图形的平移,对称与旋转的解析含答案

合集下载

图形的平移,对称与旋转的易错题汇编及答案解析

图形的平移,对称与旋转的易错题汇编及答案解析
【点睛】
本题考查了中心对称图形的判定,熟知中心对称图形的定义是解决问题的关键.
11.对于图形的全等,下列叙述不正确的是( )
A.一个图形经过旋转后得到的图形,与原来的图形全等
B.一个图形经过中心对称后得到的图形,与原来的图形全等
C.一个图形放大后得到的图形,与原来的图形全等
D.一个图形经过轴对称后得到的图形,与原来的图形全等
A. B. C. D.
【答案】C
【解析】
【分析】
根据轴对称图形与中心对称图形的概念判断即可.
【详解】
A、不是轴对称图形,是中心对称图形,故本选项错误;
B、不是轴对称图形,也不是中心对称图形,故本选项错误;
C、是轴对称图形,是中心对称图形,故本选项正确;
D、是轴对称图形,不是中心对称图形,故本选项错误;
【答案】C
【解析】
A.一个图形经过旋转后得到的图形,与原来的图形全等,正确,不符合题意;
B.一个图形经过中心对称后得到的图形,与原来的图形全等,正确,不符合题意;
C.一个图形放大后得到的图形,与原来的图形不全等,故错误,符合题意;
D.一个图形经过轴对称后得到的图形,与原来的图形全等,正确,不符合题意,
10.下列图形中,不是中心对称图形的是( )
A.平行四边形B.圆C.等边三角形D.正六边形
【答案】C
【解析】
【分析】
根据中心对称图形的定义依次判断各项即可解答.
【详解】
选项A、平行四边形是中心对称图形;
选项B、圆是中心对称图形;
选项C、等边三角形不是中心对称图形;
选项D、正六边形是中心对称图形;
故选C.
∴△APC≌△AQB,
∴PC=QB=10,

初中数学图形的平移,对称与旋转的难题汇编附解析

初中数学图形的平移,对称与旋转的难题汇编附解析
D.一个图形经过轴对称后得到的图形,与原来的图形全等,正确,不符合题意,
故选C.
【点睛】本题考查了对全等图形的认识,解题的关键是要明确通过旋转、轴对称、平移等都可以得到与原图形全等的图形,而通过放大或缩小只能得到与原图形形状一样的图形,得不到全等图形.
12.如图,一个长为2、宽为1的长方形以下面的“姿态”从直线 的左侧水平平移至右侧(下图中的虚线是水平线),其中,平移的距离是()
C.( +672 , )D.(2020+674 ,0)
【答案】B
【解析】
【分析】
根据题意可知三角形在 轴上的位置每三次为一个循环,又因为 ,那么 相当于第一个循环体的 即可算出.
【详解】
由题意知, , ,
则 , , ,
结合图形可知,三角形在 轴上的位置每三次为一个循环,



故选 .
【点睛】
考查解直角三角形,平面直角坐标系中点的特征,结合找规律.理解题目中每三次是一个循环是解题关键.
此时DP+CP=DP+PC′=DC′的值最小.∵DC=1,BC=4,∴BD=3,连接BC′,由对称性可知∠C′BE=∠CBE=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=4,根据勾股定理可得DC′= = =5.故选B.
16.下列说法中正确的是()
①角平分线上任意一点到角的两边的线段长相等②角是轴对称图形
A.30°B.60°C.72°D.90°
【答案】C
【解析】
【分析】
紫荆花图案是一个旋转不变图形,根据这个图形可以分成几个全等的部分,即可计算出旋转的角度.
【详解】
解:紫荆花图案可以被中心发出的射线分成5个全等的部分,因而旋转的角度是360÷5=72度,

平移与旋转答案及解析

平移与旋转答案及解析

平移与旋转答案及解析1.【答案】B【解析】本题主要考查图形的轴对称和中心对称。

在平面内,如果把一个图形绕某个点旋转180°后,能与自身重合,那么这个图形叫做中心对称图形;在平面内,如果把一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形称为轴对称图象,所以选B.2.【答案】C【解析】 CC’=AB,∠CAB=70°.∴∠C’CA=∠CAB=70°.又 C、C’为对应点,点A为旋转中心∴AC=AC’,即△ACC’为等腰三角形∴∠BAB’=∠CAC’=180°-2∠C’CA=40°∴选C.3.【答案】C【解析】根据平移的特性可知,平移只改变图形的位置,不改变图形的形状和大小,所以C 错误.4.【答案】D【解析】平移只改变图形的位置,不改变图形的形状和大小。

所以平移后的边对应相等,∴D 错误,应为AB=AB’.5.【答案】D【解析】根据旋转的意义,找出菱形AEFG和菱形ABCD的对应点的变化情况,结合等边三角形的性质即可.6.【答案】C【解析】 △ACB平移后得到△EBF∴AC=BE CB=BF AB=EF∴①③④正确,②中点B对应点应为F.7.【答案】A【解析】观察图形可知,△DEF是由△ABC沿BC向右移动BE的长度后得到的∴平移距离就是线段BE的长度∴选A.8.【答案】D【解析】①:由平移和旋转性质可知,平移后对应线段平行,旋转后不一定平行.②③④平移或旋转后,对应线段相等,对应角相等,图形的形状和大小都不会变化.9.【答案】B【解析】A项,平移和旋转均不改变图形的形状和大小B项,平移和旋转的共同点是改变图形位置C项,图形可以向某方向平移一定距离,旋转是围绕中心做圆周运动D项,由平移得到的图形不一定由旋转得到10.【答案】D【解析】由旋转性质可知,AC=AC’又∠CAC’=90°,∴△CAC’是等腰直角三角形∴∠CC’A=45°∠CC’B+∠ACC’=∠AB’C’∴∠CC’B=15°11.【答案】图形的形状、大小不变,改变图形位置.【解析】在图形的平移、旋转、轴对称变换中,相同的性质是:图形的形状和大小不变,只有位置发生改变.12.【答案】平移旋转【解析】平移变换:在平面内,将一个图形沿某个方向移动一定距离旋转变换:在平面内,将一个图形沿某一个定点方向转动一个角度13.【答案】(1,-1)【解析】向右平移则A的横坐标+3,向下平移则A的纵坐标-2,平移后A的坐标为(1,-1).14.【答案】小正方形AEOF;三;△AOD;三【解析】正方形ABCD可看做是由图形小正方形AEOF经过三次平移得到,也可以看作是由图形△AOD绕O点旋转三次得到.15.【答案】150°【解析】根据旋转的定义可知,旋转的角度为:∠AOC=∠AOB+∠BOC=60°+90°=150°∴旋转角度为150°.16.【答案】如图所示,平移后RA’=3,过点B向AA’引垂线,垂足为D∴BD=4,A’D=4∴∠BA’A=45°.【解析】经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.17.【答案】(1)①平移的方向是射线AD方向,距离为AD长度②相等的线段:AD=BE=CF,AB=DE,BC=DE,AC=DF平行的线段:AC∥BE∥CF,AB∥DE,BC∥EF,AC∥DF③∠ABC=∠DEF,∠ACB=∠DEF,∠BAC=∠EDF∠BAD=∠BED,∠ABE=∠EDA,∠EBC=∠CFE∠BCF=∠BEF,∠ACF=∠ADF,∠CAD=∠CFD(2) CC’∥AB∴∠ACC’=∠CAB=75°△ABC绕点A旋转得到△AB’C’∴AC=AC’∴∠CAC’=180°-2∠ACC’=180°-2×75°=30°∴∠CAC’=∠BAB’=30°.【解析】(1)由图形可知,A与D,B与E,C与F是对应点,所以可得平移的方向和距离,也可得出相等的线段.(2)根据两直线平行,内错角相等可得∠ACC’=∠CAB,根据旋转性质可得AC=AC’,然后利用等腰三角形即可求得.18.【答案】(1)①②根据题意,在Rt △ABC 中AC=4,BC=3 ∴5342222=+=+=BC AC AB∴扫过的面积=ππ4253605902=⨯ (2)①AC ⊥BD△DCE 由△ABC 平移而成∴BE=2BC=6,DE=AC=3,CE=∠ACB=60°∴DE=21BE ∴BD ⊥DE又 ∠E=∠ACB=60°∴AC ∥DE ,∴BD ⊥AC△ABC 是等边三角形∴BF 是AC 的中点∴BD ⊥AC ,BD 与AC 互相垂直平分②由(1)知,AC ∥DE ,BD ⊥AC∴△BED 是直角三角形BE=6,DE=3 ∴3322=-=DE BE BD .【解析】(1)①根据题意和图形旋转即可画图.②根据勾股定理求AB 长度.再根据扇形面积公式即可.(2)①由平移的性质可知BE=2BC=6DE=AC=3 ∴BD ⊥DE由∠E=∠ACB=60°可知AC ∥DE②在Rt △BDE 中利用勾股定理即可得出BD 的长.19. 【答案】(1)由△ABO 和△CDO 关于点O 中心对称可知△ABO ≌△CDO∴AO=CO,BO=DOAF=CE∴AO-AF=CO-CE∴FO=EO又 ∠DOF=∠BOE在△DOF 和△BOE 中⎪⎩⎪⎨⎧=∠=∠=EO FO BOE DOF BO DO∴△DOF ≌△BOE (SAS )∴FD=BE(2)①证明: △ABC 、△EDC 是等边三角形∴BC=AC,∠ACB=∠ECD=60°,EC=DC∴∠ACE=∠BCD在△ACE 和△BCD 中⎪⎩⎪⎨⎧=∠=∠=DC EC BCD ACE BC AC∴△ACE ≌△BCD (SAS )∴∠EAC=∠B=60°=∠ACB∴AE ∥BC② △ACE ≌△BCD ∠EAC=∠B=60°=∠ACB∴图中有在旋转关系的三角形,它们是△BCD 和△ACE ,其旋转中心是点C ,旋转角是60°.【解析】(1)根据中心对称性质,可知△ABO ≌△CDO ,∴AO=CO,BO=DO,再根据AF=CE ,得FO=EO ,利用SAS 判定△DOF ≌△BOE ,∴FD=BE.(2)①由△ABC 、△EDC 是等边三角形,易证△ACE ≌△BCD ,∴∠EAC=∠B=60°=∠ACB ,∴AE ∥BC②由(1)可得:图中有在旋转关系的三角形,它们是△BCD 和△ACE ,其旋转中心是C ,旋转角是60°.20.【答案】(1)△A 1B 1C 1如图所示(2)△A 2B 2C 2如图所示(3)△PAB 如图所示,由图可得P 点坐标为(2,0)【解析】(1)根据网格结构找出A 、B 、C 平移后的对应点A 1、B 1、C 1的位置,顺次连接(2)根据网格结构找出A 、B 、C 关于原点对称点A 2、B 2、C 2的位置,顺次连接(3)找出点A 关于x 轴的对称点A ’,连接A ’B 与x 轴相交于一点,根据轴对称确定最短路线问题,交点即为P 坐标,再连接AP 、BP .21.【答案】△OAB AD【解析】由平移的性质,可知AB 、AO 、BO 平移AD 的长分别得到DC 、DE 、CE∴△EDC 可以看作是△OAB 平移得到,平移的距离是线段AD 的长22.【答案】400【解析】 △ABC 是等边三角形,∴AB=BC=ACA ’B ’∥AB ,BB ’=B ’C=21BC ∴B ’O=21AB,CO=21AC ∴△B ’OC 是等边三角形,同理阴影的三角形都是等边三角形观察图可知,第1个图形中大等边三角形有2个,小等边三角形有2个依次可将第N 个图形中大等边三角形有2n 个,小等边三角形有2n 个故第100个图形中等边三角形的个数是:2×100+2×100=400个.23.【答案】326-【解析】过点B ’作DB ’∥BC ,交AB 于点D ,由平移和旋转性质可知,DB ’为图形平移的距离 ∠A=∠A ’=30°,AB=A ’B ’=12cm,BC=B ’C ∴2130sin sin ==︒=AB BC A ∴BC=B ’C=21AB=6cm. 由勾股定理得: AC=3622=-BC AB cm∴AB ’=AC-B ’C=(636-)cm又DB ’∥BC∴∠B=∠ADB ’又 ∠A=∠A,∴△ADB ’≌△ABC ∴AC AB BC DB ''=即6'36636DB =- ∴DB ’=(326-)cm.24.【答案】222-【解析】设BA 与B ’A ’、D ’A ’相交的两点分别为E 、F设EF=x ,由题知正方形旋转45°∴重叠部分以外的三角形均为等腰直角三角形∴A ’E=BE=AF=x 22∴AB=2BE+EF=22=+x x222-=x∴边长为222-25.【答案】①③【解析】根据旋转性质可知∠CAD=∠BAF ,AD=AF∠BAC=90° ∠DAE=45°∴∠CAD+∠BAE=45°∴∠EAF=45°∴△AEF ≌△AED∴①正确.②根据①知,CD=BF,DE=EF∴BE+DC=BE+BF>DE=EF.②错③ ∠FBE=45°+45°=90°∴BE 2+BF 2=EF 2△ADC 绕点A 顺时针旋转90度,得△AFB∴△AFB ≌△ADC∴BF=CD又FE=DC∴BE 2=DC 2=DE 2∴①③26.【答案】70°或120°【解析】①如下图点B 在AB 边上时,根据旋转的性质得BD=BD ’, ∠B=55°∴∠BDB ’=180°-2×55°=70°即m=70°②如下图点B 落在AC 上,根据旋转的性质可得BD=B ’D.BD=2CD∴B ’D=2CD∴∠CBD ’=30°在Rt △B ’CD 中,∠CDB ’=90°-30°=60°∠BDB ’=180°-60°=120°即m=120°综上所述,m=70°或120°.27.【答案】由旋转的性质得:△ACE ≌△ABD∴AE=AD=5 CE=BD=6∠DAE=60°∴DE=5作EH ⊥CD 垂足为H设DH=x由勾股定理,得:EH 2=CE 2-CH 2=DE 2-DH 2即62-(4-x)2=52-x 2 解得85=x ,∴DH=85 由勾股定理得:6385)85(52222=-=-=DH DE EH ∴△DCE 的面积=634521=⨯⨯EH CD 【解析】由旋转性质得△ACE ≌△ABD 得出AE=AD=5,CE=BD=6 ∠DAE=60° ∴△ADE 是等边三角形因此DE=AD=5,作EH ⊥CD ,垂足为H设DH=x ,由勾股定理求出EH 、DH即可得出△DCE 的面积。

12平移与旋转--知识讲解及其练习 含答案

12平移与旋转--知识讲解及其练习 含答案

平移与旋转--知识讲解【学习目标】1.理解平移、旋转的基本概念,掌握平移、旋转的基本特征,并能利用平移与旋转的性质进行证明有关问题;2.知道一个图形进行平移后所得的图形与原图形之间所具有的联系和性质,能用平移变换有关知识说明一些简单问题及进行图形设计;理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质;3.能够按要求作出简单平面图形旋转后的图形,并能利用旋转进行简单的图案设计.【要点梳理】要点一、平移1. 定义:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移.要点诠释:(1)图形的平移的两要素:平移的方向与平移的距离.(2)图形的平移不改变图形的形状与大小,只改变图形的位置.2. 性质:图形的平移实质上是将图形上所有点沿同一方向移动相同的距离,平移不改变线段、角的大小,具体来说:(1)平移后,对应线段平行(或共线)且相等;(2)平移后,对应角相等;(3)平移后,对应点所连线段平行(或共线)且相等;(4)平移后,新图形与原图形的形状与大小不变.要点诠释:(1)“连接各组对应点的线段”的线段的长度实际上就是平移的距离.(2)要注意“连接各组对应点的线段”与“对应线段”的区别,前者是通过连接平移前后的对应点得到的,而后者是原来的图形与平移后的图形上本身存在的.3. 作图:平移作图是平移基本性质的应用,在具体作图时,应抓住作图的“四步曲”——定、找、移、连.(1)定:确定平移的方向和距离;(2)找:找出表示图形的关键点;(3)移:过关键点作平行且相等的线段,得到关键点的对应点;(4)连:按原图形顺次连接对应点.要点二、旋转的概念把一个图形绕着某一点O转动一个角度的图形变换叫做旋转.点O叫做旋转中心,转动的角叫做旋转角(如∠AOA′),如果图形上的点A经过旋转变为点A′,那么,这两个点叫做这个旋转的对应点.要点诠释:旋转的三个要素:旋转中心、旋转方向和旋转角度.要点三、旋转的性质(1)对应点到旋转中心的距离相等(OA=OA′);(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形的形状与大小不变.要点诠释:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.要点四、旋转的作图在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键点沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.要点诠释:作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点.【典型例题】类型一、平移1.如图所示,平移△ABC,使点A移动到点A′,画出平移后的△A′B′C′.【思路点拨】平移一个图形,首先要确定它移动的方向和距离,连接AA′后这个问题便获得解决.根据平移后的图形与原来的图形的对应线段平行(或在一条直线上)且相等,容易画出所求的线段.【答案与解析】解:如图所示,(1)连接AA′,过点B作AA′的平行线l,在l上截取BB′=AA′,则点B′就是点B的对应点.(2)用同样的方法做出点C的对应点C′,连接A′B′、B′C′、C′A′,就得到平移后的三角形A′B′C′.【总结升华】平移一个图形,首先要确定它移动的方向和距离.连接AA′,这个问题就解决了,然后分别把B、C按AA′的方向平移AA′的长度,便可得到其对应点B′、C′,这就是确定了关键点平移后的位置,依次连接A′B′,B′C′,C′A′便得到平移后的三角形A′B′C′.2.(•东台市模拟)如图,将△ABC平移到△A′B′C′的位置(点B′在AC边上),若∠B=55°,∠C=100°,则∠AB′A′的度数为______.【答案】25°【解析】∵∠B=55°,∠C=100°,∴∠A=180°﹣∠B﹣∠C=180°﹣55°﹣100°=25°,∵△ABC平移得到△A′B′C′,∴AB∥A′B′,∴∠AB′A′=∠A=25°.【总结升华】图形在平移的过程有“一变两不变”、“一变”是位置的变化,“两不变”是形状和大小不变.本例中由△ABC经过平移得到△A′B′C′.则有AB=A′B′,BC=B′C′,AC=A′C′,∠A=∠A′,∠C=∠C,∠B=∠B′.举一反三:【变式】(•临淄区一模)如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为.【答案】20;解:∵△ABC沿BC方向平移2cm得到△DEF,∴CF=AD=2cm,AC=DF,∵△ABC的周长为16cm,∴AB+BC+A C=16cm,∴四边形ABFD的周长=AB+BC+CF+DF+AD=AB+BC+AC+CF+AD=16cm+2cm+2cm=20cm.故答案为:20cm.类型二、旋转的概念及性质3.如图,把四边形AOBC绕点O旋转得到四边形DOEF.在这个旋转过程中:(1)旋转中心是谁?(2)旋转方向如何?(3)经过旋转,点A、B的对应点分别是谁?(4)图中哪个角是旋转角?(5)四边形AOBC与四边形DOEF的形状、大小有何关系?(6)AO与DO的长度有什么关系? BO与EO呢?(7)∠AOD与∠BOE的大小有什么关系?【答案与解析】(1)旋转中心是点O;(2)旋转方向是顺时针方向;(3)点A的对应点是点D,点B的对应点是点E;(4)∠AOD和∠BOE;(5)四边形AOBC与四边形DOEF的图形全等,即形状一致,大小相等;(6)AO=DO,BO=EO;(7)∠AOD=∠BOE.【总结升华】通过具体实例认识旋转,了解旋转的概念和性质.举一反三【变式】如图所示:O为正三角形ABC的中心.你能用旋转的方法将△ABC分成面积相等的三部分吗?如果能,设计出分割方案,并画出示意图.【答案】下面给出几种解法:解法一:连接OA、OB、OC即可.如图甲所示;解法二:在AB边上任取一点D,将D分别绕点O旋转120°和240°得到D1、D2,连接OD、OD1、 OD2即得,如图乙所示.解法三:在解法二中,用相同的曲线连结OD、OD1、OD2即得如图丙所示4.如图,将图(1)中的正方形图案绕中心旋转180°后,得到的图案是( )【答案】C.【解析】抓住图形特征,观察图中的每个小的图形绕中心点旋转180°后能否与自身重合.【总结升华】在解题的过程中,可看出如果选取的基本图形不同,可得到不同的形成过程,甚至所选取的基本图形相同,也有不同的形成过程,因此分析图案的形成过程旨在了解图形的变化规律,而不必强求分析的一致性.类型三、旋转的作图5. 如图,已知△ABC与△DEF关于某一点对称,作出对称中心.【答案与解析】【总结升华】确定关于某点成中心对称的两个图形的对称中心的方法:⑴利用中心对称的性质:对称点所连线段被对称中心所平分,所以连接任意一对对称点,取这条线段的中点,则该点即为对称中心;⑵利用中心对称的性质:对称点所连线段都经过对称中心,所以连接任意两对对称点,则这两条线段的交点即为对称中心.6.(•南宁)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣1,1),B(﹣3,1),C(﹣1,4).(1)画出△ABC 关于y 轴对称的△A 1B 1C 1;(2)将△ABC 绕着点B 顺时针旋转90°后得到△A 2BC 2,请在图中画出△A 2BC 2,并求出线段BC 旋转过程中所扫过的面积(结果保留π).【思路点拨】(1)根据题意画出△ABC 关于y 轴对称的△A 1B 1C 1即可;(2)根据题意画出△ABC 绕着点B 顺时针旋转90°后得到△A 2BC 2,线段BC 旋转过程中扫过的面积为扇形BCC 2的面积,求出即可. 【答案与解析】解:(1)如图所示,画出△ABC 关于y 轴对称的△A 1B 1C 1;(2)如图所示,画出△ABC 绕着点B 顺时针旋转90°后得到△A 2BC 2,由勾股定理得,BC=222+3=13,线段BC 旋转过程中所扫过得面积S=π21134⨯()=.【总结升华】此题考查了作图﹣旋转变换,对称轴变换,以及扇形面积,作出正确的图形是解本题的关键. 举一反三【变式】如图,画出ABC ∆绕点O 逆时针旋转100︒所得到的图形.【答案】(∠AOA′=∠BOB′=∠COC′=100°)平移与旋转--巩固练习【巩固练习】一、选择题1.如图所示的图形中的小三角形可以由△ABC平移得到的有 ( )A.3个 B.4个 C.5个 D.6个2.(•株洲)如图,在三角形ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C沿顺时针方向旋转后得到三角形A′B′C,若点B′恰好落在线段AB上,AC、A′B′交于点O,则∠COA′的度数是()A.50°B.60°C.70°D.80°3.下面生活中的物体的运动情况可以看成平移的是().(1)摆动的钟摆;(2)在笔直的公路上行驶的汽车;(3)随风摆动的旗帜;(4)摇动的大绳;(5)汽车玻璃上雨刷的运动;(6)从楼顶自由落下的球(球不旋转).A.(1)(3) B.(4)(5) C.(3)(5) D.(2)(6)4.如图,4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是( ).A.点A B.点B C.点C D.点D5.如图①,在宽为20m、长为30m的矩形地面上修建两条同样宽度的道路,余下部分作为耕地.根据图中数据,可得耕地的面积为 ( )A.600m2 B.551m2 C.550m2 D.500m26.如图,在正方形ABCD中,E为DC边上的点,连结BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连结EF,若∠BEC=60°,则∠EFD的度数为( )A.10°B.15°C.20°D.25°二、填空题7.(春•博野县期末)图形在平移时,下列特征中不发生改变的有(把你认为正确的序号都填上),①图形的形状;②图形的位置;③线段的长度;④角的大小;⑤垂直关系;⑥平行关系.8.如图所示,△ABC经过平移得到△A′B′C′,图中△_________与△_________大小形状不变,线段AB与A′B′的位置关系是________,线段CC′与BB′的位置关系是________.9.(•吉林)如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为cm.10.(春•新化县期末)钟表的分针匀速旋转一周需要60min,经过20min,分针旋转了_______度.11.如图,在等腰直角△ABC中,B=90°,将△ABC绕顶点A逆时针方向旋转60°后得到△AB′C′,则等于__________度.12.如图,△ABC以点A为旋转中心,按逆时针方向旋转60°,得△AB′C′,则△ABB′是______三角形.三.解答题13.如图,将四边形ABCD平移到四边形EFGH的位置,根据平移后对应点所连的线段平行且相等,写出图中平行的线段和相等的线段.14.(吉安校级期中)等边△OAB在平面直角坐标系中,已知点A(2,0),将△OAB绕点O顺时针方向旋转a°(0<a<360)得△OA1B1.(1)求出点B的坐标;(2)当A1与B1的纵坐标相同时,求出a的值;(3)在(2)的条件下直接写出点B1的坐标.15.如图所示,在长为50m,宽为22m的长方形地面上修筑宽度都为2 m的道路,余下的部分种植花草,求种植花草部分的面积.【答案与解析】一、选择题1.【答案】C ;【解析】图中小三角形△BDE ,△CEF ,△DGH ,△EHI ,△FIJ 都可以由△ABC 平移得到.2.【答案】B ;【解析】解:∵在三角形ABC 中,∠ACB=90°,∠B=50°,∴∠A=180°﹣∠ACB ﹣∠B=40°.由旋转的性质可知:BC=B′C,∴∠B=∠BB′C=50°.又∵∠BB′C=∠A+∠ACB′=40°+∠ACB′,∴∠ACB′=10°,∴∠COA′=∠AOB′=∠OB′C +∠ACB′=∠B+∠ACB′=60°.故选B .3.【答案】D ;【解析】(1)摆动的钟摆,方向发生改变,不属于平移;(2)在笔直的公路上行驶的汽车沿直线运动,属于平移;(3)随风摆动的旗帜,形状发生改变,不属于平移;(4)摇动的大绳,方向发生改变,不属于平移;(5)汽车玻璃上雨刷的运动,方向发生改变,不属于平移;(6)从楼顶自由落下的球沿直线运动,属于平移.∴可以看成平移的是(2)(6).故选D.4.【答案】B ;【解析】连接对应点111,,PP MM NN ,做三条线段的垂直平分线,交点即是旋转中心.5.【答案】B ;6.【答案】B ;【解析】因为△BCE 旋转90°得到△DCF ,所以EC=CF,∠CFD=∠CEB=60°,即∠EFC=45°,所以∠EFD=60°-45°=15°.二、填空题7.【答案】①③④⑤⑥;【解析】解:由图形平移的性质,知图形在平移时,其特征不发生改变的有①③④⑤⑥.8.【答案】ABC , A ′B ′C ′,平行,平行;【解析】平移的性质.9.【答案】42;【解析】解:∵将△ABC 绕点B 顺时针旋转60°,得到△BDE,∴△ABC≌△BDE,∠CBD=60°,∴BD=BC=12cm,∴△BCD为等边三角形,∴CD=BC=CD=12cm,在Rt△ACB中,AB==13,△ACF与△BDF的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=42(cm),故答案为:42.10.【答案】120°;【解析】2036012060⨯︒=︒.11.【答案】105°;【解析】∠BAC′=∠BAB′+∠B′AC′=60°+45°=105°.12.【答案】等边三角形;【解析】因为△ABC旋转60°得到△''ABC,则AB= AB′,∠BAB′=60°,所以是等边三角形.三、解答题13.【解析】解:平行的线段:AE∥BG∥DH,相等的线段:AE=BF=OG=DH.14.【解析】解:(1)如图1所示过点B作BC⊥OA,垂足为C.∵△OAB为等边三角形,∴∠BOC=60°,OB=BA.∵OB=AB,BC⊥OA,∴OC=CA=1.在Rt△OBC中,,∴BC=.∴点B的坐标为(1,).(2)如图2所示:∵点B1与点A1的纵坐标相同,∴A1B1∥OA.①如图2所示:当a=300°时,点A1与点B1纵坐标相同.如图3所示:当a=120°时,点A1与点B1纵坐标相同.∴当a=120°或a=300°时,点A1与点B1纵坐标相同.(3)如图2所示:由旋转的性质可知A1B1=AB=2,点B的坐标为(1,2),∴点B1的坐标为(﹣1,).如图3所示:由旋转的性质可知:点B1的坐标为(1,﹣).∴点B1的坐标为(﹣1,)或(1,﹣).15.【解析】解:如图所示②把几条2米宽的小路分别平移到大长方形的上边缘和左边缘,则种植花草部分汇集成一个长方形,显然,这个长方形的长是50-2=48(m),宽是22-2=20(m),于是种植花草部分的面积为48×20=960(m2).。

初二数学图形的对称平移与旋转试题答案及解析

初二数学图形的对称平移与旋转试题答案及解析

初二数学图形的对称平移与旋转试题答案及解析1.如图①,将两个完全相同的三角形纸片ABC与DEC重合放置,其中∠C=90°,∠B=∠E=30°。

(1)如图②,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,DE交BC于点F,则线段DF与AC有怎样的关系?请说明理由。

(2)当△DEC绕点C旋转到图③所示的位置时,设△BDC的面积为S1,△AEC的面积为S2。

猜想:S1与S2有怎样的数量关系?并证明你的猜想。

【答案】(1) DF∥AC;(2) S1=S2.【解析】(1)根据旋转的性质可得AC=CD,然后求出△ACD是等边三角形,根据等边三角形的性质可得∠ACD=60°,然后根据内错角相等,两直线平行解答;(2)过D点作DN⊥BC于N,AM⊥CE于M,先依据ASA求得△ACM≌△DCN求得AM=DN,然后根据等底等高的三角形面积相等.试题解析:(1)DF∥AC;解:如图②所示,∵∠ACB=90°,∠B=∠E=30°,∴∠A=∠CDE=60°,∵AC=DC,∴△ACD是等边三角形,∴∠ACD=60°=∠CDE,∴DF∥AC,∴∠CFD=90°,∠DCF=30°,∴DF=DC=AC;(2)猜想:S1=S2;证明:过D点作DN⊥BC于N,AM⊥CE于M,∵∠ECD=90°,∴∠DCM=90°∴∠DCN=90°-∠NCM,又∵∠ACM=90°-∠NCM,∴∠ACM=∠DCN,在△ACM与△DCN中∠ACM=∠DCNAC=CD∠AMC=∠DNC,∴△ACM≌△DCN(ASA),∴AM=DN,又∵CE=BC,∴BC•DN=CE•AM,即S1=S2.【考点】全等三角形的判定与性质;等边三角形的判定与性质.2.下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个【答案】B.【解析】①是轴对称图形,也是中心对称图形;②是轴对称图形,不是中心对称图形;③是轴对称图形,也是中心对称图形;④是轴对称图形,也是中心对称图形.故选B.【考点】1.中心对称图形;2.轴对称图形.3.如图,在平面直角坐标系中,,,.(1)求出的面积.(2分)(2)在图中作出绕点B顺时针旋转90度得到的.(2分)(3)写出点的坐标.(2分)【答案】(1)S△ABC =7.5;(2)图形见解析;(3).【解析】(1)由A、B的坐标,易求得AB的长,以AB为底,C到AB的距离为高,即可求出△ABC的面积;(2)找出将△ABC绕点B顺时针旋转90°的三角形各顶点的对应点,然后顺次连接即可;(3)根据图形写出即可.试题解析:(1)根据题意,得:AB=5﹣0=5;∴S △ABC =AB•(|x C |﹣1)=×5×3=7.5;(2)如图:(3)根据图形可得:.【考点】作图-旋转变换.4. 下列图形中,是轴对称图形的有( ) 个①角;②线段;③等腰三角形;④直角三角形;⑤圆;⑥锐角三角形A .2B .3C .4D .5【答案】C .【解析】根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,因此,是轴对称图形的有①角;②线段;③等腰三角形;⑤圆4个. 故选C .【考点】轴对称图形.5. 如图,在正方形ABCD 中,E 是AB 上一点,BE=2,AE=3BE ,P 是AC 上一动点,则PB+PE 的最小值是______________【答案】10.【解析】由正方形性质的得出B 、D 关于AC 对称,根据两点之间线段最短可知,连接DE ,交AC 于P ,连接BP ,则此时PB+PE 的值最小,进而利用勾股定理求出即可.试题解析:如图,连接DE ,交AC 于P ,连接BP ,则此时PB+PE 的值最小. ∵四边形ABCD 是正方形, ∴B 、D 关于AC 对称,∴PB=PD , ∴PB+PE=PD+PE=DE . ∵BE=2,AE=3BE , ∴AE=6,AB=8,∴DE=.故PB+PE 的最小值是10.【考点】1.轴对称-最短路线问题;2.正方形的性质.6. 如图1,将矩形纸片沿虚线AB 按箭头方向向右对折, 再将对折后的纸片沿虚线CD 向下对折,然后剪下一个小三角形,最后,把纸片打开,所得展开图为( )【答案】D.【解析】∵第三个图形是三角形,∴将第三个图形展开,可得,即可排除答案A,∵再展开可知两个短边正对着,∴选择答案D,排除B与C.故选D.【考点】剪纸问题.7.下列说法错误的是()A.关于某直线对称的两个图形一定能完全重合B.全等的两个三角形一定关于某直线对称C.轴对称图形的对称轴至少有一条D.线段是轴对称图形【答案】B.【解析】 A.两个关于某直线对称的图形是全等的,此说法正确;B.平面内两个全等的图形不一定关于某直线对称,此说法错误;C.轴对称图形的对称轴至少有一条,此说法正确;D.线段是轴对称图形,此说法正确.故选;B.【考点】轴对称的性质.8.正九边形绕它的旋转中心至少旋转°后才能与原图形重合.【答案】400.【解析】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与原来的图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.要与原来的正九边形重合.可用一个圆周角的度数(即360度)除以9,便可知道至少要旋转多少度才能和原来的九边形重合.因为3600÷9=400,故填400.【考点】旋转对称图形.9.在俄罗斯方块游戏中,若某行被小方格块填满,则该行中的所有小方格会自动消失.现在游戏机屏幕下面三行已拼成如图所示的图案,屏幕上方又出现一小方格块正向下运动,为了使屏幕下面三行中的小方格都自动消失,你可以进行以下哪项操作()A.先逆时针旋转90°,再向左平移B.先顺时针旋转90°,再向左平移C.先逆时针旋转90°,再向右平移D.先顺时针旋转90°,再向右平移【答案】A.【解析】本题结合游戏,考查了旋转与平移的性质.在旋转和平移变换中,图形的形状和大小均不发生改变,由图可以看出,将屏幕上方出现一小方格块逆时针旋转90°,再向左平移后,竖直下来正好使屏幕下面三行中的小方格都自动消失.故选A.【考点】旋转与平移的性质.10.如图,直线MN和EF相交于点O,∠EON=45°,AO=2,∠AOE=15°,设点A关于EF的对称点是B,点B关于MN的对称点是C,则AC的距离为()A.2B.C.D.【答案】D【解析】根据轴对称的性质得出∠AOB=∠BON=∠NOC=30°,进而利用勾股定理得出即可.解:∵∠EON=45°,AO=2,∠AOE=15°,点A关于EF的对称点是B,点B关于MN的对称点是C,∴∠A0E=∠EOB,∠BON=∠NOC,AO=BO=CO=2,∴∠AOB=∠BON=∠NOC=30°,∴∠AOC=90°,则AC的距离为:=2.故选:D.点评:此题主要考查了轴对称图形的性质,根据已知得出∠A0E=∠EOB,∠BON=∠NOC,AO=BO=CO=2是解题关键.11.将△ABC的三个顶点坐标的横坐标和纵坐标都乘以﹣1,则所得图形与原图形的关系是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.将原图形向x轴负方向平移了1个单位【答案】C【解析】根据题意可得新的坐标都是原坐标的相反数,则所得图形与原图形的关系是关于原点对称.解:△ABC的三个顶点坐标的横坐标和纵坐标都乘以﹣1,则所得新的坐标都是原坐标的相反数,则所得图形与原图形的关系是关于原点对称,故选:C.点评:此题主要考查了关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(﹣x,﹣y).12.下列几何图形中:(1)平行四边形;(2)线段;(3)角;(4)圆;(5)正方形;(6)任意三角形.其中一定是轴对称图形的有_____________.【答案】(2)(3)(4)(5)【解析】轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.由题意其中一定是轴对称图形的有(2)线段;(3)角;(4)圆;(5)正方形.【考点】轴对称图形的定义点评:本题属于基础应用题,只需学生熟练掌握轴对称图形的定义,即可完成.13.如图,△ABC中,AB=AC,∠BAC=40°,D为△ABC内一点,如果将△ACD绕点A按逆时针方向旋转到△ABD′的位置,则∠ADD′的度数是A.40°B.50°C.60°D.70°【答案】D【解析】根据旋转的性质可得∠DAD′=∠BAC=40°,AD′=AD,再根据三角形的内角和定理求解即可.由题意得∠DAD′=∠BAC=40°,AD′=AD则∠ADD′=(180°-∠DAD′)÷2=70°故选D.【考点】旋转的性质,三角形的内角和定理点评:解题的关键是熟练掌握旋转的性质:每一条边旋转的角度相等,均等于旋转角.14.小明上午在理发店理发时,•从镜子内看到背后墙上普通时钟的时针与分针的位置如图所示,此时时间是__________.【答案】10点45分【解析】轴对称图形,由题意分析,此类试题属于对轴对称图形的基本运算和对称的分析,指示是反过来是10点45分【考点】轴对称点评:此类试题属于对轴对称图形的基本运算和对称的分析15.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是()A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行【答案】B【解析】已知条件,根据轴对称的性质和平移的基本性质可得答案.观察原图,有用进行了平移,所以有垂直的一定不正确,A、C是错误的;对应点连线是不可能平行的,D是错误的;找对应点的位置关系可得:对应点连线被对称轴平分.故选B.【考点】轴对称的性质,平移的性质点评:本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等及轴对称的性质;按要求画出图形是正确解答本题的关键16.如图,点P在∠AOB的内部,点M、N分别是点P关于直线OA、OB的对称点,线段MN 交OA、OB于点E、F,若△PEF的周长是20cm,则线段MN的长是( )A.10cmB. 20cmC. 在10cm和20cm之间D.不能确定【答案】B【解析】根据轴对称的性质可得ME=PE,NF=PF,再结合△PEF的周长即可求得结果.∵点M、N分别是点P关于直线OA、OB的对称点∴ME=PE,NF=PF∵△PEF的周长=PE+EF+PF=20cm∴ME+EF+NF=20cm,即MN=20cm故选B.【考点】轴对称的性质点评:本题属于基础应用题,只需学生熟练掌握轴对称的性质,即可完成.17.如图,在平面直角坐标系中,A(1,2),B(3,1),C(-2,-1).(1)在图中作出关于轴对称的.(2)写出点的坐标(直接写答案).A1 _____________,B1______________,C1______________【答案】(1)如图所示:(2)A1(1,-2),B1(3,-1),C1(-2,1)【解析】(1)分别作出的三个顶点关于轴对称的对称点,再顺序连接即可.(2)根据(1)中所作的图形即可作出判断.(1)如图所示:【考点】基本作图,点的坐标点评:解题的关键是熟练掌握轴对称变换的作图方法,正确找到关键点的对称点.18.(本题满分6分)如下图,直线L是一条河,A,B是两个村庄。

图形的平移,对称与旋转的难题汇编附答案解析

图形的平移,对称与旋转的难题汇编附答案解析
16.下列所给图形是中心对称图形但不是轴对称图形的是( )
A. B. C. D.
【答案】D
【解析】
A.此图形不是中心对称图形,不是轴对称图形,故A选项错误;
B.此图形是中心对称图形,也是轴对称图形,故B选项错误;
C.此图形不是中心对称图形,是轴对称图形,故D选项错误.
D.此图形是中心对称图形,不是轴对称图形,故C选项正确;
12.如图所示的网格中各有不同的图案,不能通过平移得到的是( )
A. B. C. D.
【答案】C
【解析】
【分析】
根据平移的定义:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,结合各选项所给的图形即可作出判断.
【详解】
A、可以通过平移得到,不符合题意;
B、可以通过平移得到,不符合题意;
【详解】
解:连接 ,如图所示:
∵四边形 为菱形,
∴ ,
∵ ,
∴ 为等边三角形, , ,
∵ 为 的中点,
∴ 为 的平分线,即 ,
∴ ,
∴由折叠的性质得到 ,
在 中, .
故选:D
【点睛】
此题考查了翻折变换(折叠问题),菱形的性质,等边三角形的性质,以及三角形内角和定理,熟练掌握折叠的性质是解本题的关键.

∴AF=AC=2,FC=4
∴BF=
∴BE=EF= BF=
故选:B
【点睛】
本题考查了旋转的性质,平行线的判定和性质.
15.下列几何图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
【答案】C
【解析】
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】

初二数学图形的对称平移与旋转试题答案及解析

初二数学图形的对称平移与旋转试题答案及解析

初二数学图形的对称平移与旋转试题答案及解析1.正三角形、正方形、等腰直角三角形、平行四边形中,既是轴对称图形又是中心对称图形的是()A.正三角形B.正方形C.等腰直角三角形D.平行四边形【答案】B【解析】正三角形,等腰直角三角形是轴对称图形,平行四边形是中心对称图形,既是轴对称图形又是中心对称图形的是:正方形,故选:B.【考点】1、中心对称图形;2、轴对称图形2.如图,在△ABC中,∠ACB=90°,∠A=35°,若以点C为旋转中心,将△ABC旋转θ°到△DEC的位置,使点B恰好落在边DE上,则θ值等于.【答案】70【解析】∵∠ACB=90°,∠A=35°,∴∠ABC=90°﹣35°=55°,∵以点C为旋转中心,将△ABC旋转θ°到△DEC的位置,使点B恰好落在边DE上,∴∠DEC=∠ABC=55°,∠ACD=∠BCE=θ°,CB=CE,∴∠CBE=∠BEC=55°,∴∠BCE=180°﹣∠CBE﹣∠BEC=70°,∴θ值为70.故答案为:70.【考点】旋转的性质3.下列图形:①线段;②等边三角形;③平行四边形;④等腰梯形;⑤长方形;⑥圆。

其中既是轴对称图形,又是中心对称图形的有(填序号)【答案】①⑤⑥.【解析】根据轴对称图形与中心对称图形的概念求解.试题解析:①是轴对称图形,也是中心对称图形;②是轴对称图形,不是中心对称图形;③不是轴对称图形,是中心对称图形;④是轴对称图形,不是中心对称图形;⑤是轴对称图形,也是中心对称图形;⑥是轴对称图形,也是中心对称图形.故选答案为:①⑤⑥.【考点】1.中心对称图形;2.轴对称图形.4.作图题(6分):(1)把△ABC向右平移5个方格;(2)绕点B的对应点顺时针方向旋转90°.【答案】(1)作图见解析;(2)作图见解析.【解析】(1)找出平移后的点A、B、C的对应点的位置,然后顺次连接即可;(2)找出旋转变换后的点A'、C'的对应点的位置,然后顺次连接即可.试题解析:如图所示,(1)△A′B′C′即为平移后的图形;(2)△A″B'C″即为旋转后的图形.【考点】1.作图-旋转变换;2.作图-平移变换.5.如图,△ABC平移到△DEF,那么和∠BAC、BC对应的分别为 ,如果∠ABC=40°,BC=3cm,则 .【答案】∠EDF,EF;∠DEF=40°,EF="3" cm .【解析】根据平移的性质,①对应线段相等且平行,对应角相等,对应点的连线相等且平行;②平移后的图形全等. 因此,△ABC平移到△DEF,那么和∠BAC、BC对应的分别为∠EDF,EF;如果∠ABC=40°,BC=3cm,则∠DEF=40°,EF="3cm" .【考点】平移的性质.6.下列图形中,既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个【答案】B.【解析】图(1)、图(5)都是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义.图(3)不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;也不是中心对称图形,因为绕中心旋转180度后与原图不重合.图(2)、图(4)既是轴对称图形,又是中心对称图形.故选B.【考点】1.中心对称图形2.轴对称图形.7.如图1,将矩形纸片沿虚线AB按箭头方向向右对折,再将对折后的纸片沿虚线CD向下对折,然后剪下一个小三角形,最后,把纸片打开,所得展开图为()【答案】D.【解析】∵第三个图形是三角形,∴将第三个图形展开,可得,即可排除答案A,∵再展开可知两个短边正对着,∴选择答案D,排除B与C.故选D.【考点】剪纸问题.8.下列图案是我国几家银行的标志,其中是中心对称图形的为( )【答案】A【解析】根据中心对称图形的概念,观察可知,只有第1个是中心对称图形,其它三个都不是中心对称图形.故选A.【考点】1.中心对称图形;2.生活中的旋转现象.9.如图所示,点为∠内一点,分别作出点关于、的对称点,,连接交于点,交于点,已知,则△的周长为_______.【答案】15【解析】∵点关于的对称点是,关于的对称点是,∴,.∴△的周长为.10.在平面直角坐标系中,已知△OAB,A(0,-3),B(-2,0).(1)在图1中画出△OAB关于x轴的轴对称图形;(2)将先向右平移3个单位,再向上平移2个单位,在图2中画出平移后的图形;(3)点A平移后的坐标为 .【答案】(1)(2)如下图;(3)(3,-2).【解析】(1)根据轴对称的性质作出关键点的对称点,再顺次连接即可得到结果;(2)先将O、A、B分别按要求平移,然后顺次连接即可得出平移后的图形;(3)根据所作的图形即可得出平移后的点A的坐标.试题解析:(1)(2)如下图(3)点A平移后的坐标为:(3,-2).【考点】坐标与图形变化11.已知点和关于x轴对称,则的值为_________;【答案】﹣3.【解析】关于x轴对称的点,横坐标相同,纵坐标互为相反数,所以a=2,b=﹣5,则a+b=﹣3.故答案为:﹣3.【考点】关于x轴、y轴对称的点的坐标.12.在图示的方格纸中(1)作出△ABC关于MN对称的图形△A1B1C1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?【答案】(1)作图见试题解析;(2)向右平移6个单位,再向下平移2个单位(或向下平移2个单位,再向右平移6个单位).【解析】(1)根据网格结构找出点A、B、C关于MN的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据平移的性质结合图形解答.试题解析:(1)△A1B1C1如图所示;(2)向右平移6个单位,再向下平移2个单位(或向下平移2个单位,再向右平移6个单位).【考点】1.作图-轴对称变换;2.作图-平移变换.13.如图,草原上两个居民点A、B在河流L的同旁,一汽车从A出发到B,途中需要到河边加水.汽车在哪一点加水,可使行驶的路程最短?在图上画出该点.【答案】作图见试题解析.【解析】作点A关于l的对称点A',连接A'B交l于C,点C即为所求.试题解析:①作A关于直线l的对称点A′;②连接A′B交直线l于点C,则点C即为所求点.汽车在C点加水,可使行驶的路程最短.【考点】1.轴对称-最短路线问题;2.作图题.14.下列平面图形中,不是轴对称图形的是()【答案】A.【解析】根据轴对称图形的定义作答.如果把一个图形沿着一条直线翻折过来,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.根据轴对称图形的概念,可知只有A沿任意一条直线折叠直线两旁的部分都不能重合.故选A.【考点】轴对称图形.15.点(-2,m)关于x轴的对称点的坐标为________________.【答案】(-2,-m)【解析】由题,点(-2,m)关于x轴的对称点的坐标为(-2,-m).两点关于x轴对称,横坐标互为相等,纵坐标相反数,由题,点(-2,m)关于x轴的对称点的坐标为(-2,-m).【考点】点关于x轴对称.16.下列为轴对称图形的是().【答案】A【解析】根据轴对称图形与中心对称图形的概念,分析各图形的特征求解.A、是轴对称图形,有5条对称轴;B、是中心对称图形;C、是中心对称图形;D、既不是轴对称图形,也不是中心对称图形.故选A.【考点】轴对称.17.如图,在等腰Rt△ABC与等腰Rt△DBE中,∠BDE=∠ACB=90°,且BE在AB边上,取AE的中点F,CD的中点G,连结GF.(1)FG与DC的位置关系是,FG与DC的数量关系是;(2)若将△BDE绕B点逆时针旋转180°,其它条件不变,请完成下图,并判断(1)中的结论是否仍然成立? 请证明你的结论.【答案】(1)FG⊥CD ,FG=CD;(2)成立【解析】(1)延长ED交AC的延长线于M,连接FC、FD、FM,根据矩形的性质可得CM=BD,根据等腰直角三角形的性质可得ED=BD=CM,再结合∠E=∠A=45º可证得△AEM是等腰直角三角形,由F是AE的中点可证得MF⊥AE,EF=MF,∠E=∠FMC=45º,即可证得△EFD≌△MFC,则可得FD=FC,∠EFD=∠MFC,又∠EFD+∠DFM=90º即得∠MFC+∠DFM=90º,即可得到△CDF是等腰直角三角形,从而可以证得结论;(2)证法同(1).解:(1)FG⊥CD ,FG=CD;(2)延长ED交AC的延长线于M,连接FC、FD、FM∴四边形 BCMD是矩形.∴CM=BD.又△ABC和△BDE都是等腰直角三角形.∴ED=BD=CM.∵∠E=∠A=45º∴△AEM是等腰直角三角形.又F是AE的中点.∴MF⊥AE,EF=MF,∠E=∠FMC=45º.∴△EFD≌△MFC.∴FD=FC,∠EFD=∠MFC.又∠EFD+∠DFM=90º∴∠MFC+∠DFM=90º即△CDF是等腰直角三角形.又G是CD的中点.∴FG=CD,FG⊥CD.【考点】旋转问题的综合题点评:此类问题难度较大,在中考中比较常见,一般在压轴题中出现,需特别注意.18.下面三图是由三个相同的小正方形拼成的图形,请你在A,B,C三图中再添加一个同样大小的小正方形,使所得的新图形分别为下列要求的图形,请画出示意图.(1)是中心对称图形,但不是轴对称图形;(2)是轴对称图形,但不是中心对称图形;(3)既是中心对称图形,又是轴对称图形.【答案】(1)(2)(3)如图所示:【解析】轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形;中心对称图形的定义:一个图形绕一点旋转180°后能够与原图形完全重合即是中心对称图形.(1)(2)(3)如图所示:【考点】基本作图-轴对称图形与中心对称图形点评:本题属于基础应用题,只需学生熟练掌握轴对称图形与中心对称图形的定义,即可完成.19.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是()A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行【答案】B【解析】已知条件,根据轴对称的性质和平移的基本性质可得答案.观察原图,有用进行了平移,所以有垂直的一定不正确,A、C是错误的;对应点连线是不可能平行的,D是错误的;找对应点的位置关系可得:对应点连线被对称轴平分.故选B.【考点】轴对称的性质,平移的性质点评:本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等及轴对称的性质;按要求画出图形是正确解答本题的关键20.下列各图案中,不是中心对称图形的是().【答案】B【解析】中心对称图形,即围绕图形中心旋转180度后,所得的新图形与原图形重合,由此可知B旋转180度后不能与原图形重合【考点】中心对称图形的判断点评:中心对称图形,即围绕图形中心旋转180度后,所得的新图形与原图形重合21.下列图案中是轴对称图形的是()【答案】D【解析】轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.由图可得只有D选项符合轴对称图形的定义,故选D.【考点】轴对称图形点评:本题属于基础应用题,只需学生熟练掌握轴对称图形的定义,即可完成.22.把图中的五角星图案,绕着它的中心旋转,旋转角至少为()时,旋转后的五角星能与自身重合A.300B.450C.600D.720【答案】D【解析】五角星图案,可以被平分成五部分,因而每部分被分成的圆心角是72°,并且圆具有旋转不变性,因而旋转72度的整数倍,就可以与自身重合.该图形被平分成五部分,旋转72度的整数倍,就可以与自身重合,因而A、B、C都错误,能与其自身重合的是D,故选D【考点】旋转对称图形点评:本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角23.一束光线从点A(3,3)出发,经过y轴上点C反射后经过点B(1,0),则光线从A点到B点经过的路线长是 _.【答案】5【解析】先作点B关于y轴的对称点,连接,交y轴于点C,根据勾股定理求得的长,即可所求.作点B关于y轴的对称点,连接,交y轴于点C由题意得,则则光线从A点到B点经过的路线长是5.【考点】轴对称的应用,勾股定理点评:本题是勾股定理的应用,同时渗透光学中反射原理,构造直角三角形是解答本题的关键.24.下列四个图形中,不能通过基本图形平移得到的是()【答案】D【解析】根据平移的基本性质依次分析各选项即可判断。

2022年中考数学真题-专题17 图形变换(平移、旋转、对称)(1)(全国通用解析版)

2022年中考数学真题-专题17 图形变换(平移、旋转、对称)(1)(全国通用解析版)

专题17图形变换(平移、旋转、对称)一.选择题(2022·湖南娄底)1. 下列与2022年冬奥会相关的图案中,是中心对称图形的是()A. B. C. D.【答案】D【解析】【分析】中心对称图形定义:如果一个图形绕某一点旋转180度,旋转后的图形能和原图形回完全重合,那么这个答图形叫做中心对称图形,根据中心对称图形定义逐项判定即可.【详解】解:根据中心对称图形定义,可知D符合题意,故选:D.【点睛】本题考查中心对称图形的识别,掌握中心对称图形的定义是解决问题的关键.(2022·四川自贡)2. 剪纸与扎染、龚扇被称为自贡小三绝,以下学生剪纸作品中,轴对称图形是()A. B.C. D.【答案】D【解析】【分析】根据轴对称图形的定义判断即可.【详解】∵不是轴对称图形,∴A不符合题意;∵不是轴对称图形,∴B不符合题意;∵不是轴对称图形,∴C不符合题意;∵是轴对称图形,∴D符合题意;故选D.【点睛】本题考查了轴对称图形即沿着某条直线折叠,直线两旁的部分完全重合,熟练掌握定义是解题的关键.(2022·山东泰安)3. 下列图形:其中轴对称图形的个数是()A. 4B. 3C. 2D. 1【答案】B【解析】【分析】对每个图形逐一分析,能够找到对称轴的图形就是轴对称图形.【详解】从左到右依次对图形进行分析:第1个图在竖直方向有一条对称轴,是轴对称图形,符合题意;第2个图在水平方向有一条对称轴,是轴对称图形,符合题意;第3个图找不到对称轴,不是轴对称图形,不符合题意;第4个图在竖直方向有一条对称轴,是轴对称图形,符合题意;因此,第1、2、4都是轴对称图形,共3个.故选:B.【点睛】本题考查轴对称图形的概念,解题的关键是寻找对称轴.(2022·江苏苏州)0,2,点B是x轴正半轴上的一点,将线段AB绕点A按4. 如图,点A的坐标为()m,则m的值为()逆时针方向旋转60°得到线段AC.若点C的坐标为(),3A.【答案】C【解析】【分析】过C作CD⊥x轴于D,CE⊥y轴于E,根据将线段AB绕点A按逆时针方向旋转60°得到线段AC,可得△ABC是等边三角形,又A(0,2),C(m,3),即得AC BC AB==,可得BD=m=.OB=m=,即可解得3【详解】解:过C 作CD ⊥x 轴于D ,CE ⊥y 轴于E ,如图所示:∵CD ⊥x 轴,CE ⊥y 轴,∴∠CDO =∠CEO =∠DOE =90°,∴四边形EODC 是矩形,∵将线段AB 绕点A 按逆时针方向旋转60°得到线段AC ,∴AB =AC ,∠BAC =60°,∴△ABC 是等边三角形,∴AB =AC =BC ,∵A (0,2),C (m ,3),∴CE =m =OD ,CD =3,OA =2,∴AE =OE −OA =CD −OA =1,∴AC BC AB ===,在Rt △BCD 中,BD =在Rt △AOB 中,OB ==∵OB +BD =OD =m ,m =,化简变形得:3m 4−22m 2−25=0,解得:3m =或3m =-(舍去),∴m=,故C正确.故选:C.【点睛】本题考查直角坐标系中的旋转变换,解题的关键是熟练应用勾股定理,用含m的代数式表示相关线段的长度.(2022·浙江湖州)5. 如图,将△ABC沿BC方向平移1cm得到对应的△A′B′C′.若B′C=2cm,则BC′的长是()A. 2cmB. 3cmC. 4cmD. 5cm【答案】C【解析】【分析】据平移的性质可得BB′=CC′=1,列式计算即可得解.【详解】解:∵△ABC沿BC方向平移1cm得到△A′B′C′,∴BB′=CC′=1cm,∵B′C=2cm,∴BC′= BB′+ B′C+CC′=1+2+1=4(cm).故选:C.【点睛】本题考查了平移的性质,熟记性质得到相等的线段是解题的关键.(2022·浙江嘉兴)6. “方胜”是中国古代妇女的一种发饰,其图案由两个全等正方形相叠组成,寓意是同心吉祥.如图,将边长为2cm的正方形ABCD沿对角线BD方向平移1cm得'''',形成一个“方胜”图案,则点D,B′之间的距离为()到正方形A B C DA. 1cmB. 2cmC. 1)cmD. -1)cm 【答案】D【解析】【分析】先求出BD,再根据平移性质求得BB'=1cm,然后由BD BB-′求解即可.【详解】解:由题意,BD=,由平移性质得BB'=1cm,∴点D,B′之间的距离为DB'=BD BB-′=(1)cm,故选:D.【点睛】本题考查平移性质、正方形的性质,熟练掌握平移性质是解答的关键.(2022·湖南怀化)7. 如图,△ABC沿BC方向平移后的像为△DEF,已知BC=5,EC=2,则平移的距离是()A. 1B. 2C. 3D. 4【答案】C【解析】【分析】根据题意判断BE的长就是平移的距离,利用已知条件求出BE即可.【详解】因为ABC沿BC方向平移,点E是点B移动后的对应点,所以BE的长等于平移的距离,由图可知,点B、E、C在同一直线上,BC=5,EC=2,所以BE=BC-ED=5-2=3,故选C.【点睛】本题考查了平移,正确找出平移对应点是求平移距离的关键.(2022·湖南邵阳)8. 下列四种图形中,对称轴条数最多的是()A. 等边三角形B. 圆C. 长方形D. 正方形【答案】B【解析】【分析】分别求出各个图形的对称轴的条数,再进行比较即可.【详解】解:因为等边三角形有3条对称轴;圆有无数条对称轴;长方形有2条对称轴;正方形有4条对称轴;经比较知,圆的对称轴最多.故选:B.【点睛】此题考查了轴对称图形对称轴条数的问题,解题的关键是掌握轴对称图形对称轴的定义以及性质.(2022·江苏连云港)9. 下列图案中,是轴对称图形的是()A. B. C. D.【答案】A【解析】【分析】根据轴对称图形的概念逐项分析判断即可,轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.【详解】A.是轴对称图形,故该选项正确,符合题意;B.不是轴对称图形,故该选项不正确,不符合题意;C.不是轴对称图形,故该选项不正确,不符合题意;D.不是轴对称图形,故该选项不正确,不符合题意;故选A【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.(2022·四川遂宁)10. 下面图形中既是轴对称图形又是中心对称图形的是()科克曲线笛卡尔心形线阿基米德螺旋线赵爽弦图A. 科克曲线B. 笛卡尔心形线C. 阿基米德螺旋线D. 赵爽弦图【答案】A【解析】【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A、科克曲线既是轴对称图形又是中心对称图形,故本选项符合题意;B、笛卡尔心形线是轴对称图形,不是中心对称图形,故本选项不符合题意;C、阿基米德螺旋线不是轴对称图形,也不是中心对称图形,故本选项不符合题意;D、赵爽弦图不是轴对称图形,是中心对称图形,故本选项不符合题意.故选:A.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.(2022·新疆)11. 平面直角坐标系中,点P (2,1)关于x 轴对称的点的坐标是( )A. ()2,1B. ()2,1-C. ()2,1-D. ()2,1--【答案】B【解析】【分析】直接利用关于x 轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数,得出答案.【详解】解:点P (2,1)关于x 轴对称的点的坐标是(2,-1).故选:B .【点睛】本题主要考查了关于x 轴对称点的性质,正确掌握横纵坐标的关系是解题关键.(2022·天津) 12. 在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A. B. C. D.【答案】D【解析】【分析】根据轴对称图形的概念对各项分析判断即可得解.【详解】A .不是轴对称图形,故本选项错误;B .不是轴对称图形,故本选项错误;C .不是轴对称图形,故本选项错误;D .是轴对称图形,故本选项正确.故选:D .【点睛】本题考查轴对称图形,理解轴对称图形的概念是解答的关键.(2022·天津)13. 如图,在△ABC 中,AB =AC ,若M 是BC 边上任意一点,将△ABM 绕点A 逆时针旋转得到△ACN ,点M 的对应点为点N ,连接MN ,则下列结论一定正确的是( )A. AB AN =B. AB NC ∥C. AMN ACN ∠=∠D. MN AC ⊥【答案】C【解析】 【分析】根据旋转的性质,对每个选项逐一判断即可.【详解】解:∵将△ABM 绕点A 逆时针旋转得到△ACN ,∴△ABM ≌△ACN , ∴AB =AC ,AM =AN ,∴AB 不一定等于AN ,故选项A 不符合题意; ∵△ABM ≌△ACN ,∴∠ACN =∠B ,而∠CAB 不一定等于∠B ,∴∠ACN 不一定等于∠CAB ,∴AB 与CN 不一定平行,故选项B 不符合题意; ∵△ABM ≌△ACN ,∴∠BAM =∠CAN ,∠ACN =∠B ,∴∠BAC =∠MAN ,∵AM =AN ,AB =AC ,∴△ABC 和△AMN 都是等腰三角形,且顶角相等, ∴∠B =∠AMN ,∴∠AMN =∠ACN ,故选项C 符合题意;∵AM =AN ,而AC 不一定平分∠MAN ,∴AC 与MN 不一定垂直,故选项D 不符合题意; 故选:C . 【点睛】本题考查了旋转的性质,等腰三角形的判定与性质.旋转变换是全等变换,利用旋转不变性是解题的关键.(2022·江苏扬州)14. 如图,在ABC ∆中,AB AC <,将ABC 以点A 为中心逆时针旋转得到ADE ,点D 在BC 边上,DE 交AC 于点F .下列结论:①AFE DFC △△;②DA 平分BDE ∠;③CDF BAD ∠=∠,其中所有正确结论的序号是( )A. ①②B. ②③C. ①③D. ①②③【答案】D【解析】【分析】根据旋转的性质可得对应角相等,对应边相等,进而逐项分析判断即可求解.【详解】解:∵将ABC 以点A 为中心逆时针旋转得到ADE ,∴ADE ABC ≌, E C ∴∠=∠,AFE DFC ∠=∠,∴AFE DFC △△,故①正确;ADE ABC ≌,AB AD ∴=,ABD ADB ∴∠=∠,ADE ABC ∠=∠,ADB ADE ∴∠=∠,∴DA 平分BDE ∠,故②正确;ADE ABC ≌,BAC DAE ∴∠=∠,BAD CAE ∴∠=∠,AFE DFC △△,CAE CDF ∴∠=∠,CDF BAD ∠=∠∴,故③正确故选D【点睛】本题考查了性质的性质,等边对等角,相似三角形的性质判定与性质,全等三角形的性质,掌握以上知识是解题的关键.(2022·四川南充)15. 如图,将直角三角板ABC 绕顶点A 顺时针旋转到AB C ''△,点B '恰好落在CA 的延长线上,3090∠=︒∠=︒,B C ,则BAC '∠为( )A. 90︒B. 60︒C. 45︒D. 30【答案】B【解析】 【分析】根据直角三角形两锐角互余,求出BAC ∠的度数,由旋转可知BAC B AC ''∠=∠,在根据平角的定义求出BAC '∠的度数即可.【详解】∵3090∠=︒∠=︒,B C ,∴90903060BAC B ∠=︒-∠=︒-︒=︒,∵由旋转可知60B A BAC C ''∠=︒∠=,∴618060860100C B A BA BA C C '''=︒-∠=︒-︒-︒=︒∠∠-,故答案选:B .【点睛】本题考查直角三角形的性质以及图形的旋转的性质,找出旋转前后的对应角是解答本题的关键.(2022·山东泰安)16. 如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,ABC ∆经过平移后得到111A B C ∆,若AC 上一点(1.2,1.4)P 平移后对应点为1P ,点1P 绕原点顺时针旋转180,对应点为2P ,则点2P 的坐标为( ,A. (2.8,3.6)B. 2.8,6()3.--C. (3.8,2.6)D. ( 3.8, 2.6)--【答案】A【解析】 【详解】分析:由题意将点P 向下平移5个单位,再向左平移4个单位得到P 1,再根据P 1与P 2关于原点对称,即可解决问题,详解,由题意将点P 向下平移5个单位,再向左平移4个单位得到P 1,∵P ,1.2,1.4,,∴P 1,,2.8,,3.6,,∵P 1与P 2关于原点对称,∴P 2,2.8,3.6,,故选A,点睛:本题考查了坐标与图形变化,平移变换,旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.(2022·湖北宜昌)17. 将四个数字看作一个图形,则下列四个图形中,是中心对称图形的是( )A.B. C. D.【答案】D【解析】【分析】中心对称图形的定义:把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,根据中心对称图形的定义逐项判定即可.【详解】解:根据中心对称图形定义,可知符合题意, 故选:D .【点睛】本题考查中心对称图形,掌握中心对称图形定义,能根据定义判定图形是否是中心对称图形是解决问题的关键.(2022·湖南常德)18. 如图,在Rt ABC △中,90ABC ∠=︒,30ACB ∠=︒,将ABC 绕点C 顺时针旋转60︒得到DEC ,点A 、B 的对应点分别是D ,E ,点F 是边AC 的中点,连接BF ,BE ,FD .则下列结论错误的是( )A. BE BC =B. BF DE ∥,BF DE =C. 90DFC ∠=︒D. 3DG GF =【答案】D【解析】 【分析】根据旋转的性质可判断A ;根据直角三角形的性质、三角形外角的性质、平行线的判定方法可判断B ;根据平行四边形的判定与性质以及全等三角形的判定与性质可判断C ;利用等腰三角形的性质和含30°角的直角三角形的性质可判断D .【详解】A .∵将,ABC 绕点C 顺时针旋转60°得到,DEC ,∴∠BCE =∠ACD =60°,CB =CE ,∴△BCE 是等边三角形,∴BE =BC ,故A 正确;B .,点F 是边AC 中点,,CF =BF =AF =12AC ,,,BCA =30°,,BA =12AC ,,BF =AB =AF =CF ,,,FCB =,FBC =30°,延长BF 交CE 于点H ,则∠BHE =∠HBC +∠BCH =90°,∴∠BHE =∠DEC =90°,∴BF //ED ,∵AB =DE ,∴BF =DE ,故B 正确.C .∵BF ∥ED ,BF =DE ,∴四边形BEDF 是平行四边形,∴BC =BE =DF ,∵AB =CF , BC =DF ,AC =CD ,∴△ABC ≌△CFD ,∴=90DFC ABC ∠=∠︒,故C 正确;D .∵∠ACB =30°, ∠BCE =60°,∴∠FCG =30°,∴FG =12CG ,∴CG =2FG .∵∠DCE =∠CDG =30°,∴DG =CG ,∴DG =2FG .故D 错误.故选D .【点睛】本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,含30°角的直角边等于斜边的一半,以及平行四边形的判定与性质等知识,综合性较强,正确理解旋转性质是解题的关键.(2022·湖南常德) 19. 国际数学家大会每四,举行一届,下面四届国际数学家大会会标中是中心对称图形的是()A. B.C. D.【答案】B【解析】【分析】根据中心对称的概念对各图形分析判断即可得解.【详解】解:A不是中心对称图形,故A错误;B是中心对称图形,故B正确;C不是中心对称图形,故C错误;D不是中心对称图形,故D错误;故选B.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180︒后两部分重合,理解并掌握如何判断中心对称图形的条件是解题的关键.(2022·河北)20. 题目:“如图,∠B=45°,BC=2,在射线BM上取一点A,设AC=d,若对于d的一个数值,只能作出唯一一个△ABC,求d的取值范围.”对于其答案,甲答:d≥,乙答:d=1.6,丙答:d=)2A. 只有甲答的对B. 甲、丙答案合在一起才完整C. 甲、乙答案合在一起才完整D. 三人答案合在一起才完整【答案】B【解析】 【分析】过点C 作CA BM '⊥于A ',在A M '上取A A BA ''''=,发现若有两个三角形,两三角形的AC 边关于A C '对称,分情况分析即可【详解】过点C 作CA BM '⊥于A ',在A M '上取A A BA ''''=∵∠B =45°,BC =2,CA BM '⊥∴BA C '是等腰直角三角形∴A C BA ''===∵A A BA ''''=∴2A C ''==若对于d 的一个数值,只能作出唯一一个△ABC通过观察得知:点A 在A '点时,只能作出唯一一个△ABC (点A 在对称轴上),此时d =的答案;点A 在A M ''射线上时,只能作出唯一一个△ABC (关于A C '对称的AC 不存在),此时2d ≥,即甲的答案,点A 在BA ''线段(不包括A '点和A ''点)上时,有两个△ABC (二者的AC 边关于A C '对称);故选:B【点睛】本题考查三角形的存在性质,勾股定理,解题关键是发现若有两个三角形,两三角形的AC边关于A C'对称(2022·山西)21. 2022年4月16日,神舟十三号载人飞船圆满完成全部既定任务,顺利返回地球家园.六个月的飞天之旅展现了中国航天科技的新高度下列航天图标,其文字上方的图案是中心对称图形的是()A. B. C. D.【答案】B【解析】【分析】利用中心对称图形的定义直接判断.【详解】解:根据中心对称图形的定义,四个选项中,只有B选项的图形绕着某点旋转180°后能与原来的图形重合,故选B.【点睛】本题考查中心对称图形的判定,掌握中心对称图形的定义是解题的关键.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心.(2022·河南)22. 如图,在平面直角坐标系中,边长为2的正六边形ABCDEF的中心与原点O∥轴,交y轴于点P.将,OAP绕点O顺时针旋转,每次旋转90°,则重合,AB x第2022次旋转结束时,点A的坐标为()A. )1-B. (1,-C. ()1-D. (【答案】B【解析】【分析】首先确定点A 的坐标,再根据4次一个循环,推出经过第2022次旋转后,点A 的坐标即可.【详解】解:正六边形ABCDEF 边长为2,中心与原点O 重合,AB x ∥轴, ∴AP =1, AO =2,∠OP A =90°,∴OP∴A (1,第1次旋转结束时,点A -1);第2次旋转结束时,点A 的坐标为(-1,;第3次旋转结束时,点A 的坐标为(1);第4次旋转结束时,点A 的坐标为(1;∵将,OAP 绕点O 顺时针旋转,每次旋转90°,∴4次一个循环,∵2022÷4=505……2,∴经过第2022次旋转后,点A 的坐标为(-1,,故选:B【点睛】本题考查正多边形与圆,规律型问题,坐标与图形变化﹣旋转等知识,解题的关键是学会探究规律的方法,属于中考常考题型.(2022·四川宜宾)23. 如图,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,点D 是BC 边上的动点(不与点B 、C 重合),DE 与AC 交于点F ,连结CE .下列结论:①BD CE =;②DAC CED ∠=∠;③若2BD CD =,则45CF AF =;④在ABC 内存在唯一一点P ,使得PA PB PC ++的值最小,若点D 在AP 的延长线上,且AP 的长为2,则2CE =+ )A. ①②④B. ①②③C. ①③④D. ①②③④ 【答案】B【解析】【分析】证明BAD CAE ≌,即可判断①,根据①可得ADB AEC ∠=∠,由180ADC AEC ∠+∠=︒可得,,,A D C E 四点共圆,进而可得DAC DEC ∠=∠,即可判断②,过点A 作AG BC ⊥于G ,交ED 的延长线于点H ,证明FAH FCE ∽,根据相似三角形的性质可得45CF AF =,即可判断③,将APC △绕A 点逆时针旋转60度,得到AB P ''△,则APP '是等边三角形,根据当,,,B P P C ''共线时,PA PB PC ++取得最小值,可得四边形ADCE 是正方形,勾股定理求得DP , 根据CE AD AP PD ==+即可判断④. 【详解】解:ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒, ,,AB AC AD AE BAD CAE ∴==∠=∠BAD CAE ∴△≌△BD CE ∴=故①正确;BAD CAE ≌ADB AEC ∴∠=∠180ADC AEC ∴∠+∠=︒,,,A D C E ∴四点共圆,CD CD =DAC DEC ∴∠=∠故②正确;如图,过点A 作AG BC ⊥于G ,交ED 的延长线于点H ,BAD CAE ≌,45,45ACE ABD ACB ∴∠=∠=︒∠=︒90DCE ∴∠=︒FC AH ∴∥2BD CD =,BD CE =1tan 2DC DEC CE ∴∠==,13CD BC = 设6BC a =,则2DC a =,132AG BC a ==,24EC DC a == 则32GD GC DC a a a =-=-=FC AH ∥1tan 2GD H GH ∴== 22GH GD a ∴==325AH AG GH a a a ∴=+=+=AH ,CE ,FAH FCE ∴∽CF CE AF AH∴= 4455CF a AF a ∴== 则45CF AF =; 故③正确如图,将ABP 绕A 点逆时针旋转60度,得到AB P ''△,则APP '是等边三角形,PA PB PC PP P B PC B C '''+++∴'+=≥,当,,,B P P C ''共线时,PA PB PC ++取得最小值,此时180********CPA APP '∠=-∠=︒-=︒︒︒,180********APB AP B AP P ∠=∠=︒-∠=︒-︒='''︒,360360*********BPC BPA APC ∠=︒-∠-∠=︒-︒-︒=︒,此时120APB BPC APC ∠=∠=∠=︒,AC AB AB '==,AP AP '=,APC AP B ''∠=∠,AP B APC ''∴≌,PC P B PB ''∴==,60APP DPC '∠=∠=︒,DP ∴平分BPC ∠,PD BC ∴⊥,,,,A D C E 四点共圆,90AEC ADC ∴∠=∠=︒,又AD DC BD ==,BAD CAE ≌,AE EC AD DC ∴===,则四边形ADCE 是菱形,又90ADC ∠=︒,∴四边形ADCE 是正方形,9060150B AC B AP PAC P AP ''''∠=∠+∠+∠=︒+︒=︒,则'B A BA AC ==,()1180152B ACB B AC '''∠=∠=︒-∠=︒, 30PCD ∠=︒,DC ∴=,DC AD =,2AP =,则)12AP AD DP DP =-==,1DP ∴==, 2AP =,3CE AD AP PD ∴==+=,故④不正确,故选B .【点睛】本题考查了旋转的性质,费马点,圆内接四边形的性质,相似三角形的性质与判定,全等三角形的性质与判定,勾股定理,解直角三角形,正方形的性质与判定,掌握以上知识是解题的关键.二.填空题(2022·云南)24. 点A (1,-5)关于原点的对称点为点B ,则点B 的坐标为______.【答案】(-1,5)【解析】【分析】根据若两点关于坐标原点对称,横纵坐标均互为相反数,即可求解.【详解】解:∵点A (1,-5)关于原点的对称点为点B ,∴点B 的坐标为(-1,5).故答案为:(-1,5)【点睛】本题主要考查了平面直角坐标系内点关于原点对称的特征,熟练掌握若两点关于坐标原点对称,横纵坐标均互为相反数是解题的关键.(2022·湖南湘潭)25. 如图,一束光沿CD 方向,先后经过平面镜OB 、OA 反射后,沿EF 方向射出,已知120AOB ∠=︒,20CDB ∠=︒,则∠=AEF _________.【答案】40°##40度【解析】【分析】根据入射角等于反射角,可得,CDB EDO DEO AEF ∠=∠∠=∠,根据三角形内角和定理求得40OED ∠=︒,进而即可求解.【详解】解:依题意,,CDB EDO DEO AEF ∠=∠∠=∠,∵120AOB ∠=︒,20CDB ∠=︒,20CDB EDO ∴∠=∠=︒,∴18040OED ODE AOB ∠=-∠-∠=︒,∴40AEF DEO ∠=∠=︒.故答案为:40.【点睛】本题考查了轴对称的性质,三角形内角和定理的应用,掌握轴对称的性质是解题的关键.(2022·浙江丽水)26. 一副三角板按图1放置,O 是边()BC DF 的中点,12cm BC =.如图2,将ABC 绕点O 顺时针旋转60︒,AC 与EF 相交于点G ,则FG 的长是___________cm .【答案】3【解析】【分析】BC 交EF 于点N ,由题意得,=90EDF BAC ∠=∠︒,60DEF ∠=︒,30DFE ∠=︒,=45ABC ACB ∠=∠︒,BC =DF =12,根据锐角三角函数即可得DE ,FE ,根据旋转的性质得ONF △是直角三角形,根据直角三角形的性质得3ON =,即3NC =,根据角之间的关系得CNG △是等腰直角三角形,即3NG NC ==cm ,根据90FNO FED ∠=∠=︒,30NFO DFE ∠=∠=︒得FON FED △∽△,即ON FNDE DF=,解得FN = 【详解】解:如图所示,BC 交EF 于点N ,由题意得,=90EDF BAC ∠=∠︒,60DEF ∠=︒,30DFE ∠=︒,=45ABC ACB ∠=∠︒,BC =DF =12,在Rt EDF 中,12tan tan 60DF DE EDF ===∠︒12sin sin 60DF EF EDF ===∠︒∵△ABC 绕点O 顺时针旋转60°,∴60BOD NOF ∠=∠=︒,∴90NOF F ∠+∠=︒,∴18090FNO NOF F ∠=︒-∠-∠=︒,∴ONF △是直角三角形, ∴132ON OF ==(cm ), ∴3NC OC ON =-=(cm ),∵90FNO ∠=︒,∴18090GNC FNO ∠=︒-∠=︒,∴NGC 是直角三角形,∴18045NGC GNC ACB ∠=-∠-∠=︒,∴CNG △是等腰直角三角形,∴3NG NC ==cm ,∵90FNO FED ∠=∠=︒,30NFO DFE ∠=∠=︒,∴FON FED △∽△, 即ON FN DE DF=,12FN =,FN =∴3FG FN NG =-=(cm ),故答案为:3.【点睛】本题考查了直角三角形的性质,相似三角形的判定与性质,旋转的性质,解题的关键是掌握这些知识点.(2022·河南)27. 如图,将扇形AOB 沿OB 方向平移,使点O 移到OB 的中点O '处,得到扇形A O B '''.若∠O =90°,OA =2,则阴影部分的面积为______.【答案】3π+【解析】【分析】设A O '与扇形AOB 交于点C ,连接OC ,解Rt OCO ',求得60O C COB '=∠=︒,根据阴影部分的面积为()OCO A O B OCB S S S''''--扇形扇形,即可求解.【详解】如图,设A O '与扇形AOB 交于点C ,连接OC ,如图O '是OB 的中点11122OO OB OA '∴===, OA =2, AOB ∠=90°,将扇形AOB 沿OB 方向平移,90A O O ''∴∠=︒1cos 2OO COB OC '∴∠== 60COB ∴∠=︒sin 60O C OC '∴=︒=∴阴影部分的面积为()OCO A O B OCB S S S ''''--扇形扇形OCO AOB OCB S S S ''=-+扇形扇形22906012213603602ππ=⨯-⨯+⨯32π=+故答案为:32π+ 【点睛】本题考查了解直角三角形,求扇形面积,平移的性质,求得60COB ∠=︒是解题的关键.(2022·河南)28. 如图,在Rt △ABC 中,∠ACB =90°,AC BC ==,点D 为AB 的中点,点P 在AC 上,且CP =1,将CP 绕点C 在平面内旋转,点P 的对应点为点Q ,连接AQ ,DQ .当∠ADQ =90°时,AQ 的长为______.【解析】【分析】连接CD ,根据题意可得,当∠ADQ =90°时,分Q 点在线段CD 上和DC 的延长线上,且1CQ CP ==,勾股定理求得AQ 即可.【详解】如图,连接CD ,在Rt △ABC 中,∠ACB =90°,AC BC ==4AB ∴=,CD AD ⊥,122CD AB ∴==, 根据题意可得,当∠ADQ =90°时,Q 点在CD 上,且1CQ CP ==,211DQ CD CQ ∴=-=-=,如图,在Rt ADQ △中,AQ ===在Rt ADQ △中,2,3AD CD QD CD CQ ===+=AQ ∴===【点睛】本题考查了旋转的性质,勾股定理,直角三角形斜边上中线的性质,确定点Q 的位置是解题的关键.(2022·浙江金华)29. 如图,在Rt ABC 中,90,30,2cm ACB A BC ∠=︒∠=︒=.把ABC 沿AB 方向平移1cm ,得到A B C ''',连结CC ',则四边形AB C C ''的周长为_____cm .【答案】8+【解析】【分析】通过勾股定理,平移的特性,特殊角的三角函数,分别计算出四边形的四条边长,再计算出周长即可.【详解】解:∵90,30,2cm ACB A BC ∠=︒∠=︒=,∴AB =2BC =4,∴∵把ABC 沿AB 方向平移1cm ,得到A B C ''',∴1CC '=,=4+1=5AB ', =2B C BC ''=,∴四边形的周长为:1528++=+故答案为:8+【点睛】本题考查勾股定理,平移的特性,特殊角的三角函数,能够熟练掌握勾股定理是解决本题的关键.(2022·四川德阳)30. 如图,直角三角形ABC 纸片中,90ACB ∠=︒,点D 是AB 边上的中点,连接CD ,将ACD △沿CD 折叠,点A 落在点E 处,此时恰好有CE AB ⊥.若1CB =,那么CE =______.【解析】【分析】根据D 为AB 中点,得到AD =CD =BD ,即有,A =,DCA ,根据翻折的性质有,DCA =,DCE ,CE =AC ,再根据CE ,AB ,求得,A =,BCE ,即有,BCE =,ECD =,DCA =30°,则有,A =30°,在Rt △ACB 中,即可求出AC ,则问题得解.【详解】,,ACB =90°,,,A +,B =90°,,D 为AB 中点,,在直角三角形中有AD =CD =BD ,,,A =,DCA ,根据翻折的性质有,DCA =,DCE ,CE =AC ,,CE ,AB ,,,B +,BCE =90°,,,A +,B =90°,,,A =,BCE ,,,BCE =,ECD =,DCA ,,,BCE +,ECD +,DCA=,ACB =90°,,,BCE =,ECD =,DCA =30°,,A =30°,,在Rt △ACB 中,BC =1, 则有13tan tan 30BC AC A ===∠,CE AC ==【点睛】本题考查了翻折的性质、直角三角形斜边中线的性质、等边对等角以及解直角三角形的知识,求出,BCE =,ECD =,DCA =30°是解答本题的关键. (2022·山东泰安)31. 如图,将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°,点O ,B 的对应点分别为O ′,B ′,连接BB ′,则图中阴影部分的面积是__________________.【答案】23π 【解析】 【分析】连接OO ′,BO ′,根据旋转的性质得到AO AO '=,OA OB =,O B OB ''=,60OAO '∠=︒,120AOB AO B ''∠=∠=︒,推出△OAO ′是等边三角形,得到60AOO '∠=︒,因为∠AOB =120°,所以60O OB '∠=︒,则OO B '是等边三角形,得到120AO B '∠=︒,得到30O B B O BB ''''∠=∠=︒,90B BO '∠=︒,根据直角三角形的性质得24B O OB '==,根据勾股定理得B B '=,用B OB '△的面积减去扇形O OB '的面积即可得.【详解】解:如图所示,连接OO ′,BO ′,∵将半径为2,圆心角为120°的扇形OAB 绕点A 逆时针旋转60°,∴AO AO '=,OA OB =,O B OB ''=,60OAO '∠=︒,120AOB AO B ''∠=∠=︒ ∴△OAO ′是等边三角形,∴60AOO '∠=︒,OO OA '=,∴点O '在,O 上,∵∠AOB =120°,∴60O OB '∠=︒,∴OO B '是等边三角形,∴120AO B '∠=︒,∵120AO B ''∠=︒,∴120B O B ''∠=︒, ∴11(180)(180120)3022O B B O BB B O B ''''''∠=∠=︒-∠=⨯︒-︒=︒, ∴180180306090B BO OB B B OB '''∠=︒-∠-∠=︒-︒-︒=︒,∴24B O OB '==,在Rt B OB '中,根据勾股定理得,B B '==∴图中阴影部分的面积=2160222=223603B OB O OB S S ''⨯-=⨯⨯扇形ππ,故答案为:23π. 【点睛】本题考查了圆与三角形,旋转的性质,勾股定理,解题的关键是掌握这些知识点.(2022·湖南怀化)32. 已知点A (﹣2,b )与点B (a ,3)关于原点对称,则a ﹣b =______.【答案】5【解析】【分析】根据平面直角坐标系中,关于原点对称的点横、纵坐标都互为相反数,求出a ,b 的值即可.【详解】∵点A (﹣2,b )与点B (a ,3)关于原点对称,∴2a =,3b =-,∴()235a b -=--=故答案为:5.【点睛】本题考查平面直角坐标系中,关于原点对称的点的坐标的特点,掌握特殊位置关系的点的坐标变化是解答本题的关键.(2022·浙江台州)33. 如图,△ABC 的边BC 长为4cm .将△ABC 平移2cm 得到△A ′B ′C ′,且BB ′⊥BC ,则阴影部分的面积为______2cm .【答案】8【解析】【分析】根据平移的性质即可求解.【详解】解:由平移的性质S △A ′B ′C ′=S △ABC ,BC =B ′C ′,BC ∥B ′C ′,∴四边形B ′C ′CB 为平行四边形,∵BB ′⊥BC ,∴四边形B ′C ′CB 为矩形,∵阴影部分的面积=S △A ′B ′C ′+S 矩形B ′C ′CB -S △ABC=S 矩形B ′C ′CB=4×2=8(cm 2).故答案为:8.【点睛】本题考查了矩形的判定和平移的性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.三.解答题(2022·湖南湘潭)34. 如图,在平面直角坐标系中,已知ABC 的三个顶点的坐标分别为()1,1A -,()4,0B -,()2,2C -.将ABC 绕原点O 顺时针旋转90︒后得到111A B C △.(1)请写出1A 、1B 、1C 三点的坐标:1A _________,1B _________,1C _________(2)求点B 旋转到点1B 的弧长.【答案】(1)(1,1);(0,4);(2,2)(2)2π【解析】【分析】(1)将,ABC绕着点O按顺时针方向旋转90°得到,A1B1C1,点A1,B1,C1的坐标即为点A,B,C绕着点O按顺时针方向旋转90°得到的点,由此可得出结果.(2)由图知点B旋转到点1B的弧长所对的圆心角是90º,OB=4,根据弧长公式即可计算求出.【小问1详解】解:将,ABC绕着点O按顺时针方向旋转90°得到,A1B1C1,点A1,B1,C1的坐标即为点A,B,C绕着点O按顺时针方向旋转90°得到的点,所以A1(1,1);B1(0,4);C1(2,2)【小问2详解】解:由图知点B旋转到点1B的弧长所对的圆心角是90度,OB=4,∴点B旋转到点1B的弧长=904 180π⨯⨯=2π【点睛】本题主要考查点的旋转变换和弧长公式,解题的关键是熟练掌握旋转变换的定义和弧长公式.(2022·湖北武汉)35. 如图是由小正方形组成的96⨯网格,每个小正方形的顶点叫做格点.ABC的三个顶点都是格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图(1)中,D,E分别是边AB,AC与网格线的交点.先将点B绕点E 旋转180︒得到点F,画出点F,再在AC上画点G,使DG BC∥;(2)在图(2)中,P是边AB上一点,BACα∠=.先将AB绕点A逆时针旋转。

专题16 图形变换之平移与对称(解析版)

专题16 图形变换之平移与对称(解析版)

专题16图形变换之平移与对称考纲要求:1.理解轴对称、轴对称图形、中心对称、中心对称图形、平移的概念. 2.运用图形的轴对称、平移进行图案设计.3.利用平移、对称的图形变换性质解决有关问题.基础知识回顾:知识点一:图形变换1.图形的轴对称(1)定义:①轴对称:把一个图形沿某一条直线翻折过去,如果它能够与另一个图形重合,那么就称这两个图形关于这条直线对称.②轴对称图形:如果一个平面图形沿着一条直线折叠,直线两旁的部分能够重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴. (2)性质:如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;反过来,成轴对称的两个图形中,对应点的连线被对称轴垂直平分.2.图形的平移(1)定义:在平面内,将某个图形沿某个方向移动一定的距离,这样的图形运动称为平移.(2)性质:①平移后,对应线段相等且平行,对应点所连的线段相等且平行;②平移后,对应角相等且对应角的两边分别平行、方向相同;③平移不改变图形的形状和大小,只改变图形的位置,平移后新旧两个图形全等.3.图形的中心对称(1)把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么这两个图形关于这个点对称或中心对称,该点叫做对称中心.(2)①关于中心对称的两个图形全等;②关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分;③关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等.知识点二:网格作图坐标与图形的位置及运动图形的平移变换在平面直角坐标系内,如果把一个图形各个点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.图形关于坐标轴成对称变换在平面直角坐标系内,如果两个图形关于x轴对称,那么这两个图形上的对应点的横坐标相等,纵坐标互为相反数;在平面直角坐标系内,如果两个图形关于y轴对称,那么这两个图形上的对应点的横坐标互为相反数,纵坐标相等.图形关于原点成中心对称在平面直角坐标系内,如果两个图形关于原点成中心对称,那么这两个图形上的对应点的横坐标互为相反数,纵坐标互为相反数.应用举例:招数一、变换图形的形状问题【例1】下列倡导节约的图案中,是轴对称图形的是A. B. C. D.【答案】C【解析】将一个图形沿一条直线折叠,直线两旁的部分能够完全重合;这样的图形叫轴对称图形.故选C.招数二、平面坐标系中的图形变换问题【例2】如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,-1),B(1,-2),C(3,-3)(1)将△ABC向上平移4个单位长度得到△A1B1C1,请画出△A1B1C1;(2)请画出与△ABC关于y轴对称的△A2B2C2;(3)请写出A1.A2的坐标.【答案】(1)△A1B1C1即为所求;(2)△A2B2C2即为所求;(3)A1(2,3),A2(-2,-1).【解析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用轴对称的性质得出对应点位置进而得出答案;(3)利用所画图象得出对应点坐标.招数三、函数中的图形变换问题【例3】已知抛物线G:y=mx2﹣2mx﹣3有最低点.(1)求二次函数y=mx2﹣2mx﹣3的最小值(用含m的式子表示);(2)将抛物线G向右平移m个单位得到抛物线G1.经过探究发现,随着m的变化,抛物线G1顶点的纵坐标y与横坐标x之间存在一个函数关系,求这个函数关系式,并写出自变量x的取值范围;(3)记(2)所求的函数为H,抛物线G与函数H的图象交于点P,结合图象,求点P的纵坐标的取值范围.<﹣3.【答案】(1)﹣m﹣3;(2)y=﹣x﹣2(x>1);(3)﹣4<yP【解析】(1)∵y=mx2﹣2mx﹣3=m(x﹣1)2﹣m﹣3,抛物线有最低点,∴二次函数y=mx2﹣2mx﹣3的最小值为﹣m﹣3.(2)∵抛物线G:y=m(x﹣1)2﹣m﹣3,∴平移后的抛物线G1:y=m(x﹣1﹣m)2﹣m﹣3,顶点坐标为(m+1,﹣m﹣3),∴抛物线G1∴x=m+1,y=﹣m﹣3,∴x+y=m+1﹣m﹣3=﹣2.即x+y=﹣2,变形得y=﹣x﹣2,∵m>0,m=x﹣1,∴x﹣1>0,∴x>1,∴y与x的函数关系式为y=﹣x﹣2(x>1).(3)如图,函数H:y=﹣x﹣2(x>1)图象为射线x=1时,y=﹣1﹣2=﹣3;x=2时,y=﹣2﹣2=﹣4,∴函数H的图象恒过点B(2,﹣4),∵抛物线G:y=m(x﹣1)2﹣m﹣3,x=1时,y=﹣m﹣3;x=2时,y=m﹣m﹣3=﹣3,∴抛物线G恒过点A(2,﹣3),由图象可知,若抛物线与函数H的图象有交点P,则yB <yP<yA,∴点P纵坐标的取值范围为﹣4<yP<﹣3,招数四、三角形、四边形中图形变换问题【例4】将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,其中FM,GN是折痕.若正方形EFGH与五边形MCNGF的面积相等,则的值是()A.B.﹣1 C.D.【答案】A【解析】连接HF,设直线MH与AD边的交点为P,如图:由折叠可知点P、H、F、M四点共线,且PH=MF,设正方形ABCD的边长为2a,则正方形ABCD的面积为4a2,∵若正方形EFGH与五边形MCNGF的面积相等∴由折叠可知正方形EFGH的面积=×正方形ABCD的面积=,∴正方形EFGH的边长GF==[∴HF=GF=∴MF=PH==a∴=a÷=故选:A.【例5】如图,在中,,,,点M为边AC的中点,点N为边BC 上任意一点,若点C关于直线MN的对称点恰好落在的中位线上,则CN的长为______.【答案】或【解析】取BC、AB的中点H、G,连接MH、HG、MG.如图1中,当点落在MH上时,设,由题意可知:,,,,在中,,,解得;如图2中,当点落在GH上时,设,在中,,,,∽,∴,,;综上所述,满足条件的线段CN的长为或.故答案为为或.招数五、图案设计方案问题【例6】在数学活动课上,王老师要求学生将图1所示的3×3正方形方格纸,剪掉其中两个方格,使之成为轴对称图形.规定:凡通过旋转能重合的图形视为同一种图形,如图2的四幅图就视为同一种设计方案(阴影部分为要剪掉部分)请在图中画出4种不同的设计方案,将每种方案中要剪掉的两个方格涂黑(每个3×3的正方形方格画一种,例图除外)【答案】见解析.【解析】如图所示方法、规律归纳:1.识别某图形是轴对称图形还是中心对称图形的关键在于对定义的准确把握,抓住轴对称图形、中心对称图形的特征,看能否找出其对称轴或对称中心,再作出判断.2.在平面直角坐标系中,将点P(x,y)向右(或左)平移a个单位长度后,其对应点的坐标变为(x+a,y)〔或(x-a,y)〕;将点P(x,y)向上(或下)平移b个单位长度后,其对应点的坐标变为(x,y+b)〔或(x,y-b)〕.3.要画出一个图形的平移、对称后的图形,关键是先确定一些关键点,根据相应顶点的平移方向、平移距离、对称不变的性质作出关键点的对应点,这种以“局部代整体”的作图方法是平移、对称中最常用的方法.4.利用平移、对称的性质解题时,要抓住平移规律及对称中不变的特点来解决问题.实战演练:1.如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为()A.10 B.6 C.3 D.2【答案】C【解答】如图所示,n的最小值为3,2. 如图,抛物线y1=﹣x2+2向右平移1个单位得到抛物线y2,则图中阴影部分的面积是()A.2 B.3 C.4 D.无法计算【答案】A【解析】如下图所示,∵抛物线y1=-x2+2向右平移1个单位得到抛物线y2,∴两个顶点的连线平行x轴,∴图中阴影部分和图中红色部分是等底等高的,∴图中阴影部分等于红色部分的面积,而红色部分的是一个矩形,长、宽分别为2,1,∴图中阴影部分的面积S=2.故选A.3. 将抛物线y=x2-6x+5向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是()A.y=(x-4)2-6 B.y=(x-1)2-3 C.y=(x-2)2-2 D.y=(x-4)2-2 【答案】D【解析】y=x2-6x+5= (x-3) 2-4,把向上平移两个单位长度,再向右平移一个单位长度后,得y= (x-3-1) 2-4+2,即y=(x-4)2-2.4.将矩形ABCD按如图所示的方式折叠,BE,EG,FG为折痕,若顶点A,C,D都落在点O处,且点B,O,G在同一条直线上,同时点E,O,F在另一条直线上,则的值为()A.B.C.D.【答案】B【解答】解:由折叠可得,AE=OE=DE,CG=OG=DG,∴E,G分别为AD,CD的中点,设CD=2a,AD=2b,则AB=2a=OB,DG=OG=CG=a,BG=3a,BC=AD=2b,∵∠C=90°,∴Rt△BCG中,CG2+BC2=BG2,即a2+(2b)2=(3a)2,∴b2=2a2,即b=a,∴,∴的值为,故选:B.5. 如图,在等边△ABC中,AB=4,点P是BC边上的动点,点P关于直线AB,AC的对称点分别为M,N,则线段MN长的取值范围是 .【答案】.【解析】试题解析:如图1,当点P为BC的中点时,MN最短.此时E、F分别为AB、AC的中点,∴PE=AC,PF=AB,EF=BC,∴MN=ME+EF+FN=PE+EF+PF=6;如图2,当点P和点B(或点C)重合时,此时BN(或CM)最长.此时G(H)为AB(AC)的中点,∴CG=2(BH=2),CM=4(BN=4).故线段MN长的取值范围是6≤MN≤4.6. 如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线AB平移至△FEG,DE、FG相交于点H.判断线段DE、FG的位置关系,并说明理由.【解析】DE⊥FG.理由:由题知:Rt△ABC≌Rt△BDE≌Rt△FEG∴∠A=∠BDE=∠GFE∵∠BDE+∠BED=90°∴∠GFE+∠BED=90°,即DE⊥FG.7.如图,在平面直角坐标系中,二次函数y=﹣x2+2x+6的图象交x轴于点A,B(点A在点B 的左侧)(1)求点A,B的坐标,并根据该函数图象写出y≥0时x的取值范围.(2)把点B向上平移m个单位得点B1.若点B1向左平移n个单位,将与该二次函数图象上的点B2重合;若点B1向左平移(n+6)个单位,将与该二次函数图象上的点B3重合.已知m>0,n >0,求m ,n 的值.【答案】(1)26x -;(2)72,1.【解析】(1)令0y =,则212602x x -++=,解得,12x =-,26x =,(2,0)A ∴-,(6,0)B , 由函数图象得,当0y 时,26x -;(2)由题意得,1(6,)B n m -,2(,)B n m -, 函数图象的对称轴为直线2622x -+==, 点1B ,2B 在二次函数图象上且纵坐标相同, ∴6()22n n -+-=,1n ∴=, ∴217(1)2(1)622m =-⨯-+⨯-+=, m ∴,n 的值分别为72,1. 8.如图,在平面直角坐标系xOy 中,对正方形ABCD 及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一种实数a ,将得到的点先向右平移m 个单位,再向上平移n 个单位(m >0,n >0).得到正方形A′B′C′D′及其内部的点,其中点A 、B 的对应点分别为A′,B′.已知正方形ABCD 内部的一个点F 经过上述操作后得到的对应点F′与点F 重合,求点F 的坐标.由B 到B ′,可得方程组:⎩⎨⎧=+⨯=+2023n a m a ,解得:a =12,m =12,n =2. 设F 点的坐标为(x ,y ),点F ′点F 重合得到方程组:⎪⎪⎩⎪⎪⎨⎧=+=+y y x x 2212121 ,解得:⎩⎨⎧==41y x ,即F(1,4).9. 如图,在平面直角坐标系中,长方形OABC 的顶点A 、C 分别在x 轴、y 轴的正半轴上.点B 的坐标为(8,4),将该长方形沿OB 翻折,点A 的对应点为点D ,OD 与BC 交于点E . (I )证明:EO=EB ;(Ⅱ)点P 是直线OB 上的任意一点,且△OPC 是等腰三角形,求满足条件的点P 的坐标; (Ⅲ)点M 是OB 上任意一点,点N 是OA 上任意一点,若存在这样的点M 、N ,使得AM+MN 最小,请直接写出这个最小值.【答案】(I )证明见解析;(Ⅱ)P 的坐标为(4,2)或(,)或P (﹣,﹣)或(,);(Ⅲ).【解析】(Ⅰ)∵将该长方形沿OB翻折,点A的对应点为点D,OD与BC交于点E,∴∠DOB=∠AOB,∵BC∥OA,∴∠OBC=∠AOB,∴∠OBC=∠DOB,∴EO=EB;(Ⅱ)∵点B的坐标为(8,4),∴直线OB解析式为y=x,∵点P是直线OB上的任意一点,∴设P(a,a).∵O(0,0),C(0,4),∴OC=4,PO2=a2+(a)2=a2,PC2=a2+(4-a)2.当△OPC是等腰三角形时,可分三种情况进行讨论:①如果PO=PC,那么PO2=PC2,则a2=a2+(4-a)2,解得a=4,即P(4,2);②如果PO=OC,那么PO2=OC2,则a2=16,解得a=±,即P(,)或P(-,-);③如果PC=OC时,那么PC2=OC2,则a2+(4-a)2=16,解得a=0(舍),或a=,即P(,);故满足条件的点P的坐标为(4,2)或(,)或P(-,-)或(,);(Ⅲ)如图,过点D作OA的垂线交OB于M,交OA于N,此时的M,N是AM+MN的最小值的位置,求出DN就是AM+MN的最小值.由(1)有,EO=EB,∵长方形OABC的顶点A,C分别在x轴、y轴的正半轴上,点B的坐标为(8,4),设OE=x,则DE=8-x,在Rt△BDE中,BD=4,根据勾股定理得,DB2+DE2=BE2,∴16+(8-x)2=x2,∴x=5,∴BE=5,∴CE=3,∴DE=3,BE=5,BD=4,∵S△BDE=DE×BD=BE×DG,∴DG=,由题意有,GN=OC=4,∴DN=DG+GN=+4=.即:AM+MN的最小值为.10. 如图,在平面直角坐标系中,点F的坐标为(0,10).点E的坐标为(20,0),直线l1经过点F和点E,直线l1与直线l2、y=x相交于点P.(1)求直线l1的表达式和点P的坐标;(2)矩形ABCD的边AB在y轴的正半轴上,点A与点F重合,点B在线段OF上,边AD平行于x 轴,且AB=6,AD=9,将矩形ABCD沿射线FE的方向平移,边AD始终与x 轴平行.已知矩形ABCD以每秒个单位的速度匀速移动(点A移动到点E时止移动),设移动时间为t秒(t >0).①矩形ABCD在移动过程中,B、C、D三点中有且只有一个顶点落在直线l1或l2上,请直接写出此时t的值;②若矩形ABCD在移动的过程中,直线CD交直线l1于点N,交直线l2于点M.当△PMN的面积等于18时,请直接写出此时t的值.【答案】(1)直线l1的表达式为y=﹣x+10,点P坐标为(8,6);(2)①t值为或;②当t=时,△PMN的面积等于18.【解析】(1)设直线l1的表达式为y=kx+b,∵直线l1过点F(0,10),E(20,0),∴,解得:,直线l1的表达式为y=﹣x+10,解方程组得,∴点P坐标为(8,6);(2)①如图,当点D在直线上l2时,∵AD=9∴点D与点A的横坐标之差为9,∴将直线l1与直线l2的解析式变形为x=20﹣2y,x=y,∴y﹣(20﹣2y)=9,解得:y=,∴x=20﹣2y=,则点A的坐标为:(,),则AF=,∵点A速度为每秒个单位,∴t=;如图,当点B在l2直线上时,∵AB=6,∴点A的纵坐标比点B的纵坐标高6个单位,∴直线l1的解析式减去直线l2的解析式得,﹣x+10﹣x=6,解得x=,y=﹣x+10=,则点A坐标为(,)则AF=,∵点A速度为每秒个单位,∴t=,故t值为或;②如图,设直线AB交l2于点H,设点A横坐标为a,则点D横坐标为a+9,由①中方法可知:MN=,此时点P到MN距离为:a+9﹣8=a+1,∵△PMN的面积等于18,∴=18,解得a1=-1,a2=﹣-1(舍去),∴AF=6﹣,则此时t为,当t=时,△PMN的面积等于18.。

平移与旋转答案及解析

平移与旋转答案及解析

平移与旋转答案及解析1.【答案】B【解析】本题主要考查图形的轴对称和中心对称。

在平面内,如果把一个图形绕某个点旋转180°后,能与自身重合,那么这个图形叫做中心对称图形;在平面内,如果把一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形称为轴对称图象,所以选B.2.【答案】C【解析】 CC’=AB,∠CAB=70°.∴∠C’CA=∠CAB=70°.又 C、C’为对应点,点A为旋转中心∴AC=AC’,即△ACC’为等腰三角形∴∠BAB’=∠CAC’=180°-2∠C’CA=40°∴选C.3.【答案】C【解析】根据平移的特性可知,平移只改变图形的位置,不改变图形的形状和大小,所以C 错误.4.【答案】D【解析】平移只改变图形的位置,不改变图形的形状和大小。

所以平移后的边对应相等,∴D 错误,应为AB=AB’.5.【答案】D【解析】根据旋转的意义,找出菱形AEFG和菱形ABCD的对应点的变化情况,结合等边三角形的性质即可.6.【答案】C【解析】 △ACB平移后得到△EBF∴AC=BE CB=BF AB=EF∴①③④正确,②中点B对应点应为F.7.【答案】A【解析】观察图形可知,△DEF是由△ABC沿BC向右移动BE的长度后得到的∴平移距离就是线段BE的长度∴选A.8.【答案】D【解析】①:由平移和旋转性质可知,平移后对应线段平行,旋转后不一定平行.②③④平移或旋转后,对应线段相等,对应角相等,图形的形状和大小都不会变化.9.【答案】B【解析】A项,平移和旋转均不改变图形的形状和大小B项,平移和旋转的共同点是改变图形位置C项,图形可以向某方向平移一定距离,旋转是围绕中心做圆周运动D项,由平移得到的图形不一定由旋转得到10.【答案】D【解析】由旋转性质可知,AC=AC’又∠CAC’=90°,∴△CAC’是等腰直角三角形∴∠CC’A=45°∠CC’B+∠ACC’=∠AB’C’∴∠CC’B=15°11.【答案】图形的形状、大小不变,改变图形位置.【解析】在图形的平移、旋转、轴对称变换中,相同的性质是:图形的形状和大小不变,只有位置发生改变.12.【答案】平移旋转【解析】平移变换:在平面内,将一个图形沿某个方向移动一定距离旋转变换:在平面内,将一个图形沿某一个定点方向转动一个角度13.【答案】(1,-1)【解析】向右平移则A的横坐标+3,向下平移则A的纵坐标-2,平移后A的坐标为(1,-1).14.【答案】小正方形AEOF;三;△AOD;三【解析】正方形ABCD可看做是由图形小正方形AEOF经过三次平移得到,也可以看作是由图形△AOD绕O点旋转三次得到.15.【答案】150°【解析】根据旋转的定义可知,旋转的角度为:∠AOC=∠AOB+∠BOC=60°+90°=150°∴旋转角度为150°.16.【答案】如图所示,平移后RA’=3,过点B向AA’引垂线,垂足为D∴BD=4,A’D=4∴∠BA’A=45°.【解析】经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.17.【答案】(1)①平移的方向是射线AD方向,距离为AD长度②相等的线段:AD=BE=CF,AB=DE,BC=DE,AC=DF平行的线段:AC∥BE∥CF,AB∥DE,BC∥EF,AC∥DF③∠ABC=∠DEF,∠ACB=∠DEF,∠BAC=∠EDF∠BAD=∠BED,∠ABE=∠EDA,∠EBC=∠CFE∠BCF=∠BEF,∠ACF=∠ADF,∠CAD=∠CFD(2) CC’∥AB∴∠ACC’=∠CAB=75°△ABC绕点A旋转得到△AB’C’∴AC=AC’∴∠CAC’=180°-2∠ACC’=180°-2×75°=30°∴∠CAC’=∠BAB’=30°.【解析】(1)由图形可知,A与D,B与E,C与F是对应点,所以可得平移的方向和距离,也可得出相等的线段.(2)根据两直线平行,内错角相等可得∠ACC’=∠CAB,根据旋转性质可得AC=AC’,然后利用等腰三角形即可求得.18.【答案】(1)①②根据题意,在Rt △ABC 中 AC=4,BC=3 ∴5342222=+=+=BC AC AB∴扫过的面积=ππ4253605902=⨯ (2)①AC ⊥BD△DCE 由△ABC 平移而成∴BE=2BC=6,DE=AC=3,CE=∠ACB=60°∴DE=21BE ∴BD ⊥DE又 ∠E=∠ACB=60°∴AC ∥DE ,∴BD ⊥AC△ABC 是等边三角形∴BF 是AC 的中点∴BD ⊥AC ,BD 与AC 互相垂直平分②由(1)知,AC ∥DE ,BD ⊥AC∴△BED 是直角三角形BE=6,DE=3 ∴3322=-=DE BE BD .【解析】(1)①根据题意和图形旋转即可画图.②根据勾股定理求AB 长度.再根据扇形面积公式即可.(2)①由平移的性质可知BE=2BC=6DE=AC=3 ∴BD ⊥DE由∠E=∠ACB=60°可知AC ∥DE②在Rt △BDE 中利用勾股定理即可得出BD 的长.19. 【答案】(1)由△ABO 和△CDO 关于点O 中心对称可知△ABO ≌△CDO∴AO=CO,BO=DOAF=CE∴AO-AF=CO-CE∴FO=EO又 ∠DOF=∠BOE在△DOF 和△BOE 中⎪⎩⎪⎨⎧=∠=∠=EO FO BOE DOF BO DO∴△DOF ≌△BOE (SAS )∴FD=BE(2)①证明: △ABC 、△EDC 是等边三角形∴BC=AC,∠ACB=∠ECD=60°,EC=DC∴∠ACE=∠BCD在△ACE 和△BCD 中⎪⎩⎪⎨⎧=∠=∠=DC EC BCD ACE BC AC∴△ACE ≌△BCD (SAS )∴∠EAC=∠B=60°=∠ACB∴AE ∥BC② △ACE ≌△BCD ∠EAC=∠B=60°=∠ACB∴图中有在旋转关系的三角形,它们是△BCD 和△ACE ,其旋转中心是点C ,旋转角是60°.【解析】(1)根据中心对称性质,可知△ABO ≌△CDO ,∴AO=CO,BO=DO,再根据AF=CE ,得FO=EO ,利用SAS 判定△DOF ≌△BOE ,∴FD=BE.(2)①由△ABC 、△EDC 是等边三角形,易证△ACE ≌△BCD ,∴∠EAC=∠B=60°=∠ACB ,∴AE ∥BC②由(1)可得:图中有在旋转关系的三角形,它们是△BCD 和△ACE ,其旋转中心是C ,旋转角是60°.20.【答案】(1)△A 1B 1C 1如图所示(2)△A 2B 2C 2如图所示(3)△PAB 如图所示,由图可得P 点坐标为(2,0)【解析】(1)根据网格结构找出A 、B 、C 平移后的对应点A 1、B 1、C 1的位置,顺次连接(2)根据网格结构找出A 、B 、C 关于原点对称点A 2、B 2、C 2的位置,顺次连接(3)找出点A 关于x 轴的对称点A ’,连接A ’B 与x 轴相交于一点,根据轴对称确定最短路线问题,交点即为P 坐标,再连接AP 、BP .21.【答案】△OAB AD【解析】由平移的性质,可知AB 、AO 、BO 平移AD 的长分别得到DC 、DE 、CE∴△EDC 可以看作是△OAB 平移得到,平移的距离是线段AD 的长22.【答案】400【解析】 △ABC 是等边三角形,∴AB=BC=ACA ’B ’∥AB ,BB ’=B ’C=21BC ∴B ’O=21AB,CO=21AC ∴△B ’OC 是等边三角形,同理阴影的三角形都是等边三角形观察图可知,第1个图形中大等边三角形有2个,小等边三角形有2个依次可将第N 个图形中大等边三角形有2n 个,小等边三角形有2n 个故第100个图形中等边三角形的个数是:2×100+2×100=400个. 23.【答案】326-【解析】过点B ’作DB ’∥BC ,交AB 于点D ,由平移和旋转性质可知,DB ’为图形平移的距离 ∠A=∠A ’=30°,AB=A ’B ’=12cm,BC=B ’C∴2130sin sin ==︒=AB BC A ∴BC=B ’C=21AB=6cm. 由勾股定理得: AC=3622=-BC AB cm∴AB ’=AC-B ’C=(636-)cm又DB ’∥BC∴∠B=∠ADB ’又 ∠A=∠A,∴△ADB ’≌△ABC∴AC AB BC DB ''=即6'36636DB =- ∴DB ’=(326-)cm. 24.【答案】222-【解析】设BA 与B ’A ’、D ’A ’相交的两点分别为E 、F设EF=x ,由题知正方形旋转45°∴重叠部分以外的三角形均为等腰直角三角形∴A ’E=BE=AF=x 22∴AB=2BE+EF=22=+x x222-=x∴边长为222-25.【答案】①③【解析】根据旋转性质可知∠CAD=∠BAF ,AD=AF∠BAC=90° ∠DAE=45°∴∠CAD+∠BAE=45°∴∠EAF=45°∴△AEF ≌△AED∴①正确.②根据①知,CD=BF,DE=EF∴BE+DC=BE+BF>DE=EF.②错③ ∠FBE=45°+45°=90°∴BE 2+BF 2=EF 2△ADC 绕点A 顺时针旋转90度,得△AFB∴△AFB ≌△ADC∴BF=CD又FE=DC∴BE 2=DC 2=DE 2∴①③26.【答案】70°或120°【解析】①如下图点B 在AB 边上时,根据旋转的性质得BD=BD ’, ∠B=55°∴∠BDB ’=180°-2×55°=70°即m=70°②如下图点B 落在AC 上,根据旋转的性质可得BD=B ’D.BD=2CD∴B ’D=2CD∴∠CBD ’=30°在Rt △B ’CD 中,∠CDB ’=90°-30°=60°∠BDB ’=180°-60°=120°即m=120°综上所述,m=70°或120°.27.【答案】由旋转的性质得:△ACE ≌△ABD∴AE=AD=5 CE=BD=6∠DAE=60°∴DE=5作EH ⊥CD 垂足为H设DH=x由勾股定理,得:EH 2=CE 2-CH 2=DE 2-DH 2即62-(4-x)2=52-x 2解得85=x ,∴DH=85 由勾股定理得:6385)85(52222=-=-=DH DE EH ∴△DCE 的面积=634521=⨯⨯EH CD 【解析】由旋转性质得△ACE ≌△ABD 得出AE=AD=5,CE=BD=6 ∠DAE=60° ∴△ADE 是等边三角形因此DE=AD=5,作EH ⊥CD ,垂足为H设DH=x ,由勾股定理求出EH 、DH即可得出△DCE 的面积。

图形的平移,对称与旋转的经典测试题含答案解析

图形的平移,对称与旋转的经典测试题含答案解析
下列说法中错误的是( )
A.勒洛三角形是轴对称图形
B.图1中,点A到 上任意一点的距离都相等
C.图2中,勒洛三角形上任意一点到等边三角形DEF的中心 的距离都相等
D.图2中,勒洛三角形的周长与圆的周长相等
【答案】C
【解析】
【分析】
根据轴对称形的定义,可以找到一条直线是的图像左右对着完全重合,则为轴对称图形.鲁列斯曲边三角形有三条对称轴.鲁列斯曲边三角形可以看成是3个圆心角为60°,半径为DE的扇形的重叠,根据其特点可以进行判断选项的正误.
A. B. C. D.
【答案】D
【解析】
【分析】
根据轴对称图形的概念对各选项分析判断即可得解.
【详解】
A、不是轴对称图形,故本选项错误;
B、不是轴对称图形,故本选项错误;
C、不是轴对称图形,故本选项错误;
D、是轴对称图形,故本选项正确.
故选:D.
【点睛】
本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
D.等腰直角三角形是轴对称图形,不符合题意.
故选C.
19.等腰三角形、直角三角形、等边三角形、锐角三角形、钝角三角形和等腰直角三角形中,一定是轴对称图形的有()
A.3个B.4个C.5个D.2个
【答案】A
【解析】等腰三角形、等边三角形、等腰直角三角形都是轴对称图形,是轴对称图形的有3个.
故选:A.
20.如图,将 绕点 逆时针旋转 得到 点 的对应点分别为 则 的长为()
A. B. C. D.【答案】C【解Fra bibliotek】【分析】
根据平移的定义:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,结合各选项所给的图形即可作出判断.

初三数学图形的对称平移与旋转试题答案及解析

初三数学图形的对称平移与旋转试题答案及解析

初三数学图形的对称平移与旋转试题答案及解析1.顺次连接正六边形的三个不相邻的顶点.得到如图的图形,该图形()A.既是轴对称图形也是中心对称图形B.是轴对称图形但并不是中心对称图形C.是中心对称图形但并不是轴对称图形D.既不是轴对称图形也不是中心对称图形【答案】B.【解析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,此图形是轴对称图形但并不是中心对称图形,故选B.【考点】1.中心对称图形和轴对称图形;2.正多边形的性质.2.下列电视台的台标,是中心对称图形的是()A. B. C. D.【答案】A【解析】A、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,故此选项正确;B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误;C、此图形旋转180°后不能与原图形重合,此图形不是中心对称图形,故此选项错误;D、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误.故选;A.【考点】中心对称图形3.如图,方格纸中的每个小方格都是边长为1个单位的正方形,Rt△ABC的顶点均在格点上,在建立平面直角坐标系后,点A的坐标为(-5,1),点B的坐标为(-3,3),点C的坐标为(-3,1)。

(1)将Rt△ABC沿x轴正方向平移7个单位得到Rt△A1B1C1,试在图上画出的图形Rt△A1B1C1的图形;(2)Rt△ABC关于点D(-1,0)对称的图形是Rt△A2B2C2,试在图上画出Rt△A2B2C2的图形,并写出A2、B2、C2点的坐标。

【答案】(1)作图见解析;(2)作图见解析,A2(3,-1),B2(0,-3),C2(0,-1).【解析】(1)根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;(2)根据网格结构找出点A、B、C关于点D的对称点A2、B2、C2的位置,然后顺次连接即可,再根据平面直角坐标系写出各点的坐标即可.试题解析:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示,A2(3,-1),B2(0,-3),C2(0,-1).【考点】1.作图-旋转变换;2.作图-平移变换.4.如图,已知点A(1,1)、B(3,2),且P为x轴上一动点,则△ABP的周长的最小值为.【答案】.【解析】本题需先根据已知条件求出AB的长,再根据P为x轴上一动点,确定出P点的位置,即可求出BP+AP的长,最后即可求出△ABP周长的最小值.试题解析:作点B关于x轴的对称点B′,连接AB′,当点P运动到AB′与X轴的交点时△ABP周长的最小值.∵A(1,1),B(3,2),∴AB=又∵P为x轴上一动点,当求△ABP周长的最小值时,∴AB′=∴△ABP周长的最小值为:AB+AB′=【考点】1.轴对称-最短路线问题;2.坐标与图形性质.5.如图,P是等边△ABC内的一点,若将△PAB绕点A逆时针旋转得到△P’AC,则∠PAP’的度数为A.120°B.90°C.60°D.30°【答案】C.【解析】如图,根据旋转的性质得,∠PAP′=∠BAC,∵△ABC是等边三角形,∴∠BAC=60°,∴∠PAP′=60°.故选C.【考点】1.旋转的性质;2.等边三角形的性质.6.下列图形中,既是中心对称图形又是轴对称图形的是()【答案】B.【解析】A、是轴对称图形,不是中心对称图形,故本选项错误;B、既是轴对称图形又是中心对称图形,故本选项正确;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既不是轴对称图形,也不是中心对称图形,故本选项错误.故选B.【考点】1.中心对称图形;2.轴对称图形7.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.【答案】A.【解析】如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.A、是轴对称图形,符合题意;B、不是轴对称图形,不符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选A.【考点】轴对称图形.8.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是 ()【答案】A【解析】这是一道较容易的题目,主要考查了轴对称图形的概念:对折后直线两侧的部分完全重合,其中B、D显然不是轴对称图形,易产生错误的是C,正确的答案应选A.本题渗透了保护环境思想,这也是出题人指出的方向.9.如图,矩形OABC在平面直角坐标系中,O为坐标原点,点A(0,4),C(2,0),将矩形OABC绕点O按顺时针方向旋转1800,得到矩形OEFG,顺次连接AC、CE、EG、GA.(1)请直接写出点F的坐标;(2)试判断四边形ACEG的形状,并说明理由;(3)将矩形OABC沿y轴向下平移m个单位(0<m<4),设平移过程中矩形与重叠部分面积为,当:=11:16时,求m的值.【答案】(1)F(-2,-4);(2)四边形ACEG是菱形,证明见解析;(3)或.【解析】(1)点F与点B关于原点对称,故F(-2,-4);(2)根据对角线互相垂直平分的四边形是平行四边形,即可证得;(3)根据:=11:16,求得,再由∥,得到△∽△,再用含m的代数式表示出和,从而求出m的值.试题解析:(1)F(-2,-4);(2)四边形ACEG是菱形.理由:根据题意得:OA=OE,OC=OG∴四边形ACEG是平行四边形又∵AE⊥GC∴四边形ACEG是菱形;(3)将矩形OABC沿y轴向下平移m个单位得到矩形.设与AC交于点M,与EC交于点N,则当:=11:16时,重叠部分为五边形.∵:=11:16∴∵∥,∴△∽△∴∴∴同理可得:∴解得:或.【考点】1. 旋转的性质,2. 菱形判定,3.三角形相似的应用.10.已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE中点,连结DF、CF.(1)如图1,当点D在AB上,点E在AC上,请直接写出此时线段DF、CF的数量关系和位置关系(不用证明);(2)如图2,在(1)的条件下将△ADE绕点A顺时针旋转45°时,请你判断此时(1)中的结论是否仍然成立,并证明你的判断;(3)如图3,在(1)的条件下将△ADE绕点A顺时针旋转90°时,若AD=1,AC=,求此时线段CF的长(直接写出结果).【答案】(1)DF=CF,且DF⊥CF;(2)(1)中的结论仍然成立,证明见解析;(3).【解析】(1)根据“直角三角形斜边上的中线等于斜边的一半”可知DF=BF,根据∠DFE=2∠DCF,∠BFE=2∠BCF,得到∠EFD+∠EFB=2∠DCB=90°,DF⊥BF;(2)延长DF交BC于点G,先证明△DEF≌△GCF,得到DE=CG,DF=FG,根据AD=DE,AB=BC,得到BD=BG又因为∠ABC=90°,所以DF=CF且DF⊥BF;(3)延长DF交BA于点H,先证明△DEF≌△HBF,得到DE=BH,DF=FH,根据旋转条件可以△ADH为直角三角形,由△ABC和△ADE是等腰直角三角形,AC=,可以求出AB的值,进而可以根据勾股定理可以求出DH,再求出DF,由DF=BF,求出得CF的值.试题解析:(1)∵∠ACB=∠ADE=90°,点F为BE中点,∴DF=BE,CF=BE. ∴DF=CF.∵△ABC和△ADE是等腰直角三角形,∴∠ABC=45°.∵BF=DF,∴∠DBF=∠BDF.∵∠DFE=∠ABE+∠BDF,∴∠DFE=2∠DBF.同理得:∠CFE=2∠CBF,∴∠EFD+∠EFC=2∠DBF+2∠CBF=2∠ABC=90°.∴DF=CF,且DF⊥CF.(2)(1)中的结论仍然成立.证明如下:如图,此时点D落在AC上,延长DF交BC于点G.∵∠ADE=∠ACB=90°,∴DE∥BC.∴∠DEF=∠GBF,∠EDF=∠BGF.∵F为BE中点,∴EF=BF.∴△DEF≌△GBF.∴DE=GB,DF=GF.∵AD=DE,∴AD=GB.∵AC=BC,∴AC-AD="BC-GB." ∴DC=GC.∵∠ACB=90°,∴△DCG是等腰直角三角形.∵DF=GF,∴DF=CF,DF⊥CF.(3)如图,延长DF交BA于点H,∵△ABC和△ADE是等腰直角三角形,∴AC=BC,AD=DE.∴∠AED=∠ABC=45°.∵由旋转可以得出,∠CAE=∠BAD=90°,∵AE∥BC,∴∠AEB=∠CBE. ∴∠DEF=∠HBF.∵F是BE的中点,∴EF="BF." ∴△DEF≌△HBF. ∴ED=HB.∵AC=,在Rt△ABC中,由勾股定理,得AB=4.∵AD=1,∴ED=BH=1.∴AH=3.在Rt△HAD中,由勾股定理,得DH=,∴DF=,∴CF=.∴线段CF的长为.【考点】1.等腰直角三角形的性质;2.全等三角形的判定和性质;3.勾股定理.11.如图,将△ABC绕着点C顺时针旋转50°后得到△A'B'C。

图形的平移,对称与旋转的经典测试题及解析

图形的平移,对称与旋转的经典测试题及解析
3.在平面直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加正数 ,那么所得的图案与原来图案相比
A.形状不变,大小扩大到原来的 倍
B.图案向右平移了 个单位
C.图案向上平移了 个单位
D.图案向右平移了 个单位,并且向上平移了 个单位
【答案】D
【解析】
【分析】
直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
图形的平移,对称与旋转的经典测试题及解析
一、选择题
1.如图所示的网格中各有不同的图案,不能通过平移得到的是( )
A. B. C. D.
【答案】C
【解析】
【分析】
根据平移的定义:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,结合各选项所给的图形即可作出判断.
【详解】
A、可以通过平移得到,不符合题意;
∴∠C=∠E,△ABD是等边三角形,∠CAD=60°,
∴∠D=∠CAD=60°、AD=BD,
∴AC∥BD,
∴∠CBD=∠C,
∴∠CBD=∠E,
则A、B、D均正确,
故选C.
【点睛】
本题主要考查旋转的性质,解题的关键是熟练掌握旋转的性质、等边三角形的判定与性质及平行线的判定与性质.
9.如图, 是由 经过平移后得到的,则平移的距离不是( )
B、可以通过平移得到,不符合题意;
C、不可以通过平移得到,符合题意;
D、可以通过平移得到,不符合题意.
故选C.
【点睛】
本题考查平移的性质,属于基础题,要掌握图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.
2.如图, 是等边三角形 内一点,将线段 绕点 顺时针旋转 得到线段 ,连接 .若 , , ,则四边形 的面积为()

初三数学图形的对称平移与旋转试题答案及解析

初三数学图形的对称平移与旋转试题答案及解析

初三数学图形的对称平移与旋转试题答案及解析1.如图,在Rt△ABC中,∠BAC=90°.如果将该三角形绕点A按顺时针方向旋转到△AB1C1的位置,点B1恰好落在边BC的中点处.那么旋转的角度等于()A.55°B.60°C.65°D.80°【答案】B【解析】∵在Rt△ABC中,∠BAC=90°,将该三角形绕点A按顺时针方向旋转到△AB1C1的位置,点B1恰好落在边BC的中点处,∴AB1=BC,BB1=B1C,AB=AB1,∴BB1=AB=AB1,∴△ABB1是等边三角形,∴∠BAB1=60°,∴旋转的角度等于60°.故选:B.【考点】旋转的性质2.如图1,小红将一张直角梯形纸片沿虚线剪开,得到矩形和三角形两张纸片,测得AB=15,AD=12.在进行如下操作时遇到了下面的几个问题,请你帮助解决.(1)将△EFG的顶点G移到矩形的顶点B处,再将三角形绕点B顺时针旋转使E点落在CD边上,此时,EF恰好经过点A(如图2)求FB的长度(2)在(1)的条件下,小红想用△EFG包裹矩形ABCD,她想了两种包裹的方法如图3、图4,请问哪种包裹纸片的方法使得未包裹住的面积大?(纸片厚度忽略不计)请你通过计算说服小红。

【答案】(1)30;(2) 二种包裹纸片的方法使得未包裹住的面积相等.【解析】(1)利用矩形的性质以及得出△ADE ∽△FBE ,求出即可;(2)根据Rt △F ,HN ~Rt △F ,EG ,得到HN=3,从而S △AMH =144;由Rt △GBE ~Rt △C ,B ,G ,得到GB ,=24,从而S △B ,C ,G =144,进行比较即可.⑴BE=AD=15,在RtBCE 中,CE 2="B" E 2-BC 2=152-122,求得CE=9,DE=6, 证Rt △ADE ~Rt △FBE, 求得BF="30"⑵①如图1,将矩形ABCD 和Rt △FBE 以CD 为轴翻折,则△AMH 即为未包裹住的面积,由Rt △F ,HN ~Rt △F ,EG ,得到HN=3, 从而S △AMH =144②如图2,将矩形ABCD 和Rt △ECF 以AD 为轴翻折,由Rt △GBE ~Rt △C ,B ,G ,得到GB ,=24,从而S △B ,C ,G =144,∴未包裹的面积为144. ∴按照二种包裹的方法未包裹的面积相等。

初二数学图形的对称平移与旋转试题答案及解析

初二数学图形的对称平移与旋转试题答案及解析

初二数学图形的对称平移与旋转试题答案及解析1.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标(,);(2)将△ABC的三个顶点的横、纵坐标都乘以-1,分别得到对应点A2、B2、C2,画出△A2B2C2,则△ABC和△A2B2C2关于对称;(3)将△ABC在网格中平移,使点B的对应点B3坐标为(-6,1),画出△A3B3C3.【答案】(1) 5,﹣3; (2)画图见解析,原点;(3)画图见解析.【解析】(1)根据题意得出各对应点坐标进而求出即可;(2)利用已知得出各对应点坐标进而求出即可;(3)利用平移规律得出各对应点平移距离,进而求出即可.试题解析:(1)如图所示:△A1B1C1即为所求,点C1的坐标为;(5,﹣3);(2)如图所示:△A2B2C2即为所求,△ABC和△A2B2C2关于原点对称;(3)如图所示:△A3B3C3即为所求.【考点】1.作图-旋转变换;2.作图-轴对称变换;3.作图-平移变换.2.如图,有四块全等的直角三角形纸片,直角边长分别是1,2,请利用这四块纸片按下列要求在6×6方格纸中各拼一个图形(四块纸片都要用上,无缝隙且无重叠部分),直角顶点在格点上.(1)图甲中作出是轴对称图形而不是中心对称图形;(2)图乙中作出是中心对称图形而不是轴对称图形;(3)图丙中作出既是轴对称图形又是中心对称图形.【答案】【解析】理解轴对称中心对称的概念把一个图形沿着某一条直线折叠,如果它能够与另一个图形完全重合,称这两个图形为轴对称.把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称 .根据其特征画出相应图形即可.【考点】1.轴对称;2.中心对称3.在图中,画出△ABC关于轴对称的△A1B1C1,写出△ABC关于轴对称的△A2B2C2的各点坐标.【答案】画图见解析,A2(-3,-2),B2(-4,3),C2(-1,1).【解析】利用轴对称性质,作出A、B、C关于x轴的对称点,顺次连接各点,即得到关于y轴对称的△A1B1C1;利用轴对称性质,作出A、B、C关于y轴的对称点,顺次连接各点,即得到关于x轴对称的△A2B2C2;然后根据图形写出坐标即可.试题解析:△ABC的各顶点的坐标分别为:A(-3,2),B(-4,-3),C(-1,-1);所画图形如下所示,其中△A2B2C2的各点坐标分别为:A2(-3,-2),B2(-4,3),C2(-1,1).【考点】作图-轴对称变换.4.如图所示,已知O是∠APB内的一点,点M,N分别是O点关于PA,PB的对称点,MN与PA,PB分别相交于点E,F,已知MN=5cm,则△OEF的周长为 .【答案】5cm.【解析】∵O是∠APB内的一点,点M,N分别是O点关于PA,PB的对称点,∴OE=ME,OF=NF,∵MN=5cm,∴△OEF的周长为:OE+EF+OF=ME+EF+NF=MN=5(cm).故答案为:5cm.【考点】轴对称的性质.5.在图示的方格纸中(1)作出△ABC关于MN对称的图形△A1B1C1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?【答案】(1)作图见试题解析;(2)向右平移6个单位,再向下平移2个单位(或向下平移2个单位,再向右平移6个单位).【解析】(1)根据网格结构找出点A、B、C关于MN的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据平移的性质结合图形解答.试题解析:(1)△A1B1C1如图所示;(2)向右平移6个单位,再向下平移2个单位(或向下平移2个单位,再向右平移6个单位).【考点】1.作图-轴对称变换;2.作图-平移变换.6.下列图形是四家电信公司的标志,其中是轴对称图形的是()【答案】C.【解析】根据轴对称图形的定义,沿着某一条直线折叠后,直线两旁的部分能够互相重合,选项A、B、D中的图形无论怎么折叠,都不能使左右两部重合,只有选项C符合题意,选项C可左右对折或上下对折都能使直线两旁的部分重合,故选C.【考点】轴对称图形的定义.7.一个汽车牌在水中的倒影为,则该车牌照号码___________.【答案】【解析】本题是轴对称中的镜面对称问题,水面相当于一个平面镜,因为镜面对称的性质是在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称。

图形的平移,对称与旋转的专项训练解析附答案

图形的平移,对称与旋转的专项训练解析附答案

图形的平移,对称与旋转的专项训练解析附答案一、选择题1.如图,在△ABC中,AB=AC,BC=9,点D在边AB上,且BD=5将线段BD沿着BC的方向平移得到线段EF,若平移的距离为6时点F恰好落在AC边上,则△CEF的周长为()A.26 B.20 C.15 D.13【答案】D【解析】【分析】直接利用平移的性质得出EF=DB=5,进而得出CF=EF=5,进而求出答案.【详解】解:∵将线段BD沿着BC的方向平移得到线段EF,∴EF=DB=5,BE=6,∵AB=AC,BC=9,∴∠B=∠C,EC=3,∴∠B=∠FEC,∴CF=EF=5,∴△EBF的周长为:5+5+3=13.故选D.【点睛】本题考查了平移的性质,根据题意得出CF的长是解题关键.a a>,那么2.在平面直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加正数(1)所得的图案与原来图案相比()A.形状不变,大小扩大到原来的a倍B.图案向右平移了a个单位C.图案向上平移了a个单位D.图案向右平移了a个单位,并且向上平移了a个单位【答案】D【解析】【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加上正数a(a>1),那么所得的图案与原图案相比,图案向右平移了a个单位长度,并且向上平移了a个单位长度.故选D.【点睛】本题考查了坐标系中点、图形的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.3.下列全国各地地铁标志图中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】C【解析】【分析】试题解析:选项A既不是轴对称图形,也不是中心对称图形,故该该选项错误;选项B既不是轴对称图形,也不是中心对称图形,故该选项错误;选项C 既是轴对称图形,也是中心对称图形,故该选项正确;选项D是轴对称图形,但不是中心对称图形,故该选项错误.故选C.【详解】请在此输入详解!4.如图,已知△A1B1C1的顶点C1与平面直角坐标系的原点O重合,顶点A1、B1分别位于x 轴与y轴上,且C1A1=1,∠C1A1B1=60°,将△A1B1C1沿着x轴做翻转运动,依次可得到△A2B2C2,△A3B3C3等等,则C2019的坐标为()A.(30)B.(3,0)C.(403523,32D.(30)【答案】B【解析】【分析】根据题意可知三角形在x 轴上的位置每三次为一个循环,又因为20193673÷=,那么2019C 相当于第一个循环体的3673C 个即可算出.【详解】由题意知,111C A =,11160C A B ︒∠=,则11130C B A ︒∠=,11222A B A B ==,1122333C B C B C B ===,结合图形可知,三角形在x 轴上的位置每三次为一个循环,Q 20193673÷=,∴2019673(123)20196733OC =++=+,∴2019C (20196733,0)+,故选B .【点睛】考查解直角三角形,平面直角坐标系中点的特征,结合找规律.理解题目中每三次是一个循环是解题关键.5.如图,△ABC 绕点A 逆时针旋转使得点C 落在BC 边上的点F 处,则以下结论:①AC =AF ;②∠FAB =∠EAB ;③EF =BC ;④∠EAB =∠FAC .其中正确的结论有( )A .4个B .3个C .2个D .1个【答案】B【解析】【分析】根据旋转的性质,旋转前后对应线段相等、对应角相等即可解答.【详解】由旋转可知△ABC ≌△AEF ,∴AC=AF ,EF=BC ,①③正确,∠EAF=∠BAC ,即∠EAB+∠BAF=∠BAF+∠FAC ,∴∠EAB=∠FAC ,④正确,②错误,综上所述,①③④正确.故选B.【点睛】本题考查了旋转的性质,属于简单题,熟悉旋转的性质,利用旋转的性质找到对应角之间的关系是解题关键.6.如图,周长为16的菱形ABCD中,点E,F分别在边AB,AD上,AE=1,AF=3,P为BD上一动点,则线段EP+FP的长最短为( )A.3 B.4 C.5 D.6【答案】B【解析】试题分析:在DC上截取DG=FD=AD﹣AF=4﹣3=1,连接EG,则EG与BD的交点就是P.EG 的长就是EP+FP的最小值,据此即可求解.解:在DC上截取DG=FD=AD﹣AF=4﹣3=1,连接EG,则EG与BD的交点就是P.∵AE=DG,且AE∥DG,∴四边形ADGE是平行四边形,∴EG=AD=4.故选B.7.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图【答案】C【解析】【分析】根据所得到的主视图、俯视图、左视图结合中心对称图形的定义进行判断即可.【详解】观察几何体,可得三视图如图所示:可知俯视图是中心对称图形,故选C.【点睛】本题考查了三视图、中心对称图形,正确得到三视图是解决问题的关键. 8.下列“数字图形”中,既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个【答案】B【解析】【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断即可求解.【详解】解:第一个图形不是轴对称图形,是中心对称图形;第二、三个图形是轴对称图形,也是中心对称图形,第四个图形不是轴对称图形,不是中心对称图形;故选:B.【点睛】此题考查中心对称图形,轴对称图形,解题关键在于对概念的掌握9.如图,在边长为1522的正方形ABCD中,点E,F是对角线AC的三等分点,点P在正方形的边上,则满足PE+PF=55的点P的个数是()A.0 B.4 C.8 D.16【答案】B【解析】【分析】作点F关于BC的对称点M,连接EM交BC于点P,则PE+PF的最小值为EM,由对称性可得CM=5,∠BCM=45°,根据勾股定理得EM=55,进而即可得到结论.【详解】作点F关于BC的对称点M,连接EM交BC于点P,则PE+PF的最小值为EM.∵正方形ABCD中,边长为1522,∴AC=1522×2=15,∵点E,F是对角线AC的三等分点,∴EC=10,FC=AE=5,∵点M与点F关于BC对称,∴CF=CM=5,∠ACB=∠BCM=45°,∴∠ACM=90°,∴EM=222210555EC CM+=+=,∴在BC边上,只有一个点P满足PE+PF=55,同理:在AB,AD,CD边上都存在一个点P,满足PE+PF=55,∴满足PE+PF=55的点P的个数是4个.故选B.【点睛】本题主要考查正方形的性质,勾股定理,轴对称的性质,熟练掌握利用轴对称的性质求两线段和的最小值,是解题的关键.10.中国文字博大精深,而且有许多是轴对称图形,在这四个文字中,不是轴对称图形的是()A.B.C.D.【答案】D【解析】【分析】如果一个图形沿着一条直线对折后两部分完全重合,那么这样的图形就叫做轴对称图形.【详解】A.是轴对称图形;B.是轴对称图形;C.是轴对称图形;D.不是轴对称图形;故选D.【点睛】本题考查的是轴对称图形,熟练掌握轴对称图形的概念是解题的关键.11.下列字母中:H、F、A、O、M、W、Y、E,轴对称图形的个数是()A.5 B.4 C.6 D.7【答案】D【解析】从第一个字母研究,只要能够找到一条对称轴,令这个字母沿这条对称轴折叠后,两边的部分能够互相重合,就是轴对称图形,可以得出:字母H、A、O、M、W、Y、E这七个字母,属于轴对称图形.故选:D.12.如图,△ABC中,∠BAC=45°,∠ACB=30°,将△ABC绕点A顺时针旋转得到△AB1C1,当点C1、B1、C三点共线时,旋转角为α,连接BB1,交AC于点D.下列结论:①△AC1C 为等腰三角形;②△AB1D∽△BCD;③α=75°;④CA=CB1,其中正确的是()A.①③④B.①②④C.②③④D.①②③④【答案】B【解析】【分析】将△ABC绕点A顺时针旋转得到△AB1C1,得到△ABC≌△AB1C1,根据全等三角形的性质得到AC1=AC,于是得到△AC1C为等腰三角形;故①正确;根据等腰三角形的性质得到∠C1=∠ACC1=30°,由三角形的内角和得到∠C1AC=120°,得到∠B1AB=120°,根据等腰三角形的性质得到∠AB1B=30°=∠ACB,于是得到△AB1D∽△BCD;故②正确;由旋转角α=120°,故③错误;根据旋转的性质得到∠C1AB1=∠BAC=45°,推出∠B1AC=∠AB1C,于是得到CA=CB1;故④正确.【详解】解:∵将△ABC绕点A顺时针旋转得到△AB1C1,∴△ABC≌△AB1C1,∴AC1=AC,∴△AC 1C 为等腰三角形;故①正确;∴AC 1=AC ,∴∠C 1=∠ACC 1=30°,∴∠C 1AC =120°,∴∠B 1AB =120°,∵AB 1=AB ,∴∠AB 1B =30°=∠ACB ,∵∠ADB 1=∠BDC ,∴△AB 1D ∽△BCD ;故②正确;∵旋转角为α,∴α=120°,故③错误;∵∠C 1AB 1=∠BAC =45°,∴∠B 1AC =75°,∵∠AB 1C 1=∠BAC =105°,∴∠AB 1C =75°,∴∠B 1AC =∠AB 1C ,∴CA =CB 1;故④正确.故选:B .【点睛】本题考查了相似三角形的判定和性质,等腰三角形的判定和性质,旋转的性质,正确的识别图形是解题的关键.13.如图在平面直角坐标系中,等边三角形OAB 的边长为4,点A 在第二象限内,将OAB ∆沿射线AO 平移,平移后点A '的横坐标为43,则点B '的坐标为( )A .(3,2)-B .(63,3)-C .(6,2)-D .(63,2)-【答案】D【解析】【分析】 先根据已知条件求出点A 、B 的坐标,再求出直线OA 的解析式,继而得出点A '的纵坐标,找出点A 平移至点A '的规律,即可求出点B '的坐标.【详解】解:∵三角形OAB 是等边三角形,且边长为4∴(23,2),(0,4)A B - 设直线OA 的解析式为y kx =,将点A 坐标代入,解得:33k =-即直线OA 的解析式为:33y x =- 将点A '的横坐标为43代入解析式可得:4y =-即点A '的坐标为(43,4)-∵点A 向右平移63个单位,向下平移6个单位得到点A '∴B '的坐标为(063,46)(63,2)+-=-.故选:D .【点睛】本题考查的知识点是坐标与图形变化-平移,熟练掌握坐标平面图形平移的规律是解决本题的关键.14.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A-45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE 绕着点C 顺时针旋转15°得到△D 1CE 1(如图乙),此时AB 与CD 1交于点O ,则线段AD 1的长度为( )A .32B .5C .4D 31【答案】B【解析】【分析】【详解】 由题意易知:∠CAB=45°,∠ACD=30°,若旋转角度为15°,则∠ACO=30°+15°=45°.∴∠AOC=180°-∠ACO -∠CAO=90°.在等腰Rt △ABC 中,AB=6,则AC=BC=32同理可求得:AO=OC=3.在Rt △AOD1中,OA=3,OD 1=CD 1-OC=4,由勾股定理得:AD 1=5.故选B .15.如图,在矩形ABCD 中, 3,4,AB BC ==将其折叠使AB 落在对角线AC 上,得到折痕,AE 那么BE 的长度为( )A .1B .2C .32D .85【答案】C【解析】【分析】 由勾股定理求出AC 的长度,由折叠的性质,AF=AB=3,则CF=2,设BE=EF=x ,则CE=4x -,利用勾股定理,即可求出x 的值,得到BE 的长度.【详解】解:在矩形ABCD 中,3,4AB BC ==,∴∠B=90°, ∴22345AC =+=,由折叠的性质,得AF=AB=3,BE=EF ,∴CF=5-3=2,在Rt △CEF 中,设BE=EF=x ,则CE=4x -,由勾股定理,得:2222(4)x x +=-, 解得:32x =; ∴32BE =. 故选:C .【点睛】本题考查了矩形的折叠问题,矩形的性质,折叠的性质,以及勾股定理的应用,解题的关键是熟练掌握所学的性质,利用勾股定理正确求出BE 的长度.16.如图,一个长为2、宽为1的长方形以下面的“姿态”从直线l 的左侧水平平移至右侧(下图中的虚线是水平线),其中,平移的距离是( )A .1B .2C .3D .22【答案】C【解析】【分析】 根据平移的性质即可解答.【详解】如图连接AA ',根据平行线的性质得到∠1=∠2,如图,平移的距离AA '=的长度123=+=故选C.【点睛】此题考查平移的性质,解题关键在于利用平移的性质求解.17.如图,在△ABC 中,AC=BC ,∠ACB=90°,点D 在BC 上,BD=3,DC=1,点P 是AB 上的动点,则PC+PD 的最小值为( )A .4B .5C .6D .7【答案】B【解析】 试题解析:过点C 作CO ⊥AB 于O ,延长CO 到C ′,使OC ′=OC ,连接DC ′,交AB 于P ,连接CP .此时DP +CP =DP +PC ′=DC ′的值最小.∵DC =1,BC =4,∴BD =3,连接BC ′,由对称性可知∠C ′BE =∠CBE =45°,∴∠CBC ′=90°,∴BC ′⊥BC ,∠BCC ′=∠BC ′C =45°,∴BC =BC ′=4,根据勾股定理可得DC ′=22'BC BD +=2234+=5.故选B .18.小天从镜子里看到镜子对面的电子钟如下图所示,则此时的实际时间是 ( )A .21:10B .10:21C .10:51D .12:01【答案】C【解析】【分析】利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.【详解】根据镜面对称的性质,题中所显示的时刻与12:01成轴对称,所以此时实际时刻为10:51,故选C .【点睛】本题考查镜面反射的原理与性质.解决此类题应认真观察,注意技巧.19.下列图形中,不一定是轴对称图形的是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形【答案】C【解析】A.等腰三角形是轴对称图形,不符合题意;B.等边三角形是轴对称图形,不符合题意;C.直角三角形不一定是轴对称图形,符合题意;D.等腰直角三角形是轴对称图形,不符合题意.故选C.20.如图,在ABC V 中,60,3,5,B AB BC ∠=︒==将ABC V 绕点A 顺时针方向旋转得到,ADE V 当点B 的对应点D 恰好落在BC 边上时,则CD 的长为( )A .3B .2.5C .2D .1【答案】C【解析】【分析】 由旋转得到AD=AB ,由此证明△ADB 是等边三角形,得到BD=AB=3,即可求出CD.【详解】由旋转得AD=AB ,∵60B ∠=︒,∴△ADB 是等边三角形,∴BD=AB=3,∴CD=BC-BD=5-3=2,故选:C.【点睛】此题考查旋转的性质,等边三角形的判定及性质,根据旋转得到AD=AB 是解题的关键,由此得到等边三角形进行求解.。

运用平移、对称和旋转设计图案 - 答案

运用平移、对称和旋转设计图案 - 答案

运用平移、对称和旋转设计图案答案典题探究例1.艺术家们利用几何学中的平移、对称和旋转变换,设计出许多美丽的图案.考点:运用平移、对称和旋转设计图案.分析:根据运用平移、对称和旋转设计图案专题的内容进行填空.解答:解:艺术家们利用几何学中的平移、对称和旋转变换,设计出许多美丽的图案.故答案为:平移,对称,旋转.点评:此题考查了运用平移、对称和旋转设计图案.例2.如图的图形是如何得到的?考点:运用平移、对称和旋转设计图案.分析:第一个图形的脸是正立的,嘴巴在下,第二个图形是横向的,说明第二个图形是由第一个图形绕下巴顺时针旋转90°得到,第三个图形与第二个图形方向相同,说明第三个图形是由第二个图形向右平移得到的,第四个图形是倒立的,是由第三个图形顺时针旋转90°得到的.解答:解:第一个图形顺时针旋转90°得到第二个图形,第二个图形向右平移得到第三个图形,第三个图形顺时针旋转90°得到第四的图形;点评:本题是考查图形变换,由旋转、平移.旋转、平移后的图形与原图形大小,形状不变,只是位置变了.例3.(1)图中长方形四个顶点的位置是:A(6,8),B(8,8),C(6,5),D(8,5);(2)把长方形向右平移3格,画出平移后的图形,平移后的长方形四个顶点用数对表示分别是A1(9,8),B1(11,8),C1(9,5),D1(11,5)(3)把长方形绕D点顺时针旋转90度,画出旋转后的图形,旋转后的长方形四个顶点用数对表示分别是A2(11,7),B2(11,5),C2(8,7),D2(8,5).考点:运用平移、对称和旋转设计图案.分析:利用画图工具,复制,平移3个格,得到把长方形向右平移3格的长方形A1B1C1D1,把长方形绕D点顺时针旋转90度的图形A2B2C2D2,数一数,就可以填上各个位置的坐标.解答:解:A(6,8)B(8,8)C(6,5)D(8,5);A1(9,8)B1(11,8)C1(9,5)D1(11,5);A2(11,7)B2(11,5)C2(8,7)D2(8,5).点评:此题考查了运用平移、对称和旋转设计图案.例4.用多个三角形设计一个美丽的图案.考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:以三角形的一个顶点为中心,顺时针旋转90度、180度、270度即可.解答:解:作图如下:点评:本题考查的是利用平移、对称及旋转设计图案.演练方阵A档(巩固专练)一.选择题(共12小题)1.下列图形中()是利用旋转设计而成的.A.B.C.考点:运用平移、对称和旋转设计图案.分析:利用旋转设计而成的图形应有一个旋转点,图形旋转后的形状和大小不变;因此得解.解答:解:A、有一个旋转点,有一个形状和大小不变的图形菱形,因此A是利用菱形向右绕右顶点旋转90°、180°、270°而形成的;B、小图形有大小的变化,因此不是利用旋转设计而成的;C、菱形图形的大小形状虽然不变,但没有一个旋转点,它是菱形平移3次而形成的.故选:A.点评:图形旋转后的大小和形状不变是判断这个图形是否是通过旋转形成的基本方法.2.把正方形的右边剪去一块补到上面(如图),得到的图形是()A.B.C.D.考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:把正方形的右边剪去一块,正方形缺失是右边,据此排除答案A和C.又因为剪去的部分是补到上面,答案D补到了下面,排除D,所以选B.解答:解:把正方形的右边剪去一块补到上面,只有C符合题意.故选:B.点评:解答此题最好的办法是动手操作一下,即可以解决问题,又锻炼动手操作能力.3.在如图所示的四个图案中既包含图形的旋转,又有图形的轴对称设计的是()A.B.C.D.考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:根据图形的特点结合轴对称图形和中心对称图形的概念解答.解答:解:A、不是对称图形,不符合题意;B、不是轴对称图形,不符合题意;C、只是轴对称图形,不符合题意;D、既有轴对称,又有旋转,符合题意.故选:D.点评:此题考查了旋转的概念以及轴对称图形的概念:直线两旁的部分能够互相重合的两个图形叫做这两个图形成轴对称.把一个图形绕某一点旋转一定角度后得到另一个图形,叫做旋转变换.4.如图的图形中,()是由旋转得到的.A.B.C.考点:运用平移、对称和旋转设计图案.分析:根据对称和旋转设计图案的方法可知,A、B是完全重合的,而C不能,只能用旋转得到,从而可以进行选择.解答:解:由对称和旋转设计图案的方法可知,A、B是对折后是完全重合的,而C不能,只能用旋转得到,故选:C.点评:此题考查了利用对称和旋转设计图案.5.如图是由☆经过()变换得到的.A.平移B.旋转C.对称考点:运用平移、对称和旋转设计图案.分析:平移就是水平移动,大小和形状不变;旋转除了大小和形状不变外,还要有一个绕点;对称形成的图形要能找到一条对称轴.据此得解.解答:解:图形中有5个五角星并排在一条直线上,因此是由☆经过平移变换得到的.故选:A.点评:此题考查了运用平移、对称和旋转设计图案,锻炼了学生的空间想象力和创新思维能力.6.如图所示,将一张正方形纸片先由下向上对折压平,再由右翻起向左对折压平,得到小正方形ABCD.取AB的中点M和BC的中点N,剪掉AMBN得五边形AMNCD.则将折叠的五边形AMNCD纸片展开铺平后的图形是()A.B.C.D.考点:运用平移、对称和旋转设计图案.分析:此题可以动手操作,验证一下,即可解决问题.解答:解:找一张正方形纸片,按上述顺序折叠、剪切,展开后得到的图形如右图所示.故选:D.点评:图形的折叠和剪切,可动手操作实践一下,也解决问题的好方法.7.(•河西区模拟)下面()图形旋转会形成圆柱.A.B.C.考点:运用平移、对称和旋转设计图案.分析:一个长方形沿一条直线旋转就会成为一个圆柱.解答:解:选项中只有A是长方形旋转;故选:A.点评:本题是判断平面图形经过旋转后大图形,长方形旋转后是圆柱,半圆旋转后是球体,三角形旋转后是圆椎.8.已知一个半圆,下面()这种方式不能将半圆变成圆.A.平移B.翻折C.旋转考点:运用平移、对称和旋转设计图案.分析:一个半圆,如果以它的直径为轴翻折,会得到一个新的半圆,这个半圆由于是已知半圆翻成的,它的直径与已知半圆相等,这两个半圆是以已知半圆的直径所在的直线为对称轴的轴对称图形,两个半圆正好组成一个圆;一个已知半圆,以它的圆心或直径的端点为旋转点,不论是顺时针还是逆时针旋转180°,都会得到一个与原半圆直径相等的半圆,这个半圆与原半圆能组成一个圆;一个半圆,平移后得到的半圆虽然与原半圆的直径相等,但平移后的半圆与原半圆的半圆弧总是在一个方向,这两个半圆不能组成一个圆.解答:解:一个已知半圆,以直径为轴翻转后的图形与已知半圆能变成一个圆;一个已知半圆,以它的圆心或直径的端点为旋转点,不论是顺时针还是逆时针旋转180°后的图形与已知半圆能变成一个圆;一个已知半圆,平移后得到的半圆,已知半圆方向相同,与已知半圆不能变成一个圆;故选:A点评:本题主要是考查运用平移、轴对称设计图案.9.左图是由经过()变换得到的.A.平移B.旋转C.对称D.折叠考点:运用平移、对称和旋转设计图案.分析:采用平移的方法,平移4次,复制下图案,即可得到左图.解答:解:采用平移的方法,平移4次,复制下图案,即可得到左图.故答案为:A.点评:此题考查了运用平移、对称和旋转设计图案.10.如图是由经过()变换得到了.A.旋转B.平移C.对称考点:运用平移、对称和旋转设计图案.分析:采用平移的方法,平移5次,复制下图案,即可得到右图.解答:解:采用平移的方法,平移5次,复制下图案,即可得到左图.故答案为:B.点评:此题考查了运用平移、对称和旋转设计图案.11.将图形顺时针旋转90°,得到的图形是()A.B.C.D.考点:运用平移、对称和旋转设计图案.分析:利用画图工具,逐个分析由原图旋转多少度得到的,如下图所示,即可得解.解答:解:4个选项各是由原图如何旋转得到的:通过画图分析,A符合题意;故选:A.点评:此题考查了运用平移、对称和旋转设计图案.12.下列图案每一幅都是由一个基本图形变化得到的.其中没有运用旋转规律得到的图案是()A.B.C.考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:寻找基本图形,旋转中心,旋转角,旋转次数,逐一判断.解答:解:图形1可由一个基本“花瓣”绕其中心经过4次旋转,每次旋转90°得到;图形2可由一个基本“不规则5边形”绕其中心经过4次旋转,每次旋转90°得到;图形3可由一个基本图形三角形经过平移得到;其中没有运用旋转规律得到的图案是C;故选:C.点评:本题考查了利用旋转设计图案的知识,培养学生分析和判断问题的能力.二.填空题(共1小题)13.图B是由图A 经过旋转变换得到的图案,图b是由图a经过平移变换得到的图案.考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:根据题意,通过观察图形,(1)可知图形A和图形B中心对称,所以图形B是由图形A顺时针旋转180度得到的.(2)图形a经过平移变换得到图形b,即图形b是由图形a平移得到的.解答:解:(1)图形B是由图形A顺时针旋转180度得到的.(2)图形b是由图形a平移得到的.故答案为:旋转;平移.点评:本题主要考查几何图形的变换,关键在于认真分析图形,找到它们是怎么变换的.三.解答题(共1小题)14.下面图形是经过什么方式变换得来的?填一填.考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:根据图形平移的意义,上图是由一个图形经过两次平移得到的;根据图形旋转的意义,左下图是由一个图形绕某点顺时针(或逆时针)旋转5个60°而成的;根据轴对称的意义,右下图是由一个图形经过轴对称得到的.解答:解:上图经过平移得到的;左下图是经过旋转得到的;右下图是经过轴对称得到的.故答案为:点评:本题是考查图形平移的意义、旋转的意义、轴对称的意义.小学阶段图形变包括图形的平移、旋转、轴对称.灵活去用可设计出很多精美的图案.B档(提升精练)一.选择题(共15小题)1.(•邗江区模拟)下列各图形面积计算公式的推导过程中,没有用到平移或旋转的是.()A.平行四边形B.长方形C.圆考点:运用平移、对称和旋转设计图案.分析:把平行四边形转化成长方形的方法有三种:第一种是沿着平行四边形的顶点作的高剪开,通过平移拼出长方形;第二种是沿着平行四边形中间任意一高剪开;第三种是沿平行四边形两端的两个顶点作的高剪开,把剪下来的两个小直角三角形拼成一个长方形,再和剪后得出的长方形拼成一个长方形;我们在硬纸板上画一个圆,把圆分成若干等分,剪开后用这些近似的等腰三角形的小纸片拼一拼,就可以拼成一个近似的平行四边形,如果分的分数越多,每一份会越细,拼成的图形就会越接近长方形;长方形的长等于圆周长的一半,即c/2,宽等于圆的半径r,因为长方形的面积=长×宽,所以圆的面积s=c×r÷2 又因为c=2πr 所以s=πr2.解答:解:通过以上分析,平行四边形和圆的面积计算公式都是平移或旋转得到的,只有长方形利用小正方形拼组得到的;故选:B.点评:此题考查了运用平移、对称和旋转设计图案.2.下列图片中,哪些是由图片①分别经过平移和旋转得到的()A.③和④B.③和②C.②和④D.④和③考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:解答此题的关键是:由平移的定义和旋转的性质进行判断.解答:解:图(1)沿一直线平移可得到(3),顺时针旋转可得到(4).故选A.点评:解答此题要明确平移和旋转的性质:(1)①经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等;②平移变换不改变图形的形状、大小和方向(平移前后的两个图形是全等形).(2)①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.3.图是由经过()变换得到的.A.平移B.对称C.平移或对称考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:如图,是经过一个图形平移得到的.解答:解:图是由经过平移变换得到的.故选:A.点评:此题是考查运用平移设计图案.平移就是把整个图案的每一个特征点按一定方向和一定的距离平行移动.平移不改变图形的形状和大小,只改变位置.4.如图所示,将一张正方形纸片先由下向上对折压平,再由右翻起向左对折压平,得到小正方形ABCD.取AB的中点M和BC的中点N,剪掉AMBN得五边形AMNCD.则将折叠的五边形AMNCD纸片展开铺平后的图形是()A.B.C.D.考点:运用平移、对称和旋转设计图案.分析:此题可以动手操作,验证一下,即可解决问题.解答:解:找一张正方形纸片,按上述顺序折叠、剪切,展开后得到的图形如右图所示.故选:D.点评:图形的折叠和剪切,可动手操作实践一下,也解决问题的好方法.5.由图形A到图形C是怎样的旋转过程.()A.A顺时针旋转90°得到图CB.A逆时针旋转180°得到图CC.A逆时针旋转90°得到图B,再逆时针旋转90°得到图C考点:运用平移、对称和旋转设计图案.专题:平面图形的认识与计算.分析:把一个图形绕着某一点转动一个角度的图形变换叫做旋转,旋转的要素是旋转方向,旋转中心,旋转角度.据此可对每个选项进行分析.解答:解:A.图A绕点“O”顺时针旋转90°得到图B,得不到图C,故错误.B.图A绕点“O”逆时针旋转180°得到图C.正确.C.图A绕点“O”逆时针旋转90°得到图D,得不到图B,所以错误.故选:B.点评:本题主要考查了学生对旋转知识的掌握情况.6.把下面的图A绕中心点顺时针旋转90度后再向下平移四个格得到图形是()A.A、B.B、C.C、D.D、考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:观察图形,图形A绕中心点顺时针旋转90度后,再向下平移4格后,得到的图形是C,据此即可选择.解答:解::图形A绕中心点顺时针旋转90度后,再向下平移4格后,得到的图形是C,故选:C.点评:本题重点是考查的平移、旋转.关键弄清旋转一定度数时笑脸的特征及平移的格数.7.如图,甲、乙、丙、丁四个轮子连在一组皮带上,已知甲的转向为顺时针,则丙的转向为()A.顺时针B.逆时针C.先顺后逆D.不能确定考点:运用平移、对称和旋转设计图案.分析:通过画图,皮带的转向的一致性,可以判断出每个轮子的转向,由此得解.解答:解:甲、乙、丙、丁四个轮子连在一组皮带上,已知甲的转向为顺时针,丁是逆时针,则丙的转向为顺时针,乙是顺时针.故选:A.点评:此题考查了运用平移、对称和旋转设计图案.8.钟面上,时针从“8”起逆时针旋转90°后,时针应该指着()A.3B.12 C.5考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:钟面上有12个数字,这12个数字把一个周角平均分成了12份,一个周角是360°,每份是360°÷12=30°,即两个相邻数字间的度数是30°,时针从“8”绕中心点O逆时针旋转90°,90°÷3=3,就是旋转了3个数字,即8﹣3=5,此时时针指向“5”,解答:解:如图,表盘上时针从“8”绕中心点O逆时针旋转90°,90°÷3=3,就是旋转了3个数字,即8﹣3=5,此时时针指向“5”;故选:C.点评:解答本题主要掌握钟面上的12个数字把一个周角平均分成了12份,每份是360°÷12=30°,即个相邻数字间的度数是30°.9.下列图案中,()是由图案的一部分经过旋转得到的.A.B.C.考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:根据平移,旋转,轴对称的定义即可作出判断.解答:解:图形A是平移得到的,图形C是平移得到的,只有图形B是旋转得到的;故选:B.点评:本题考查了利用旋转设计图案的知识,培养学生分析和判断问题的能力.10.如图所示,在图甲中,Rt△OAB绕其直角顶点O每次旋转90˚,旋转三次得到右边的图形.在图乙中,四边形OABC绕O点每次旋转120˚,旋转二次得到右边的图形.下列图形中,不能通过上述方式得到的是()A.B.C.D.考点:运用平移、对称和旋转设计图案.分析:根据旋转的概念以及图甲、图乙演示所体现的规律来判断.解答:解:根据旋转的概念和上述规律知:A、旋转120°得到;B、旋转180°得到;C、是轴对称图形,也是中心对称图形,旋转180°得到;D、不能通过旋转得到.故选:D.点评:此题不仅考查了旋转的概念,更考查了同学们的规律探索能力.11.国旗上的四个小五角星,通过怎样的移动可以相互得到()A.轴对称B.平移C.旋转D.平移和旋转考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:观察国旗上的小五角星可知:国旗上的小五角星绕中心点进行旋转一定的角度,可以互相得到,据此即可解答.解答:解:四个小五角星通过旋转可以得到.故选:C.点评:本题考查旋转与平移的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变;关键是要找到旋转中心.12.如图,O是正六边形ABCDEF的中心,下列图形中可由△OBC平移得到的是()A.△COD B.△OAB C.△OAF D.△OEF考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:平移前后图形的大小、形状都不改变,由此可以判断由△OBC平移得到的三角形.解答:解:A、△COD方向发生了变化,不属于平移得到;故本选项错误;B、△OAB方向发生了变化,不属于平移得到,故本选项错误;C、△OAF属于平移得到;故本选项正确;D、△OEF方向发生了变化,不属于平移得到;故本选项错误;故选:C.点评:平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.)13.如图是按照一定的规律排列起来的,请按这一规律在“?”处画出适当的图形.(考点:运用平移、对称和旋转设计图案.分析:这组图形应该从两方面来看:一是旗帜的方向,二是旗帜上的星星颗数.可以发现:旗帜是按逆时针转的,并依次旋转90度,所以第三面旗帜是第二面逆时针旋转90度得来的.其次再看旗帜上的星星颗数,可见颗数依次减少一颗,由此得解.解答:解:这组图形应该从两方面来看:一是旗帜的方向,二是旗帜上的星星颗数.可以发现:旗帜是按逆时针转的,并依次旋转90度,所以第三面旗帜是第二面逆时针旋转90度得来的.其次再看旗帜上的星星颗数,可见颗数依次减少一颗,所以第3面旗帜上应是3颗星星,所以“?”处图形应为C选项.故答案为:C.点评:此题考查了运用平移、对称和旋转设计图案.14.根据下图的变化规律,在空白处填上适当的图形()A.B.C.考点:运用平移、对称和旋转设计图案.分析:我们把整个图形分成三部分:单箭头、双箭头和三箭头,它们的变化规律都是按照顺时针旋转90度.因此得解.解答:我们把整个图形分成三部分:单箭头、双箭头和三箭头,它们的变化规律都是按照顺时针旋转90度.所以,“?”处应填C选项.故答案为:C.点评:此题考查了运用平移、对称和旋转设计图案.认真观察找出规律,是解决此题的关键.15.(•顺德区模拟)如图所示,把一个正方形三次对折后沿虚线剪下,则所得图形是()A.B.C.考点:运用平移、对称和旋转设计图案.分析:找一张纸,裁一个正方形,上折,右折,沿虚线剪开,然后把余下的部分展开,即可得解.解答:解:经过实践,两次折叠后沿虚线剪开,图形展开,即可得解,图形是B的图形;故答案为:B.点评:此题考查了运用平移、对称和旋转设计图案.二.填空题(共12小题)16.一个简单图形经过平移、旋转或轴对称,能形成一个较复杂的图形.√.(判断对错)考点:运用平移、对称和旋转设计图案.专题:图形与变换.分析:根据图形平移、旋转、轴对称的特征,可以将一个简单的图案,通过这些变化,形成一个较复杂的图形.如,可以将一个图案通过平移形成壁报的花边、将一个梅花瓣通过四次旋转形成一朵梅花、把纸折叠,通过轴对称剪出一个图形的一半,展开后就是一个完整的图案.解答:解:一个简单图形经过平移、旋转或轴对称,能形成一个较复杂的图形.故答案为:√.点评:本题主要是考查平移、旋转、轴对称的意义及特征.利用这些变化可以将一个简的图案变成一个较复杂的图形.17.图是某设计师设计的方桌布图案的一部分,请你运用旋转变换的方法将该图形绕O点顺时针依次旋转90゜、180゜、270゜,你会得到一个什么样的立体图形?考点:运用平移、对称和旋转设计图案.专题:作图题;图形与变换.分析:根据旋转图形的特征,这个图形绕点O顺时针旋转90°、180°,270°,点0的位置不动,其余各部分均绕点O顺时针旋转90゜、180゜、270゜,得到的是一个星星图案.解答:解:根据分析画图如下:故答案为:点评:本题是考查运用图形旋转设计图案.关键是旋转的角度要准确.18.我们可以用平移、旋转、轴对称等基本方法,对图形进行变换,来设计图案.考点:运用平移、对称和旋转设计图案.分析:我们学过的图形变换由平移、旋转、轴对称,利用这此基本方法,可以将一个图图形通过这些方法来设计精美的图案.解答:解:我们可以用平移、旋转、轴对称等基本方法,对图形进行变换,来设计图案;故答案为:平移,旋转,轴对称.点评:本题是回顾小学阶段学习的图形变换方法.19.利用平移、对称和旋转变换可以设计许多美丽的镶嵌图案.…√.(判断对错)考点:运用平移、对称和旋转设计图案.分析:规则的平面分割叫做镶嵌,镶嵌图形是完全没有重叠并且没有空隙的封闭图形的排列.一般来说,构成一个镶嵌图形的基本单元是多边形或类似的常规形状,例如经常在地板上使用的方瓦.利用平移、对称、旋转变换可以设计许多美丽的镶嵌图案.解答:解:例如蜜蜂的蜂窝就是正六边形的平移、旋转、对称的典型图案;如下图所示,利用平移、对称和旋转变换设计的许多美丽的镶嵌图案:故答案为:√.点评:此题考查了运用平移、对称和旋转设计图案.20.在方格图中设计一个你喜欢的图案,并写出你设计的图案占整幅图的多少?考点:运用平移、对称和旋转设计图案.专题:作图题.分析:根据旋转图形的特征,在图中画一等腰三角形,绕一底角(点O)顺(或逆)时针旋转90°,再旋转90°,再旋转90°即可得到一个美丽的图案;每个三角形占1格,四个三角形占1×4=4格,图中共有10×5=50格,据此可求出图案占整幅图的多少.解答:解:由分析画图如下:(1×4)÷(10×5)=4÷50=;所设计的图案占整幅图的.。

初一数学图形的对称平移与旋转试题答案及解析

初一数学图形的对称平移与旋转试题答案及解析

初一数学图形的对称平移与旋转试题答案及解析1.下列命题中,属于真命题的是 ( )A.如果a>b,那么a-2<b-2.B.任何数的零次幂都等于1.C.两条直线被第三条直线所截,同旁内角互补.D.平移不改变图形的形状和大小.【答案】D【解析】根据不等式的性质可知A是假命题;由底数不为0可知B是假命题;如果两条不平行的直线被第三条直线所截,同旁内角不互补,所是C是假命题;只有D是真命题.【考点】命题2.下列说法不正确的是()A.平移或旋转后的图形的形状大小不变B.平移过程中对应线段平行(或在同一条直线上)且相等C.旋转过程中,图形中的每一点都旋转了相同的路程D.旋转过程中,对应点到旋转中心的距离相等【答案】C【解析】A、平移或旋转后的图形的形状大小不变,所以A选项的说法正确;B、平移过程中对应线段平行(或在同一条直线上)且相等,所以B选项的说法正确;C、旋转过程中,图形中的每一点所旋转的路程等于以旋转中心为圆心、每个点到旋转中心的距离为半径、圆心角为旋转角的弧长,所以C选项的说法不正确;D、旋转过程中,对应点到旋转中心的距离相等,所以D选项的说法正确.故选C.【考点】1、旋转的性质;2、平移的性质3.按下列要求正确画出图形:(1)已知和直线MN,画出关于直线MN对称的;(2)已知ABCD和点O,画出ABCD关于点O成中心对称的四边形.【解析】(1)过点A作AA′⊥MN且使MN垂直平分AA′,过点B作BB′⊥MN且使MN垂直平分BB′,过点C作CC′⊥MN且使MN垂直平分CC′,然后顺次连接即可;(2)连接AO并延长至A′,使A′O=AO,连接BO并延长至B′,使B′O=BO,连接CO并延长至C′,使C′O=CO,连接DO并延长至D′,使D′O=DO,然后顺次连接即可.试题解析:(1)△A′B′C′如图所示;(2)四边形A′B′C′D′如图所示.【考点】1、旋转变换;2、轴对称变换4.如图,长方形ABCD中,AB=6,第1次平移将长方形ABCD沿AB的方向向右平移5个单位,得到长方形A1B1C1D1,第2次平移将长方形A1B1C1D1沿A1B1的方向向右平移5个单位,得到长方形A2B2C2D2…,第n次平移将长方形沿的方向平移5个单位,得到长方形(n>2),则长为_______________.【答案】5n+6.【解析】每次平移5个单位,n次平移5n个单位,加上AB的长即为ABn的长.试题解析:每次平移5个单位,n次平移5n个单位,即BN的长为5n,加上AB的长即为ABn的长.ABn=5n+AB=5n+6,故答案为:5n+6.【考点】平移的性质.5..如图所示,把直角梯形ABCD沿DA方向平移到梯形EFGH,HG="24" cm,WG="8" cm,WC="6" cm,求阴影部分的面积为__ _.【答案】168cm2.【解析】根据平移图形的面积相等,梯形ABCD与梯形EFGH的面积相等,都减去公共部分梯形EFWD的面积,得阴影部分的面积等于梯形DWGH的面积,从而求得阴影部分的面积为168cm2.【考点】1平移的性质;2等式性质;3梯形面积计算.6.把两块全等的直角三角形和叠放在一起,使三角板的锐角顶点与三角板的斜边中点重合,其中,,,把三角板固定不动,让三角板绕点旋转,设射线与射线相交于点,射线与线段相交于点.(1)如图1,当射线经过点,即点与点重合时,易证.此时,;将三角板由图1所示的位置绕点沿逆时针方向旋转,设旋转角为.其中,问的值是否改变?答:(填“会”或“不会”);若改变,的值为(不必说明理由);(2)在(1)的条件下,设,两块三角板重叠面积为,求与的函数关系式.(图2,图3供解题用)【答案】(1)8,不会;(2)当时,当时,.【解析】(1)根据旋转的性质及相似三角形的性质求解即可;(2)情形1:当时,,即,此时两三角板重叠部分为四边形,过作于,于,根据三角形的面积公式求解即可;情形2:当时,时,即,此时两三角板重叠部分为,由于,,易证:,根据相似三角形的性质求解即可.(1)由题意得8;将三角板旋转后的值不会改变;(2)情形1:当时,,即,此时两三角板重叠部分为四边形,过作于,于,由(2)知:得于是情形2:当时,时,即,此时两三角板重叠部分为,由于,,易证:,即,解得于是综上所述,当时,当时,.本题涉及了旋转问题的综合题,此类问题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.7.如图,每个小正方形的边长为1,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.(1)补全△A′B′C′根据下列条件,利用网格点和三角板画图:(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)△A′B′C′的面积为。

图形的平移,对称与旋转的技巧及练习题附答案解析

图形的平移,对称与旋转的技巧及练习题附答案解析

图形的平移,对称与旋转的技巧及练习题附答案解析一、选择题1.如图,圆柱形玻璃杯高为8cm ,底面周长为48cm ,在杯内壁离杯底3cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁上,它在离杯上沿2cm 且与蜂蜜相对的A 处,则蚂蚁从外壁A 处走到内壁B 处,至少爬多少厘米才能吃到蜂蜜( )A .24B .25C .23713+D .382【答案】B【解析】【分析】 将圆柱形玻璃杯的侧面展开图为矩形MNPQ ,设点A 关于MQ 的对称点为A′,连接A′B ,则A′B 就是蚂蚁从外壁A 处走到内壁B 处的最短距离,再根据勾股定理,即可求解.【详解】圆柱形玻璃杯的侧面展开图为矩形MNPQ ,则E 、F 分别是MQ ,NP 的中点,AM=2cm ,BF=3cm ,设点A 关于MQ 的对称点为A′,连接A′B ,则A′B 就是蚂蚁从外壁A 处走到内壁B 处的最短距离.过点B 作BC ⊥MN 于点C ,则BC=ME=24cm ,A′C=8+2-3=7cm , ∴在Rt∆A′BC 中,A′B=222272425A C BC +=+=′cm .故选B .【点睛】本题主要考查图形的轴对称以及勾股定理的实际应用,把立体图形化为平面图形,掌握“马饮水”模型,是解题的关键.2.在平面直角坐标系中,把点(5,2)P -先向左平移3个单位长度,再向上平移2个单位长度后得到的点的坐标是( )A .(8,4)-B .(8,0)-C .(2,4)-D .(2,0)-【答案】A【解析】【分析】根据平移变换与坐标变化规律:横坐标,右移加,左移减;纵坐标,上移加,下移减,可得答案.【详解】∵点P(-5,2),∴先向左平移3个单位长度,再向上平移2个单位长度后得到的点的坐标是(-5-3,2+2),即(-8,4),故选:A.【点睛】此题考查坐标与图形的变化,解题关键是掌握点的坐标的变化规律.3.下列图形中,是轴对称图形但不是中心对称图形的是()A.等边三角形B.干行四边形C.正六边形D.圆【答案】A【解析】【分析】【详解】解: A、是轴对称图形,不是中心对称图形,符合题意;B、不是轴对称图形,是中心对称图形,不合题意;C、是轴对称图形,也是中心对称图形,不合题意;D、是轴对称图形,也是中心对称图形,不合题意.故选A.【点睛】本题考查中心对称图形;轴对称图形.4.中国科学技术馆有“圆与非圆”展品,涉及了“等宽曲线”的知识.因为圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了例以外,还有一些几何图形也是“等宽曲线”,如勒洛只角形(图1),它是分别以等边三角形的征个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧.三段圆弧围成的曲边三角形.图2是等宽的勒洛三角形和圆.下列说法中错误的是( )A.勒洛三角形是轴对称图形B .图1中,点A 到¶BC上任意一点的距离都相等 C .图2中,勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都相等 D .图2中,勒洛三角形的周长与圆的周长相等【答案】C【解析】【分析】根据轴对称形的定义,可以找到一条直线是的图像左右对着完全重合,则为轴对称图形.鲁列斯曲边三角形有三条对称轴. 鲁列斯曲边三角形可以看成是3个圆心角为60°,半径为DE 的扇形的重叠,根据其特点可以进行判断选项的正误.【详解】鲁列斯曲边三角形有三条对称轴,就是等边三角形的各边中线所在的直线,故正确;点A 到¶BC上任意一点的距离都是DE ,故正确; 勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都不相等,1O 到顶点的距离是到边的中点的距离的2倍,故错误;鲁列斯曲边三角形的周长=3×60180DE DE ππ⨯=⨯ ,圆的周长=22DE DE ππ⨯=⨯ ,故说法正确.故选C.【点睛】主要考察轴对称图形,弧长的求法即对于新概念的理解.5.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是( ) A .B .C .D .【答案】D【解析】【分析】根据平移只改变图形的位置,不改变图形的形状和大小,逐项进行分析即可得.【详解】A 、不能通过平移得到,故不符合题意;B 、不能通过平移得到,故不符合题意;C 、不能通过平移得到,故不符合题意;D 、能够通过平移得到,故符合题意,故选D.【点睛】本题考查了图形的平移,熟知图形的平移只改变图形的位置,而不改变图形的形状和大小是解题的关键.6.如图,在平面直角坐标系中,AOB ∆的顶点B 在第一象限,点A 在y 轴的正半轴上,2AO AB ==,120OAB ∠=o ,将AOB ∠绕点O 逆时针旋转90o ,点B 的对应点'B 的坐标是( )A .3(2,3)--B .33(2,2)---C .3(3,2)--D .(3,3)- 【答案】D【解析】【分析】 过点'B 作x 轴的垂线,垂足为M ,通过条件求出'B M ,MO 的长即可得到'B 的坐标.【详解】解:过点'B 作x 轴的垂线,垂足为M ,∵2AO AB ==,120OAB ∠=︒,∴'''2A O A B ==,''120OA B ∠=︒,∴'0'6M B A ∠=︒,在直角△''A B M 中,3==2=B'M B'M 'sin B A M B '''A ∠ , 1==22=A'M A'M 'cos B A M B '''A ∠, ∴'3B M ='1A M =,∴OM=2+1=3,∴'B 的坐标为(3)-.故选:D.【点睛】本题考查坐标与图形变化-旋转,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.7.下列图形中,不是中心对称图形的是( )A .平行四边形B .圆C .等边三角形D .正六边形 【答案】C【解析】【分析】根据中心对称图形的定义依次判断各项即可解答.【详解】选项A 、平行四边形是中心对称图形;选项B 、圆是中心对称图形;选项C 、等边三角形不是中心对称图形;选项D 、正六边形是中心对称图形;故选C .【点睛】本题考查了中心对称图形的判定,熟知中心对称图形的定义是解决问题的关键.8.在下面由冬季奥运会比赛项目图标组成的四个图形中,其中可以看作轴对称图形的是( )A .B .C .D .【答案】D【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】A 、不是轴对称图形,故本选项错误;B 、不是轴对称图形,故本选项错误;C 、不是轴对称图形,故本选项错误;D 、是轴对称图形,故本选项正确.故选:D .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.9.如图,DEF ∆是由ABC ∆经过平移后得到的,则平移的距离不是( )A.线段BE的长度B.线段EC的长度、两点之向的距离C.线段CF的长度D.A D【答案】B【解析】【分析】平移的距离是平移前后对应两点之间连线的距离,根据这可定义可判定【详解】∵△DEF是△ABC平移得到∴A和D、B和E、C和F分别是对应点∴平移距离为:线段AD、BE、CF的长故选:B【点睛】本题考查平移的性质,在平移过程中,我们通常还需要注意,平移前后的图形是全等图形.10.如图所示,共有3个方格块,现在要把上面的方格块与下面的两个方格块合成一个长方形的整体,则应将上面的方格块()A.向右平移1格,向下3格B.向右平移1格,向下4格C.向右平移2格,向下4格D.向右平移2格,向下3格【答案】C【解析】分析:找到两个图案的最右边移动到一条直线,最下边移动到一条直线上的距离即可.解答:解:上面的图案的最右边需向右平移2格才能与下面图案的最右边在一条直线上,最下边需向下平移4格才能与下面图案的最下面重合,故选C.11.在下列图形中是轴对称图形的是()A.B.C.D.【答案】B【解析】【分析】根据轴对称图形的概念求解.【详解】A.不是轴对称图形,故本选项不符合题意,B.是轴对称图形,故本选项符合题意,C.不是轴对称图形,故本选项不符合题意,D.是不轴对称图形,故本选项不符合题意.故选B.【点睛】本题考查了轴对称的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.12.如图,在△ABC中,AB=AC,BC=9,点D在边AB上,且BD=5将线段BD沿着BC 的方向平移得到线段EF,若平移的距离为6时点F恰好落在AC边上,则△CEF的周长为()A.26 B.20 C.15 D.13【答案】D【解析】【分析】直接利用平移的性质得出EF=DB=5,进而得出CF=EF=5,进而求出答案.【详解】解:∵将线段BD沿着BC的方向平移得到线段EF,∴EF=DB=5,BE=6,∵AB=AC,BC=9,∴∠B=∠C,EC=3,∴∠B=∠FEC,∴CF=EF=5,∴△EBF的周长为:5+5+3=13.故选D.【点睛】本题考查了平移的性质,根据题意得出CF的长是解题关键.13.直角坐标系内,点P(-2,3)关于原点的对称点Q的坐标为()A.(2,-3)B.(2,3)C.(-2,3)D.(-2,-3)【答案】A【解析】试题解析:根据中心对称的性质,得点P(-2,3)关于原点对称点P′的坐标是(2,-3).故选A.点睛:平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y).14.点M(﹣2,1)关于y轴的对称点N的坐标是( )A.(﹣2,﹣1) B.(2,1) C.(2,﹣1) D.(1,﹣2)【答案】B【解析】【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【详解】点M(-2,1)关于y轴的对称点N的坐标是(2,1).故选B.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.15.观察下列图形,其中既是轴对称又是中心对称图形的是()A.B.C.D.【答案】D【解析】【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】A. 是中心对称图形,不是轴对称图形,选项不符合题意;B. 是轴对称图形,不是中心对称图形,选项不符合题意;C. 不是中心对称图形,也不是轴对称图形,选项不符合题意;D. 是中心对称图形,也是轴对称图形,选项符合题意,故选D.【点睛】本题考查轴对称图形和中心对称图形,解题的关键是掌握轴对称图形和中心对称图形的定义.16.如图,在ABC ∆中,2AB =,=3.6BC ,=60B ∠o ,将ABC ∆绕点A 顺时针旋转度得到ADE ∆,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为( )A .1.6B .1.8C .2D .2.6【答案】A【解析】【分析】 由将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上,可得AD=AB ,又由∠B=60°,可证得△ABD 是等边三角形,继而可得BD=AB=2,则可求得答案.【详解】由旋转的性质可知,AD AB =,∵60B ∠=o ,AD AB =,∴ADB ∆为等边三角形,∴2BD AB ==,∴ 1.6CD CB BD =-=,故选:A .【点睛】此题考查旋转的性质,解题关键在于利用旋转的性质得出AD=AB17.下列几何图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】C【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故本选项错误;B、是中心对称图形,不是轴对称图形,故本选项错误;C、是中心对称图形,也是轴对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误;故选:C.【点睛】此题考查中心对称图形与轴对称图形的概念,注意掌握轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.18.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】A【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、既是轴对称图形,又是中心对称图形,故本选项不符合题意;B、不是轴对称图形,是中心对称图形,故本选项不符合题意;C、是轴对称图形,不是中心对称图形,故本选项不符合题意;D、是轴对称图形,不是中心对称图形,故本选项符合题意.故选:A.【点睛】此题考查中心对称图形与轴对称图形的概念.解题关键在于掌握轴对称图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.19.对于图形的全等,下列叙述不正确的是()A.一个图形经过旋转后得到的图形,与原来的图形全等B .一个图形经过中心对称后得到的图形,与原来的图形全等C .一个图形放大后得到的图形,与原来的图形全等D .一个图形经过轴对称后得到的图形,与原来的图形全等【答案】C【解析】A. 一个图形经过旋转后得到的图形,与原来的图形全等,正确,不符合题意;B. 一个图形经过中心对称后得到的图形,与原来的图形全等,正确,不符合题意;C. 一个图形放大后得到的图形,与原来的图形不全等,故错误,符合题意;D. 一个图形经过轴对称后得到的图形,与原来的图形全等,正确,不符合题意, 故选C.【点睛】本题考查了对全等图形的认识,解题的关键是要明确通过旋转、轴对称、平移等都可以得到与原图形全等的图形,而通过放大或缩小只能得到与原图形形状一样的图形,得不到全等图形.20.如图,将ABC V 绕点A 逆时针旋转90︒得到,ADE V 点,B C 的对应点分别为,,1,D E AB =则BD 的长为( )A .1B 2C .2D .22【答案】B【解析】【分析】 根据旋转的性质得到AD=AB=1,∠BAD=90°,即可根据勾股定理求出BD .【详解】由旋转得到AD=AB=1,∠BAD=90°,∴22AB AD +2211+2,故选:B .【点睛】此题考查了旋转的性质,勾股定理,找到直角是解题的关键.。

图形的平移,对称与旋转的技巧及练习题附答案

图形的平移,对称与旋转的技巧及练习题附答案
【详解】
A、是轴对称图形,不是中心对称图形,故本选项错误;
B、是中心对称图形,不是轴对称图形,故本选项错误;
C、是中心对称图形,也是轴对称图形,故本选项正确;
D、是轴对称图形,不是中心对称图形,故本选项错误;
故选:C.
【点睛】
此题考查中心对称图形与轴对称图形的概念,注意掌握轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
故选A.
【点睛】
本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
9.下列图形中,是轴对称图形但不是中心对称图形的是()
A. B. C. D.
【答案】A
【解析】
A.是轴对称图形不是中心对称图形,正确;B.是轴对称图形也是中心对称图形,错误;C.是中心对称图形不是轴对称图形,错误;D.是轴对称图形也是中心对称图形,错误,
∴ ,
∴ , ,
∴ .
∵将△ACD沿AD对折,使点C落在点F处,
∴ ,
∴ .
故选B.
【点睛】
本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了直角三角形斜边上的中线的性质、等腰三角形的性质、三角形内角和定理以及三角形外角的性质.
A.向右平移1格,向下3格B.向右平移1格,向下4格
C.向右平移2格,向下4格D.向右平移2格,向下3格
【答案】C
【解析】
分析:找到两个图案的最右边移动到一条直线,最下边移动到一条直线上的距离即可.
解答:解:上面的图案的最右边需向右平移2格才能与下面图案的最右边在一条直线上,最下边需向下平移4格才能与下面图案的最下面重合,故选C.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.1个B.2个C.3个D.4个
【答案】D
【解析】
【分析】
【详解】
由轴对称的性质知,①②③④都正确.
故选D.
19.下列说法中正确的是()
①角平分线上任意一点到角的两边的线段长相等②角是轴对称图形
③线段不是轴对称图形④矩形是轴对称图形
A.①②③④ B.①②③ C.②④ D.②③④
【答案】C
【解析】解:①叙述不清,正确的应该是“角平分线上任意一点到角的两边的距离相等”;②正确,对称轴是角平分线所在直线;③错误,线段本身也是轴对称图形,有2条对称轴;④正确,非正方形的矩形有两条对称轴,正方形有四条对称轴.故选C.
由旋转的性质可得△ACB≌△AED,∠DAB=40°,可得AD=AB=5,S△ACB=S△AED,根据图形可得S阴影=S△AED+S扇形ADB-S△ACB=S扇形ADB,再根据扇形面积公式可求阴影部分面积.
【详解】
∵将△ABC绕A逆时针方向旋转40°得到△ADE,
∴△ACB≌△AED,∠DAB=40°,
【答案】D
【解析】
【分析】
利用旋转的性质得出四边形AECF的面积等于正方形ABCD的面积,进而可求
出正方形的边长,再利用勾股定理得出答案.
【详解】
绕点 顺时针旋转 到 的位置.
四边形 的面积等于正方形 的面积等于20,


中,
故选: .
【点睛】
本题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应
A.13B.12C.11D.10
【答案】C
【解析】
【分析】
先利用平移的性质求出AD、CF,进而完成解答.
【详解】
解:将△ABC沿BC方向平移1个单位得到△DEF,
∴AD=CF=1,AC=DF,
又∵△ABC的周长等于9,
∴四边形ABFD的周长等于9+1+1=11.
故答案为C.
【点睛】
本题主要考查了平移的性质,通过平移确定AD=CF=1是解答本题的关键.
此题主要考查了相似多边形的性质以及菱形的性质和平移性质的综合运用.关键是应用相似多边形的性质解答问题.
6.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是( )
A. B. C. D.
【答案】D
【解析】
【分析】
根据平移只改变图形的位置,不改变图形的形状和大小,逐项进行分析即可得.
【详解】
A. B. C. D.
【答案】D
【解析】
【分析】
过点 作x轴的垂线,垂足为M,通过条件求出 ,MO的长即可得到 的坐标.
【详解】
解:过点 作x轴的垂线,垂足为M,
∵ , ,
∴ , ,
∴ ,
在直角△ 中, ,

∴ , ,
∴OM=2+1=3,
∴ 的坐标为 .
故选:D.
【点睛】
本题考查坐标与图形变化-旋转,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.
13.点M(﹣2,1)关于y轴的对称点N的坐标是( )
A.(﹣2,﹣1) B.(2,1) C.(2,﹣1) D.(1,﹣2)
【答案】B
【解析】
【分析】
根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.
【详解】
点M(-2,1)关于y轴的对称点N的坐标是(2,1).
故选B.
【点睛】
本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:
C、是轴对称图形,也是中心对称图形,不合题意;
D、是轴对称图形,也是中心对称图形,不合题意.
故选A.
【点睛】
本题考查中心对称图形;轴对称图形.
4.如图,在 中, , , ,将 绕一逆时针方向旋转 得到 ,点 经过的路径为弧 ,则图中阴影部分的面积为( )
A. B. C. D.
【答案】D
【解析】
【分析】
【点睛】
本题考查了旋转的性质,属于简单题,熟悉旋转的性质,利用旋转的性质找到对应角之间的关系是解题关键.
3.下列图形中,是轴对称图形但不是中心对称图形的是()
A.等边三角形B.干行四边形C.正六边形D.圆
【答案】A
【解析】
【分析】
【详解】
解:A、是轴对称图形,不是中心对称图形,符合题意;
B、不是轴对称图形,是中心对称图形,不合题意;
A. B. C. D.
【答案】C
【解析】
【分析】
根据题意得,▱ABCD∽▱OECF,且AO=OC= ,故四边形OECF的面积是▱ABCD面积的
【详解】
解:如图,
由平移的性质得,▱ABCD∽▱OECF,且AO=OC=
故四边形OECF的面积是▱ABCD面积
即图中阴影部分的面积为4cm2.
故选:C
【点睛】
【详解】
由旋转的性质可知, ,
∵ , ,
∴ 为等边三角形,
∴ ,
∴ ,
故选:A.
【点睛】
此题考查旋转的性质,解题关键在于利用旋转的性质得出AD=AB
16.如图,点 是正方形 的边 上一点,把 绕点 顺时针旋转 到 的位置.若四边形AECF的面积为20,DE=2,则AE的长为()
A.4B. C.6D.
9.下列图形中,是轴对称图形但不是中心对称图形的是()
A. B. C. D.
【答案】A
【解析】
A.是轴对称图形不是中心对称图形,正确;B.是轴对称图形也是中心对称图形,错误;C.是中心对称图形不是轴对称图形,错误;D.是轴对称图形也是中心对称图形,错误,
故选A.
【点睛】本题考查轴对称图形与中心对称图形,正确地识别是解题的关键.
边关系是解题关键.
17.下列几何图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
【答案】C
【解析】
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A、是轴对称图形,不是中心对称图形,故本选项错误;
B、是中心对称图形,不是轴对称图形,故本选项错误;
C、是中心对称图形,也是轴对称图形,故本选项正确;
【详解】
圆柱形玻璃杯的侧面展开图为矩形MNPQ,则E、F分别是MQ,NP的中点,AM=2cm,BF=3cm,设点A关于MQ的对称点为A′,连接A′B,则A′B就是蚂蚁从外壁 处走到内壁 处的最短距离.过点B作BC⊥MN于点C,则BC=ME=24cm,A′C=8+2-3=7cm,
∴在Rt∆A′BC中,A′B= cm.
D、是轴对称图形,不是中心对称图形,故本选项错误;
故选:C.
【点睛】
此题考查中心对称图形与轴对称图形的概念,注意掌握轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
18.已知互不平行的两条线段AB,CD关于直线l对称,AB,CD所在直线交于点P,下列结论中:①AB=CD;②点P在直线l上;③若A、C是对称点,则l垂直平分线段AC;④若B、D是对称点,则PB=PD.其中正确的结论有( )
由勾股定理得:AD1= .
故选A.
考点: 1.旋转;2.勾股定理.
15.如图,在 中, , , ,将 绕点 顺时针旋转度得到 ,当点 的对应点 恰好落在 边上时,则 的长为( )
A.1.6B.1.8C.2D.2.6
【答案】A
【解析】
【分析】
由将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上,可得AD=AB,又由∠B=60°,可证得△ABD是等边三角形,继而可得BD=AB=2,则可求得答案.
图形的平移,对称与旋转的解析含答案
一、选择题
1.如图,圆柱形玻璃杯高为 ,底面周长为 ,在杯内壁离杯底 的点 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁上,它在离杯上沿 且与蜂蜜相对的 处,则蚂蚁从外壁 处走到内壁 处,至少爬多少厘米才能吃到蜂蜜()
A.24B.25C. D.
【答案】B
【解析】
【分析】
将圆柱形玻璃杯的侧面展开图为矩形MNPQ,设点A关于MQ的对称点为A′,连接A′B,则A′B就是蚂蚁从外壁 处走到内壁 处的最短距离,再根据勾股定理,即可求解.
C.2个D.1个
【答案】B
【解析】
【分析】
根据旋转的性质,旋转前后对应线段相等、对应角相等即可解答.
【详解】
由旋转可知△ABC≌△AEF,
∴AC=AF,EF=BC,①③正确,
∠EAF=∠BAC,即∠EAB+∠BAF=∠BAF+∠FAC,
∴∠EAB=∠FAC,④正确,②错误,
综上所述,①③④正确.
故选B.
20.下列图形中,不是中心对称图形的是( )
A.平行四边形B.圆C.等边三角形D.正六边形
∴4a=20,
∴a=5,
∴c=5,
∴a+b+c=5+7+5=17,
故选C.
【点睛】
本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ∥y轴,进而求得PQ是解题的关键.
8.如图,在平面直角坐标系中, 的顶点 在第一象限,点 在 轴的正半轴上, , ,将 绕点 逆时针旋转 ,点 的对应点 的坐标是()
A. B. C. D.4
【答案】A
【解析】
试题分析:由题意易知:∠CAB=45°,∠ACD=30°.
若旋转角度为15°,则∠ACO=30°+15°=45°.
∴∠AOC=180°-∠ACO-∠CAO=90°.
在等腰Rt△ABC中,AB=4,则AO=OC=2.
在Rt△AOD1中,OD1=CD1-OC=3,
相关文档
最新文档