氧气底吹转炉炼铅法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金属硫化物精矿不经焙烧或烧结焙烧直接生产出金属的熔炼方法称为直接熔炼。
对硫化铅精矿来说,这种粒度仅为几十微米的浮选精矿因其微粒小,比表面积大,化学反映和熔化过程都有可能很快进行,充分利用硫化矿粒子的化学活性和氧化热,采用高效、节能、少污染的直接熔炼流程处理是合理的。
传统的烧结—鼓风炉流程将氧化——还原两过程分别在两台设备中进行,存在许多难以克服的弊端。
随着能源、环境污染控制以及生产效率和生产成本对冶炼过程的要求越来越严格,传统炼铅法受到多方面的严峻挑战。
具体说来,传统法有如下主要缺点:
(1)随着选矿技术的进步,铅精矿品位一般可以达到60%,这样精矿给正常烧结带来许多困难,导致大量的熔剂、反粉或还有炉渣的加入,将烧结炉料的含量降至40%~50%。
送往熔炼的是低品位的烧结块,致使每生产1t多炉渣,设备生产能力大大降低。
(2)1t PbS精矿氧化并造渣可放出2x106kJ以上的热量,这种能量在烧结作业中几乎完全损失掉,而在鼓风炉熔炼过程中又要另外消耗大量昂贵的冶金焦。
(3)铅精矿一般含硫15%~20%,处理1t精铅矿可生产0.5t硫酸,但烧结焙烧脱硫率只有70%左右,故硫的回收率往往低于70%,还有30%左右,还有30%左右的硫进入鼓风炉烟气,回收很困难,容易给环境造成污染。
(4)流程长,尤其是烧结及其返粉制备系统,含铅物料运转量大,粉尘多,大量散发的铅蒸汽、铅粉尘严重恶化了车间劳动卫生条件,容易造成劳动者铅中毒。
近30年来,冶金工作者力图通过PbS受控氧化即按反映式PbS+O
2=Pb+SO
2
的途径来实现硫化铅精矿的直接熔炼,以简化生厂流程,降低生产成本,利用氧化反应的热能以降低能耗,产出高浓度的SO
2
烟气用于制硫,减小对环境污染。
但由于直接熔炼产生大量铅蒸汽、铅粉尘,且熔炼产物不是粗铅含硫高就是炉渣含铅高,致使许多直接熔炼方法都不很成功。
冶金工作者通过Pb-S—O系化学势图的研究,找到了获得成分稳定的金属铅的操作条件,但也明确指出,直接熔炼要么产出高硫铅,要么形成高铅渣;要
获得含硫低的合格粗铅,就必须还原处理含铅高的直接熔炼炉渣。
根据金属硫化物直接熔炼的热力学原理,运用现代冶金强化熔炼的技术,探讨结构合理的冶金反应器,对直接炼铅进行多种方法的研究,其中有些已经成功地用于大规模工业生产,显示了直接熔炼的强大生命力。
可以预言,直接熔炼将逐渐取代传统法生产金属铅。
4.2 硫化铅精矿直接熔炼的基本原理和方法
4.2.1 直接熔炼的基本原理
金属硫化物精矿直接熔炼的特点之一是利用工业氧气,二是采用强化冶炼过程的现代冶金设备,从而使金属硫化物受控氧化熔炼在工业上应用成为可能。
在铅精矿的直接熔炼中,根据原料主成分PbS的含量,按照PbS氧化发生的
基本反应PbS+O
2== Pb+SO
2
,控制氧的供给量与PbS的加入量的比例(简称为氧/料
比),从而决定了金属硫化物受控氧化发生的程度。
实际上,PbS氧化生成金属铅有两种主要途径:一是PbS直接氧化生成金属铅,较多发生在冶金反应器的炉膛空间内;二是PbS与PbO发生交互反应生成金属铅,较多发生在反应器熔池中。
为使氧化熔炼过程尽可能脱除硫(包括溶解在金属铅中的硫),有更多的PbO生成是不可避免的,在操作上合理控制氧/料比就成为直接熔炼的关键。
在理论上,可借助Pb-S-O系硫势—氧势化学势图(图4-1)进行讨论。
在图4-1中,横坐标和纵坐标分别代表Pb-S-O系中的硫势和氧势,并用多
相体系中硫的平衡分压和氧的平衡分压表示,其对数值分别为lgPs
2和lgPo
2
.图
中间一条黑实线(折线)将该体系分成上下两个稳定区(又称优势区)。
上部
PbO-PbSO
4
为熔盐,代表PbS氧化生成的烧结焙烧产物。
在该区域,随着硫势或
SO
2
势增大,烧结产物中的硫酸盐增多;图下部为Pb- PbS共晶物的稳定区,由于Pb和PbS的互溶度很大,因此在高温下溶解在金属铅中的S含量可在很大范围内变化。
如图所示,在低氧势、高硫势条件下,金属铅相中的硫可达13%,甚至更高,这就形成了平衡于纵坐标的等硫量(S%)线。
随着硫势降低,意味着粗铅中更多
的硫被氧化生成SO
2
进入气相。
在这里,用点实线(斜线)代表二氧化硫的等分
压线(用P
SO2表示)。
等P
SO2
线表示在多相体系中存在的平衡反应1/2S
2
+O
2
=SO
2
.
在一定P
SO2
下,体系中的氧势增大,则硫势降低。
反之亦然
4.2.2 直接炼铅的方法
硫化铅精矿直接熔炼方法可分为两类:一类是把精矿喷入灼热的炉膛空间,在悬浮状态下进行氧化熔炼,然后在沉淀池进行还原和澄清分离,如基夫赛特法.这种熔炼反应主要发生在炉膛空间的熔炼方式称为闪速熔炼.另一类是把精
矿直接加入鼓风翻腾的熔体中进行熔炼,如QSL法、水口山法、奥斯麦特法和艾萨法等。
这种熔炼反应主要发生在熔池内的熔炼方式称为熔池熔炼。
按照闪速熔炼和熔池分类的硫化铅精矿直接熔炼的各种方法概括起来列于表4-1。
熔池熔炼法除了此表列出的底吹和顶吹法外,正在试验中的还有瓦纽柯夫法,它是一种侧吹的熔池熔炼方法。
无论是闪速熔炼,还是熔池熔炼,上述各种直接熔炼铅方法的共同优点是:(1)硫化精矿的直接熔炼取代了氧化烧结焙烧与鼓风炉还原熔炼两过程,冶炼工序减少,流程缩短,免除了反粉破碎和烧结车间的铅粉、铅尘和SO
烟气
2
污染,劳动卫生条件大大改善,设备投资减少。
(2)运用闪速熔炼或熔池的方法,采用富氧或氧气熔炼,强化了冶金过程。
由于细粒精矿直接进入氧化熔炼体系,充分利用了精矿表面巨大活性,反应速度快,加速了反应器中气-液-固物料之间的传热传质。
充分利用了硫化精矿氧化反应发热值,实现了自热或基本自热熔炼。
能耗低,生产率高,设备床能率大,余热利用好。
浓度高,硫的利用率高。
(3)氧气或富氧熔炼的烟气SO
2
(4)由于熔炼过程得到强化,可处理铅品位波动大、成分复杂的各种铅精矿以及其他含Pb、Zn的二次物料,伴生的各种有价元素综合回收好。
直接炼铅法具有下列优点:
熔炼强度高。
在双悬状态下,强劲的气流带动炉料相互碰撞;或在熔池内,气流使熔体剧烈翻腾。
热的利用率高。
浓度高;有利于综合回收。
烟气SO
2
直接炼铅既是高效、节能的提取治金方法,也是综合利用高、环境保护好的方法。