2016年4月自考线性代数经管类(04184)试题及答案

合集下载

线性代数试题与答案

线性代数试题与答案

04184线性代数(经管类)一、二、单选题1、B:-1A:-3C:1 D:3做题结果:A 参考答案:D 2、B:dA:abcdC:6 D:0做题结果:A 参考答案:D 3、B:15A:18C:12 D:24做题结果:A 参考答案:B 4、B:-1A:-3C:1 D:3做题结果:A 参考答案:D 6、B:15A:18C:12 D:24做题结果:A 参考答案:B 20、B:kA:k-1C:1 D:k+1做题结果:A 参考答案:B 21、行列式D如果按照第n列展开是【】A.,B.,C.,D.做题结果:A 参考答案:A22、关于n个方程的n元齐次线性方程组的克拉默法则,说法正确的是【】A:如果行列式不等于0,则方程组必有无穷多解B:如果行列式不等于0,则方程组只有零解C:如果行列式等于0,则方程组必有唯一解D:如果行列式等于0,则方程组必有零解做题结果:A 参考答案:B23、已知三阶行列D中的第二列元素依次为1、2、3,它们的余子式分别为-1、1、2,则D的值为。

【】A:-3B:-7C:3 D:7做题结果:A 参考答案:A24、A:0B:1C:-2 D:2做题结果:A 参考答案:C25、B:dA:abcdC:6 D:0做题结果:A 参考答案:D26、B:a≠0A:a≠2C:a≠2或a≠0 D:a≠2且a≠0做题结果:A 参考答案:D27、A.,B.,C.,D.做题结果:B 参考答案:B 28、A:-2|A|B:16|A|C:2|A| D:|A|做题结果:A 参考答案:B29、下面结论正确的是【】A:含有零元素的矩阵是零矩阵B:零矩阵都是方阵C:所有元素都是零的矩阵是零矩阵D:若A,B都是零矩阵,则A=B做题结果:A 参考答案:C30、设A是n阶方程,λ为实数,下列各式成立的是【】C.,D.做题结果:C 参考答案:C31、A.,B.,C.,D.做题结果:B 参考答案:B32、设A是4×5矩阵,r(A)=3,则▁▁▁▁▁。

最新全国自考04184线性代数(经管类)答案

最新全国自考04184线性代数(经管类)答案

2015年4月高等教育自学考试全国统一命题考试线性代数(经管类)试题答案及评分参考(课程代码 04184)一、单项选择题(本大题共5小题,每小题2分类,共10分)1.C2.A3.D4.C5.B二、填空题(本大题共10小题,每小题2分,共20分)6. 97.⎪⎪⎭⎫ ⎝⎛--2315 8.⎪⎪⎭⎫⎝⎛--031111 9. 3 10. -2 11. 0 12. 2 13.()()T T 1,1,1311,1,131---或14. -1 15.a >1三、计算题(本大题共7小题,每小题9分,共63分)16.解 D=40200320115011315111141111121131------=- (5分) =74402032115=-- (9分) 17.解 由于21=A ,所以A 可逆,于是1*-=A A A (3分) 故11*12212)2(---+=+A A A A A (6分) =2923232112111=⎪⎭⎫ ⎝⎛==+----A A A A (9分) 18.解 由B AX X +=,化为()B X A E =-, (4分)而⎪⎪⎪⎭⎫ ⎝⎛--=-201101011A E 可逆,且()⎪⎪⎪⎭⎫ ⎝⎛--=--110123120311A E (7分) 故⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=11021335021111012312031X (9分) 19.解 由于()⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛----→00007510171101751075103121,,,4321αααα (5分) 所以向量组的秩为2,21,αα是一个极大线性无关组,并且有214213717,511αααααα-=+-= (9分)注:极大线性无关组不唯一。

20. 解 方程组的系数行列式 D=()()()b c a c a b c c b b a a ---=222111因为a,b,c 两两互不相同,所以0≠D ,故方程有唯一解。

04184 线性代数(经管类)习题集及答案

04184 线性代数(经管类)习题集及答案

西华大学自学考试省考课程习题集课程名称:《线性代数》课程代码:04184专业名称:工商企业管理专业代码:Y020202目录第一部分习题一、选择题 3二、填空题8三、计算题11四、证明题15第二部分标准答案一、选择题16二、填空题16三、计算题16四、证明题31第一部分 习题 一、选择题1、若n 阶方阵A 的秩为r ,则结论( )成立。

A. 0||≠A B. 0||=A C. r >n D. n r ≤2、下列结论正确的是( )A. 若AB=0,则A=0或B=0.B. 若AB=AC,则B=CC.两个同阶对角矩阵是可交换的.D. AB=BA 3、下列结论错误的是( )A. n+1个n 维向量一定线性相关.B. n 个n+1维向量一定线性相关C. n 个n 维列向量n ααα,,,21 线性相关,则021=n αααD. n 个n 维列向量n ααα,,,21 ,若021=n ααα 则n ααα,,,21 线性相关,4、若m c c c b b b a a a =321321321,则=321321321333222c c c b b b a a a ( ) A. 6m B.-6m C. m 3332 D. m 3332- 5、设A,B,C 均为n 阶方阵,AB=BA,AC=CA,则ABC=( ) A. ACB B. CAB C. CBA D. BCA6、二次型3221222132124),,(x x x x x x x x x f -++=的秩为( )A 、0B 、1C 、2D 、3 7、若A 、B 为n 阶方阵,下列说法正确的是( ) A 、若A ,B 都是可逆的,则A+B 是可逆的 B 、若A ,B 都是可逆的,则AB 是可逆的 C 、若A+B 是可逆的,则A-B 是可逆的 D 、若A+B 是可逆的,则A ,B 都是可逆的8、设2阶矩阵⎪⎪⎭⎫ ⎝⎛=d c b a A ,则=*A ( ) A 、⎪⎪⎭⎫ ⎝⎛--a c b d B 、⎪⎪⎭⎫ ⎝⎛--a b c dC 、⎪⎪⎭⎫ ⎝⎛--a c b dD 、⎪⎪⎭⎫⎝⎛--a b c d 9、关于初等矩阵下列结论成立的是( )A. 都是可逆阵B. 所对应的行列式的值为1C. 相乘仍为初等矩阵D. 相加仍为初等矩阵10、设2阶矩阵⎪⎪⎭⎫ ⎝⎛=4321A ,则=*A ( )A 、⎪⎪⎭⎫⎝⎛--1324 B 、⎪⎪⎭⎫ ⎝⎛--1234 C 、⎪⎪⎭⎫ ⎝⎛--1324 D 、⎪⎪⎭⎫⎝⎛--1234 11、设21,ββ是非齐次线性方程组β=AX 的两个解,则下列向量中仍为方程组β=AX 解的是( )A 、21ββ+B 、21ββ-C 、3221ββ+ D 、32321ββ- 12、向量组)2(,,,21≥m m ααα 线性相关的充要条件是( ) A 、m ααα,,,21 中至少有一个是零向量 B 、m ααα,,,21 中至少有一个向量可以由其余向量线性表示 C 、m ααα,,,21 中有两个向量成比例 D 、m ααα,,,21 中任何部分组都线性相关13、向量组)2(,,,21≥m m ααα 线性相关的充要条件是( ) A 、m ααα,,,21 中至少有一个是零向量 B 、m ααα,,,21 中至少有一个向量可以由其余向量线性表示 C 、m ααα,,,21 中有两个向量成比例 D 、m ααα,,,21 中任何部分组都线性相关14、0=AX 是非齐次方程组β=AX 的对应齐次线性方程组,则有( ) A 、0=AX 有零解,则β=AX 有唯一解 B 、0=AX 有非零解,则β=AX 有无穷多解 C 、β=AX 有唯一解,则0=AX 只有零解 D 、β=AX 有无穷多解,则0=AX 只有零解15、设A ,B ,C 均为二阶方阵,且AC AB =,则当( )时,可以推出B=CA 、⎪⎪⎭⎫ ⎝⎛=0101AB 、⎪⎪⎭⎫ ⎝⎛=0011AC 、⎪⎪⎭⎫ ⎝⎛=0110AD 、⎪⎪⎭⎫⎝⎛=1111A16、若m c c c b b b a a a =321321321,则=231231231333222c c c b b b a a a ( )A. 6mB.-6mC. m 3332D. m 3332- 17、如果矩阵A 的秩等于r ,则( )。

04184线性代数(经管类)

04184线性代数(经管类)

1【单选题】与矩阵合同的矩阵是()。

A、B、C、D、您的答案:B参考答案:B纠错查看解析2【单选题】设α1,α2,α3是齐次线性方程组Ax=0的一个基础解系,则下列解向量组中,可以作为该方程组基础解系的是A、α1+α2,α2+α3,α3+α1B、α1-α3,α1-α2,α2+α3-2α1C、α1-α2,α2-α3,α3-α1D、α1,α2,α1-α2您的答案:A参考答案:A纠错查看解析3【单选题】设行列式,则A、B、C、D、您的答案:未作答参考答案:C纠错查看解析4【单选题】已知是三阶可逆矩阵,则下列矩阵中与等价的是()。

A、B、C、D、您的答案:未作答参考答案:D纠错查看解析5【单选题】设A为3阶方阵,B为4阶方阵,且行列式|A|=1,|B|=-2,则行列式||B|A|之值为()A、-8B、-2C、2D、8您的答案:未作答参考答案:A纠错查看解析6【单选题】已知A是一个3×4矩阵,下列命题中正确的是()A、若矩阵A中所有三阶子式都为0,则秩(A)=2B、若A中存在二阶子式不为0,则秩(A)=2C、若秩(A)=2,则A中所有三阶子式都为0D、若秩(A)=2,则A中所有二阶子式都不为0您的答案:未作答参考答案:C纠错查看解析7【单选题】设则的特征值为1,2,3,则A、-2B、2C、3D、4您的答案:未作答参考答案:D纠错查看解析8【单选题】二次型的正惯性指数为()A、0B、1C、2D、3您的答案:未作答参考答案:C纠错查看解析9【单选题】设为3阶矩阵,将的第三行乘以得到单位矩阵,则A、-2B、C、D、2您的答案:未作答参考答案:A纠错查看解析10【单选题】矩阵有一个特征值为()。

A、-3B、-2C、1D、2您的答案:未作答参考答案:B纠错查看解析11【单选题】设为3阶矩阵,且,将按列分块为,若矩阵,则A、0B、C、D、您的答案:未作答参考答案:C纠错查看解析12【单选题】n维向量组α1,α2,…,αs(s≥2)线性相关充要条件A、α1,α2,…,αs中至少有两个向量成比例B、α1,α2,…,αs中至少有一个是零向量C、α1,α2,…,αs中至少有一个向量可以由其余向量线性表出D、α1,α2,…,αs中第一个向量都可以由其余向量线性表出您的答案:未作答参考答案:C纠错查看解析13【单选题】若矩阵中有一个阶子式等于零,且所有阶子式都不为零,则必有().A、B、C、D、您的答案:未作答参考答案:B纠错查看解析14【单选题】设三阶实对称矩阵的全部特征值为1,-1,-1,则齐次线性方程组的基础解系所含解向量的个数为()。

线性代数试题及答案

线性代数试题及答案

线性代数试题及答案 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】04184线性代数(经管类)2一、二、单选题1、A:-3 B:-1C:1 D:3做题结果:A 参考答案:D2、A:abcd B:dC:6 D:0做题结果:A 参考答案:D3、A:18 B:15C:12 D:24做题结果:A 参考答案:B4、A:-3 B:-1C:1 D:3做题结果:A 参考答案:D6、A:18 B:15C:12 D:24做题结果:A 参考答案:B20、A:k-1 B:kC:1 D:k+1做题结果:A 参考答案:B21、行列式D如果按照第n列展开是【】A.,B.,C.做题结果:A22、关于n个方程的n元齐次线性方程组的克拉默法则,说法正确的是【】A:如果行列式不等于0,则方程组必有无穷多解B:如果行列式不等于0,则方程组只有零解C:如果行列式等于0,则方程组必有唯一解D:如果行列式等于0,则方程组必有零解做题结果:A 参考答案:B23、已知三阶行列D中的第二列元素依次为1、2、3,它们的余子式分别为-1、1、2,则D的值为。

【】A:-3 B:-7C:3 D:7做题结果:A 参考答案:A24、A:0 B:1C:-2 D:2做题结果:A 参考答案:C25、A:abcd B:dC:6 D:0做题结果:A 参考答案:D26、A:a≠2 B:a≠0C:a≠2或a≠0 D:a≠2且a≠0做题结果:A 参考答案:D27、A.,B.,C.,D.做题结果:B 参考答案:B28、A:-2|A| B:16|A|C:2|A| D:|A|做题结果:A 参考答案:B29、下面结论正确的是【】A:含有零元素的矩阵是零矩阵B:零矩阵都是方阵C:所有元素都是零的矩阵是零矩阵D:若A,B都是零矩阵,则A=B做题结果:A 参考答案:C30、设A是n阶方程,λ为实数,下列各式成立的是【】C.,D.做题结果:C 参考答案:C31、A.,B.,C.,D.做题结果:B 参考答案:B 32、设A是4×5矩阵,r(A)=3,则▁▁▁▁▁。

线性代数试题及答案

线性代数试题及答案

2 04184 线性代数(经管类)一、二、单选题1、A:-3B:-1C:1D:3做题结果: A 参考答案: D2、A:abcd B:dC:6D:0做题结果: A 参考答案: D3、A:18B:15C:12D:24做题结果: A 参考答案: B4、A:-3B:-1C:1D:3做题结果: A 参考答案: D6、A:18B:15C:12D:24做题结果: A 参考答案: B20、A:k-1B:kC:1D:k+1做题结果: A 参考答案: B21、行列式 D 如果按照第 n 列展开是【】A.,B.,C.,D.参考答做题结果: A案: A 22、关于 n 个方程的 n 元齐次线性方程组的克拉默法则,说法正确的是【】A:如果行列式不等于 0,则方程组必有 B: 如果行列式不等于 0,则方程组只无穷多解有零解C: 如果行列式等于0,则方程组必有唯D:如果行列式等于0,则方程组必有一解零解做题结果: A参考答案:B23、已知三阶行列D中的第二列元素依次为1、2、3,它们的余子式分别为-1 、1、2,则 D 的值为。

【】A:-3B:-7C:3D:7做题结果: A 参考答案: A24、A:0B:1C:-2D:2做题结果: A 参考答案: C25、A:abcd B:dC:6D:0做题结果: A 参考答案: D26、A:a≠2B:a≠0C:a≠2或 a≠0 D:a≠2且 a≠0做题结果: A参考答案:D27、A.,B.,C.,D.做题结果: B参考答案:B28、A:-2|A|B:16|A|C:2|A|D:|A|做题结果: A 参考答案: B29、下面结论正确的是【】A: 含有零元素的矩阵是零矩阵B: 零矩阵都是方阵C:所有元素都是零的矩阵是零矩阵 D: 若 A, B 都是零矩阵,则 A=B 做题结果: A参考答案:C30、设 A 是 n 阶方程,λ为实数,下列各式成立的是【】C.,D.做题结果: C参考答案:C31、A.,B.,C.,D.做题结果: B参考答案:B 32、设 A 是 4×5 矩阵, r (A) =3,则▁▁▁▁▁。

《线性代数(经管类)》历年真题及参考答案

《线性代数(经管类)》历年真题及参考答案

20XX年10月高等教育自学考试全国统一命题考试线性代数(经管类)试卷(课程代码 04184)一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设3阶方阵A的行列式为2,则= 【】A.-1 B.-C. D.12.设,则方程的根的个数为【】A.0 B.1C.2 D.33.设A为n阶方阵,将A的第1列与第2列交换得到方阵B,若|A|≠|B|,则必有A.|A|=0 B.|A+B|≠0C.|A|≠0 D.|A-B|≠04. 设A、B是任意的n阶方阵,下列命题中正确的是【】A. B.C. D.5.设A= ,其中,则矩阵A的秩为【】A.0 B.1C.2 D.36.设6的阶方阵A的秩为4,则A的伴随矩阵的秩为【】A.0 B.2C.3 D.47.设向量a=(1,-2,3),与=(2,k,6)A.-10 B.-4C.4 D.108.已知线性方程组无解,则数a= 【】A.- B.0C. D.19.设3阶方阵A的特征多项式为,则|A|= 【】10.若3阶实对称矩阵A=( )是正定矩阵,则4的3个特征值可能为【】二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

错填、不填均无分。

11.设行列式D=,其第三行各元素的代数余子式之和为.12设A=,B=,则AB:.13设A是4x3矩阵且r(A)=2,B=,则r(AB).14.向量组(1,2),(2,3),(3,4)的秩为15设线性无关的向量组可由向量组线性表示,则r与s的关系为16.设方程组有非零解,且数,则= .17.设4元线性方程组Ax=b的三个解,已知,.则方程组的通解是.19.设矩阵有一个特征值=2,对应的特征向量为,则数20.设实二次型,已知A的特征值为-1,1,2,则该二次型的规范形为三、计算题(本大题共6小题,每小题9分,共54分)21.设矩阵,,其中口,均为3维列向量,且 |A|=18,|B|=2.求|A-B|.22.解矩阵方程23.设向量组,,问P为何值时,该向量组线性相关?并在此时求出它的秩和一个极大无关组.24.设3元线性方程组(1)确定当取何值时,方程组有惟一解、无解、有无穷多解?(2)当方程组有无穷多解时,求出该方程组的通解(要求用其一个特解和导出组的基础解系表示)25.已知2阶方阵A的特征值为,方阵.(1)求B的特征值;(2)求B的行列式.。

历年自考04184线性代数试题真题及答案分析解答

历年自考04184线性代数试题真题及答案分析解答

全国2010年度4月高等教育自学考试线性代数(经管类)试题答案一、单项选择题(本大题共10小题,每小题2分,共20分) 1.已知2阶行列式m b b a a =2121,n c c b b =2121,则=++221121c a c a b b ( B )A .n m -B .m n -C .n m +D .)(n m +-2.设A , B , C 均为n 阶方阵,BA AB =,CA AC =,则=ABC ( D ) A .ACBB .CABC .CBAD .BCA3.设A 为3阶方阵,B 为4阶方阵,且1||=A ,2||-=B ,则行列式||||A B 之值为( A ) A .8-B .2-C .2D .84.⎪⎪⎪⎭⎫⎝⎛=333231232221131211a a aa a a a a a A ,⎪⎪⎪⎭⎫⎝⎛=333231232221131211333a a a a a a a a a B ,⎪⎪⎪⎭⎫ ⎝⎛=100030001P ,⎪⎪⎪⎭⎫⎝⎛=100013001Q ,则=B ( B )A .PAB .APC .QAD .AQ5.已知A 是一个43⨯矩阵,下列命题中正确的是( C ) A .若矩阵A 中所有3阶子式都为0,则秩(A )=2 B .若A 中存在2阶子式不为0,则秩(A )=2 C .若秩(A )=2,则A 中所有3阶子式都为0 D .若秩(A )=2,则A 中所有2阶子式都不为0 6.下列命题中错误..的是( C ) A .只含有1个零向量的向量组线性相关B .由3个2维向量组成的向量组线性相关C .由1个非零向量组成的向量组线性相关D .2个成比例的向量组成的向量组线性相关 7.已知向量组321,,ααα线性无关,βααα,,,321线性相关,则( D ) A .1α必能由βαα,,32线性表出 B .2α必能由βαα,,31线性表出 C .3α必能由βαα,,21线性表出D .β必能由321,,ααα线性表出8.设A 为n m ⨯矩阵,n m ≠,则方程组Ax =0只有零解的充分必要条件是A 的秩( D ) A .小于mB .等于mC .小于nD .等于n9.设A 为可逆矩阵,则与A 必有相同特征值的矩阵为( A ) A .T AB .2AC .1-AD .*A10.二次型212322213212),,(x x x x x x x x f +++=的正惯性指数为( C ) A .0 B .1 C .2 D .3二、填空题(本大题共10小题,每小题2分,共20分)11.行列式2010200920082007的值为_____________. 12.设矩阵⎪⎪⎭⎫ ⎝⎛-=102311A ,⎪⎪⎭⎫ ⎝⎛=1002B ,则=B A T_____________.14.设A 为n 阶可逆矩阵,且nA 1||-=,则|=-||1A _____________.15.设A 为n 阶矩阵,B 为n 阶非零矩阵,若B 的每一个列向量都是齐次线性方程组Ax =0的解,则=||A _____________.16.齐次线性方程组⎩⎨⎧=+-=++0320321321x x x x x x 的基础解系所含解向量的个数为_____________.17.设n 阶可逆矩阵A 的一个特征值是3-,则矩阵1231-⎪⎭⎫⎝⎛A必有一个特征值为_________.18.设矩阵⎪⎪⎪⎭⎫⎝⎛----=00202221x A 的特征值为2,1,4-,则数=x _____________.19.已知⎪⎪⎪⎪⎫⎛=10002/102/1b a A 是正交矩阵,则=+b a _____________.三、计算题(本大题共6小题,每小题9分,共54分)21.计算行列式333222c c b b a a c b a cb a D +++=的值. 解:222333222333222111c b a c b a abc c b a c b a c b a c c b b a a c b a c b aD ==+++= 2222222200111a c a b ac ab abc a c a b a c ab abc ----=----=))()((11))((b c a c a b abc ac a b a c a b abc ---=++--=.22.已知矩阵)3,1,2(=B ,)3,2,1(=C ,求(1)C B A T =;(2)2A .解:(1)⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛==963321642)3,2,1(312C B A T;(2)注意到13312)3,2,1(=⎪⎪⎪⎭⎫⎝⎛=T CB ,所以131313)())((2=====A C B C CB B C B C B A T T T T T ⎪⎪⎪⎭⎫ ⎝⎛963321642.23.设向量组T 4T 3T 2T 1(1,1,1,1),)0,3,1,1(,(1,2,0,1),(2,1,3,1)=--===αααα,求向量组的秩及一个极大线性无关组,并用该极大线性无关组表示向量组中的其余向量.解:⎪⎪⎪⎪⎪⎭⎫⎝⎛--==1011130311211112),,,(4321ααααA →⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--1112130311211011→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------1110233001101011 →⎪⎪⎪⎪⎪⎭⎫⎝⎛--1000200001101011→⎪⎪⎪⎪⎪⎭⎫⎝⎛0000100001101011→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-0000100001101101,向量组的秩为3,421,,ααα是一个极大无关组,213ααα+-=.24.已知矩阵⎪⎪⎪⎭⎫ ⎝⎛=100210321A ,⎪⎪⎪⎭⎫⎝⎛--=315241B .(1)求1-A ;(2)解矩阵方程B AX =. 解:(1)⎪⎪⎪⎭⎫ ⎝⎛=100010001100210321),(E A →⎪⎪⎪⎭⎫ ⎝⎛--100210301100010021→⎪⎪⎪⎭⎫ ⎝⎛--100210121100010001,1-A ⎪⎪⎪⎭⎫⎝⎛--=100210121;(2)==-B A X 1⎪⎪⎪⎭⎫ ⎝⎛--100210121⎪⎪⎪⎭⎫⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛--3111094315241.25.问a 为何值时,线性方程组⎪⎩⎪⎨⎧=++=+=++63222243232132321x x x ax x x x x 有惟一解?有无穷多解?并在有解时求出其解(在有无穷多解时,要求用一个特解和导出组的基础解系表示全部解).解:⎪⎪⎪⎭⎫ ⎝⎛=63222204321),(a b A →⎪⎪⎪⎭⎫ ⎝⎛---23202204321a →⎪⎪⎪⎭⎫ ⎝⎛-03002204321a a .3≠a 时,3)(),(==A r b A r ,有惟一解,此时→),(b A ⎪⎪⎪⎭⎫ ⎝⎛010********a →⎪⎪⎪⎭⎫⎝⎛010********* →⎪⎪⎪⎭⎫ ⎝⎛010*********→⎪⎪⎪⎭⎫ ⎝⎛010*********,⎪⎩⎪⎨⎧===012321x x x ; 3=a 时,n A r b A r <==2)(),(,有无穷多解,此时→),(b A ⎪⎪⎪⎭⎫⎝⎛000023204321→⎪⎪⎪⎭⎫ ⎝⎛000023202001→⎪⎪⎪⎭⎫ ⎝⎛000012/3102001,⎪⎪⎩⎪⎪⎨⎧=-==333212312x x x x x ,通解为⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛12/30012k ,其中k 为任意常数.26.设矩阵⎪⎪⎪⎭⎫ ⎝⎛=3030002a a A 的三个特征值分别为5,2,1,求正的常数a 的值及可逆矩阵P ,使⎪⎪⎪⎭⎫ ⎝⎛=-5000200011AP P .解:由521)9(23323030002||2⨯⨯=-===a a aa a A ,得42=a ,2=a .=-A E λ⎪⎪⎪⎭⎫ ⎝⎛-----320230002λλλ.对于11=λ,解0)(=-x A E λ:=-A E λ⎪⎪⎪⎭⎫ ⎝⎛-----220220001→⎪⎪⎪⎭⎫ ⎝⎛000110001,⎪⎩⎪⎨⎧=-==333210x x x x x ,取=1p ⎪⎪⎪⎭⎫ ⎝⎛-110;对于22=λ,解0)(=-x A E λ:=-A E λ⎪⎪⎪⎭⎫ ⎝⎛----120210000→⎪⎪⎪⎭⎫ ⎝⎛000100010,⎪⎩⎪⎨⎧===003211x x x x ,取=2p ⎪⎪⎪⎭⎫⎝⎛001;对于53=λ,解0)(=-x A E λ:=-A E λ⎪⎪⎪⎭⎫ ⎝⎛--220220003→⎪⎪⎪⎭⎫ ⎝⎛-000110001,⎪⎩⎪⎨⎧===333210x x x x x ,取=3p ⎪⎪⎪⎭⎫ ⎝⎛110.令⎪⎪⎪⎭⎫ ⎝⎛-==101101010),,(321p p p P ,则P 是可逆矩阵,使⎪⎪⎪⎭⎫⎝⎛=-5000200011AP P .四、证明题(本题6分)27.设A ,B ,B A +均为n 阶正交矩阵,证明111)(---+=+B A B A .证:A ,B ,B A +均为n 阶正交阵,则1-=A A T ,1-=B B T ,1)()(-+=+B A B A T ,所以111)()(---+=+=+=+B A B A B A B A T T T .全国2010年7月高等教育自学考试线性代数(经管类)试题答案一、单项选择题(本大题共10小题,每小题2分,共20分)1.设3阶方阵),,(321ααα=A ,其中i α(3,2,1=i )为A 的列向量,若=||B 6|),,2(|3221=+αααα,则=||A ( C )A .12-B .6-C .6D .122.计算行列式=----32320200051020203( A )A .180-B .120-C .120D .1803.若A 为3阶方阵且2||1=-A ,则=|2|A ( C ) A .21B .2C .4D .84.设4321,,,αααα都是3维向量,则必有( B ) A .4321,,,αααα线性无关B .4321,,,αααα线性相关C .1α可由432,,ααα线性表示D .1α不可由432,,ααα线性表示5.若A 为6阶方阵,齐次方程组Ax =0基础解系中解向量的个数为2,则=)(A r ( C ) A .2B .3C .4D .56.设A 、B 为同阶方阵,且)()(B r A r =,则( C ) A .A 与B 相似B .||||B A =C .A 与B 等价D .A 与B 合同7.设A 为3阶方阵,其特征值分别为0,1,2,则=+|2|E A ( D ) A .0B .2C .3D .24..A .2-B .0C .2D .410.设3阶实对称矩阵A 的特征值分别为0,1,2,则( B ) A .A 正定B .A 半正定C .A 负定D .A 半负定二、填空题(本大题共10小题,每小题2分,共20分)11.设⎪⎪⎪⎭⎫ ⎝⎛-=421023A ,⎪⎪⎭⎫⎝⎛--=010112B ,则=AB ______________.12.设A 为3阶方阵,且3||=A ,则=-|3|1A ______________.13.三元方程1321=++x x x 的通解是______________.14.设)2,2,1(-=α,则与α反方向的单位向量是______________.15.设A 为5阶方阵,且3)(=A r ,则线性空间}0|{==Ax x W 的维数是______________.17.若A 、B 为5阶方阵,且0=Ax 只有零解,且3)(=B r ,则=)(AB r ______________.18.实对称矩阵⎪⎪⎪⎭⎫ ⎝⎛--110101012所对应的二次型=),,(321x x x f ______________.19.设3元非齐次线性方程组b Ax =有解⎪⎪⎪⎭⎫ ⎝⎛=3211α,⎪⎪⎪⎭⎫⎝⎛-=3 2 12α,且2)(=A r ,则b Ax =的通解是______________.20.设⎪⎪⎪⎭⎫ ⎝⎛=321α,则T A αα=的非零特征值是______________.三、计算题(本大题共6小题,每小题9分,共54分)21.计算5阶行列式2000102000002000002010002=D .解:连续3次按第2行展开,243821128201020102420010200002010022=⨯=⨯=⨯=⨯=D . 22.设矩阵X 满足方程⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-021102341010100001200010002X ,求X .解:记⎪⎪⎪⎭⎫ ⎝⎛-=200010002A ,⎪⎪⎪⎭⎫ ⎝⎛=010100001B ,⎪⎪⎪⎭⎫⎝⎛---=021102341C ,则C AXB =,⎪⎪⎪⎭⎫ ⎝⎛-=-2/100010002/11A ,⎪⎪⎪⎭⎫ ⎝⎛=-010*******B ,11--=CB A X ⎪⎪⎪⎭⎫ ⎝⎛-=10002000121⎪⎪⎪⎭⎫ ⎝⎛---021102341⎪⎪⎪⎭⎫⎝⎛010100001⎪⎪⎪⎭⎫ ⎝⎛---=021********⎪⎪⎪⎭⎫ ⎝⎛010100001⎪⎪⎪⎭⎫⎝⎛---=20102443121. 23.求非齐次线性方程组⎪⎩⎪⎨⎧=--+=+--=--+0895443313432143214321x x x x x x x x x x x x 的通解.解:=),(b A ⎪⎪⎪⎭⎫ ⎝⎛------089514431311311→⎪⎪⎪⎭⎫⎝⎛------176401764011311→⎪⎪⎪⎭⎫⎝⎛---000001764011311 →⎪⎪⎪⎭⎫ ⎝⎛---0000017640441244→⎪⎪⎪⎭⎫ ⎝⎛--000001764053604→⎪⎪⎪⎭⎫ ⎝⎛----000004/14/72/3104/54/32/301,⎪⎪⎪⎩⎪⎪⎪⎨⎧==++-=-+=4433432431472341432345x x x x x x x x x x ,通解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-104/74/3012/32/3004/14/521k k ,21,k k 都是任意常数. 24.求向量组)4,1,2,1(1-=α,)4,10,100,9(2=α,)8,2,4,2(3---=α的秩和一个极大无关组.解:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=844210141002291),,(321TT T ααα→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----21121012501291→⎪⎪⎪⎪⎪⎭⎫⎝⎛--08001900410291 →⎪⎪⎪⎪⎪⎭⎫⎝⎛-000000010291→⎪⎪⎪⎪⎪⎭⎫⎝⎛-000000010201,向量组的秩为2,21,αα是一个极大无关组.25.已知⎪⎪⎪⎭⎫⎝⎛---=2135212b a A 的一个特征向量T )1,1,1(-=ξ,求b a ,及ξ所对应的特征值,并写出对应于这个特征值的全部特征向量.解:设λ是ξ所对应的特征值,则λξξ=A ,即⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛---1111112135212λb a ,从而⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛++-λλλ121b a ,可得3-=a ,0=b ,1-=λ; 对于1-=λ,解齐次方程组0)(=-x A E λ:=-A E λ=⎪⎪⎪⎭⎫ ⎝⎛+-+---201335212λλλ⎪⎪⎪⎭⎫ ⎝⎛----101325213→⎪⎪⎪⎭⎫⎝⎛----213325101→⎪⎪⎪⎭⎫ ⎝⎛110220101→⎪⎪⎪⎭⎫ ⎝⎛000110101,⎪⎩⎪⎨⎧=-=-=333231x x x x x x ,基础解系为⎪⎪⎪⎭⎫⎝⎛--111,属于1-=λ的全部特征向量为k ⎪⎪⎪⎭⎫⎝⎛--111,k 为任意非零实数.26.设⎪⎪⎪⎭⎫ ⎝⎛----=22111212112a A ,试确定a 使2)(=A r .解:⎪⎪⎪⎭⎫ ⎝⎛----=22111212112a A →⎪⎪⎪⎭⎫ ⎝⎛----a 12121122211→⎪⎪⎪⎭⎫ ⎝⎛----233023302211a →⎪⎪⎪⎭⎫⎝⎛--a 00023302211,0=a 时2)(=A r . 四、证明题(本大题共1小题,6分)27.若321,,ααα是b Ax =(0≠b )的线性无关解,证明,12αα-13αα-是对应齐次线性方程组0=Ax 的线性无关解.证:因为321,,ααα是b Ax =的解,所以12αα-,13αα-是0=Ax 的解;设0)()(132121=-+-ααααk k ,即0)(3221121=++--αααk k k k ,由321,,ααα线性无关,得⎪⎩⎪⎨⎧===--0002121k k k k ,只有零解021==k k ,所以,12αα-13αα-线性无关.全国2011年1月高等教育自学考试线性代数(经管类)试题课程代码:04184说明:本卷中,A -1表示方阵A 的逆矩阵,r (A )表示矩阵A 的秩,(βα,)表示向量α与β的内积,E 表示单位矩阵,|A |表示方阵A 的行列式.一、单项选择题(本大题共10小题,每小题2分,共20分)1.设行列式333231232221131211a a a a a a a a a =4,则行列式333231232221131211333222a a a a a a a a a =( ) A.12 B.24 C.36D.482.设矩阵A ,B ,C ,X 为同阶方阵,且A ,B 可逆,AXB =C ,则矩阵X =( ) A.A -1CB -1B.CA -1B -1C.B -1A -1CD.CB -1A -13.已知A 2+A -E =0,则矩阵A -1=( ) A.A -E B.-A -E C.A +ED.-A +E4.设54321,,,,ααααα是四维向量,则( )A.54321,,,,ααααα一定线性无关B.54321,,,,ααααα一定线性相关C.5α一定可以由4321,,,αααα线性表示D.1α一定可以由5432,,,αααα线性表出 5.设A 是n 阶方阵,若对任意的n 维向量x 均满足Ax =0,则( ) A.A =0 B.A =E C.r (A )=nD.0<r (A )<(n )6.设A 为n 阶方阵,r (A )<n ,下列关于齐次线性方程组Ax =0的叙述正确的是( ) A.Ax =0只有零解B.Ax =0的基础解系含r (A )个解向量C.Ax =0的基础解系含n -r (A )个解向量D.Ax =0没有解7.设21,ηη是非齐次线性方程组Ax =b 的两个不同的解,则( ) A.21ηη+是Ax =b 的解B.21ηη-是Ax =b 的解C.2123ηη-是Ax =b 的解D.2132ηη-是Ax =b 的解8.设1λ,2λ,3λ为矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡200540093的三个特征值,则321λλλ=( )A.20B.24C.28D.309.设P 为正交矩阵,向量βα,的内积为(βα,)=2,则(βαP P ,)=( ) A.21B.1C.23 D.210.二次型f (x 1,x 2,x 3)=323121232221222x x x x x x x x x +++++的秩为( ) A.1 B.2C.3D.4二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

线性代数试题及答案(0002)

线性代数试题及答案(0002)

线性代数试题及答案04184线性代数(经管类)2一、二、单选题1、B:-1A:-3C:1 D:3做题结果:A 参考答案:D2、B:dA:abcdC:6 D:0做题结果:A 参考答案:D3、B:15A:18C:12 D:24做题结果:A 参考答案:B4、B:-1A:-3C:1 D:3做题结果:A 参考答案:D6、B:15A:18C:12 D:24做题结果:A 参考答案:B20、B:kA:k-1C:1 D:k+1做题结果:A 参考答案:B21、行列式D如果按照第n列展开是【】A.,B.,C.,D .做题结果:A 参考答案:A22、关于n个方程的n元齐次线性方程组的克拉默法则,说法正确的是【】A:如果行列式不等于0,则方程组必有无穷多解B:如果行列式不等于0,则方程组只有零解C:如果行列式等于0,则方程组必有唯一解D:如果行列式等于0,则方程组必有零解做题结果:A 参考答案:B23、已知三阶行列D中的第二列元素依次为1、2、3,它们的余子式分别为-1、1、2,则D的值为。

【】A:-3B:-7C:3 D:7做题结果:A 参考答案:A 24、B:1A:0C:-2 D:2做题结果:A 参考答案:C 25、B:dA:abcdC:6 D:0做题结果:A 参考答案:D 26、B:a≠0A:a≠2C:a≠2或a≠0 D:a≠2且a≠0 做题结果:A 参考答案:D 27、A.,B.,C.,D.做题结果:B 参考答案:B28、B:16|A|A:-2|A|C:2|A| D:|A|做题结果:A 参考答案:B29、下面结论正确的是【】B:零矩阵都是方阵A:含有零元素的矩阵是零矩阵C:所有元素都是零的矩阵是零矩阵D:若A,B都是零矩阵,则A=B 做题结果:A 参考答案:C30、设A 是n 阶方程,λ为实数,下列各式成立的是 【 】C.,D.做题结果:C参考答案:C31、A.,B.,C.,D.做题结果:B参考答案:B32、 设A 是4×5矩阵,r (A )=3,则▁▁▁▁▁。

历年自考04184线性代数试题真题及答案分析解答推荐文档

历年自考04184线性代数试题真题及答案分析解答推荐文档

全国2010年度4月高等教育自学考试线性代数(经管类)试题答案A .只含有1个零向量的向量组线性相关B .由3个2维向量组成的向量组线性相关一、单项选择题(本大题共 10小题,每小题 1.已知2阶行列式a 〔 a 2 m ,b 1 b 2t h b 2C 1 C 2A . m nB. nm2分,共20分)bi b 2n ,贝U( B )a i C i a2 C 2C. m nD. (m n)2 .设 A , B , C 均为 n 阶方阵,AB BA , AC CA ,则 ABC ( D )ABC (AB)C (BA)C B(AC) B(CA) BCA .3 .设A 为3阶方阵,B 为4阶方阵,且|A| 1, |B| 2,则行列式||B|A|之值为(A ) A.8 B.2C. 2D. 8an a 12 a 13 an 3a 12 a 131 0 01 0 04. Aa 21 a 22 a 23 ,Ba 21 3a 22 a 23 , P0 3 0 , Q 3 1 0,则 B ( B )a 31a 32a 33a 313a 32 a 330 0 10 01 A . PAB. APC. Q AD. AQ5.已知A 是一个3 4矩阵,下列命题中正确的是( C )A. 若矩阵A 中所有3阶子式都为0,则秩(A )=2B. 若A 中存在2阶子式不为0,则秩(A )=2C. 若秩(A )=2,则A 中所有3阶子式都为0D. 若秩(A )=2,则A 中所有2阶子式都不为0 6 .下列命题中错误的是(C )b 1 b 2 C i a ?C 2b 1 b 2b i b 2C 1 C 2A . ACBB. CABC. CBAD. BCAC.由1个非零向量组成的向量组线性相关D. 2个成比例的向量组成的向量组线性相关7. 已知向量组 1,2,3线性无关,1 ,2 ,3 ,线性相关,则 (D)A . 1必能由2, 3,线性表出 B . 2必能由1, 3,线性表出C. 3必能由 1, 2,线性表出D.必能由1 , 2, 3线性表出注:1,2, 3是1,2, 3,的一个极大无关组.8 .设A 为m n 矩阵,m n ,则方程组Ax =0只有零解的充分必要条件是 A 的秩(D ) A .小于 mB.等于 mC.小于nD.等于n注:方程组 Ax =0有n 个未知量.9 .设A 为可逆矩阵,则与 A 必有相同特征值的矩阵为( AT21A. AB. AC. AD. A| E A T | | ( E A )T | | E A|,所以A 与A T 有相同的特征值.10.二次型 f (X 「X 2,X 3) X ; X ; x f 2X 1X 2 的正惯性指数为(C ) A . 0 B. 1C. 2D. 32 2 2 2f (X 1,X 2,X 3) (X 1 X 2) X 3 y 1 y 2,正惯性指数为 2.二、填空题(本大题共 10小题,每小题2分,共20分)1 1 32 012.设矩阵 A 20 1,B 0 1,则 A T B -----------------------------------A T B十T T13.设 (3, 1,0,2) ,(3,1, 1,4),若向量 满足 2 3 ,贝U ___________ .11.行列式2007 2009 2008 2010的值为2007 20082009 20102000 2000 2000 2000 7 89 1014•设 A 为n 阶可逆矩阵,且| A| 1,则| | A 1 | _____________________n15.设A 为n 阶矩阵,B 为n 阶非零矩阵,若B 的每一个列向量都是齐次线性方程组Ax =0的解,则 |A| _____________ n 个方程、n 个未知量的Ax =0有非零解,则|A| 0.x 1 x 2 x 30 16•齐次线性方程组123的基础解系所含解向量的个数为 _________________ .2x 1 x 2 3x 3 01 1 1 1 1 1 A,基础解系所含解向量的个数为 n r 3 2 1 .21 30 3 1117.设n 阶可逆矩阵A 的一个特征值是3,则矩阵 1A 2 必有一个特征值为3 111 1A 有特征值 3,则A 2有特征值(3)2 3, A 2 有特征值 . 33 3 31 2 2 18 .设矩阵A 2x0 的特征值为4,1, 2,则数x ____________________________20 0由 1x0412,得 x 2.a 1 /、219•已知 A 1/--2b0是正交矩阵,则 a b ________________ . 011由第1、2列正交,即它们的内积(a b ) 0,得a b 0.20.二次型 f (x 1 ,x 2, x 3) 4x 1x 2 2XM 3 6x 2x 3 的矩阵是 ___________________IA 1 |1|A|3计算题(本大题共 6小题,每小题 共 54 分)bb 2 3a bca b c1 1 1解:D2.22a bc2 .2 2a b cabcabca ab bc c3 .33a b c2 .2 2abc1 1 1b a caabc 0b ac aabc ,2 2220 .2 22 2b ac ab ac a11abc(ba)(c a)b a cabc(ba)(c a)(ca22. 已知矩阵B (2,1,3), (1,2,3)(1)AB TC ; (2) A 2 .解: (1)A B T C1 3(1,2,3) (2) 注意到CB T(1,2,3)13 所以A 2 (B T C)(B T C)计算行列式 的21 .3 b b a c 2aa 32 c3 cb).23•设向量组 i (2,1,3,1)T , 2 (1,2,0,1)T , 3 (1,1, 3,0)T , 4 (1,1,1,1)T ,求向量组的秩2 1 1 1 解:A (1 2 1 1 1, 2, 3, 4) 3 0 3 1 1 1 0 1 1 1 0 1 1 1 0 1 0 1 1 0 0 1 1 0 0 0 0 2 0 0 0 1 0 0 0 1 0 0 0 0 及一个极大线性无关组,并用该极大线性无关组表示向量组中的其余向量. 一个极大无关组, 1 1 0 1 110 11 2 1 1 0 110 3 0 3 1 0 3 3 22 1 1 1 0 111 1 0 1 10 1 1 0,向量组的秩为 3,1, 2,4是 0 0 0 10 0 0 01 2 3 1 24 •已知矩阵A 0 1 2 , B 2 0 0 1 1 3 1 2・ 45・(1 )求A 1 ; (2)解矩阵方程AX B ・ 3 1 2 3 1 0 0 解:(1) (A, E) 0 1 2 0 1 0 0 0 1 0 0 1 12 010 3 0 10 0 1 2 0 0 10 0110 0 1 0 10 0 0 0 1012 1 1 4 1(2) X A 1B0 1 2 2 511325 •问a 为何值时,线性方程组 4 9 0 11 1 3x 1 2x 2 3x 342x 2 ax 3 2有惟一解?有无穷多解?并在有解时求出 2x 1 2x 2 3x 3 6 1 2 3 4 1 2 3 4 1 2 3 4 解:(A,b)0 2 a 20 2 a 2 0 2 a 22 23 60 2320 0 a 3 0其解(在有无穷多解时,要求用一个特解和导出组的基础解系表示全部解)P 1AP 0 23 a 2 222(9 a 2) 1 2 5,得 a 2 4, a 2 .a 320 0 E A 03 2 023对于 1 1,解(E A)x 0 : 1 0 0 11 2 3 4 1 2 0 4 a 3时,r(A,b) r(A) 3,有惟一解,此时(A,b)0 2 a 2 0 2 0 20 1 00 0 1 010 0 21 2 3 4 a 3时,r(A,b) r(A) 2 n ,有无穷多解,此时 (A,b)0 2 3 20 0 00 0 101 0 02 捲 2 0101 , x 21 ; 0 010 x 31 0 0 21 00 2X 1 0 2 3 2 0 1 3/2 1 , X 2 0 0 0 00 0X 3意吊21 3 x 3,通解为21 k 3/2 ,其中k 为任2 01X 32 0 026 .设矩阵A 03 a 的三个特征值分别为 0 a 31,2,5,求正的常数 a 的值及可逆矩阵 P,使解:由|A| 2 0 0 0 3a 0 a 3E A0 2 20 2 2 0 0 0X 1 0 01 1 , X2 X3 ,取 P 1 1 ;0 0X 3X 311 0 0对于 22,解(E A)x 0 :B. 63 0 2 02 10 5 00 0 2 02 3 2 3C. 120D. 12 D. 1800 0 0 0 1 0 X1 X1 1E A 0 1 2 0 0 1 ,X2 0,取p20 ;0 2 1 0 0 0 X3 0 0对于 3 5,解( E A)x 0 :3 0 0 1 0 0 x0 0E A 0 2 2 0 1 1 ,X2 X3,取P3 1 •0 2 2 0 0 0 X3 X3 10 1 0 1 0 0令P (P i,P2,P3) 1 0 1 ,则P是可逆矩阵,使P 1AP 0 2 01 0 1 0 0 5四、证明题(本题6分)27•设A, B, A B均为n阶正交矩阵,证明(A B) 1 A 1 B 1.证:A, B,A B均为n阶正交阵,则A T A 1,B T B 1,(A B)T(A B) 1,所以(A B) 1 (A B)T A T B T A 1 B 1•全国2010年7月高等教育自学考试线性代数(经管类)试题答案一、单项选择题(本大题共10小题,每小题2分,共20分)1 •设3阶方阵A ( 1,2,3),其中i ( i 1,2,3 )为A的列向量,若|B| |( 1 2 2, 2, 3)1 6,则| A|| A| |( 1, 2, 3)| |( 1 2 2, 2, 3)| 6 •A. 122 •计算行列式C. 6(A )B. 120A. 1803 •若A 为3阶方阵且| A 1 | 2,则|2A|( C )1A . _B. 2C. 4D. 82 1 31 |A|, |2A| 2 |A| 84 .224 •设1 , 2, 3, 4都是3维向量,则必有(B ) A . 1, 2,3,4线性无关 B . 1, 2,3,4线性相关C 1可由2, 3,4线性表示D.1不可由2, 3, 4线性表示5 .若A 为6阶方阵,齐次方程组 Ax =0基础解系中解向量的个数为 2,则r(A) ( C ) A . 2B. 3C. 4D. 5由 6 r(A) 2,得 r(A) 4.6 .设A B 为同阶方阵,且r(A) r(B),则(C ) A . A 与B 相似B. | A| |B|C. A 与B 等价D. A 与B 合同注:A 与B 有相同的等价标准形.7 .设A 为3阶方阵,其特征值分别为 2,1,0,贝U |A 2E| ( D ) A . 0B. 2C. 3D. 24A 2E 的特征值分别为4,3,2,所以| A 2E| 4 3 224 .8 .若A B 相似,则下列说法错误.的是(B ) A . A 与B 等价B. A 与B 合同C. |A||B|D. A 与B 有相同特征值注:只有正交相似才是合同的.3 0 2 10 0 02 33(2) 30 180 •2 0 5 0 2 0 2 33 0 2 109.若向量(1,2,1)与(2,3,t)正交,则t ( D )A. 2B. 0C. 2D. 416.125-17•若A 、B 为5阶方阵,且Ax 0只有零解,且r(B) 3,则r(AB) _______________________ Ax 0只有零解,所以 A 可逆,从而r(AB) r(B) 3 • 18 •实对称矩阵 2 1 0 1 0 1所对应的二次型f (x 1 ,x 2 ,x 3) 0 1 1 2 2 f(X 1,X 2,X 3) 2X 1 X 3 2X 1X 2 2X 2X 3 • 1 19 .设3元非齐次线性方程组 Ax b 有解1 2 , 2312,且r(A) 2,则Ax b 的通 3解是 _______________ 1 1 1 1 -(1 2) 0是Ax 0的基础解系,Ax b 的通解是 2 k 0 2 03 01 20 •设 2,则A T的非零特征值是 ________________ .3 三、计算题(本大题共 6小题,每小题9分,共54分) 21 •计算5阶行列式D2 0 0 0 1 0 2 0 0 00 0 2 0 0 0 0 0 2 0 1 0 0 0 2解: 连续3次按第2行展开, 22. 设矩阵X满足方程解:23.解:2 0 1 2 14 0 2 0 81 21 0 20 13,求X.28 31/21CB1/2求非齐次线性方程组(A,b)120 1 0 0 1 40X0 0 1 2 02 0 1 0 1 21 0 0 1 4 30 0 1 ,C 2 00 1 0 1 2 01 0 0B10 0 1 ,0 1 00 1 4 3 1 0 00 2 0 1 0 0 11 12 0 0 1 00 011 3 40 1 — 4 2 0 .21 0 1 0 2X2 3x3 x4 1X2 3X34x4 4 的通解.5x29X38X4 01 1 1 1 3 14 0 4 6 70 0 4 6 74 0 6 35 10 4 6 7 1 00 0 0 0 0 01 0 0 21 10 0则B 1211 1148 11X13x1AXB3/23/23/4 5/47/4 1/4出对应于这个特征值的全部特征向量.21 2 1 1解:设 是所对应的特征值,则A,即 5a 3 11 ,从而1b211a 1 2可得a 3 ,b 0 ,1 ;b 1对于1, 解齐次方程组(E A)X 0 :2 1 23 1 2 1 0 1 1 0 1 E A5 33 5 2 3 5 2 3 0 2 21 02 11 013 120 111 0 1X 1 X 3110 1 1X 2X 3,基础解系为1 ,属于1的全部特征向量为k1k 为任意0 0 0X 3 X 3 115 3 3x 1 4 X32 35/4 3/2 3/4 1 371/4 3/27/4 X 2 4 X 32 3 X 4,通解为 4 40 k11k 2 0 , k 1, k 2都是任意常数X 3X 31X 4X 424.求向量组 1 (1,2, 1,4),2(9,100,10,4),1 92 解:(;,T 2 ,T )2 10041 10 244 8 1 9 2 1 0 2 0 1 0 0 1 0 0 0 0 0 0 0 0 00 0 025.已知A192 1 92 1 50 2 0 41 0 1 10 2 0 19 01128 0向量组的秩为 2,1,曰 2是 「个极大无关组3( 2, 4,2, 8)的秩和一个极大无关组.2 1 25 a 3 的一个特征向量(1,1, 1)T ,求a,b 及所对应的特征值,并写非零实数. 2 11 2 26. 设A1 2 1 a ,试确定a 使r (A ) 2 .1 12221 1 21 12 21 12 2 解: A1 2 1a 2 1 1 2 0 3 3211 22121a3 3a 21 12 20 3 3 2 a0 时 r(A) 2 .0 00 a四、 证明题 (本大题共 1 小 、题,6分)27. 若1, 2 , 3是Ax b (b 0)的线性无关解,证明 21,31 是对应齐次线性方程组Ax 0的线性无关解.证:因为1, 2, 3是Ax b 的解,所以21 , 3k 1 k 2 0关,得k 10 ,只有零解k 1 k 2 0,所以21, 3k 2 0设 k 1 ( 21)k 2( 31) 0 ,即(k 1 k 2) 1k 1 2 k 2 3,由 1,2 ,3 线性无1是Ax 0的解;1线性无关.全国2011年1月高等教育自学考试线性代数(经管类)试题 课程代码:04184|A 表示方阵A 的行列式•10小题,每小题2分,共20 分)ana 12a 131.设行列式a21 a22a23=4,a 31 a 32a33A.122a 112a 122a 13则行列式a21 a22 a23=(3a 31 3a 32 3a 33B.24C.36A .A 1CB C.B 1A 1C3. 已知 A"+A - E =0,则矩阵 A -1=( A. A E C.A +E4. 设1 , 2, 3, 4, 5是四维向量,A. 1 ,2,3,4,5 —定线性无关B. cA B 1D .CB 1A 1) B. -A -E D.-A +E则( )B. 1,2 ,3 ,4 ,5 —定线性相关5. 设A 是n 阶方阵,若对任意的 n 维向量x 均满足Ax =0,则( )A.A =0B.A =EC.r (A )= n D.0<r (A )<( n )6. 设A 为n 阶方阵,r ( A )< n ,下列关于齐次线性方程组 Ax =0的叙述正确的是(A.Ax =0只有零解B.Ax =0的基础解系含r (A )个解向量C. Ax =0的基础解系含n -r (A )个解向量D.Ax =0没有解7. 设1, 2是非齐次线性方程组Ax =b 的两个不同的解,则()说明:本卷中, A 1表示方阵A 的逆矩阵,r(A 表示矩阵A 的秩,表示向量 与 的内2.设矩阵A, B, C, X 为同阶方阵,且 A, B 可逆,AXE =C,则矩阵X =(C. 5 —疋可以由1 , 2, 34线性表示 D. 1 —疋可以由 2 , 3 4, 5线性表出A. 2是Ax =b 的解B. 12是Ax =b 的解积,E 表示单位矩阵, 、单项选择题(本大题共D.48C. 3 i 2 2 是 Ax =b 的解D. 2 1 3 2 是 Ax =b 的解19. 设向量(-1 , 1,-3 ),(2, -1 ,)正交,则3 9 08.设1 ,2 , 3为矩阵A = 04 5的三个特征值,则 1 2 3=()0 0 2A.20B.24C.28D.309.设P 为正交矩阵,向量 ,的内积为(,)=2,则(P ,P )=( )A. 1B.12C.-D.2210.二次型 f (X 1, X 2, X 3)= x j2 2X 2 X 3 2X 1X 22X 1 X 3 2X 2X 3 的秩为( )A.1B.2C.3D.4、填空题(本大题共 10小题,每小题2分,共20 分) 请在每小题的空格中填上正确答案。

全国4月自考04184线性代数经管类真题

全国4月自考04184线性代数经管类真题

2015年4月高等教育自学考试全国统一命题考试线性代数(经管类)试卷课程代码:04184一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个选项是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1、设行列式D 1=2211b a b a ,D 2=2221113232a b a a b a --,则D 2= 【 】A.-D 1B.D 1C.2D 1D.3D 12、若A=⎪⎪⎭⎫ ⎝⎛1x 1021,B =⎪⎪⎭⎫ ⎝⎛y 24202,且2A =B ,则 【 】 A.x=1,y=2 B.x=2,y=1C.x=1,y=1D.x=2,y=23、已知A 是3阶可逆矩阵,则下列矩阵中与A 等价的是 【 】A.⎪⎪⎪⎭⎫ ⎝⎛000000001B.⎪⎪⎪⎭⎫ ⎝⎛000010001C.⎪⎪⎪⎭⎫ ⎝⎛100000001D.⎪⎪⎪⎭⎫ ⎝⎛1000100014、设2阶实对称矩阵A 的全部特征值味1,-1,-1,则齐次线性方程组(E +A )x =0的基础 解系所含解向量的个数为 【 】A.0B.1C.2D.35、矩阵⎪⎪⎭⎫ ⎝⎛--3113有一个特征值为 【 】 A.-3 B.-2 C.1 D.2二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

错填、不填均无分。

6、设A 为3阶矩阵,且A =3,则13-A= . 7、设A =⎪⎪⎭⎫ ⎝⎛5312,则A *= . 8、已知A =⎪⎪⎭⎫ ⎝⎛1201,B =⎪⎪⎭⎫ ⎝⎛-211111,若矩阵X 满足AX =B ,则X = . 9、若向量组=1α(1,2,1)T ,=2α(k-1,4,2)T 线性相关,则数k= .10、若齐次线性方程组⎪⎩⎪⎨⎧=-+=+-=++030202321321321x x x x x x ax x x 有非零解,则数a = .11、设向量=1α(1,-2,2)T ,=2α(2,0,-1)T ,则内积(21,αα)= .12、向量空间V ={x=(x 1,x 2,0)T |x 1,x 2R ∈}的维数为 .13、与向量(1,0,1)T 和(1,1,0)T 均正交的一个单位向量为 .14、矩阵⎪⎪⎭⎫ ⎝⎛3221的两个特征值之积为 . 15、若实二次型f(x1,x2,x3)=2123222212x x x a ax x +++正定,则数a 的取值范围是.三、计算题(本大题共7小题,每小题9分,共63分)16、计算行列式D =5111141111311112的值.17、设2阶矩阵A 的行列式21=A ,求行列式*12)2(A A +-的值.18、设矩阵A =⎪⎪⎪⎭⎫ ⎝⎛---101111010,B =⎪⎪⎪⎭⎫ ⎝⎛--301521,矩阵X 满足X =AX +B ,求X .19、求向量组T T T T )10,1,3(,)6,3,1(,)1,5,2(,)1,2,1(4321-=--===αααα的秩和一个极大线性无关组,并将向量组中的其余向量由该极大线性无关组线性表出.20、利用克拉默法则解线性方程组⎪⎩⎪⎨⎧=++=++=++232212322123221333c x c cx x b x b bx x a x a ax x ,其中c b a ,,两两互不相同.21、已知矩阵⎪⎪⎪⎭⎫ ⎝⎛=1111311a a A 与⎪⎪⎪⎭⎫ ⎝⎛=b B 00010000相似,求数b a ,的值.22、用正交变换化二次型212121455),(x x x x x x f ++=为标准型,并写出所作的正交变换.四、证明题(本题7分)23、设A ,B 均为n 阶矩阵,且A =B +E ,B 2=B ,证明A 可逆.。

2016年4月全国自考公共课线性代数(经管类)真题试卷(题后含答案及解析)

2016年4月全国自考公共课线性代数(经管类)真题试卷(题后含答案及解析)

2016年4月全国自考公共课线性代数(经管类)真题试卷(题后含答案及解析)题型有:1. 单项选择题 2. 填空题 3. 计算题 4. 证明题单项选择题在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.多项式f(x)=的常数项是( )A.一14B.一7C.7D.14正确答案:D解析:将多项式f(x)的行列式按第一行展开得到f(x)=(一1)(1+1)x.(2×4—3×5)+(一1)(1+2)(一1).[2×4—3×(一2)]=一7x+14.答案为D.2.设A为n阶矩阵,如果A=E,则|A|= ( )A.B.C.D.2正确答案:A解析:由于A=.答案为A。

3.设A为3阶矩阵,且|A|=a≠0,将A按列分块为A=(α1,α2,α3),若矩阵B=(α1—α2,2α2,α3),则|B|= ( )A.0B.aC.2aD.3a正确答案:C解析:由行列式性质可知,|B|=1(α1,2α2,α3)|+|(α2,2α2,α3)|=2|(α1,α2,α3)|=2|A|=2a.答案为C。

4.若向量组α1,α2,…,αs可由向量组β1,β2,…,βs线性表出,则必有( )A.s≤tB.s>tC.秩(α1,α2,…,αs)≤秩(β1,β2,…,βt)D.秩(α1,α2,…,αs)>秩(β1,β2,…,βt)正确答案:C解析:n维向量组R={α1,α2,…,αr}和S={β1,β2,…,βs},若S 可由R线性表出,则有r(s)≤r(R).答案为C。

5.与矩阵A=合同的矩阵是( )A.B.C.D.正确答案:C解析:对于实对称矩阵A,必有A=P-1AP,P为正交矩阵,PT=P-1.即,特征方程|λE—A|=(λ一1)2(λ+1),λ1=1,λ2=λ3=一1.答案为C。

填空题请在每小题的空格中填上正确答案。

错填、不填均无分。

6.行列式=__________.正确答案:0解析:行列式由第一行展开得:0×(一1)2.[0×0一a.(一a)]+(—c)(一1)3.[c ×0一(—a).b]+(—b)(一1)4.(a.c一0.b)=0.7.若行列式=__________ .正确答案:一1解析:8.设矩阵A=,则ABT=__________.正确答案:解析:ABT=.9.设矩阵,则(A—E)-1=__________.正确答案:解析:令B=A—E=.10.设矩阵A=,则A*=__________.正确答案:解析:A*=,A11=0,A12=(一1)3.3=一3,A21=(一1)3×2=一2,A22=0,A*=11.若向量β=(一1,1,k)可由向量α1=(1,0,一1),α2=(1,一2,一1)线性表示,则数k=__________.正确答案:1解析:可设β=k1α1+k2α2,即12.齐次线性方程组的基础解系中解向量的个数为________.正确答案:2解析:A=,r(A)=2,n=4,基础解系向量个数为n—r=2.13.设A为3阶矩阵,αi为3维非零列向量,且满足Aαi=iαi(i=1,2,3),则r(A)= __________.正确答案:3解析:Aα=iαi(i=1,2,3),则A有3个不同特征值,r(A)=3.14.设λ0=一2是n阶矩阵A的一个特征值,则A2+E的一个特征值是__________.正确答案:5解析:Aα=一2α,左乘A得A2α=一2Aα=4α,(A2+E)α=5α,A2+E 的一个特征值为5.15.二次型f(x1,x2,x3)=x12—2x1x3+x2x3的矩阵为__________.正确答案:解析:f(x1,x2,x3)=xTAx,A=(aij)3×3,f(x1,x2,x3)=aijxixj,由f(x1,x2,x3)=x12—x1x3—x2x3的各项系数可得出A=.计算题16.计算行列式D=正确答案:D=a2=(a2b2一c2d2)(a1b1一c1d1).17.设矩阵A,B,C满足关系式AC=CB,其中B=,求矩阵A与AT。

《线性代数(经管类)》(课程代码04184)校考试题答案

《线性代数(经管类)》(课程代码04184)校考试题答案

《线性代数(经管类)》(课程代码04184)第一大题:单项选择题1、设行列式=1 , =2, 则= ( D )•错误!未找到引用源。

A.—3•错误!未找到引用源。

B.—1•错误!未找到引用源。

C.1•错误!未找到引用源。

D.32、设A为3阶方阵,且已知|-2A|=2,则|A|=( B )•错误!未找到引用源。

A.—1•错误!未找到引用源。

B.•错误!未找到引用源。

C.•错误!未找到引用源。

D.13、设矩阵A,B,C为同阶方阵,则=__B__•错误!未找到引用源。

A.•错误!未找到引用源。

B.•错误!未找到引用源。

C.•错误!未找到引用源。

D.4、设A为2阶可逆矩阵,且已知= ,则A=( D )•错误!未找到引用源。

A.•错误!未找到引用源。

B.•错误!未找到引用源。

C.•错误!未找到引用源。

D.5、设A为m×n矩阵,则齐次线性方程组=0仅有零解的充分必要条件是( A )•错误!未找到引用源。

A.A的列向量组线性无关•错误!未找到引用源。

B.A的列向量组线性相关•错误!未找到引用源。

C.A的行向量组线性无关•错误!未找到引用源。

D.A的行向量组线性相关6、已知,是非齐次线性方程组=b的两个不同的解,,是其导出组=0的一个基础解系,,为任意常数,则方程组=b的通解可以表为( A )•错误!未找到引用源。

A.•错误!未找到引用源。

B.•错误!未找到引用源。

C.•错误!未找到引用源。

D.7、设3阶矩阵A与B相似,且已知A的特征值为2,2,3 则 ||= ( A )•错误!未找到引用源。

A.•错误!未找到引用源。

B.•错误!未找到引用源。

C.7•错误!未找到引用源。

D.128、设A为3阶矩阵,且已知|3A+2E|=0,则A必有一个特征值为( A )•错误!未找到引用源。

A.•错误!未找到引用源。

B.•错误!未找到引用源。

C.•错误!未找到引用源。

D.9、二次型的矩阵为( C )•错误!未找到引用源。

04184 线性代数(经管类)习题集及答案

04184 线性代数(经管类)习题集及答案

西华大学自学考试省考课程习题集课程名称:《线性代数》课程代码:04184专业名称:工商企业管理专业代码:Y020202目录第一部分习题一、选择题 3二、填空题8三、计算题11四、证明题15第二部分标准答案一、选择题16二、填空题16三、计算题16四、证明题31第一部分 习题 一、选择题1、若n 阶方阵A 的秩为r ,则结论( )成立。

A. 0||≠A B. 0||=A C. r >n D. n r ≤2、下列结论正确的是( )A. 若AB=0,则A=0或B=0.B. 若AB=AC,则B=CC.两个同阶对角矩阵是可交换的.D. AB=BA 3、下列结论错误的是( )A. n+1个n 维向量一定线性相关.B. n 个n+1维向量一定线性相关C. n 个n 维列向量n ααα,,,21 线性相关,则021=n αααD. n 个n 维列向量n ααα,,,21 ,若021=n ααα 则n ααα,,,21 线性相关,4、若m c c c b b b a a a =321321321,则=321321321333222c c c b b b a a a ( ) A. 6m B.-6m C. m 3332 D. m 3332- 5、设A,B,C 均为n 阶方阵,AB=BA,AC=CA,则ABC=( ) A. ACB B. CAB C. CBA D. BCA6、二次型3221222132124),,(x x x x x x x x x f -++=的秩为( )A 、0B 、1C 、2D 、3 7、若A 、B 为n 阶方阵,下列说法正确的是( ) A 、若A ,B 都是可逆的,则A+B 是可逆的 B 、若A ,B 都是可逆的,则AB 是可逆的 C 、若A+B 是可逆的,则A-B 是可逆的 D 、若A+B 是可逆的,则A ,B 都是可逆的8、设2阶矩阵⎪⎪⎭⎫ ⎝⎛=d c b a A ,则=*A ( ) A 、⎪⎪⎭⎫ ⎝⎛--a c b d B 、⎪⎪⎭⎫ ⎝⎛--a b c dC 、⎪⎪⎭⎫ ⎝⎛--a c b dD 、⎪⎪⎭⎫⎝⎛--a b c d 9、关于初等矩阵下列结论成立的是( )A. 都是可逆阵B. 所对应的行列式的值为1C. 相乘仍为初等矩阵D. 相加仍为初等矩阵10、设2阶矩阵⎪⎪⎭⎫ ⎝⎛=4321A ,则=*A ( )A 、⎪⎪⎭⎫⎝⎛--1324 B 、⎪⎪⎭⎫ ⎝⎛--1234 C 、⎪⎪⎭⎫ ⎝⎛--1324 D 、⎪⎪⎭⎫⎝⎛--1234 11、设21,ββ是非齐次线性方程组β=AX 的两个解,则下列向量中仍为方程组β=AX 解的是( )A 、21ββ+B 、21ββ-C 、3221ββ+ D 、32321ββ- 12、向量组)2(,,,21≥m m ααα 线性相关的充要条件是( ) A 、m ααα,,,21 中至少有一个是零向量 B 、m ααα,,,21 中至少有一个向量可以由其余向量线性表示 C 、m ααα,,,21 中有两个向量成比例 D 、m ααα,,,21 中任何部分组都线性相关13、向量组)2(,,,21≥m m ααα 线性相关的充要条件是( ) A 、m ααα,,,21 中至少有一个是零向量 B 、m ααα,,,21 中至少有一个向量可以由其余向量线性表示 C 、m ααα,,,21 中有两个向量成比例 D 、m ααα,,,21 中任何部分组都线性相关14、0=AX 是非齐次方程组β=AX 的对应齐次线性方程组,则有( ) A 、0=AX 有零解,则β=AX 有唯一解 B 、0=AX 有非零解,则β=AX 有无穷多解 C 、β=AX 有唯一解,则0=AX 只有零解 D 、β=AX 有无穷多解,则0=AX 只有零解15、设A ,B ,C 均为二阶方阵,且AC AB =,则当( )时,可以推出B=CA 、⎪⎪⎭⎫ ⎝⎛=0101AB 、⎪⎪⎭⎫ ⎝⎛=0011AC 、⎪⎪⎭⎫ ⎝⎛=0110AD 、⎪⎪⎭⎫⎝⎛=1111A16、若m c c c b b b a a a =321321321,则=231231231333222c c c b b b a a a ( )A. 6mB.-6mC. m 3332D. m 3332- 17、如果矩阵A 的秩等于r ,则( )。

2016年10月线性代数(经管类)04184自考试题及解答

2016年10月线性代数(经管类)04184自考试题及解答

解:二次型的矩阵 A
1 1 1 1

E A
1
1
1 ( 1) 0 , 得 A 的特征值为 1 2 , 2 0 1
T
T
1 1 , 对 2 ,解 (2 E A) x 0 ,得基础解系 1 ( 1,1) ,单位化得1 , 2 2
三、计算题:本大题共有 7 小题,每小题 9 分,共 63 分。
a1 b1 16.计算行列式 D a2 b1 a3 b1 a1 b1 a1 b2 解: D a2 b1 a2 b2 a3 b1 a3 b2
a1 b2 a2 b2 a3 b2
a1 b3 a2 b3 a3 b3
5
1 1 , 对 0 ,解 (0 E A) x 0 ,得基础解系 1 (1,1) ,单位化得 2 2 2
T
T
令 Q 1 , 2
1 2 1 1 2 1
2 ,则 Q 为正交矩阵,从而经正交变换 2
x1 1 2 1 x2 1 2 1
2 y1 2 y2
将二次型化为标准型 f 2 y12 四、证明题(本题 7 分) 23. 设
1 , 2 是 齐 次 线 性 方 程 组 Ax 0 的 一 个 基 础 解 系 , 证 明 1 1 2 2 ,
2 21 2 也是方程组 Ax 0 的一个基础解系。
3
使 PA B, BQ E , 即 PAQ E
1 0 0 1 0 0 1 0 0 所以 A P EQ P Q 0 1 0 0 0 1 0 0 1 2 0 1 0 1 0 2 1 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档