射仪对镍粉进行结构分析,Lake Shore 7410VSM振动样品磁强计测试镍粉的磁性能。

3 结果与讨论3.1 纳米镍粉的结构与晶粒大小在实验中,通过控制盐碱比、搅拌速度等制备条件可得到不同形貌的粉体。

图1为不同形貌镍纳米粉体的X射线衍射图。

可以看到,本方法制得的各种形貌粉体的衍射峰位置基本相同,图谱的(111)、(200)、(220)峰对应于标准卡中面心立方晶系镍的峰,晶胞参数a= 3.524nm,与标准值(a=3.525nm)相差很小,即通过上述方法在乙二醇中制备出了不含杂质的纯镍材料。

以(111)晶面衍射峰为基准,用Scher rer公式:L=kcos式中为掠射角, 为入射线波长, 为Scherrer常数,L为引起该衍射的晶面的法线方向上的晶粒尺寸。

计算可得:线形镍粉的晶粒尺寸为26.9nm,花状镍粉和3种不同粒径球形镍粉的晶粒尺寸均为10nm左右。

图1 不同形貌镍粉的XRD图谱Fig1XRD spectra o f nickel po wders w ith different mo rpho logies3.2 纳米镍粉的微观形貌用FESEM对纳米镍粉的微观形貌进行观察,得到如图2所示的电镜照片。

溶液体系的水含量、盐离子浓度、表面活性剂、搅拌速度对镍粉的形貌起着决定*基金项目:国家自然科学基金资助项目(50374010);高等学校博士学科点专项科研基金资助项目(20030008019)收到初稿日期:2007 08 02收到修改稿日期:2007 11 09 通讯作者:俞宏英作者简介:王大鹏 (1981-),男,河北保定人,在读硕士,师承孙冬柏,从事纳米材料的研究。

性作用。

当溶液体系中V (乙二醇)!V (水)<10时,由于体系中水的极性作用,镍粉形核后不同方向的生长速率出现差异,最终呈现出刺球形,如图2(a)所示。

图2(b)为花状镍粉,花状镍粉实际上是由许多未长大的小颗粒融合而成的。

图2(c)是表面活性剂A 做软模板时制备的镍纳米线,可见线形镍粉为均一的蠕虫状纳米线,表面比较光滑,平均直径100nm,长径比在5~20之间。

图2(d)、(e )和(f)分别为无搅拌、中速(500r/m in)和高速(1000r/min)搅拌条件下的球形镍粉形貌,图2(d)中颗粒平均直径为203nm 。

图2(e)中颗粒的平均直径为121nm,且粒径分布均一,表面也比较光滑,图2(f)中颗粒的平均直径为398nm。

图2 不同制备条件下镍粉的FESEM 照片Fig 2FESEM pho to s of nickel po w ders sy nthesized in differ ent conditio ns镍粉颗粒的形成遵循结晶学中所述的形核、长大过程。

形核过程是指在初始阶段,溶液由于过饱和而处于不稳定状态,最终导致部分溶质析出产生晶核;长大过程实际经过了二次形核和聚并过程,二次形核是指在核质形成以后,反应生成的新产物以原有的核为核心长大的过程,而聚并过程是指原有的颗粒发生碰撞聚结,形成更大颗粒的过程。

本实验初期生成的镍粉是纳米级,具有很大的比表面积,颗粒本身有团聚以降低吉布斯自由能的趋势,如果盐离子浓度很大,则初期形成的晶核彼此碰撞的几率变得更大,二次形核和聚并的机会大大增加。

搅拌条件下产物为球形的可能原因。

当溶液形成漩涡的剪切力增大到超过成链的微观作用力时,剪切力占主导,直接导致了成链和后期的融合过程不能发生,且剪切力使后期形成的镍微粒不容易附着在先前生成的晶核上,从而使最终产物的粒径减小。

球形镍粉粒径随搅拌速度变化关系见图3,可见随搅拌速度的增大,球形颗粒的粒径先减小后增大,这是因为搅拌产生的剪切力阻止了微小颗粒的聚集长大,然而当搅拌速度达到一定值后,随搅拌速度的增大,颗粒间接触的几率增加,颗粒间的团聚作用逐渐占主导,导致了最终颗粒粒径的增大。

当加入表面活性剂A 且浓度介于第一和第二临界胶束浓度之间时,表面活性剂聚集形成的球形∀微反应器#对球形颗粒的长大起到限域作用。

搅拌作用可以保证这些∀微反应器#保持很小体积而不彼此粘连,并且均匀分散在溶液中,最终大大减小镍粉的粒径。

图3 搅拌速度对镍粉粒径的影响Fig 3T he influence of stirring rate to the diam eters of nickel po w ders线形镍纳米粉生成的可能机理是:在无搅拌条件下,形核初期镍纳米颗粒间的静磁力和极性力以及表面活性剂形成的微反应器促使纳米颗粒相互连接形成链状,后期析出的镍继续在球链上沉积,导致颗粒相互融合,形成蠕虫状纳米线。

图4是不同浓度的表面活性剂A 在乙二醇溶液中的聚集状态示意图。

A 有两个临界胶束浓度,当浓度达到第一临界胶束浓度(CMC)后,表面活性剂分子极性头彼此连接呈球形排布,如果此时加入适当搅拌,就可以保证球形胶束不发生粘连且保持纳米级体积,镍粉在球形胶束的内部空间形核生长,从而制备出粒径几十纳米的球形镍粉;当浓度超过其第二临界胶束浓度后,其聚集状态由球形转为棒状[13],不加搅拌有利于棒状胶束的稳定,从而为制备出长径比较大的线形纳米粉提供反应微区。

图4 表面活性剂聚集状态示意图Fig 4Sketch m ap o f the sur factant co ng reg ation 3.3 纳米镍粉的磁性能测试Ni 属于本征铁磁性材料,它的磁性主要是由电子的自旋运动产生的[14],Ni 的原子序数为28,28个核外电子属于不同的电子轨道,3d 轨道为非闭壳层,尚有2个空余位置,而3d 轨道上,最多可以容纳自旋磁矩方向向上的5个电子和向下的5个电子,根据泡利不相容原则和洪德准则,3d 层8个电子的可能排布为5个向上,3个向下,二者抵消,剩余的2个自旋磁矩对磁化产生贡献,这样残留构成的三维区域称为磁畴,磁畴产生静磁能。

纳米镍球主要是在静磁力作用下连成球链的。

图5和6是不同形貌镍粉的磁滞回线。

可以看出,花形、线形、刺球形镍粉均具有较高的矫顽力,表现出明显的铁磁性。

线形镍粉具有最大的矫顽力,这是因为4种形貌的镍粉中,线形镍粉的形状磁各向异性最为明显,该因素直接导致了线形镍粉的高矫顽力。

图5 不同形貌镍粉的磁滞回线Fig 5Magnetic hy steresis circle o f nickel pow dersw ith differ ent morphology图6 不同粒径球形镍粉的磁滞回线Fig 6M ag netic hysteresis circle of spherical nickelpow ders w ith different diam eters关于纳米镍颗粒的高矫顽力,可以用球链反转磁化模式来解释:静磁力作用使球形纳米镍微粒形成链状,对于n 个球形粒子构成链的情况,矫顽力[15]:H cn =!(6K n -4L n )d 3(1)其中:K n =∃nj=1(n-j )nj 3(2)L n =∃12(n -1)<j %12(n +1)j=1[n -9(2j -1)]n(2j -1)3(3) 式中,n 为球链中的颗粒数,!为颗粒磁矩,d 为颗粒间距。

我们可以认为线形是由球链融合生成的,即n &10,d 接近于0,所以,线形产物的H cn 很大。

对于刺球形和花形,我们认为在某些方向上有微小的球形颗粒构成短链,融合作用使这些短链呈花瓣状或刺状,这种情况下,n 值明显小于线形的情况,所以矫顽力相对较小。

有研究人员发现,镍颗粒的矫顽力与颗粒直径有着直接关系,随颗粒直径的增大,矫顽力先增大后减小,在直径为85nm 左右时,镍颗粒有最大的矫顽力[13],这与表1所列出的磁性能指标是一致的。

表1 不同形貌镍粉的磁性能指标(d 为球形颗粒均值粒径)T able 1M agnetic param eters of nickel pow ders w ith different m orpho logies实验条件形貌矫顽力(T )磁化(A m 2/kg )强度(A m 2/kg )V (乙二醇)!V (水)<10刺球形0.01630351.389.70[A]>CM C2,无搅拌线形0.01682713.08 2.76[Ni 2+]>0.2mo l/L 花状0.01501444.3412.29无搅拌球形(d =203nm)0.01456447.3110.84中速搅拌球形(d =121nm)0.01602135.147.26高速搅拌球形(d =398nm)0.01390345.798.174 结 论(1) 利用多元醇液相还原工艺,通过控制工艺条件,可制备出球形、刺球形、线形、花状等不同形貌、不同颗粒粒径的镍纳米粉,其中搅拌强度和表面活性剂的浓度是控制镍粉形貌的关键因素。

相关文档
最新文档