GEOMPACK users guide
osgEarth用户手册
这个文件建立了一个地图“MyMap”,geocentric 类型,GeoTIFF 图片源 名称是“bluemarble”(GeoTiff 是包含地理信息的一种 Tiff 格式的文件)。驱 动 driver 属性告诉 osgearth 哪个驱动去加载这些图片,所有子元素针对特定 的驱动。
2.1.2.多重图像层 osgEarth 支持有多个图像源的地图。这允许你创建的地图时,在基础层上
featuregeometryosg的几何渲染矢量数据featurestencil使用模板缓冲技术褶皱化地形矢量数据simple加载外部模型并放置在场景图421featuregeometrymodeldriver建立矢量特征数据的osg几何形状如今这个驱动程序可以简单的将矢量数据嵌合进几何图形中同时会有一个可选择的高度偏移这样你可以将几何图形放置于地形上将来它将支持足迹挤压纹理化和其他一些功能
mu lt ipas s
复合材料由多个渲染的图像,通过对场 景图。这种技术对图像层, 你可 以有数量没有限制,但可能会影响性能 ,因为每个额外的层意味着 另一 个渲染传递的场景图。
10
示例:
<map> <options> <terrain> <compositor>multitexture</compositor> </terrain> ... </options> ...
optional
<image>
图像图层。随着 osgearth 的合成器 compositor 使用,你的电
脑图像显示硬件将决定<image>层可以显示的最大数量 。
optional
cfdrc软件翻译说明书样本
软件翻译说明书CFD-GEOM_V _User_Manual介绍模型产生网格产生模型能够产生结构和非结构网格结构网格产生是基于无限插补法( TFI) 。
这个模块支持同一的, 指数的, 几何的, 双曲线切线顺着edge的网格点分布。
网格产生在NURBS( 曲线曲面的非均匀有理B样条) 曲线直接经过曲线她们直接来完成的。
网格产生在NURBS 表面是经过NURBS数学表示式直接产生的节点, 或者计算TFI万个在表面的参数空间。
在几何模型和网格产生的一个很重要的步骤是定义布局。
CFD-GEOM使用一个底部-向上在标签几何单元如edges, faces和blocks。
●edges-在结构网格产生中, 一个edge是为面和体网格产生的基本元素。
一个edge是组成一个和多个的连接几何元素, 等等, 线和曲线, 有n个格点和n-1条线连接这些链接的网格点。
使用者连接这些edges形成edge set。
小心网格点顺着edge( edge 格点) 是不同于几何点产生, 应该使用几何产生工具( 几何点) , 尽管她们的坐标值能够相同。
●Face-使用者指定4个edge set( 极少用于产生布局阵列) 形成一个face,这基本构造成了面网格。
一个face是不同于surface表面的, 前者TFI来于edge set, 后者TFI来自NURBS表面。
用户采集一个或者多个face能够形成face set。
●Block-6个face sets( 极少用于产生拓扑) 联合形成一个block, 这个基本构造成了体网格的产生。
一个block是一个区分体积由face sets形成组成它的边界。
在一些例子中, 有可能组合成两个或者更多网格blocks形成一个单个的block。
形成了一个混合成的block。
这个TFI每个block的网格线依然保留在这个混合成的block。
后来定义一个拓扑的结果是一个结合一个或者多个blocks形成的单个或者多个域网格。
MKLE包用户指南说明书
Package‘MKLE’August21,2023Type PackageTitle Maximum Kernel Likelihood EstimationVersion1.0.1Author Thomas JakiMaintainer Thomas Jaki<**************************>Description Package for fast computation of the maximum kernel likelihood estimator(mkle). License GPLNeedsCompilation noRepository CRANDate/Publication2023-08-2108:02:38UTCR topics documented:MKLE-package (1)klik (3)mkle (4)mkle.ci (5)opt.bw (6)state (8)Index9 MKLE-package Maximum kernel likelihood estimationDescriptionComputes the maximum kernel likelihood estimator using fast fourier transforms.12MKLE-package DetailsPackage:MKLEType:PackageVersion: 1.01Date:2023-08-21License:GPLThe maximum kernel likelihood estimator is defined to be the valueˆθthat maximizes the estimated kernel likelihood based on the general location model,f(x|θ)=f0(x−θ).This model assumes that the mean associated with$f_0$is zero which of course implies that the mean of X i isθ.The kernel likelihood is the estimated likelihood based on the above model usinga kernel density estimate,ˆf(.|h,X1,...,X n),and is defined asˆL(θ|X1,...,X n)=ni=1ˆf(Xi−(¯X−θ)|h,X1,...,X n).The resulting estimator therefore is an estimator of the mean of X i.Author(s)Thomas JakiMaintainer:Thomas Jaki<*********************>ReferencesJaki T.,West R.W.(2008)Maximum kernel likelihood estimation.Journal of Computational and Graphical Statistics V ol.17(No4),976-993.Silverman,B.W.(1986),Density Estimation for Statistics and Data Analysis,Chapman&Hall, 2nd ed.Examplesdata(state)mkle(state$CRIME)klik3 klik Kernel log likelihoodDescriptionThe function computes the kernel log likelihood for a givenˆθ.Usageklik(delta,data,kde,grid,min)Argumentsdelta the difference of the parameter theta for which the kernel log likelihood will be computed and the sample mean.data the data for which the kernel log likelihood will be computed.kde an object of the class"density".grid the stepsize between the x-values in kde.min the smallest x-value in kde.DetailsThis function is intended to be called through the function mkle and is optimized for fast computa-tion.ValueThe log likelihood based on the shifted kernel density estimator.Author(s)Thomas JakiReferencesJaki T.,West R.W.(2008)Maximum kernel likelihood estimation.Journal of Computational and Graphical Statistics V ol.17(No4),976-993.See Alsomkle4mkleExamplesdata(state)attach(state)bw<-2*sd(CRIME)kdensity<-density(CRIME,bw=bw,kernel="biweight",from=min(CRIME)-2*bw,to=max(CRIME)+2*bw,n=2^12)min<-kdensity$x[1]grid<-kdensity$x[2]-min#finds the kernel log likelihood at the sample meanklik(0,CRIME,kdensity,grid,min)mkle Maximum kernel likelihood estimationDescriptionComputes the maximum kernel likelihood estimator for a given dataset and bandwidth.Usagemkle(data,bw=2*sd(data),kernel=c("gaussian","epanechnikov","rectangular","triangular", "biweight","cosine","optcosine"),gridsize=2^14)Argumentsdata the data for which the estimator should be found.bw the smoothing bandwidth to be used.kernel a character string giving the smoothing kernel to be used.This must be oneof’"gaussian"’,’"rectangular"’,’"triangular"’,’"epanechnikov"’,’"biweight"’,’"cosine"’or’"optcosine"’,with default’"gaussian"’.May be abbreviated to aunique prefix(single letter).gridsize the number of points at which the kernel density estimator is to be evaluatedwith214as the default.DetailsThe default for the bandwidth is2s,which is the near-optimal value if a Gaussian kernel is used.Ifthe bandwidth is zero,the sample mean will be returned.Larger gridsize results in more acurate estimates but also longer computation times.The use ofgridsizes between211and220is recommended.ValueThe maximum kernel likelihood estimator.mkle.ci5Noteoptimize is used for the optimization and density is used to estimate the kernel density.Author(s)Thomas JakiReferencesJaki T.,West R.W.(2008)Maximum kernel likelihood estimation.Journal of Computational and Graphical Statistics V ol.17(No4),976-993.See AlsoklikExamplesdata(state)plot(density(state$CRIME))abline(v=mean(state$CRIME),col= red )abline(v=mkle(state$CRIME),col= blue )mkle.ci Confidence intervals for the maximum kernel likelihood estimatorDescriptionComputes different confidence intervals for the maximum kernel likelihood estimator for a given dataset and bandwidth.Usagemkle.ci(data,bw=2*sd(data),alpha=0.1,kernel=c("gaussian","epanechnikov", "rectangular","triangular","biweight","cosine","optcosine"),method=c("percentile","wald","boott"),B=1000,gridsize=2^14) Argumentsdata the data for which the confidence interval should be found.bw the smoothing bandwidth to be used.alpha the significance level.kernel a character string giving the smoothing kernel to be used.This must be one of’"gaussian"’,’"rectangular"’,’"triangular"’,’"epanechnikov"’,’"biweight"’,’"cosine"’or’"optcosine"’,with default’"gaussian"’,and may be abbreviatedto a unique prefix(single letter).method a character string giving the type of interval to be used.This must be one of ’"percentile"’,’"wald"’or’"boott"’.B number of resamples used to estimate the mean squared error with1000as thedefault.gridsize the number of points at which the kernel density estimator is to be evaluated with214as the default.DetailsThe method can be a vector of strings containing the possible choices.The bootstrap-t-interval can be very slow for large datasets and a large number of resamples as a two layered resampling is necessary.ValueA dataframe with the requested intervals.Author(s)Thomas JakiReferencesJaki T.,West R.W.(2008)Maximum kernel likelihood estimation.Journal of Computational and Graphical Statistics V ol.17(No4),976-993.Davison,A.C.and Hinkley,D.V.(1997),Bootstrap Methods and their Applications,Cambridge Series in Statistical and Probabilistic Mathematics,Cambridge University Press.See AlsomkleExamplesdata(state)mkle.ci(state$CRIME,method=c( wald , percentile ),B=100,gridsize=2^11)opt.bw Optimal bandwidth for the maximum kernel likelihood estimatorDescriptionEstimates the optimal bandwidth for the maximum kernel likelihood estimator using a Gaussian kernel for a given dataset using the bootstrap.Usageopt.bw(data,bws=c(sd(data),4*sd(data)),B=1000,gridsize=2^14)Argumentsdata the data for which the optimal bandwidth should be found.bws a vector with the upper and lower bound for the bandwidth.B number of resamples used to estimate the mean squared error with1000as thedefault.gridsize the number of points at which the kernel density estimator is to be evaluated with214as the default.DetailsThe bandwidth considered fall between one and4standard deviations.In addition the mse of the mkle for a bandwidth of zero will also be included.The estimation of the optimal bandwidth might take several minutes depending on the number of bootstrap resamples and the gridsize used.ValueThe estimated optimal bandwidth.NoteThe optimize is used for the optimization.Author(s)Thomas JakiReferencesJaki T.,West R.W.(2008)Maximum kernel likelihood estimation.Submitted to Journal of Com-putational and Graphical Statistics V ol.17(No4),976-993.Davison,A.C.and Hinkley,D.V.(1997),Bootstrap Methods and their Applications,Cambridge Series in Statistical and Probabilistic Mathematics,Cambridge University Press.See AlsomkleExamplesdata(state)opt.bw(state$CRIME,B=10)8state state Violent death in the USADescriptionThe dataset gives the number of violent death per100,000population per stateUsagedata(state)FormatA data frame with50observations on the following2variables.STATE a factor with levels AK AL AR AZ CA CO CT DE FL GA HI IA ID IL IN KS KY LA MA MD ME MI MN MO MS MT NC ND NE NH NJ NM NV NY OH OK OR PA RI SC SD TN TX UT VA VT WA WI WV WY CRIME a numeric vectorSourceShapiro,Robert~J.1998.Statistical Abstract of the United States.118edn.U.S.Bureau of the Census.Examplesdata(state)hist(state$CRIME)mkle(state$CRIME)Index∗datasetsstate,8∗distributionklik,3∗htestmkle.ci,5∗nonparametricklik,3mkle,4mkle.ci,5opt.bw,6∗packageMKLE-package,1∗univarmkle,4density,5klik,3,5MKLE(MKLE-package),1mkle,3,4,6,7MKLE-package,1mkle.ci,5opt.bw,6optimize,5,7state,89。
Geofram 4.0版本软件中文使用手册-P包
Geofram 4.0版本软件使用手册中国石油大学第一部分 基础知识一、系统介绍Geofram 4.0系统是 schlumber 公司针对解决测井、地震、油藏、地质以及综合研究等问题开发的较为完整的集成软件。
如图1-1所示,本软件共划分井眼地质(geolog )岩石物理(petrophysics )、油藏描述(reservoir)、地震(seismic )、可视化地震(visualization)和工具(utility)等六个部分。
系统管理配备3个基本管理工具:项目管理工具(project mandge )、工作流程管理器(process manage )及数据管理器(data manage )。
该系统具有如下特色:*基于Oracle 关系型数据库管理:使得解释参数、描述信息及离散、连续采样的信息数据,均以数据指针信息存放在项目数据库的目录中。
数据入库后不需知道数据以什么样格式存放再什么地方,只进行聚焦即可得到快速查询。
*可靠的安全性:设臵了用户存储权限,使得数据管理更为方便;*极大提高工作效率:合理的项目配臵,减少不必要的数据重复,使数据深度、单位、坐标系统等转换更为方便,省时;*强大的可操作性:所有程序军采用窗口、菜单选项交互运行,加大可视化程序。
图1-1二、系统登陆当在界面敲入用户名和密码之后,出现如图1-2所视界面,选择GeoFram 4.0.3进入GeoFram4.0版本系统,出现图1-3所示界面,选择其中一个用户,敲入密码(password ),当系统确认后在单击Application manager 即可完成系统的完全登陆。
出现如图1-4所示界面。
可选择进行下一步工作。
三、数据加载进入系统后,单击系统界面中的Data manager管理器,出现数据管理主图1-2图1-3图1-4图1-5窗口(如图1-4)。
选择loaders and unloaders 出现如图1-5窗口,其中ASCIL Load 表示ASCIL 数据加载;data load 为Dlis 数据加载;data save 表示数据存储。
Discovery教程(上册)
Discovery教程(上册)(基本操作、数据加载)目录GeoGraphix Discovery 教程说明 (1)第一章建立工区 (3)1建立一个工区 (3)第二章输入人文数据和井数据 (10)2输入人文数据 (10)3输入和查看数据服务公司的一般井数据 (15)4用Excel 表格输入普通井数据 (21)5给井输入ASCII文本文件 (28)6输入测井曲线 (41)第三章建立底图 (44)1显示人文地理/大地网格图层 (44)2图层显示属性(线条、文字等。
) (47)3底图属性(比例尺、标题等) (50)第四章在底图上添加井数据 ...... 错误!未定义书签。
1在底图上添加作业者、井名和井号、总深度等错误!未定义书签。
2在底图上显示WellBase图层 ............. 错误!未定义书签。
3建立研究区 ........................................... 错误!未定义书签。
4建立/显示WellBase 海拔深度图层 .. 错误!未定义书签。
5建立/显示WellBase 地层厚度图层 .. 错误!未定义书签。
第五章井数据查看和质量控制.... 错误!未定义书签。
1在底图上选井查看可用的井数据 ....... 错误!未定义书签。
第六章在地质剖面上进行分层和层位对比错误!未定义书签。
1通过GeoAtlas建立一个横剖面 ......... 错误!未定义书签。
2建立测井曲线显示模板 ....................... 错误!未定义书签。
3修改/定制剖面 ..................................... 错误!未定义书签。
4建立在GeoAtlas 中显示的剖面线 .... 错误!未定义书签。
5在XSection中的地层划分/地层对比错误!未定义书签。
第七章等高线地质解释............ 错误!未定义书签。
7在IsoMap图层上作海下构造顶部等高线错误!未定义书签。
IBM ATLAS POLICY SUITE V6.0.3 FIXPACK 8 用户手册说明书
IBM A TLAS P OLICY S UITE V6.0.3 F IX P ACK 8 README Release Date: September 12, 2018Contents1.I NTRODUCTION (3)1.1Overview (3)1.2Related links (3)2.S YSTEM R EQUIREMENTS (3)3.I NSTALLATION I NSTRUCTIONS (3)3.1Create Atlas Schema for Oracle Exadata [OPTIONAL] (3)3.1.1 Exadata Database Creation Steps (3)3.1.2 Atlas Fresh Schema Creation on Exadata (4)3.2Upgrade Atlas Database (4)3.3Deploying Atlas in JBoss 6.4 EAP (4)3.4Deploying Atlas in WebSphere (4)3.5Cognos 11 Support (5)3.6Known Issues (5)4.W HAT’S N EW IN THIS R ELEASE (6)4.1 Software Currency (6)4.2 SLM Implementation (6)4.3 Security Fixes (6)N OTICES,C OPYRIGHT L ICENSE AND T RADEMARKS (7)1.I NTRODUCTION1.1OverviewThis document provides an overview of installation requirements, enhancements, and defect fixes included in the IBM Atlas Policy Suite V6.0.3 Fix Pack 8 release.IMPORTANT: When upgrading from / installing over an existing version of Policy Atlas or Retention Syndication connector or eDiscovery Syndication connector, please take a backup of your current installation folder.6.0.3.8 installer MAY NOT take a backup of the current installation folder.1.2Related linksIBM Atlas 6.0.3.8 Readme page:https:///support/pages/ibm-atlas-policy-suite-version-603-fix-pack-8-readme2.S YSTEM R EQUIREMENTSPlease refer to System Requirements documented on the IBM Support Portal –https:///software/reports/compatibility/clarity/softwareReqsForProduct.html 3.I NSTALLATION I NSTRUCTIONSPlease refer to IBM Knowledge Center → Atlas eDiscovery Process Management 6.0.3 →Installing and upgrading IBM Atlas Policy SuiteURL: https:///support/knowledgecenter/en/SSXPJK_6.0.3/KC_ditamaps/atlas_6.0.3.htm 3.1Create Atlas Schema for Oracle Exadata [OPTIONAL]Note: Perform the next steps in this section 3.1, only if you are configuring Atlas with Oracle Exadata; else proceed to section 3.2 to Upgrade Atlas Database.Steps for Creating Atlas Schema for Oracle Exadata3.1.1 Exadata Database Creation Steps1. Ensure that Oracle 12.2 Exadata is installed.2. Create a pluggable database, either from Database Configuration assistant (User Interface) or manually, through SQL command prompt.3. Provide Open/Read/Write permission for the pluggable database that you created.3.1.2 Atlas Fresh Schema Creation on Exadata1.You can create fresh Atlas schema against newly created pluggable databasePlease refer tohttps:///support/knowledgecenter/en/SSXPJK_6.0.3/com.ibm.aps.install.doc/ap-sin05.html2. If you are trying to create PSSAPL user against CDB, then you must execute following command before creation of user- alter session set "_ORACLE_SCRIPT"=true;3.2Upgrade Atlas DatabasePlease refer to the Upgrade Database section from the document:https:///support/knowledgecenter/en/SSXPJK_6.0.3/com.ibm.aps.install.doc/apsup00. html•For Oracle Exadata , as Pluggable database acts as Oracle service, hence use this second form for the DBName: jdbc:oracle:thin:@//HostName:Port/DBName.•Earlier, the Atlas Extensions threw an exception with a CUSTOMFIELD15": invalid identifier error. If you have Atlas extensions deployed, you can fix this issue by performing the instructions in the following technote:/support/docview.wss?uid=swg219788553.3Deploying Atlas in JBoss 6.4 EAPJBoss 6.4 EAP requires explicit encoding setting to support umlaut characters.Solution: Add the following setting in standalone.xml after <extensions> settings:<system-properties><property name="org.apache.catalina.connector.URI_ENCODING" value="UTF-8"/> </system-properties>3.4Deploying Atlas in WebSphereBefore you begin IBM Atlas Policy Suite installation:Ensure that you have the WebSphere Application Server (WAS) - Base Edition installed on your system. Currently, the IBM Atlas Policy Suite supports only the Base edition of WAS.If you are runnin g PolicyAtlas and AtlasReports on the same WebSphere profile, atleast the following versions of WebSphere are required:•WAS 8.5.0.1•WAS 8.5.5.2•WAS 9.0.0.73.5Cognos 11 SupportThis release supports Atlas integration with Cognos 11 .Refer to the document for detail steps:https:///support/knowledgecenter/en/SSXPJK_6.0.3/com.ibm.aps.integra-tion.doc/apscg007.htmlUpdate BASE_URL provided in the document above, with the following new value:3.6Known IssuesThis section lists known limitations about installation.•When upgrading from / installing over an existing version of Policy Atlas or Retention Syn-dication connector or eDiscovery Syndication connector, please take a backup of your cur-rent installation folder.6.0.3.8 Installer MAY NOT take a backup of the current installation folder.•In previous releases there was a JBoss 6 EAP-specific .ear file, AtlasExtensions_jboss6eap.ear, for Atlas Extensions - this is no longer the case. Please use the AtlasExtensions.ear. •Known Documentation Issues with corrections can be found here –/support/docview.wss?uid=swg27044359•Atlas does not enforce email address uniqueness.In Atlas, duplicate email addresses are not allowed on People in Scope page. Thus, if a person with identical email address is directly added to Request Scope, Atlas shows an error message.However, there are three scenarios in which a duplicate email address can be added to Re-quest Scope, wherein Atlas does not show any error message.The three scenarios are as follows:o Whenever an email address is updated through Admin > Person to create a duplicate email address entry, Atlas does not show any error message.o Whenever a data source is created with a duplicate email address entry and that data source is added to the Request Scope, Atlas does not show any error message.o Whenever an organization is created with a duplicate email address entry and that organization is added to the Request Scope, Atlas does not show any error message.These three scenarios result in duplicate email addresses in Resource Scope without any error message from Atlas.•Confirmation Reminder for Global notice is not sent to Partially Sent Recipients.In the case of disruption of Policy Atlas application, if Global reminder is partially sent, then the Confirmation Reminders to the Global Notice will not be delivered to the recipients listed with reason Partially Sent. The confirmation reminders will be delivered only to the recipi-ents with reason Sent.Workaround: You should send the Global Reminder again. Ensure that the Atlas application is not terminated abruptly until the Global Reminder is delivered to all the recipients. 4.W HAT’S N EW IN THIS R ELEASEThe IBM Atlas Policy Suite 6.0.3 Fix Pack 8 consists of the following new features.4.1 Software CurrencyAdded Support•Cognos 11: For details on the configuration change needed, refer to the section 3.5 in the Installation Instructions section.•Oracle Exadata 12.2: For details on Atlas schema creation on Oracle Exadata, refer to the section 3.1 in the Installation Instructions section.4.2 SLM ImplementationAtlas – SLM implementation enables reporting of usage and License metrics for different Atlas products.These metrics are captured in an XML file called SLM Tag file. These SLM tag files can be then consumed by the IBM License Metrics Tool for reporting and auditing.Refer to the IBM Atlas Policy Suite User Guide (https:///support/pages/ibm-atlas-pol-icy-suite-–-slm-users-guide) for the details of how to configure Atlas for SLM and how to interpret the license metrics count.4.3 Security FixesThis release has upgraded the following open source jar files for fixing security vulnerabilities in the earlier versions.1.c3p0-0.9.5.4.jarmons-beanutils-1.9.2.jarmons-codec-1.7.jar4.xstream-1.4.11.1.jar5._Builder.js from Dojo toolkit 1.14N OTICES,C OPYRIGHT L ICENSE AND T RADEMARKSNoticesThis information was developed for products and services offered in the U.S.A. IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:IBM Director of LicensingIBM CorporationNorth Castle DriveArmonk, NY 10504-1785U.S.A.For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to: Intellectual Property LicensingLegal and Intellectual Property LawIBM Japan Ltd.19-21, Nihonbashi-Hakozakicho, Chuo-kuTokyo 103-8510, JapanThe following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law:INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION"AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OFNON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact:IBM Deutschland GmbHDepartment M358IBM-Allee 171139 EhningenGermanySuch information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.The licensed program described in this information and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement or any equivalent agreement between us.Any performance data contained herein was determined in a controlled environment. Therefore, the results obtained in other operating environments may vary significantly. Some measurements may have been made on development-level systems and there is no guarantee that these measurements will be the same on generally available systems.Furthermore, some measurement may have been estimated through extrapolation. Actual results may vary. Users of this document should verify the applicable data for their specific environment.Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.All statements regarding IBM's future direction or intent are subject to change or withdrawal without notice, and represent goals and objectives only.All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without notice. Dealer prices may vary.This information is for planning purposes only. The information herein is subject to change before the products described become available.This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental. Copyright LicenseThis information contains sample application programs in source language, which illustrates programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.If you are viewing this information softcopy, the photographs and color illustrations may not appear.TrademarksIBM, the IBM logo, and are trademarks of International Business Machines Corporation, registered in many jurisdictions worldwide. A current list of IBM trademarks is available on the web at "Copyright and trademark information" at /legal/copytrade.shtml. Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates.Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.UNIX is a registered trademark of The Open Group in the United States and other countries. The Oracle Outside In Technology included herein is subject to a restricted use license and can only be used in conjunction with this application.Other product and service names might be trademarks of IBM or other companies.—End of Document —。
GEO数据库教程
GEO数据库教程展开全文转载自:果子学生信,这是一个干货极多,老师极好的公众号上次更新了一个GEO数据框的帖子,包含了GEO分析的主要组成部分,其中有些区域为了代码复用,不是很容易懂。
现在对其进行注释,并增加KEGG分析的内容,力求能让他变成最有诚意的GEO数据分析教程,文末还录制了一个友好的导学视频,希望物尽其用。
以下是正文:GEO数据库包罗万象,对于每个领域的科研工作者很有帮助。
我最开始分析GEO芯片主要使用别人的代码,跑流程。
但是绝对不能出现报错,一报错就束手无策。
遇到比较困难的地方就使用别人的小工具来代替。
比如,ID转换,GO分析等。
直到去年我才能够完全使用R语言实现。
这两年,网上的教程帖子井喷一样涌现,大有教师超过学员的趋势。
但是,GEO的分析跟TCGA不一样,里面要考虑的细节比较多。
比如我们今天要解决以下几个问题:1.GEO数据如何方便地下载?2.数据什么时候需要标准化?3.什么时候做log转换?4.芯片探针如何转换?5.差异基因如何获得?6.配对样本的对比矩阵如何构建?7.配对样本如何作图展示?8.热图火山图究竟在什么?9.GO分析,KEGG分析怎么做,如何解释?看文献得到GSE号,这是数据的名片,GSE32575,文献中提及的GSE号在这个网址输入这个号我们可以知道这个芯片的信息/geo/query/acc.cgiGEO官网点击进去后,会有这个芯片的介绍比如,这个芯片一开始出现的时候是干什么的?summary认真读一读就知道作者为什么要做这个芯片。
如果还不是很清楚,可以往下看,可以看到实验设计,甚至还有这个芯片当时发表的文章。
下载下来读一读,可以看看当时这个芯片的哪些信息被使用了,还有哪些没被使用,我们可以提出新的科研假设,用别人的信息去支持。
而这也是芯片数据挖掘的目的:用别人的数据支持自己的科研假设。
在往下看还有平台信息GPL6102,这个信息可以帮助我们来注释文件。
图中的48表示这个芯片做了48个样本,每个样本都写明是什么样本。
surpac基础指南
测量数据库 块体模型 绘图文件 风格文件 宏文件
示例 pit1.str pit1.dtm geo.ddb
ug.sdb blk.mdl pit.swf styles.ssi mcr.tcl
内容
宏文件:包含录制的操作过程或二次开 线文件:表示点和线,存储点的位置、 DTM 地质数据库:在 测量数据库:在 块体模型:使用块体将实体模型规格化 绘图文件:将打印内容保存为绘图文件 风格文件:线和面的颜色及显示方式保 :表示表面和实体模型,存储点 Surpac和关系型测量 和关系型钻孔 描述值等信息 连接成面的方式等信息 数据库之间建立关联 并储存各种信息 以备打印 存在风格文件中 发程序的 TCL脚本文件
Gemcom Surpac 三维矿业软件培训
基础概念和基本操作
Gemcom Surpac™
1. 软件的安装与运行
2. 软件的注册
3. 设置工作目录
4. 在快捷方式中设置 默认工作目录
任务:运行 Gemcom Surpac
Gemcom Surpac™
一. 用户界面
1. 2. 3. 菜单栏 工具栏 导航面板
点3
点4
点5
点n
Y
X
Z
D1
描述字段
Dn
Gemcom Surpac™
一. 线文件原理
2. 线文件的结构
① 头行记录 ② 轴线记录 ③ 线号 ④ 北坐标(Y)
①
②
⑤ 东坐标(X)
⑥ 高程(Z) ⑦ D1 ⑧ D2 ⑨ D3 ⑩ 段结束 ⑪ 文件结束
⑩
③
④ ⑤ ⑥ ⑦ ⑧ ⑨
⑪
Gemcom Surpac™
2;6;9
COMSOL Nonlinear Structural Materials Module User’
Nonlinear Structural Materials ModuleUser’s GuideC o n t a c t I n f o r m a t i o nVisit the Contact COMSOL page at /contact to submit general inquiries or search for an address and phone number. You can also visit the Worldwide Sales Offices page at /contact/offices for address and contact information.If you need to contact Support, an online request form is located on the COMSOL Access page at /support/case . Other useful links include:•Support Center: /support•Product Download: /product-download•Product Updates: /support/updates•COMSOL Blog: /blogs•Discussion Forum: /forum•Events: /events•COMSOL Video Gallery: /videos•Support Knowledge Base: /support/knowledgebase Part number: CM022901N o n l i n e a r S t r u c t u r a l M a t e r i a l s M o d u l e U s e r ’s G u i d e © 1998–2022 COMSOLProtected by patents listed on /patents , or see Help>About COMSOL Multiphysics on the File menu in the COMSOL Desktop for a less detailed lists of U.S. Patents that may apply. Patents pending.This Documentation and the Programs described herein are furnished under the COMSOL Software License Agreement (/sla ) and may be used or copied only under the terms of the license agreement.COMSOL, the COMSOL logo, COMSOL Multiphysics, COMSOL Desktop, COMSOL Compiler, COMSOL Server, and LiveLink are either registered trademarks or trademarks of COMSOL AB. All other trademarks are the property of their respective owners, and COMSOL AB and its subsidiaries and products are not affiliated with, endorsed by, sponsored by, or supported by those trademark owners. For a list of such trademark owners, see /trademarks .Version: COMSOL 6.1The Nonlinear Structural Materials ModuleThe Nonlinear Structural Materials Module is an optional add-on package forCOMSOL Multiphysics® designed to assist you to model structural behavior thatincludes nonlinear materials. The module is an add-on to the Structural MechanicsModule or the MEMS Module and extends it with support for modeling nonlinearmaterials, including hyperelasticity, creep, plasticity, and viscoplasticity. The module isdesigned for researchers, engineers, developers, teachers, and students who want tosimulate nonlinear structural materials, including a full range of possible multiphysicscouplings.The module provides an extensive set of nonlinear structural material models,including:•Predefined and user-defined hyperelastic materials: neo-Hookean, Mooney–Rivlin,St.Venant–Kirchhoff, Arruda–Boyce, Ogden, and others.•Small-strain and large-strain plasticity models using different types of hardening.•User-defined plasticity, flow rule, and hardening models.•Porous plasticity models, used for example for powder compaction simulation.•Predefined and user-defined nonlinear elastic materials: Ramberg–Osgood, Powerlaw, and others.•Shape memory alloys.•Predefined and user-defined creep material models: Norton, Garofalo, Anand,potential, volumetric, deviatoric, and others.•Viscoplastic models: Anand, Chaboche, and Perzyna.•Models for damage in brittle materials.A C C E S S I N G T H E N O N L I N E A R S T R U C T U R A L M A T E R I A L S D O C U M E N T A T I O NThis is an add-on module requiring either the Structural Mechanics Module or theMEMS Module. The feature information, including theory and modeling details, isincluded in the Structural Mechanics Module User’s Guide.When you install COMSOL Multiphysics, the documentation sets are installed inseveral locations, both on your computer and most easily accessible while you areworking in COMSOL Multiphysics. The next section details where to access it.T H E N O N L I N E A R S T R U C T U R A L M A T E R I A L S M O D U L E|34 | T H E N O N L I N E A R S T R U C T U R A L M A T E R I A L S M O D U L EA C C E S S I N G C O M S O L D O C U M E N T A T I O N A N D A P P L I C A T I O N L IB R A R I E SA number of online resources have more information about COMSOL, including licensing and technical information. The electronic documentation, topic-based (or context-based) help, and the Application Libraries are all accessed through the COMSOL Desktop.T H E D O C U M E N T A T I O N A N D O N L I N E H E L PThe COMSOL Multiphysics Reference Manual describes the core physics interfaces and functionality included with the COMSOL Multiphysics license. This book also has instructions on how to use COMSOL Multiphysics and how to access the electronic Documentation and Help content.Opening Topic-Based HelpThe Help window is useful as it is connected to the features in the COMSOL Desktop. To learn more about a node in the Model Builder, or a window on the Desktop, click to highlight a node or window, then press F1 to open the Help window, which thendisplays information about that feature (or click a node in the Model Builder followedby the Help button (). This is called topic-based (or context) help .If you are reading the documentation as a PDF file on your computer,the blue links do not work to open an application or contentreferenced in a different guide. However, if you are using the Helpsystem in COMSOL Multiphysics, these links work to open othermodules, application examples, and documentation sets.().In the upper-right corner of the COMSOL Desktop, click the ()T H E N O N L I N E A R S T R U C T U R A L M A T E R I A L S M O D U L E | 5Opening the Documentation WindowT H E A P P L I C A T I O N L I B R A R I E S W I N D O W Each model or application includes documentation with the theoretical background and step-by-step instructions to create a model or application. The models andapplications are available in COMSOL Multiphysics as MPH-files that you can open for further investigation. You can use the step-by-step instructions and the actual models as templates for your own modeling. In most models, SI units are used to describe the relevant properties, parameters, and dimensions, but other unit systems are available.Once the Application Libraries window is opened, you can search by name or browse under a module folder name. Click to view a summary of the model or application and its properties, including options to open it or its associated PDF document. () button.Help>Help .(). () button.Help>Documentation.The Application Libraries Window in the COMSOL MultiphysicsReference Manual .6 | T H E N O N L I N E A R S T R U C T U R A L M A T E R I A L S M O D U L E Opening the Application Libraries WindowTo open the Application Libraries window ():C O N T A C T I N G C O M S O L B Y E M A I LForgeneralproductinformation,******************************.C O M S O L A C C E S S A ND TE C H N I C A L S U P P O R TTo receive technical support from COMSOL for the COMSOL products, please contact your local COMSOL representative or send your questions to******************.Anautomaticnotificationandacasenumberwillbesenttoyou by email. You can also access technical support, software updates, license information, and other resources by registering for a COMSOL Access account.menu, select () select ()C O M S O L O N L I N E R E S O U R C E SCOMSOL website Contact COMSOL /contactCOMSOL Access /accessSupport Center /supportProduct Download /product-downloadProduct Updates /support/updatesCOMSOL Blog /blogsDiscussion Forum /forumEvents /eventsCOMSOL Application Gallery /modelsCOMSOL Video Gallery /videoSupport Knowledge Base /support/knowledgebaseT H E N O N L I N E A R S T R U C T U R A L M A T E R I A L S M O D U L E|78|T H E N O N L I N E A R S T R U C T U R A L M A T E R I A L S M O D U L E。
GPlates R 插件说明说明书
Package‘rgplates’September6,2023Type PackageTitle R Interface for the GPlates Web Service and Desktop ApplicationVersion0.3.2Maintainer Adam T.Kocsis<***********************>Description Query functions to the GPlates<https:///>Desktop Applica-tion and the GPlates Web Service<https:///>allow users to recon-struct past positions of geographic entities based on user-selected rotation models without leav-ing the R running environment.The online method(GPlates Web Service)makes the rota-tion of static plates,coastlines,and a low number of geographic coordinates available using noth-ing but an internet connection.The offline method requires an external installa-tion of the GPlates Desktop Application,but allows the efficient batch rotation of thousands of co-ordinates,Simple Features(sf)and Spatial(sp)objects with custom reconstruction trees and par-titioning polygons.Examples of such plate tectonic models are accessible via the chrono-sphere<https:///package=chronosphere>.This R extension is devel-oped under the umbrella of the DFG(Deutsche Forschungsgemeinschaft)Research Unit TER-SANE2(For2332,TEmperature Related Stressors in ANcient Extinctions).License CC BY4.0Date2023-09-06URL https://adamkocsis.github.io/rgplates/BugReports https:///adamkocsis/rgplates/issuesEncoding UTF-8LazyData trueDepends R(>=3.5.0),sfImports methods,utilsNeedsCompilation noRoxygenNote7.2.3Suggests knitr,rmarkdown,chronosphere,geojsonsf,spAuthor Adam T.Kocsis[cre,aut](<https:///0000-0002-9028-665X>), Nussaibah B.Raja[aut](<https:///0000-0002-0000-3944>),Simon Williams[ctb](<https:///0000-0003-4670-8883>),Deutsche Forschungsgemeinschaft[fnd],FAU GeoZentrum Nordbayern[fnd]12gwsRepository CRANDate/Publication2023-09-0608:50:02UTCR topics documented:gws (2)mapedge (3)platemodel-class (4)reconstruct (5)rgplates (9)Index11 gws Valid reconstructable feature collections of the GPlates Web ServiceDescriptionThe object contains valid returns as of2023-07-13.Usagedata(gws)FormatA data.frame with4variables and17observations.DetailsThe valid return combinations for selected models and feature collections are copied from https: ///reconstruction-models.model The name of the reconstruction model.feature The name of the feature collection.from The oldest reconstruction age accepted by the model to return the feature collection.to The youngest reconstruction age accepted by the model to return the feature collection.mapedge3 mapedge Function to quickly draft the edge of the equirectangular projectionDescriptionFunction to plot the edge of a map with different projections.Usagemapedge(x=360,y=180,xmin=-180,xmax=180,ymin=-90,ymax=90,out="sf")Argumentsx(numeric)Number of segments in the x(longitude)dimension.y(numeric)Number of segments in the y(latitude)dimension.xmin(numeric)Minimum value of x(longitude).xmax(numeric)Minimum value of x(longitude).ymin(numeric)Maximum value of y(latitude).ymax(numeric)Maximum value of y(latitude).out(character)Output format,either"sf"or"sp".The default"sf"returns sim-ple feature geometries,"sp"returns SpatialPolygons from the sp package.ValueAn sfc-,or SpatialPolygons-class object.Examples#requires rgdaledge<-mapedge()molledge<-st_transform(edge,"ESRI:54009")plot(molledge)4platemodel-class platemodel-class Class of objects representing plate tectonic modelsDescriptionMeta-object containing paths to a unique plate tectonic modelUsage##S4method for signature platemodelinitialize(.Object,rotation=NULL,features=NULL,name=NULL,polygons=NULL)Arguments.Object Constructor argument(not needed).rotation(character)The path to the rotationfile.features(character)Named vector of features with the paths to the individualfiles.name(character)(Optional)name of the model.polygons(character)(Deprecated)The path to the static plate polygonfile.ValueA platemodel class object.Examples#path to provided archivearchive<-file.path(system.file("extdata",package="rgplates"),"paleomap_v3.zip")#extract to temporary directoryunzip(archive,exdir=tempdir())#path to the rotation filerotPath<-file.path(tempdir(),"PALEOMAP_PlateModel.rot")#path to the polygonspolPath<-file.path(tempdir(),"PALEOMAP_PlatePolygons.gpml")#register in R-to be used in reconstruct()model<-platemodel(rotation=rotPath,features=c("static_polygons"=polPath))reconstruct Reconstruct geographic featuresDescriptionReconstruct the geographic locations from present day coordinates and spatial objects back to their paleo-positions.Each location will be assigned a plate id and moved back in time using the chosen reconstruction model.Usagereconstruct(x,...)##S4method for signature matrixreconstruct(x,age,model="MERDITH2021",listout=TRUE,verbose=FALSE,enumerate=TRUE,chunk=200,reverse=FALSE,path.gplates=NULL,cleanup=TRUE,dir=NULL,plateperiod=TRUE,partitioning="static_polygons",check=TRUE)##S4method for signature data.framereconstruct(x,...)##S4method for signature numericreconstruct(x,...)##S4method for signature characterreconstruct(x,age,model="MERDITH2021",listout=TRUE,verbose=FALSE,path.gplates=NULL,cleanup=TRUE,dir=NULL,plateperiod=FALSE,partitioning="static_polygons",check=TRUE)##S4method for signature Spatialreconstruct(x,age,model,listout=TRUE,verbose=FALSE,path.gplates=NULL,cleanup=TRUE,dir=NULL,plateperiod=FALSE,partitioning="static_polygons",check=TRUE)##S4method for signature sfreconstruct(x,age,model,listout=TRUE,verbose=FALSE,path.gplates=NULL,cleanup=TRUE,dir=NULL,plateperiod=FALSE,gmeta=FALSE,partitioning="static_polygons",check=TRUE)Argumentsx are the features to be reconstructed.Can be a vector with longitude and latituderepresenting a single point or a matrix/dataframe with thefirst column as lon-gitude and second column as latitude,or a SpatialPolygonsDataFrame classobject.For the online subroutine,the character strings"static_polygons","coastlines"and"plate_polygons"return static plate polygons,rotated present-day coastlines and topological plates,respectively.For the offline subroutine,itcan be a name of the feature set defined in the model object....arguments passed to class-specific methods.age(numeric)is the age in Ma at which the points will be reconstructedmodel(character or platemodel)The reconstruction model.The class of this ar-gument selects the submodule used for reconstruction,a character value willinvoke the remote reconstruction submodule and will submit x to the GPlatesWeb Service.A platemodel class object will call the local-reconstruction sub-module.The default is"PALEOMAP".See details for available models.listout(logical)If multiple ages are given,the output can be returned as a list iflistout=TRUE.verbose(logical)Should call URLs(remote submodule)or console feedback(local-submodule)be printed?enumerate(logical)Should be all coordinate/age combinations be enumerated and recon-structed(set to TRUE by default)?FALSE is applicable only if the number of rowsin x is equal to the number elementes in age.Then a point will be reconstructedto the age that has the same index in age as the row of the coordinates in x.Listoutput is not available in this case.chunk(numeric)Argument of the remote reconstruction submodule.Single integer,the number of coordinates that will be queried from the GPlates in a single go.reverse(logical)Argument of the remote reconstruction submodule.Theflag to con-trol the direction of reconstruction.If reverse=TRUE,the function will calcu-late the present-day coordinates of the given paleo-coordinates.path.gplates(character)Argument of the local reconstruction submodule.In case the GPlatesexecutablefile is not found at the coded default location,the full path to the exe-cutable(gplates-<ver>.exe on Windows)can be entered here.e.g."C:/gplates_2.3.0_win64/gplates.cleanup(logical)Argument of the local reconstruction submodule.Should the tempo-raryfiles be deleted immediately after reconstructions?dir(character)Argument of the local reconstruction submodule.Directory wherethe temporaryfiles of the reconstruction are stored(defaults to a temporary di-rectory created by R).Remember to toggle cleanup if you want to see thefiles.plateperiod(logical)Argument of the local reconstuction submodule.Should the dura-tions of the plates be forced on the partitioned feature?If these are set to TRUEand the plate duration estimates are long,then you might lose some data.partitioning(character)Argument of the local reconstruction submodule,which featurecollection of the tectonic model should be used to assing plate IDs to the fea-tures?It defaults to"static_polygons".check(logical)Should the validity of the entries for the GWS checked with the in-formation stored in gws?(default:TRUE)gmeta(logical)Argument of the local reconstruction submodule,in the case,whensf objects are supplied.Should the metadata produced by GPlates be includedin the output object?DetailsThe function implements two reconstruction submodules,which are selected with the model argu-ment:If model is a character entry,then the reconstruct()function uses the GPlates Web Service(https:///,remote reconstruction submodule).The available reconstructionmodels for this submodule are(as of2023-06-29):•"SETON2012"(Seton et al.,2012)for coastlines and topological plate polygons(0-200Ma).•"RODINIA2013"(Li et al.,2012)for coastlines(530-1100Ma).•"MULLER2016"(Muller et al.,2016)for coastlines and topological plate polygons(0-230Ma).•"GOLONKA"(Wright et al.2013)for coastlines only(0-550Ma).•"PALEOMAP"(Scotese,2016)for coastlines only(0-1100Ma).•"MATTHEWS2016_mantle_ref"(Matthews et al.,2016)for coastlines and topological platepolygons(0-410Ma).•"MATTHEWS2016_pmag_ref"(Matthews et al.,2016)for coastlines and topological platepolygons(0-410Ma).•"MULLER2019"(Müller et al.,2019)for coastlines and static plate polygons.(0-250Ma).•"MERDITH2021"(Merdith et al.,2021,default)for coastlines and static plate polygons(0-1000Ma).•"MULLER2022"(Müller et al.,2022)for coastlines and static plate polygons(0-1000Ma).If model is a platemodel class object,then the function will try to use the GPLates desktop ap-plication(https:///)to reconstruct the coordinates(local reconstruction sub-module).Plate models are available in chronosphere with the fetch function.See datasets forthe available models.The function will try tofind the main GPlates executable in its default instal-lation directory.If this does not succeed,use path.gplates to enter the full path to the GPlatesexecutable as a character string.ValueA numeric matrix if x is a numeric,matrix or data.frame,or Spatial*class objects,dependingon input.NULL in case no model is specified.ReferencesMatthews,K.J.,Maloney,K.T.,Zahirovic,S.,Williams,S.E.,Seton,M.,&Müller,R.D.(2016).Global plate boundary evolution and kinematics since the late Paleozoic.Global and PlanetaryChange,146,226–250.https:///10.1016/j.gloplacha.2016.10.002Andrew S.Merdith,Simon E.Williams,Alan S.Collins,Michael G.Tetley,Jacob A.Mulder,Morgan L.Blades,Alexander Young,Sheree E.Armistead,John Cannon,Sabin Zahirovic,R.Diet-mar Müller,(2021).Extending full-plate tectonic models into deep time:Linking the Neoprotero-zoic and the Phanerozoic,Earth-Science Reviews,V olume214,2021,103477,ISSN0012-8252,https:///10.1016/j.earscirev.2020.103477.Müller,R.D.,Seton,M.,Zahirovic,S.,Williams,S.E.,Matthews,K.J.,Wright,N.M.,...Can-non,J.(2016).Ocean Basin Evolution and Global-Scale Plate Reorganization Events Since PangeaBreakup.Annual Review of Earth and Planetary Sciences,44(1),107–138.https:///10.1146/annurev-earth-060115-012211Müller,R.D.,Zahirovic,S.,Williams,S.E.,Cannon,J.,Seton,M.,Bower,D.J.,Tetley,M.G.,Heine,C.,Le Breton,E.,Liu,S.,Russell,S.H.J.,Yang,T.,Leonard,J.,and Gurnis,M.(2019),A global plate model including lithospheric deformation along major rifts and orogens since theTriassic.Tectonics,vol.38,https:///10.1029/2018TC005462.Müller,R.D.,Flament,N.,Cannon,J.,Tetley,M.G.,Williams,S.E.,Cao,X.,Bodur,Ö.F., Zahirovic,S.,and Merdith,A.:A tectonic-rules-based mantle reference frame since1billion years ago–implications for supercontinent cycles and plate–mantle system evolution,Solid Earth,13, 1127–1159,https:///10.5194/se-13-1127-2022,2022.Scotese,C.R.(2016).PALEOMAP PaleoAtlas for GPlates and the PaleoData Plotter Program./paleomap-paleoatlas-for-gplatesSeton,M.,Müller,R.D.,Zahirovic,S.,Gaina,C.,Torsvik,T.,Shephard,G.,...Chandler,M.(2012).Global continental and ocean basin reconstructions since200Ma.Earth-Science Reviews, 113(3–4),212–270.https:///10.1016/j.earscirev.2012.03.002Wright,N.,Zahirovic,S.,Müller,R.D.,&Seton,M.(2013).Towards community-driven pale-ogeographic reconstructions:integrating open-access paleogeographic and paleobiology data with plate tectonics.Biogeosciences,10(3),1529–1541.https:///10.5194/bg-10-1529-2013 Examples#With the web service#simple matrices#replace model with desired choicereconstruct(matrix(c(95,54),nrow=1),140,model=NULL)#points reconstructionxy<-cbind(long=c(95,142),lat=c(54,-33))reconstruct(xy,140,model=NULL)rgplates R Interface for the GPlates Web Service and Desktop ApplicationDescriptionQuery functions to the GPlates<https:///>Desktop Application and the GPlates Web Service<https:///>allow users to reconstruct coordinates,static plates,Sim-ple Features and Spatial objects without leaving the R running environment.This R extension is developed under the umbrella of the DFG(Deutsche Forschungsgemeinschaft)Research Unit TER-SANE2(For2332,TEmperature Related Stressors in ANcient Extinctions).DetailsThis is still the Beta version.As is R,this is free software and comes with ABSOLUTELY NO W ARRANTY.Nevertheless,notes about found bugs and suggestions are more than welcome.Author(s)Adam T.Kocsis(***********************),Nussaibah B.Raja and Simon WilliamsSee AlsoUseful links:•https://adamkocsis.github.io/rgplates/•Report bugs at https:///adamkocsis/rgplates/issuesIndex∗datasetsgws,2datasets,8fetch,8gws,2,7initialize,platemodel-method(platemodel-class),4mapedge,3platemodel,6,8platemodel(platemodel-class),4 platemodel-class,4reconstruct,5reconstruct,character-method(reconstruct),5reconstruct,data.frame-method(reconstruct),5reconstruct,matrix-method(reconstruct),5reconstruct,numeric-method(reconstruct),5reconstruct,sf-method(reconstruct),5 reconstruct,Spatial-method(reconstruct),5rgplates,9rgplates-package(rgplates),911。
GEOCGM操作手册
GeoCGM1.1软件使用手册目录一,用户要求--------------------------------------------------- 2 二,获得启动命令文件--------------------------------------- 2 三,启动GeoCGM1.1 ----------------------------------------- 2 四,输入数据窗户--------------------------------------------- 3 五,地震数据输入和参数说明------------------------------ 4 六,绘图图头数据准备和参数说明------------------------ 5 七,测网数据输入和参数说明------------------------------ 8 八,层位解释数据输入和参数说明----------------------- 10 九,断层解释数据输入和参数说明----------------------- 12 十,速度数据输入和参数说明----------------------------- 13 十一,属性数据输入和参数说明------------------------ 14 十二,参数检查和运行------------------------------------ 16 十三,建议--------------------------------------------------- 17 十四,绘图检查--------------------------------------------- 18 十五,作业出错检查--------------------------------------- 18 十六,符号列表--------------------------------------------- 19 十七,软件安装--------------------------------------------- 20一,用户要求普通用户都可以使用GEOCGM1.1软件,一般情况下希望用户的shell 环境是c-shell。
Geomodeling_VVA 软件技术附件
附件1:地震属性可视化分析系统软件VisualVoxAt TM技术介绍.1 软件总体介绍VisualV oxAt TM(简称VV A)是加拿大Geomodeling公司针对隐蔽性油气藏研发的包括地震属性的提取与分析、三维可视化显示与解释以及常规构造解释等功能的地质、地球物理研究平台。
该软件功能齐、属性全、操作简便,提供多种的地震属性提取与分析工具,并可通过三维可视化解释与地震属性研究技术的结合对隐蔽性油气藏进行研究,是从多角度进行隐蔽性油气藏识别、描述及评价的有效工具。
VVA软件主要包括属性的提取与分析、三维可视化以及构造解释三部分。
其中属性提取包括体属性、层面属性、顺层属性、层间属性、地层体属性、滤波属性六大类型的属性提取功能;属性的分析工具则包括属性定量标定、属性交会、属性聚类、继承性分类、主成分分析、频谱成像、波形相关分析七大主要的分析工具。
上述新技术和方法代表了应用地球物理技术进行勘探生产的新成果,在隐蔽性油气藏研究中起到重要作用。
目前,在国内外的多种油藏勘探中,起到较好的效果。
VVA软件的地震数据体、层位、断层、地层体、井数据以及软件计算分析的各种属性数据都能在三维空间中方便地显示,软件同时提供了方便的井位设计功能以及三维透视功能。
VVA的构造解释部分提供了方便的交互解释功能:层位解释有多种追踪方式和模式,能在三维空间、二维剖面以及底图上即时交互解释;断层解释也能在三维、二维剖面上交互解释,并且能够通过底图进行即时质量控制。
1.1.1地震属性可视化分析系统VisualV oxAt TM具有如下的特点:1)提供了从面、层间到体的多种地震属性计算方法。
其地震属性既包括构造属性,又包括地层属性,为用户多视角挖掘地震地质数据的有效信息提供有力的手段。
2)创立了地层体的概念,在多层层位的约束下,其构建过程充分考虑地层的沉积在平面和空间上的变化。
地层体切片比时间切片更好地反映地质规律。
各种属性以及分析方法都可以应用到地层体中,使得对隐蔽性油气藏识别、描述和评价更具目的性。
GEO配置和文件操作快速参考指南(部分1)说明书
QUICK REFERENCE GUIDE GEO CONFIGURATION AND FILE OPERATIONS (PART 1)Document No. SIG-QG-08-04-002A.1 GEO - Loading Boot Code to CPU II+ Card 1) First connect the ICD InterfaceCable to the parallel port on thecomputer and an RS232 cable tothe Comm port.2) With the CPU II card out of theGEO, connect the ICD cable toJ2 (pin 1 on top right corner) onthe CPU II card as indicatedbelow (red wire on ICD interface indicates pin 1) and the RS232 cable to the CP (Communication port) on the CPU II.3) Insert the CPU II into the GEO (remove the adjacentcard to prevent pinching the cable).Copyright© 2008-2014 Siemens4) To install the Parallel Port Drivers for the BDMInterface (ICD Cable) so it will work properly go to:•Start > All Programs > P&E 683xx BDMDebugger,•Select ‘Install NT Drivers’.5) Select ‘Install GIVEIO Driver’.6) Once it indicates that the driver has been installed,click on ‘Test the GIVEIO Driver’. If you get thefollowing error you may need to use anothercomputer, otherwise continue.7) Exit the installation Application.8) To open the Debugger Program used to load theBoot Code to the card go to:•Start > All Programs > P&E 683xx BDMDebugger,•Select ‘ ICD32W - 683xx In CircuitDebugger’.9) Click on Play Macro button to select and run themacro that automatically loads the boot code.10) Now select the ‘cpfra.icd’ file from wherever yousaved it and the Boot Code should automaticallystart loading.11) Once the Boot Code has finished loading, you shouldsee a screen indicating ‘Flash programming done’. 12) Click Stop Execution (F1) button to complete theinstallation.13) Close the debugger program.14) Now remove the CPU II from the GEO unit anddisconnect the ICD cable from J2.15) Seat the CPU II card back in the GEO.GEO - Uploading Communication Processor MEF to CPU II+ (NCA01_XX.MEF)Requires PC running DT software:1) Connect serial cable from the PC to the DIAG (CP)port of the CPU II+ module.2) Click the COMM button or menu, and then selectInstall Software . Click Yes button on the ‘Reset module’ prompt.3) A text box appears displaying boot messages untilthe Setup Program menu is displayed.4) Press the F4 function key on the PC keyboard orclick the F4 button on the display to start the MEF change process.5) Select the correct MEF file for the module (e.g.,nca01_00.mef). It should reside in the CPU II + APPLIANCE MODEL directory (e.g., GEO\Test box\MEFs\CPU II + APPLIANCE MODEL).6) Once the new MEF starts to load, the bar at the baseof the text box shows progress.7) When the new MEF is completely loaded the text boxwill return to the Setup Program menu.NOTE: If the module fails to reboot, or rebootsand re-enters the Setup Program, check the boot messages to see if the correct MEF is listed. If not, repeat the MEF upload process by clicking the MEF button or pressing F4.8) Select EXIT to reboot the module and exit the SetupProgram.9) After observing that the module is rebooting, selectEXIT again to close the text box.10) Wait until the GEO reboot is complete. Move theDB9 serial cable to the CPU module DIAG port if needed and reconnect DT.11) Use the Module Information function (see below) tocheck that the new MEF installation was successful.1. On the Main Display, right-click on the module label.2. Select ModuleGEO - Uploading VLP MEF to CPU II+ (VPA01_XX.MEF)Requires PC running DT software:1) Connect serial cable from PC to the VLP port of theCPU II+.2) Click the COMM button ormenu, and then selectInstall Software. ClickYes button on the ‘Resetmodule’ prompt.3) A text box appearsdisplaying boot messagesuntil the Setup Program menu is displayed.4) Press the F4 function key on the PC keyboard orclick the F4 button on the display to start the MEFchange process.5) Select the correct MEF file for the module (e.g.,VPA01_10.MEF). It should reside in the CPU II +APPLIANCE MODEL directory (e.g., GEO\Testbox\MEFs\CPU II + APPLIANCE MODEL).6) Once the new MEF starts to load, the bar at the baseof the text box shows progress.7) When the new MEF is completely loaded the text boxwill return to the Setup Program menu.NOTE: If the module fails to reboot, or rebootsand re-enters the Setup Program, checkthe boot messages to see if the correctMEF is listed. If not, repeat the MEFupload process by clicking the MEFbutton or pressing F4.8) Select EXIT to reboot the module and exit the SetupProgram.9) After observing that the module is rebooting, selectEXIT again to close the text box.10) Wait until the GEO reboot is complete. Move theDB9 serial cable to the CPU module DIAG port ifneeded and reconnect DT.11) Use the Module Information function (see previouspage) to check that the new MEF installation wassuccessful.GEO - Uploading MEF to Modules.Requires PC running DT software:1) Connect serial cable to the DIAG port of the card tobe updated.2) Click the COMM button ormenu, and then selectInstall Software. ClickYes button on the ‘Resetmodule’ prompt.3) A text box appears displaying boot messages untilthe Setup Program menu is displayed.4) Press the F4 function key on the PC keyboard orclick the F4 button on the display to start the MEFchange process.5) At the prompt ‘Erase the MEF (Y/N)’, type Y.6) Select the correct MEF file for the module (e.g.,trk01_11.mef) that resides in the proper directory(e.g., GEO\Test box\MEFs\TRK).7) Once the new MEF starts to load, the bar at thebase of the text box shows progress.8) When the new MEF is completely loaded the text boxwill return to the Setup Program menu.NOTE: If module fails to reboot, or reboots andre-enters the Setup Program, check theboot messages to see if the correct MEFis listed. If not, repeat the MEF uploadprocess by clicking the MEF button orpressing F4.9) Select EXIT to reboot the module and exit the SetupProgram.10) After observing that the module is rebooting, selectEXIT again to close the text box.11) Wait until the GEO reboot is complete. Move theDB9 serial cable to the CPU module DIAG port ifneeded and reconnect DT.12) Use the Module Information function (see above) tocheck that the new MEF installation was successful. GEO - Uploading GEO MCFRequires PC running DT software:1) Connect serial cable to the DIAG (CP) port of theCPU II+.2) Click the COMM buttonor menu, and thenselect InstallSoftware. Click Yesbutton on the ‘Resetmodule’ prompt.3) After the text boxdisplays the boot messages and the Setup Program menu is displayed, click the MORE button at the top of the display.4) Next, press the F5 function key on the PC keyboardor click the ERASE ECD – F5 button on the display.5) At the prompt ‘Erase the ECD (Y/N)?’, type Y.NOTE: It will take a few minutes to erase theECD and verify that it is cleared.6) At the prompt ‘Erase the Flash MCF Area (Y/N)?’type Y.7) After the Flash area is cleared, press the F6 functionkey on the PC keyboard or click the ERASE CIC –F6 button on the display.8) At the prompt ‘Erase the CIC (Y/N)?’, type Y.9) After the CIC is cleared, press the F3 function key onthe PC keyboard or click the CHANGE MCF – F3button on the display.10) At the prompt ‘Erase MCF Flash (Y/N)?’, type Y.11) Select the correct MCF file for the module (e.g.,SNAKE_1E001.mcf). In this example they reside inthe C:\safetran\GCS2\workspace\Snake\MCF_Dirdirectory. Click OPEN.12) When the MCF upload is completed and the ‘copyfrom FLASH to ECD’ is successful, press the F2function key on the PC keyboard or click the MCFCRC – F2 button on the display.13) When the MCF CRC query box comes up, refer tothe documentation supplied with the upgradeinstructions for the 8-digit CRC number to enter.•MCF Version•-----------•MCF Name: AMEOSTEST002•MCF Revision: 2•MCFCRC: 9511C82F•Geo Unit UCN: 42C8555C•Config Check Number: 4BD8024B14) Enter the CRC number and then click the OK button.15) Click Exit or press F8 to reboot the GEO.IMPORTANT: If the module fails to reboot, orreboots and re-enters the SetupProgram, check the boot messagesor check the character display onthe CPU module for MCF or MCFCRC problems. In the event ofproblems, repeat steps 2 through 9above.16) Once the GEO reboots, click the DT COMM buttonand then select Connect to bring up the moduleassignment display.17) Click the PROG button and select Unique CheckNumber (UCN) to bring up the UCN dialog box.MCF.18) MCF Version•-----------•MCF Name: AMEOSTEST002•MCF Revision: 2•MCFCRC: 9511C82F•Calculated UCN: 42C8555C•Config Check Number: 4BD8024BSetting Unique Check Number (UCN):NOTE : The Unique Check Number processensures that the maintainer is at theGEO location and is authorized to modify the GEO configuration. The new UCN is provided by the office. Verify that GEO parameter settings agree with the supplied configuration sheet prior to entering the new UCN.19) Boot GEO and finish any necessary changes inoperating parameters or timers.Continue to:QUICK REFERENCE GUIDE GEO CONFIGURATION AND FILEOPERATIONS (PART 2) Document No. SIG-QG-08-04-002A-21. Click the PROG button (PROG button isavailable on the main display and on the Property Browserscreen).NAVand SEL push buttons on CPU module. 5. W ithin 1 minute afterpressing CPU module buttons, click SET . 6. When the UCN screen displays ‘Changes saved successfully’, click BOOT to restart GEO. If BOOT is not pressed, GEO will restartautomatically in 5 minutes. 2. Select Unique Check Number (UCN). 3. Enter the new 8-digit UCN(UCN is not case sensitive).。
jskm包用户指南说明书
Package‘jskm’August10,2023Title Kaplan-Meier Plot with'ggplot2'Version0.5.2Date2023-08-04Description The function'jskm()'creates publication quality Kaplan-Meier plot with at risk tables below.'svyjskm()'provides plot for weighted Kaplan-Meier estimator.Depends R(>=3.4.0)License Apache License2.0Encoding UTF-8Imports ggplot2,ggpubr,survival,survey,scalesRoxygenNote7.2.3URL https:///jinseob2kim/jskmBugReports https:///jinseob2kim/jstable/issuesSuggests testthat,knitr,rmarkdownVignetteBuilder knitrNeedsCompilation noAuthor Jinseob Kim[aut,cre](<https:///0000-0002-9403-605X>),Zarathu[cph,fnd]Maintainer Jinseob Kim<*********************>Repository CRANDate/Publication2023-08-0922:30:02UTCR topics documented:jskm (2)svyjskm (4)Index712jskm jskm Creates a Kaplan-Meier plot for survfit object.DescriptionCreates a Kaplan-Meier plot with at risk tables below for survfit object.Usagejskm(sfit,table=FALSE,xlabs="Time-to-event",ylabs=NULL,xlims=c(0,max(sfit$time)),ylims=c(0,1),surv.scale=c("default","percent"),ystratalabs=names(sfit$strata),ystrataname="Strata",timeby=signif(max(sfit$time)/7,1),main="",pval=FALSE,pval.size=5,pval.coord=c(NULL,NULL),pval.testname=F,marks=TRUE,shape=3,legend=TRUE,legendposition=c(0.85,0.8),ci=FALSE,subs=NULL,label.nrisk="Numbers at risk",bel.nrisk=10,linecols="Set1",dashed=FALSE,cumhaz=F,cluster.option="None",cluster.var=NULL,data=NULL,ndmark=NULL,showpercent=F,status.cmprsk=NULL,linewidth=0.75,...)jskm3Argumentssfit a survfit objecttable logical:Create a table graphic below the K-M plot,indicating at-risk numbers?xlabs x-axis labelylabs y-axis labelxlims numeric:list of min and max for x-axis.Default=c(0,max(sfit$time))ylims numeric:list of min and max for y-axis.Default=c(0,1)surv.scale scale transformation of survival curves.Allowed values are"default"or"per-cent".ystratalabs character list.A list of names for each strata.Default=names(sfit$strata)ystrataname The legend name.Default="Strata"timeby numeric:control the granularity along the time-axis;defaults to7time-points.Default=signif(max(sfit$time)/7,1)main plot titlepval logical:add the pvalue to the plot?pval.size numeric value specifying the p-value text size.Default is5.pval.coord numeric vector,of length2,specifying the x and y coordinates of the p-value.Default values are NULLpval.testname logical:add’(Log-rank)’text to p-value.Default=Fmarks logical:should censoring marks be added?shape what shape should the censoring marks be,default is a vertical linelegend logical.should a legend be added to the plot?legendposition numeric.x,y position of the legend if plotted.Default=c(0.85,0.8)ci logical.Should confidence intervals be plotted.Default=FALSEsubs=NULL,label.nrisk Numbers at risk label.Default="Numbers at risk"bel.nriskFont size of label.nrisk.Default=10linecols Character.Colour brewer pallettes too colour lines.Default="Set1","black"for black with dashed line.dashed logical.Should a variety of linetypes be used to identify lines.Default=FALSE cumhaz Show cumulative incidence function,Default:Fcluster.option Cluster option for p value,Option:"None","cluster","frailty",Default:"None"cluster.var Cluster variabledata select specific data-for reactive input,Default=NULLndmark cut-off for landmark analysis,Default=NULLshowpercent Shows the percentages on the right side.status.cmprsk Status value when competing risk analysis,Default=2nd level of status variable linewidth Line witdh,Default=0.75...PARAM_DESCRIPTIONDetailsDETAILSValuePlotAuthor(s)Jinseob Kim,but heavily modified version of a script created by Michael Way.https://github.com/michaelway/ggkm/I have packaged this function,added functions to namespace and includeda range of new parameters.Exampleslibrary(survival)data(colon)fit<-survfit(Surv(time,status)~rx,data=colon)jskm(fit,timeby=500)svyjskm Creates a Weighted Kaplan-Meier plot-svykm.object in survey pack-ageDescriptionCreates a Weighted Kaplan-Meier plot-svykm.object in survey packageUsagesvyjskm(sfit,xlabs="Time-to-event",ylabs="Survival probability",xlims=NULL,ylims=c(0,1),ystratalabs=NULL,ystrataname=NULL,surv.scale=c("default","percent"),timeby=NULL,main="",pval=FALSE,pval.size=5,pval.coord=c(NULL,NULL),pval.testname=F,legend=TRUE,legendposition=c(0.85,0.8),ci=NULL,linecols="Set1",dashed=FALSE,cumhaz=F,design=NULL,subs=NULL,table=F,label.nrisk="Numbers at risk",bel.nrisk=10,ndmark=NULL,showpercent=F,linewidth=0.75,...)Argumentssfit a svykm objectxlabs x-axis label,Default:’Time-to-event’ylabs y-axis label.xlims numeric:list of min and max for x-axis.Default:NULLylims numeric:list of min and max for y-axis.Default:c(0,1)ystratalabs character list.A list of names for each strata.Default:NULLystrataname The legend name.Default:’Strata’surv.scale scale transformation of survival curves.Allowed values are"default"or"per-cent".timeby numeric:control the granularity along the time-axis;defaults to7time-points.main plot title,Default:”pval logical:add the pvalue to the plot?,Default:FALSEpval.size numeric value specifying the p-value text size.Default is5.pval.coord numeric vector,of length2,specifying the x and y coordinates of the p-value.Default values are NULLpval.testname logical:add’(Log-rank)’text to p-value.Default=Flegend logical.should a legend be added to the plot?Default:TRUElegendposition numeric.x,y position of the legend if plotted.Default:c(0.85,0.8)ci logical.Should confidence intervals be plotted.Default=NULLlinecols Character.Colour brewer pallettes too colour lines.Default:’Set1’,"black"for black with dashed line.dashed logical.Should a variety of linetypes be used to identify lines.Default:FALSE cumhaz Show cumulaive incidence function,Default:Fdesign Data design for reactive design data,Default:NULLsubs=NULL,table logical:Create a table graphic below the K-M plot,indicating at-risk numbers?label.nrisk Numbers at risk label.Default="Numbers at risk"bel.nriskFont size of label.nrisk.Default=10ndmark cut-off for landmark analysis,Default=NULLshowpercent Shows the percentages on the right side.linewidth Line witdh,Default=0.75...PARAM_DESCRIPTIONDetailsDETAILSValueplotExampleslibrary(survey)data(pbc,package="survival")pbc$randomized<-with(pbc,!is.na(trt)&trt>0)biasmodel<-glm(randomized~age*edema,data=pbc)pbc$randprob<-fitted(biasmodel)dpbc<-svydesign(id=~1,prob=~randprob,strata=~edema,data=subset(pbc,randomized)) s1<-svykm(Surv(time,status>0)~sex,design=dpbc)svyjskm(s1)Indexjskm,2svyjskm,47。
同济曙光公路隧道设计软件使用说明
计算结果显示在对话框中,如下:
单击
2
,可生成隧道建筑限界图。
同济曙光 GeoFBA2D 公路隧道设计模块
2、隧道衬砌横断面
在菜单中选择 下对话框:
下的
,会弹出如
输入所处的围岩类别、隧道是否设置仰拱和衬砌横断面厚度,程序会计算出以下各 值:
h1 墙高,单位:m; a 圆心 o1,o2 之间的距离,单位:m; θ1 圆弧 o1 的圆心角的一半,单位:度; d0 衬砌断面厚度,单位:m; d1 衬砌断面厚度,单位:m;(变截面时才有该值); h2 仰拱高度,单位:m; d2 仰拱厚度,单位:m; 注:以上各值可以在一定数值范围内作手动修改。
同济曙光 GeoFBA2D 公路隧道设计模块
1、隧道建筑限界
隧道建筑界限是指为了保证隧道内各种交通的正常运行与安全,在一定宽度和高度
的空间范围内任何障碍物不得侵入的限界。在设计中,任何部分(包括隧道本身的通
风、照明、安全、监控及内装的附属设施)均不得侵入隧道的建筑限界内。它是决定隧
道内轮廓尺寸的依据。一般建筑限界由行车道宽度(W),侧向宽度(L),人行道
呈松软结构 粘性土呈易蠕动的 松软结构,砂性土 呈潮湿松散结构
拱部无支护 时,可产生较 大的坍塌,侧 壁有时失去稳 定
围岩易坍塌, 处理不当会出 现大坍塌,侧 壁经常小坍 塌;浅埋时易 出现地表下沉 (陷)或坍至 地表 围岩极易坍塌 变形,有水时 土砂常与水一 齐涌出;浅埋 时易坍至地表
注:表中 类别 和 围岩主要工程地质条件 栏,不包括特殊地质条件的围岩,
同济曙光 岩土及地下工程设计与施工分析软件 GeoFBA®V3.0
公路隧道设计模块 用户手册
同济大学地下建筑与工程系 同济大学隧道及地下工程研究所 上海软圣科技发展有限公司
GIS英语
现整理ArcGIS空间分析扩展模块涉及到术语(英汉对照)Altitude 高度,海拔,地平纬度Analysis extent 分析范围Analysis mask 分析掩码Arithmetic functions 算术函数Arithmetic operators 算术运算符Aspect 坡向Attribute table属性表Azimuth方位角,地平经度Barrier 界线、中断线、阻碍线Boolean Operators 逻辑运算符cell 单元(注:pixl 像元)cell size 单元大小cell statistics 单元统计continuous raster 连续栅格数据contour 等值线coordinate system坐标系统cost dataset 成本数据集cost weighted allcation 成本权重分配cost weighted direction 成本权重方向cost weighted distance 成本权重距离Density 密度Destination目的地Discrete raster 离散栅格数据feature 要素feature Dataset 要素数据集field 字段、域Focal functions 邻域函数Global functions全局函数Grid格网Hillshade山体阴影Histogram 直方图Interpolation 内插、插值Inverse Distance Weighted 反距离权重(插值)Kriging 克里格(插值)least-cost path 最低成本路径local functions局域函数Make permanent 生成永久文件Map Algebra 地图代数GIS英文词汇翻译GIS英文词汇翻译abscissa横坐标absolute accuracy绝对精度absolute coordinates绝对坐标absorption吸收abstraction抽取accuracy 精度across-track scanner跨径扫描仪active remote sensing主动遥感Add Data 添加数据address geocoding地址地理编码address locator地址定位器address matching地址匹配Advanced Very High Resolution Radiometer 高级甚高分辨率辐射仪agreement licensee 协议被许可人air station航摄站alidade照准仪along-track scanner沿径扫描仪alphanumeric grid字母数字网格视差立体图analog image模拟图像analysis mask分析掩模anisotropy各向异性antipode对跖点apogee远地点arc弧architecture架构archive档案argument参数arithmetic expressionaspatial data非空间数据aspect ratio纵横比astrolabe星盘atlas grid地图集网格atmospheric window大气窗口atomic clock原子钟attenuation衰减authentication身份验证author 作者autocorrelation自相关automated cartographyautomation scale自动化比例autovectorization自动矢量化axis轴azimuthal projection 方位投影backscatter后向散射band波段band ratio波段比band-pass filter带通滤波器bandwidth带宽bar scale比例尺(图形比例尺) base layer底层base station基站batch 批量batch geocoding批量地理编码batch processing批处理batch vectorization 批量矢量化bathymetric curve 等深线battleships grid战舰网格Bayesian statistics 贝叶斯统计bearing方位角Bézier curvebilinear interpolation双线性内插法binding绑定binomial distribution二项式分布biogeography生物地理学blind digitizing盲目数字化block group街区群block kriging块段克里金法bookmark 书签boolean 1.布尔数据类型; 2.布尔值Boolean operator布尔运算符boundary边界界线boundary monument界标boundary survey 边界测量bounding rectangle边界矩形Bowditch rule包狄法则break point 断点breakline断裂线browser 浏览器buffer area 缓冲区business logic 业务逻辑CAD 计算机辅助设计(computer-aided design) cadastral survey地籍测量cadastre地籍calibration 校准,定标callout line标注线camera station摄站capacity容量cardinal point方位基点cardinality基数Cartesian coordinate system 笛卡尔坐标系cartogram统计图cartographer制图员cartography制图学cartouche地图饰框catalog tree 目录树catchmentcategorical raster 类目栅格celestial sphere天球cell size栅格大小cells 栅格cellular automaton 元胞自动机census block人口普查区块census geography 人口普查地理学center 中心点centerline中心线centerpoint中点central meridian 中央子午线centroidchart 图表chi-square statistic卡方统计choropleth map面量图chroma色度chronometer天文钟circle圆circular variance圆方差civilian code民用码Clarke Belt克拉克带Clarke ellipsoid 克拉克椭球Clarke spheroid 克拉克椭球面clearinghouse(信息或服务)交换中心clinometric map坡度图code-phase GPS码相位GPScognitive map认知图coincident重叠cokriging协同克里金法command 命令command line 命令行compass north罗经北compass point罗经点compass rose罗经盘compass rule罗盘仪法则compression program 压缩程序computational geometry计算几何学conformal projection等角投影,保角投影,正形投影conformality保形性conic projection圆锥投影conjoint boundary共同边界constant azimuth恒定方位containment包含Content Standard for Digital Geospatial Metadata 数字地理空间元数据的内容标准continuous raster连续栅格contour 等高线,等值线contour drawings 等高线图,等值线图contour interval等高线间距,等值线间距contour line等高线,等值线contour tagging等高线标注,等值线标注contrast ratio对比度contrast stretch对比度扩展convergence angle收敛角conversion转换convex hull凸包coordinate geometry坐标几何学coordinate system??坐标系??coordinated universal time 协调世界时correlation相关corridor analysis走廊分析, 廊道分析county subdivision县级分区covariance协方差coverage1.覆盖面;2.ESRI图层cracking裂化Crandall rule Crandall 法则crop guide裁切参考线crop marks裁切标记cross correlation交叉相关cross covariance交叉协方差cross tabulation 交叉表cross validation交叉验证cross variogram交叉变差函数cubic convolution立方卷积插值法cultural feature人文要素cultural geography文化地理学curb approach路边通道curve fitting曲线拟合customizations 自定义cylindrical projection圆柱投影dangle length悬线长度dangle tolerancedangling arc 悬弧dasymetric mapping分区制图(多用于人口数据)data management 数据管理data table 数据表dataset 数据集datum基准DBMS 数据库管理系统(data-base management system) dead reckoning航位推测法declination 1.偏角;2.磁偏角degree slope坡度Delaunay triangulation德洛内三角delimiter分隔符demography人口统计学densify增密密度计density slicing密度分割deploy 部署或安装(硬件、软件等)depression contour洼地等高线depth contour等深线depth curve深度曲线descending node降交点desire-line analysis期望线分析desktop 桌面desktop clients 桌面客户端Desktop GIS 桌面GIS destination目标determinate flow direction确定性流向deterministic model确定性模型detrending趋势分离developable surface可展表面developer 开发人员development environment开发环境diazo process重氮晒印法difference 差异differential correction差分校正differential Global Positioning System差分全球定位系统diffusion扩散Digital elevation model 数字高程模型Digital Geographic Information Exchange Standard 数字化地理信息交换标准Digital Geographic Information Working Group 数字地理信息工作组digital image processing数字图像处理digital line graph数字线划图digital nautical chart数字海图digital number数值digital orthophoto quadrangle数字正射影像图digital orthophoto quarter quadrangle数字正射影像象限图digital raster graphic数字栅格图digital terrain elevation data??数字地形高程数据??digital terrain model数字地形模型digitizer数字化仪Dijkstra’s algorithm狄捷斯特拉算法dilution of precision精度衰减因子dimension 尺寸,维,维度directed network flow有向网络流direction 方向Dirichlet tessellation荻瑞斯莱特镶嵌,荻瑞斯莱特剖分discovery 发现discrete data离散数据discrete digitizing离散数字化discrete raster离散栅格数据displacement 位移display scale显示比例display unit显示单位dissemination 扩散,传播distance距离distance decay 距离衰减distance unit 距离单位distortion变形district 地区dithering抖动diurnal arc周日弧docking停靠Doppler shift 多普勒位移Doppler-aided GPS多普勒辅助GPSdot density map点密度图dot distribution map点分布图double precision双精度double-coordinate precision 双坐标精度Douglas-Peucker algorithm 道格拉斯-普克算法downstream下游drafting描绘draping叠加,披盖drift漂移drive-time area驾车时间区drop-down list 下拉列表drum scanner鼓式扫描仪Dual Independent Map Encoding 双重独立坐标地图编码dynamic zoom 动态缩放easting东距eccentricity偏心率ecliptic黄道edge边edgematching边缘匹配elastic transformation弹性变形electromagnetic spectrum 电磁光谱electronic atlas电子地图集electronic navigational chart 电子航海图element元素elevation guide高程指南ellipsoid 椭球体ellipticity椭圆率end offset末端偏移endpoint 端点enterprise GIS企业级GISentity objects 实体对象envelope包络矩形environmental model环境模型ephemeris星历表equal competition area平等竞争区equal-area classification等积分类equal-area projection等积投影equal-interval classification 等距分类equatorial plane 赤道面equidistant projection等距投影ESRI Data ESRI 数据event事件exponent指数export导出exposure stationexpression表达式extended 扩展extent范围extrapolation外插法extrude 拉伸extrusion拉伸face平面false easting东移假定值false northing北移假定值feature 要素Federal Geographic Data Committee 美国联邦地理数据委员会field 字段fill 填充圆角filter过滤器,过滤flow direction流向flow map流向图focal analysis 邻域分析focal functions 邻域函数form 地形,形式fractal分形framework 框架frequency频率from-node起点Full Extent完整范围fuzzy boundary模糊边界fuzzy classification模糊分类fuzzy set模糊集合fuzzy tolerance模糊容差Gauss-Krüger projection高斯-克吕格投影generalization概化,(数据库或地图的)综合技术geocentric coordinate system??地心坐标系??geocode地理编码geocoding 地理编码geocomputation地理计算geodata 地理数据geodatabase 地理数据库geodatabase data model地理数据库数据模型geodataset地理数据集geodesic测地线geodetic 测地学geographic coordinate system 地理坐标系geographic information science地理信息学Geographic Information System (GIS) 地理信息系统(GIS) geography地理学geography level地理等级Geography Markup Language地理标记语言geoid大地水准面geoid-ellipsoid separation大地水准面-地球椭球面分离geolocation几何定位geometric coincidence几何重叠geometric correction几何校正geometric dilution of precision 几何精度衰减因子geometric network几何网络geometric transformation几何变换geometry 几何学geomorphology地貌学geoprocessing 地理处理georectification地理校正georeference 地理参考georeferencing地理参考georelational data model地理相关数据模型geospatial data地理空间数据geospatial data clearinghouse 地理空间数据交换中心geospatial technology地理空间技术geospecific model地学相关模型geostationary对地静止geostatistics地理统计学geosynchronous对地同步geotypical model典型地理模型GIS地理信息系统GIScience地理信息学Global Navigation Satellite System 全球卫星导航系统Global Positioning System全球定位系统global spatial data infrastructure全球空间数据基础架构glyph字形gnomonic projection日晷投影Go to XY 转至XYGPS全球定位系统grad梯度(原英文单词可能有误) gradian梯度gradient坡度,斜率graticule经纬网gravimeter重力计gravimetric geodesy大地重力学gravity model引力模型gray scale灰度great circle大圆Greenwich mean time 格林尼治标准时间Greenwich meridian格林尼治子午线grid 网格grid cell网格单元ground 大地,地面GUI GUI (图形用户界面) hachure晕渲线Hamiltonian circuit汉密尔顿回路Hamiltonian path汉密尔顿路径height高度Helmert transformation线性正形变换hemisphere半球heuristic试探算法,试探函数hexadecimal十六进制High Accuracy Reference Network高精度基准网High Precision Geodetic Network高精度大地基准网hillshading 坡面阴影,晕渲histogram equalization直方图均衡化hole孔洞horizontal geodetic datum 水平大地基准human geography人文地理学hydrography水文地理学hydrologic cycle水循环hydrology水文学hyperlink 超链接hypsography测高学,地势图hypsometric curve等高线hypsometric map地势图hypsometry测高法Identify 识别identity link一致性链接illumination照度image coordinate图像坐标image data图像数据image division图像除法运算image scale图像比例尺image space图像空间imager成像仪impedance阻抗import导入IMS IMS (网络地图服务器,Internet Map Server) incident energy入射能量index索引index map索引图infrared scanner红外扫描仪infrastructure基础设施inset map插图instance 实例instantiation实例化integer data整数型数据integration 集成intensity亮度interactive vectorization 交互矢量化interchange format交换格式interferogram干涉图intermediate data中间数据international date line 国际日期变更线international meridian 国际子午线International Organization for Standardization 国际标准化组织interpolation内插法interrupted projection分瓣投影intrinsic stationarity内在稳态inverse distance weighted interpolation反距离加权内插法irregular triangular mesh不规则三角网irregular triangular surface model不规则三角面模型isanomal等地平isarithm等数线isobar等压线isochrone等时线isohyet等雨量线isolines 等值线isometric line等容线isopleth等值线isotherm等温线isotropy无向性iteration 迭代iterative procedure迭代过程jaggies 锯齿Jenks’ optimization詹克斯优化joint operations graphic联合作战地图junction element交点元素kernel内核key identifier 主标识符kinematic positioning动态定位knockout分离区(信号或通讯的中断) known point已知点Kohonen map柯霍南图kriging克里金法label标签labeling 标注lag间隔land cover土地覆盖land information system土地信息系统land use土地利用landform地形landmark地标Landsat陆地卫星landscape ecology景观生态学large scale大比例尺lattice点阵面layers 层layout布局least squares 最小二乘法level水平leveling水平测量library 类库license 许可证license agreement 许可协议licensee 被许可人lidar激光雷达line线line feature线要素line of sight视线line simplification线条简化line smoothing线条平滑linear dimension线性尺寸linear feature线性要素linear interpolation线性内插法linear referencing线性参考(用于交通GIS) linear unit线性单位localization本地化location query位置查询location-allocation位置分配location-based services 基于位置的服务logarithm对数logical network逻辑网络loop traverse闭合导线loxodrome恒向线magnetic bearing磁方位magnetometer磁力计majority resampling 多数重新采样map algebra地图代数map collar地图边缘map display地图显示map document地图文档map element地图元素map extent地图范围map feature 地图要素map generalization 地图概化,地图综合map projection地图投影map query地图查询map readingmap scale地图比例尺map series地图系列map service地图服务map sheet地图map style地图风格map unit地图单位mapping 制图mask掩模mass point散点mathematical operator 数学运算符matrix矩阵mean center平均中心mean sea level平均海平面mean stationarity平均稳态Measure 测量measure valuemeasurement residual测量残差median中间数median center平均中心mental map意境图meridian子午线metadata 元数据metropolitan statistical area 大都市统计区microdensitometer测微密度计micrometer1.测微计;2.微米minimum bounding rectangle 最小边界矩形minimum map unit最小地图单位minor axis短轴misclosure闭合差Mitigation 减轻mobile clients 移动客户端Mobile GIS移动GISmodel模型monument标石morphology形态学mosaic镶嵌图mud pit 泥浆池multichannel receiver多频道接收器multidimensional data多维数据multipart feature多部分要素multipatch feature带纹理要素multiplexing channel receiver多路复用频道接收器multipoint feature多点要素multispectral scanner多光谱扫描仪multivariate analysis多元分析My Places 我的位置National Spatial Data Infrastructure美国国家空间数据基础设施natural breaks classification??自然分类??navigation导航NavstarNavstar (美国国防部全球定位系统联合服务项目)neighborhood statistics邻域统计networked 联网node节点noncoterminous polygon 非相连多边形nonversioned 非版本normal distribution 正态分布normal probability distribution正态概率分布northing北距oblate ellipsoid扁椭球体oblate spheroid扁椭球面offset 偏移oill spill 溢油(原文oill 应为Oil)Online GIS 在线GISOpen Geodata Interoperability Specification开放地理空间数据互操作规范Open Geospatial Consortium开放地理空间协会open traverse不闭合导线OpenGIS ConsortiumOpenGIS 协会OpenLSOpenLS (OpenGIS所包含的Open Location Service) operand运算数operator运算符optical center光学中心ordinal data序数数据ordinary kriging普通克里金法ordinate纵坐标Ordnance Survey英国陆地测量局orientation方向origin point 原点orthogonal offset正交偏移orthographic正交orthomorphic正形orthophoto 正射影像orthophotograph正射影像orthophotoquad无等高线正射影像orthophotoscope正射投影仪orthorectification 正射校正outlier 异常值outline vectorization轮廓矢量化output data 输出数据overlay重叠overprinting套印overview map总览图pan平移panchromatic sharpening 全色锐化parallax bar视差尺parameter参数parametric curve参数曲线passive remote sensing被动遥感passive sensors被动传感器path路径pathfinding路径搜寻peak山峰percent slope斜率perigee近地点persistence持久性photogeology摄影地质学photogrammetry摄影测量学photomap摄影地图photometer光度计physical geography自然地理学pit洼地,山谷placement 放置planar coordinate system 平面坐标系planar enforcement平面强化planarize平面化plane平面planimetric map平面图planimetric shift平面位移platform平台plot 绘图plotter绘图仪plumb line铅垂线。
geoslope中文基本使用教程
岩土工程数值计算方法上机指导书目录软件的下载与安装 (3)1、软件下载 (3)2、解压缩安装包 (4)3、软件安装 (6)试验一 SlopeW软件使用 (9)一、试验目的 (9)二、试验步骤 (9)(1)软件的启动 (9)(2)选择软件使用许可 (10)(3)设置页面 (10)(4)设置比例尺 (11)(5)选择网格显示开关 (12)(6)绘制坐标轴 (12)(7)绘制边坡轮廓线和土层分界线 (14)(8)计算设置 (17)(9)输入材料参数 (20)(10)指定材料分区 (23)(11)输入滑面相关信息 (28)(12)绘制水位线 (30)(13)模型检验 (32)(14)计算 (33)(15)查看计算结果 (35)(16)后处理模块 (35)三、试验成果要求 (36)试验二 SigmaW软件使用 (37)一、试验目的 (37)二、试验步骤 (37)(1)软件的启动 (37)(2)选择软件使用许可 (38)(3)设置页面 (38)(4)设置比例尺 (39)(5)选择网格显示开关 (40)(6)绘制坐标轴 (40)(7)绘制轮廓线和土层分界线 (42)(8)计算设置 (45)(9)输入材料参数 (46)(10)绘制网格并指定材料分区 (49)(11)添加荷载 (54)(12)添加边界条件 (56)(13)模型检验 (60)(14)计算 (61)(15)查看计算结果 (63)(16)后处理模块 (63)三、试验成果要求 (64)试验三、Sarma程序上机指导 (65)一、试验目的 (65)二、试验步骤 (65)1、软件下载 (65)2、对已存在的sarma数据文件进行修改 (66)3、建立一个新的项目 (67)三、试验成果要求 (71)四、各种计算方法的综合应用 (72)软件的下载与安装1、软件下载下载地址:http://210.43.130.140/officev5.rar2、解压缩安装包3、软件安装试验一SlopeW软件使用一、试验目的了解目前用于边坡稳定刚体极限平衡分析的主要方法的基本原理与异同,学习使用SlopeW软件采用多种分析方法计算边坡的稳定性。
geofram中文教程-操作步骤
致谢第二章操作步骤2.1 打开Geoframe 4在上面的图标中打开Geoframe 4.0.3选打开Geoframe 打开该软件。
2.2建立一个新工区1,在Project Manager中选Project Management 选Create a new project在Create a new project中输入工程名字(名字开头不能用数字),密码,验正密码点OK(稍候)。
在storage setting中点OK。
系统问是否做地震工程延展(Create charisma project extension)NO→OK。
2,Edit project parameter中unit/coordinate→①display→set unit→选Metric→OKset projectont→create出现CreateCoordinate System对话框在其中的Projection中选UTM Coordinate system.选中Hemisphere 中的Northern Tg.UTM zone number写50→OK。
②Storage set unit→选Metric→OKset projection→create出现Create Coordinate System对话框在其中的Projection中选UTM Coordinate system.选中Hemisphere 中的Northern Tg. UTM zone number写50→OK致谢2.3 加载地震数据(以加载3D地震数据为例)1,应用管理对话框中(Application manager)选中用鼠标1键单击seismic出现seismic 对话框,在该目录中用鼠标1键双击IESX(多探测地震综合解释)2,在IESX Session Manager对话框中点Applications→Data manage→Load seismic在以下框中(在此框中可以按住Ctrl键选Application此时可以对要打开的对话框进行显示参数设置,如大小,名字,是否以图标显示)Load mode→选user defined 3D.点Define storage致谢出现如下对话框:将地震资料的三点坐标中first inline numberlast inline numberstart line at input CDP End line at input CDP 四项写上。
SparseGrid包用户指南说明书
Package‘SparseGrid’October12,2022Type PackageTitle Sparse grid integration in RVersion0.8.2Date2012-07-31Author Jelmer YpmaMaintainer Jelmer Ypma<**************.uk>Suggests testthat,statmod,mvtnormDescription SparseGrid is a package to create sparse grids for numerical integra-tion,based on code from www.sparse-grids.deLicense GPLNeedsCompilation noRepository CRANDate/Publication2013-07-3121:18:24R topics documented:createIntegrationGrid (1)createMonteCarloGrid (3)createProductRuleGrid (4)createSparseGrid (6)readASCGrid (8)Index10createIntegrationGrid Create integration grid with the least number of nodes,either using asparse grid or a product rule grid.12createIntegrationGridDescriptionThis function creates nodes and weights that can be used for integration.It is a convenience function that calls createSparseGrid and createProductRuleGrid and returns the grid with the least number of nodes.Typically,a grid created by the product rule will only contain fewer nodes than a sparse grid for very low dimensions.UsagecreateIntegrationGrid(type,dimension,k,sym=FALSE)Argumentstype String or function for type of1D integration rule,can take on values"KPU"Nested rule for unweighted integral over[0,1]"KPN"Nested rule for integral with Gaussian weight"GQU"Gaussian quadrature for unweighted integral over[0,1](Gauss-Legendre)"GQN"Gaussian quadrature for integral with Gaussian weight(Gauss-Hermite)func any function.Function must accept level k and return a list with two el-ements nodes and weights for univariate quadrature rule with polynomialexactness2k-1.dimension Dimension of the integration problem.k Accuracy level.The rule will be exact for polynomials up to total order2k-1.sym(optional)only used for own1D quadrature rule(type not"KPU",...).If sym is supplied and not FALSE,the code will run faster but will produce incorrectresults if1D quadrature rule is asymmetric.ValueThe return value contains a list with nodes and weightsnodes matrix with a node in each rowweights vector with corresponding weightsAuthor(s)Jelmer YpmaReferencesFlorian Heiss,Viktor Winschel,Likelihood approximation by numerical integration on sparse grids, Journal of Econometrics,V olume144,Issue1,May2008,Pages62-80,http://www.sparse-grids.deSee AlsocreateSparseGrid createProductRuleGrid createMonteCarloGrid integrate pmvnormcreateMonteCarloGrid3Examples#load librarylibrary( SparseGrid )#create integration gridint.grid<-createIntegrationGrid( GQU ,dimension=3,k=5)createMonteCarloGrid Create a multidimensional grid of nodes and weights for Monte CarlointegrationDescriptionSimulate nodes using a random number generator supplied by the user,and combine these with a vector of equal weights into a list.Sparse grids can be created with the function createSparseGrid.UsagecreateMonteCarloGrid(rng,dimension,num.sim,...)Argumentsrng function that generates random numbers.Thefirst argument of this function should be called n.Examples are the R built-in functions rnorm and runif forrandom numbers from a standard normal or uniform distribution.dimension dimension of the integration problem.num.sim number of simulated integration nodes....arguments that will be passed to the random number generator rng.ValueThe return value contains a list with nodes and weightsnodes matrix with a node in each rowweights vector with corresponding weightsAuthor(s)Jelmer YpmaSee AlsocreateSparseGrid createProductRuleGrid createIntegrationGrid integrate pmvnormExamples#load librarylibrary( SparseGrid )#set random seedset.seed(3141)#Create Monte Carlo integration grids#1.with draws from a uniform distributionmc.grid<-createMonteCarloGrid(runif,dimension=2,num.sim=10)mc.grid#2.with draws from a standard normal distributionmc.grid<-createMonteCarloGrid(rnorm,dimension=3,num.sim=1000)#3.with draws from a normal distribution with mean=2and sd=5mc.grid<-createMonteCarloGrid(rnorm,dimension=3,num.sim=1000,mean=2,sd=5) createProductRuleGrid Create a multidimensional grid of nodes and weights for integrationDescriptionCreates nodes and weights according to the product rule,combining1D nodes and weights.Sparse grids can be created with the function createSparseGrid.UsagecreateProductRuleGrid(type,dimension,k,sym=FALSE)Argumentstype String or function for type of1D integration rule,can take on values"KPU"Nested rule for unweighted integral over[0,1]"KPN"Nested rule for integral with Gaussian weight"GQU"Gaussian quadrature for unweighted integral over[0,1](Gauss-Legendre)"GQN"Gaussian quadrature for integral with Gaussian weight(Gauss-Hermite)func any function.Function must accept level k and return a list with two el-ements nodes and weights for univariate quadrature rule with polynomialexactness2k-1.dimension dimension of the integration problem.k Accuracy level.The rule will be exact for polynomial up to total order2k-1.sym(optional)only used for own1D quadrature rule(type not"KPU",...).If sym is supplied and not FALSE,the code will run faster but will produce incorrectresults if1D quadrature rule is asymmetric.ValueThe return value contains a list with nodes and weightsnodes matrix with a node in each rowweights vector with corresponding weightsAuthor(s)Jelmer YpmaReferencesFlorian Heiss,Viktor Winschel,Likelihood approximation by numerical integration on sparse grids, Journal of Econometrics,V olume144,Issue1,May2008,Pages62-80,http://www.sparse-grids.deSee AlsocreateSparseGrid createMonteCarloGrid createIntegrationGrid integrate pmvnormExamples#load librarylibrary( SparseGrid )#define function to be integrated#g(x)=x[1]*x[2]*...*x[n]g<-function(x){return(prod(x))}##Create sparse integration grid to approximate integral of a function with uniform weights #sp.grid<-createSparseGrid( KPU ,dimension=3,k=5)#number of nodes and weightslength(sp.grid$weights)#evaluate function g in nodesgx.sp<-apply(sp.grid$nodes,1,g)#take weighted sum to get approximation for the integralval.sp<-gx.sp%*%sp.grid$weights##Create integration grid to approximate integral of a function with uniform weights#pr.grid<-createProductRuleGrid( KPU ,dimension=3,k=5)#number of nodes and weightslength(pr.grid$weights)#evaluate function g in nodesgx.pr<-apply(pr.grid$nodes,1,g)#take weighted sum to get approximation for the integralval.pr<-gx.pr%*%pr.grid$weights##Create integration grid to approximation integral using Monte Carlo simulation#set.seed(3141)mc.grid<-createMonteCarloGrid(runif,dimension=3,num.sim=1000)#number of nodes and weightslength(mc.grid$weights)#evaluate function g in MC nodesgx.mc<-apply(mc.grid$nodes,1,g)#take weighted sum to get approximation for the integral#the weights are all equal to1/1000in this caseval.mc<-gx.mc%*%mc.grid$weightsval.spval.prval.mccreateSparseGrid Create sparse gridDescriptionCreates nodes and weights that can be used for sparse grid integration.Based on Matlab code by Florian Heiss and Viktor Winschel,available from http://www.sparse-grids.deUsagecreateSparseGrid(type,dimension,k,sym=FALSE)Argumentstype String or function for type of1D integration rule,can take on values"KPU"Nested rule for unweighted integral over[0,1]"KPN"Nested rule for integral with Gaussian weight"GQU"Gaussian quadrature for unweighted integral over[0,1](Gauss-Legendre)"GQN"Gaussian quadrature for integral with Gaussian weight(Gauss-Hermite)func any function.Function must accept level k and return a list with two el-ements nodes and weights for univariate quadrature rule with polynomialexactness2k-1.dimension dimension of the integration problem.k Accuracy level.The rule will be exact for polynomial up to total order2k-1.sym(optional)only used for own1D quadrature rule(type not"KPU",...).If sym is supplied and not FALSE,the code will run faster but will produce incorrectresults if1D quadrature rule is asymmetric.ValueThe return value contains a list with nodes and weightsnodes matrix with a node in each rowweights vector with corresponding weightsAuthor(s)Jelmer YpmaReferencesFlorian Heiss,Viktor Winschel,Likelihood approximation by numerical integration on sparse grids, Journal of Econometrics,V olume144,Issue1,May2008,Pages62-80,http://www.sparse-grids.deSee AlsocreateProductRuleGrid createMonteCarloGrid createIntegrationGrid integrate pmvnorm Examples#load librarylibrary( SparseGrid )#define function to be integrated#g(x)=x[1]*x[2]*...*x[n]g<-function(x){return(prod(x))}##Create sparse integration grid to approximate integral of a function with uniform weights #sp.grid<-createSparseGrid( KPU ,dimension=3,k=5)#number of nodes and weightslength(sp.grid$weights)#evaluate function g in nodesgx.sp<-apply(sp.grid$nodes,1,g)#take weighted sum to get approximation for the integralval.sp<-gx.sp%*%sp.grid$weights##Create integration grid to approximate integral of a function with uniform weights #pr.grid<-createProductRuleGrid( KPU ,dimension=3,k=5)#number of nodes and weightslength(pr.grid$weights)#evaluate function g in nodesgx.pr<-apply(pr.grid$nodes,1,g)#take weighted sum to get approximation for the integralval.pr<-gx.pr%*%pr.grid$weights##Create integration grid to approximation integral using Monte Carlo simulation#set.seed(3141)mc.grid<-createMonteCarloGrid(runif,dimension=3,num.sim=1000)#number of nodes and weightslength(mc.grid$weights)#evaluate function g in MC nodesgx.mc<-apply(mc.grid$nodes,1,g)#take weighted sum to get approximation for the integral#the weights are all equal to1/1000in this caseval.mc<-gx.mc%*%mc.grid$weightsval.spval.prval.mcreadASCGrid Read integration grid fromfileDescriptionThis function reads nodes and weights with the format of the.ascfiles available from http:// www.sparse-grids.deUsagereadASCGrid(filename,dimension)Argumentsfilename name of thefile that you want to read.The extension should be included.dimension dimension of the grid that you want to read.ValueThe return value contains a list with nodes and weightsnodes matrix with a node in each rowweights vector with corresponding weightsAuthor(s)Jelmer YpmaReferencesFlorian Heiss,Viktor Winschel,Likelihood approximation by numerical integration on sparse grids, Journal of Econometrics,V olume144,Issue1,May2008,Pages62-80,http://www.sparse-grids.deSee AlsocreateSparseGrid createProductRuleGrid createIntegrationGrid integrate pmvnormExamples#load librarylibrary( SparseGrid )##Not run:#read file(e.g.after downloading from www.sparse-grids.de)ReadASCFile(filename= GQU_d3_l5.asc ,dimension=3)##End(Not run)Index∗distributioncreateIntegrationGrid,1createMonteCarloGrid,3createProductRuleGrid,4createSparseGrid,6readASCGrid,8∗multivariatecreateIntegrationGrid,1createMonteCarloGrid,3createProductRuleGrid,4createSparseGrid,6readASCGrid,8 createIntegrationGrid,1,3,5,7,9 createMonteCarloGrid,2,3,5,7 createProductRuleGrid,2,3,4,7,9 createSparseGrid,2,3,5,6,9integrate,2,3,5,7,9pmvnorm,2,3,5,7,9readASCGrid,8SparseGrid(createSparseGrid),610。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(5) mdf2d: This directory contains routines for further subdividing the convex decomposition of
wa ipsohlytogocnaalllirnecgliuodnebEaQseDdIoSn2.aTmheeshlediustmridbuf2ti.ofncofnutnacitnioinng
error code indicator produced by some routines; if it is nonzero, see the Errcodes le for a brief
description of the error.
(1) general: This directory contains general non-geometric routines, e.g. initializing common
(8) basic3d: This directory contains basic 3-D geometric routines, e.g. compute the circumsphere,
volume, minimum solid angle, or radius ratio of a tetrahedron. Routines which a user may wish to call include BARYTH, CCSPH, OPSIDE, RADRTH, SANGMN, VOLTH.
GEOMPACK Users' Guide
Barry Joe Department of Computing Science
University of Alberta Edmonton, Alberta, Canada T6G 2H1
Phone: (403) 492-5757 Email: barry@cs.ualberta.ca
July 15, 1993
1 Introduction
GEOMPACK is a mathematical software package, written in standard Fortran 77, for the GEneration Of Meshes using GEOMetric algorithms. An introduction to GEOMPACK is provided in
or more main driver programs (in les with names beginning summary and statistical information to output unit 7. The
main programs may be modi ed depending on the application. Some directories have a Data
This work was partially supported by a grant from the Natural Sciences and Engineering Research Council of Canada.
1
(2) basic2d: This directory contains basic 2-D geometric routines, e.g. compute the signed area
2 Directories of routines
Currently, the routines of GEOMPACK are organized into the 15 directories listed below. Each
dwiirtehctDorRy )c.oSnotaminesmaaMinapkreogrleamans dwornitee
Joe91c]. The routines of this package are available via anonymous ftp from menaik.cs.ualberta.ca; see the pub/geompack directory. This user guide only covers material not described in the ref-
(10) deltrkd: This directory contains routines for constructing a k-D Delaunay triangulation (k
2) using the incremental approach and local transformations as described in Joe93a]. Routines which a user may wish to call include BNSRTK, CCSPHK, DTRIMK, DTRISK, DTRIWK, SMPXLS, WALKTK.
(9) deltr3d: This directory contains routines for constructing a 3-D Delaunay triangulation using
the incremental approach and local transformations (or face swaps) as described in Joe89, Joe91a], and for improving a 3-D triangulation based on a tetrahedron shape measure such as minimum solid angle or radius ratio Joe93c, LiJ93]. Routines which a user may wish to call include BNSRT3, DTRIS3, DTRIW3, IMPTR3, TETLST, WALKT3.
blocks, sorting, returning CPU time. The only non-portable routines of the package are the
timer routines in les gtime.f and clock.c; the Fortran GTIME routine calls the C clock
routine. If the Unix operating system is not used, then the timer routines should be replaced or the calls to GTIME in the main programs should be removed. Routines which a user may wish to call (in a main program or subroutine) include DHPSRT, GTIME, IHPSRT, INITCB, PRIME, RANDPT, ROTIAR.
JoS86]. Routines the user-supplied
which a user may mesh distribution
function UMDF2 may be modi ed, and UMDF2 may be renamed.
(6) triang2d: This directory contains routines for generating a Delaunay triangular mesh in each
(3) vispol: This directory contains routines for computing the visibilitห้องสมุดไป่ตู้ polygon of a simple
polygon from a viewpoint using the algorithm in JoS87, Joe90]. Routines which a user may wish to call include ROTIPG, VISPOL, VISVRT, VORNBR.
erences, so algorithmic details and experimental results are not provided here. In Section 2, the organization of GEOMPACK into directories of routines is brie y described. In Section 3, the input format and data structures are brie y described for the method of JoS86] which generates convex polygon decompositions and triangular meshes in 2-D polygonal regions. In Section 4, the input format and data structures are brie y described for the method of Joe93b] which generates convex polyhedron decompositions and tetrahedral meshes in 3-D polyhedral regions.
subdirectory which contains input les, e.g. describing polygonal or polyhedral regions. In addition
to the directories, there is an Errcodes le of error codes and descriptions. IERR is an integer
the incremental approach and edge swaps; they are similar to the routines in Slo87] except that a bounding triangle is not needed. Routines which a user may wish to call include BNSRT2, DTRIS2, DTRIW2, WALKT2.