三角函数的定义
高中数学三角函数专题:三角函数定义
高中数学三角函数专题:三角函数定义第一部分:三角函数的定义知识点一:直角三角形中三角函数定义。
“正”的含义:“正”指的是“正对面”,在直角三角形中指的是角的“对边”。
“余”的含义:“余”指的是“余光”,只有站在相邻的位置需要用余光去看对方,在直角三角形中指的是是角的“邻边”。
“弦”的含义:“弦”指的是直角三角形中“勾、股、弦”中的“弦”,指的是“斜边”。
“切”的含义:“切”指的是“直线与圆相切”,直线与圆相切最重要的性质是:圆心和切点的连线与切线垂直,“切”指的是“垂直”。
在直角三角形ABC 中,如下图所示:||||sin AC BC A =;||||cos AC AB A =;||||tan AB BC A =。
||||sin AC AB C =;||||cos AC BC C =;||||tan BC AB C =。
知识点二:特殊角三角函数值。
第一类直角三角形:三个内角分别为:030,060,090。
性质:在直角三角形中,030的对边为斜边的一半。
如下图所示:假设:030的对边a AB =||。
根据030的对边等于斜边的一半得到:a AB AC 2||2||==。
根据勾股定理得到:a BC a a a a a AB AC BC 3||34)2(||||||22222222=⇒=-=-=-=。
根据三角函数的定义得到:212||||30sin 0===a a AC AB ,2323||||30cos 0===a a AC BC ,33313||||30tan 0====a a BC AB 。
根据三角函数的定义得到:2323||||60sin 0===a a AC BC ,212||||60cos 0===a a AC AB ,33||||60tan 0===aaAB BC 。
第二类直角三角形:三个内角分别为:045,045,090。
性质:等腰直角三角形,两条直角边相等。
如下图所示:假设:a BC AB ==||||。
三角函数
三角函数三角函数是数学中常见的一类关于角度的函数。
也就是说以角度为自变量,角度对应任意两边的比值为因变量的函数叫三角函数,三角函数将直角三角形的内角和它的两个边长度的比值相关联,也可以等价地用与单位圆有关的各种线段的长度来定义。
三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。
在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。
常见的三角函数包括正弦函数(SinX)、余弦函数(Cosx)和正切函数(tanx)。
在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、半正矢函数等其他的三角函数。
不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。
三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。
另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。
常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。
三角函数在数学中属于一类重要的周期函数也是初等函数里的超越函数的一类函数。
它们本质上是任意角的集合与一个比值的集合的变量之间的映射。
由于三角函数具有周期性,所以并不具有单射函数(亦称为单调函数)意义上的反函数。
三角函数在复数中有重要的应用,在物理学中也是常用的工具。
例如在天文测量、大地测量、工程测量、机械制造、力学、光学、电学、地球物理学及图像处理等众多学科和领域中都有广泛的应用。
三角函数一般用于计算三角形(通常为直角三角形)中未知长度的边和未知的角度,在导航系统,工程学以及物理学方面都有广泛的用途。
其在基本物理中的一个常见用途是将矢量转换到笛卡尔坐标系中。
现代比较常用的三角函数有6个,其中sin和cos还常用于模拟周期函数现象,比如说声波和光波,谐振子的位置和速度,光照强度和白昼长度,过去一年中的平均气温变化等等。
初中数学三角函数的定义与应用
初中数学三角函数的定义与应用三角函数是初中数学中的一个重要概念,它是数学中用于研究三角形和周期性现象的函数。
三角函数有正弦、余弦和正切三种常见形式,它们在数学和实际生活中都有广泛的应用。
本文将介绍三角函数的定义和其在初中数学中的应用。
一、正弦函数的定义与应用正弦函数是三角函数中最基本的一种,通常用sin表示。
它的定义是:在直角三角形中,对于任意一个锐角α,正弦函数的值等于对边与斜边的比值,即sinα = 对边/斜边。
正弦函数在初中数学中的应用非常广泛,例如在解决直角三角形的问题中,我们可以利用正弦函数来求解未知边长或角度。
二、余弦函数的定义与应用余弦函数是另一种常见的三角函数,通常用cos表示。
它的定义是:在直角三角形中,对于任意一个锐角α,余弦函数的值等于邻边与斜边的比值,即cosα = 邻边/斜边。
与正弦函数类似,余弦函数也在解决直角三角形的问题中起到了重要作用。
三、正切函数的定义与应用正切函数是三角函数中的第三种形式,通常用tan表示。
它的定义是:在直角三角形中,对于任意一个锐角α,正切函数的值等于对边与邻边的比值,即tanα = 对边/邻边。
正切函数的应用也非常广泛,特别是在解决梯度问题、角度关系问题等方面具有重要意义。
四、三角函数的周期性三角函数具有周期性的特点,即在一定范围内呈现出重复的规律性。
正弦函数、余弦函数和正切函数的周期均为2π(弧度制下)或360°(角度制下)。
因此,我们可以利用周期性特点来简化计算,并在解决周期性问题时加以应用。
五、三角函数的图像与性质正弦函数、余弦函数和正切函数都具有特定的图像形态和性质。
例如,正弦函数的图像呈现出上下波动的曲线,余弦函数的图像则是波浪形的曲线,而正切函数的图像则是以原点为对称中心的S形曲线。
对于初中生来说,理解这些图像形态及其性质对于学习和应用三角函数非常有帮助。
六、三角函数的应用举例在实际生活中,三角函数有许多应用。
例如,利用三角函数可以解决测量高楼大厦的高度问题,通过测量垂直角和距离,可以利用三角函数计算出高楼大厦的实际高度。
三角函数定义
1 三角函数的定义
以的顶点为坐标原点,始 边为x轴建立
在 P , 直角坐标系, 终边上任取一点 (x , y)
不取顶点, 设 OP r, r
x y ,则
2 2
sin
y r r x
, cos , csc
x r
, tan
y x
, cot
x y
,
sec
三角函数的定义
1.初中学过的锐角三角函数的定义:
在直角三角形ABC中,角C是直角,角
A为锐角,则用角A的对边BC,邻边AC和斜
边AB之间的比值来定义角A的三角函数.
sin A
tan A
BC AB
BC AC
cos A
AC AB
AC BC
A
B
cot A
C
1、三角函数定义? 2、三角函数的定义域 3、符号规律
例2.确定下列各三角函数的符号: (1)cos260 ; (2)sin((3)tan(-672 20 ) 4)tan ( ;
'
3 .
) ;
10 3
例 3 .设 sin 0 且 tan 0 , 确定 是第几象限角。
例 3 '. 设 sin 2 0 且 cos 0 , 确定 是第几象限 角。
sec csc
2
,k Z }
{ k , k Z }
3 三角函数符号
y
பைடு நூலகம்
1. 象限角:
sin csc
全正
cos sec
x
tan cot
O
sin y
三角函数的概念
三角函数的概念三角函数是数学中一种重要的函数类型,它描述了角度和长度之间的关系。
它在几何、物理、工程和计算机图形等领域中具有广泛的应用。
本文将介绍三角函数的概念以及它们的定义、性质和图像特征。
一、三角函数的定义1. 正弦函数(sine function):正弦函数是指一个单位圆上任意角的对应坐标的纵坐标值,用sin表示。
在三角形中,正弦函数表示对边与斜边的比值。
2. 余弦函数(cosine function):余弦函数是指一个单位圆上任意角的对应坐标的横坐标值,用cos表示。
在三角形中,余弦函数表示邻边与斜边的比值。
3. 正切函数(tangent function):正切函数是指一个单位圆上任意角的对应坐标的纵坐标值与横坐标值的比值,用tan表示。
在三角形中,正切函数表示对边与邻边的比值。
二、三角函数的性质1. 周期性:三角函数都具有周期性,周期为360度或2π弧度。
例如,sin(θ)=sin(θ+360°)=sin(θ+2π)。
2. 奇偶性:正弦函数是奇函数(sin(-θ)=-sin(θ)),余弦函数和正切函数是偶函数(cos(-θ)=cos(θ),tan(-θ)=tan(θ))。
3. 值域:正弦函数和余弦函数的值域为[-1, 1];正切函数的值域为全体实数。
三、三角函数的图像1. 正弦函数的图像呈现出周期性的波形,对于一个周期内的任意值,其取值范围在[-1, 1]之间。
2. 余弦函数的图像与正弦函数非常相似,只是在横坐标上有一个相位差。
3. 正切函数的图像在某些角度上会出现无穷大或无穷小,这些角度被称为正切函数的奇点。
四、三角函数的应用1. 几何学应用:三角函数在几何学中广泛应用于解决三角形相关的问题,如计算三角形的边长、角度和面积等。
2. 物理学应用:三角函数在物理学中用于描述波动、振动和周期性现象,如声音和光的传播。
3. 工程学应用:三角函数在工程学中用于解决各种实际问题,如测量、设计和建模等。
三角函数的定义
三角函数的定义:以角α的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系,在角α的终边上任取一个异于原点的点),(y x P ,点P 到原点的距离记为(0)r r ==>,那么sin y r α=; cos x r α=; tan y xα=; (cot x y α=; sec rx α=; csc r yα=)2 三角函数的符号:由三角函数的定义,以及各象限内点的坐标的符号,我们可以得知:①正弦值yr对于第一、二象限为正(0,0y r >>),对于第三、四象限为负(0,0y r <>);②余弦值xr对于第一、四象限为正(0,0x r >>),对于第二、三象限为负(0,0x r <>);③正切值yx对于第一、三象限为正(,x y 同号),对于第二、四象限为负(,x y 异号)说明:若终边落在轴线上,则可用定义求出三角函数值。
3特殊角的三角函数值:4三角函数的定义域、值域:5诱导公式:可用十个字概括为“奇变偶不变,符号看象限”。
诱导公式一:sin(2)sin k απα+=,cos(2)cos k απα+=,其中k Z ∈诱导公式二: sin(180)α+= sin α-; c o s (180)α+=- cos α 诱导公式三: sin()sin αα-=-; cos()cos αα-= 诱导公式四:sin(180)sin αα-=; cos(180)cos αα-=-诱导公式五:sin(360)sin αα-=-; cos(360)cos αα-=(1)要化的角的形式为180k α⋅±(k 为常整数);(2)记忆方法:“函数名不变,符号看象限”。
任意角的概念的意义,任意角的三角函数的定义,同角间的三角函数基本关系、诱导公式由于本重点是任意角的三角函数角的基础,因而三学习本节内容时要注意如下几点:(1)熟练地掌握常用的方法与技巧,在使用三角代换求解有关问题时要注意有关范围的限制;(2)要注意差异分析,又要活用公式,要善于瞄准解题目标进行有效的变形,其解题一般思维模式为:发现差异,寻找联系,合理转化。
三角函数微分
三角函数微分三角函数是高中数学中经常出现的一个知识点,涉及到三角函数的微分,在微积分中也扮演着重要的角色。
下面我们将针对三角函数的微分进行详细的讲解。
一、三角函数的定义三角函数包括正弦函数、余弦函数、正切函数、余切函数等。
其中,正弦函数和余弦函数经常用到,它们的定义如下:正弦函数:在数轴上取定一点O,以O为圆心、OA为半径作圆,对于圆上任意一点P,设其对应的圆心角为θ,则点P的y坐标即为sinθ,记作y=sinθ。
1.正弦函数的导数由正弦函数的定义可知,当θ增大时,sinθ也在增加,而sinθ的增量是一个小量。
那么,当θ增加到Δθ时,其对应的正弦函数值的增量为:Δy = sin(θ + Δθ) - sinθ∴ Δy/Δθ = cosθ因此,正弦函数的导数为cosθ。
根据导数的定义可知,对于三角函数f(x),其微分df即为:df = f'(x)dx由三角函数的导数可知,正弦函数的导数是余弦函数,而余弦函数的导数是负的正弦函数。
因此,我们可以得到以下的三角函数微分公式:(1)d(sin x) = cos x dx注:sec x = 1/cos x,cosec x = 1/sin x解:根据微分公式,有:2. 求f(x) = 3cos (2x)的微分df。
3. 求y = sin x与y = x的夹角在x = π/4处的斜率。
解:由题意可知,当x = π/4时,y = sin (π/4) = √2/2。
根据正弦函数的导数可知,f'(x) = cos x,因此当x = π/4时,斜率k为:因此,夹角的斜率为√2/2。
总结:三角函数的微分是数学中一个重要的知识点,它在微积分中有着广泛的应用。
在学习三角函数微分时,需要掌握三角函数的导数和微分公式,较为熟练地应用它们来解决问题。
三角函数的定义和计算方法
三角函数的定义和计算方法三角函数是数学中的一个重要概念,它的定义和计算方法在解决几何问题和数学建模中起着重要的作用。
本文将介绍三角函数的定义以及常用的计算方法。
一、三角函数的定义1. 正弦函数(Sine Function)正弦函数是三角函数中最基本的函数之一,用sin表示。
对于任意实数x,它的正弦值表示为sin(x)。
正弦函数的定义域是所有实数,值域是[-1, 1]。
2. 余弦函数(Cosine Function)余弦函数是另一个基本的三角函数,用cos表示。
对于任意实数x,它的余弦值表示为cos(x)。
余弦函数的定义域也是所有实数,值域也是[-1, 1]。
3. 正切函数(Tangent Function)正切函数是三角函数中较为常用的函数,用tan表示。
对于任意实数x,它的正切值表示为tan(x)。
正切函数的定义域是所有实数,但在某些特殊点上它的值是无穷大或者无穷小。
二、三角函数的计算方法1. 单位圆上的定义三角函数的计算方法可以通过单位圆上的定义来了解。
单位圆是指半径为1的圆,在x轴上的坐标为1,即(1,0)。
对于任意角度θ,单位圆上的点P的坐标可以表示为(Px, Py) = (cosθ, sinθ),其中Px和Py 分别表示点P在x轴和y轴上的坐标。
2. 用角度确定三角函数值三角函数的计算方法可以通过给定角度来确定对应的函数值。
以正弦函数为例,给定一个角度θ,可以使用特殊角的数值来计算sinθ。
特殊角的数值可以通过查表或者计算器获得,例如,sin30° = 0.5,sin45° = 0.707,sin60° = 0.866等等。
通过特殊角的数值,可以通过三角函数的性质计算出其他角度的函数值。
3. 用三角函数值确定角度反函数也是计算三角函数的重要方法之一。
给定一个三角函数的值,可以通过反函数来确定对应的角度。
例如,给定一个值0.5,可以使用反正弦函数来计算对应的角度,即sin^(-1)(0.5)。
三角函数最全知识点总结
三角函数最全知识点总结三角函数是高中数学中的重要内容,主要包括正弦函数、余弦函数、正切函数等。
下面将对这些三角函数的定义、性质以及常用的解题方法进行总结。
一、正弦函数(sin):1. 定义:在单位圆上,任选一点P与x轴正方向的夹角为θ,P点的纵坐标y即为θ的正弦值,记作sinθ。
正弦函数的定义域为实数集,值域为[-1,1]。
2. 周期性:sin(θ+2π)=sinθ,sin(θ+π)=-sinθ。
其中π为圆周率。
3. 奇偶性:sin(-θ)=-sinθ,即正弦函数关于原点对称。
4. 正负性:当θ为锐角时,sinθ>0;当θ为钝角时,sinθ<0。
5. 值域变化:当θ从0增加到π/2时,sinθ从0增加到1,然后再从1减小到0。
二、余弦函数(cos):1. 定义:在单位圆上,任选一点P与x轴正方向的夹角为θ,P点的横坐标x即为θ的余弦值,记作cosθ。
余弦函数的定义域为实数集,值域为[-1,1]。
2. 周期性:cos(θ+2π)=cosθ,cos(θ+π)=-cosθ。
3. 奇偶性:cos(-θ)=cosθ,即余弦函数关于y轴对称。
4. 正负性:当θ为锐角时,cosθ>0;当θ为钝角时,cosθ<0。
5. 值域变化:当θ从0增加到π/2时,cosθ从1减小到0。
三、正切函数(tan):1. 定义:正切值tanθ等于θ的正弦值除以θ的余弦值,即tanθ=sinθ/cosθ。
正切函数的定义域为实数集,值域为实数集。
2. 周期性:tan(θ+π)=tanθ。
3. 奇偶性:tan(-θ)=-tanθ,即正切函数关于原点对称。
4. 正负性:当θ为锐角时,tanθ>0;当θ为钝角时,tanθ<0。
四、反三角函数:1. 反正弦函数:定义域为[-1,1],值域为[-π/2,π/2]。
记作arcsin x或sin⁻¹x。
2. 反余弦函数:定义域为[-1,1],值域为[0,π]。
三角函数的定义与性质
有界性
三角函数的有 界性是指它们 在一定范围内 取值有限
有界性的证明 通常需要利用 三角函数的定 义和性质,如 周期性、对称 性等
有界性是三角函 数在解决实际问 题中非常重要的 性质之一,例如 在信号处理、控 制系统等领域
有界性还可以 帮助我们理解 三角函数的其 他性质,如单 调性、周期性 等
图像与性质
PART 05
三角函数的和差 化积公式
和差化积公式的基本形式
正弦和差化积公式: sin(A+B) = sinAcosB + cosAsinB
余弦和差化积公式: cos(A+B) = cosAcosB - sinAsinB
正切和差化积公式 :tan(A+B) = (tanA+tanB)/(1tanAtanB)
性质:余弦函数是一个周期函数,其周期为2π。
图像:余弦函数的图像是一个正弦曲线,其最大值为1,最小值为-1。
正切函数
定义:正切函数是三角函数之一,表示单位圆上某点与x轴正方向的夹角。 公式:tan(θ) = sin(θ) / cos(θ) 性质:正切函数在定义域内是连续的,但在某些点处不可导。 应用:正切函数在解析几何、微积分等领域有着广泛的应用。
THANK YOU
汇报人:
数学竞赛:诱 导公式是数学 竞赛中常见的 题型,掌握诱 导公式有助于 提高解题能力
特殊角度的三角函数值
0 °: s i n ( 0 °) = 0 , co s ( 0 °) = 1 , ta n ( 0 °) = 0
4 5 °: s i n ( 4 5 °) = √ 2 / 2 , co s ( 4 5 °) = √ 2 / 2 , ta n ( 4 5 °) = 1
高一数学必修4三角函数的定义讲义
三角函数的定义知识梳理1、任意角三角函数的定义(1)单位圆:在直角坐标系中,以原点O 为圆心,以单位长度为半径的圆称为单位圆. (2)单位圆中任意角的三角函数的定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么y 叫做α的正弦,记作sin α,即sin α=y ;x 叫做α的余弦,记作cos α,即cos α=x ;y x 叫做α的正切,记作tan α,即tan α=yx (x ≠0).2、三角函数正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,它们统称为三角函数.3、三角函数的定义域三角函数 定义域 sin α R cos α Rtan α⎩⎨⎧⎭⎬⎫α⎪⎪α≠π2+k π,k ∈Z 4、三角函数值的符号5、终边相同的角的同一三角函数的值(1)终边相同的角的同一三角函数的值相等.(2)公式:sin(α+k ·2π)=sin_α,cos(α+k ·2π)=cos_α,tan(α+k ·2π)=tan_α,其中k ∈Z .例题精讲题型一、三角函数的定义及应用例1、(1)若角α的终边经过点P (5,-12),则sin α=________,cos α=________,tan α=________. (2)已知角α的终边落在直线3x +y =0上,求sin α,cos α,tan α的值.利用三角函数的定义求值的策略(1)已知角α的终边在直线上求α的三角函数值时,常用的解题方法有以下两种:法一:先利用直线与单位圆相交,求出交点坐标,然后利用三角函数的定义求出相应的三角函数值. 法二:注意到角的终边为射线,所以应分两种情况来处理,取射线上任一点坐标(a ,b ),则对应角的正弦值sinα=b a 2+b 2,余弦值cos α=a a 2+b 2,正切值tan α=ba .(2)当角的终边上的点的坐标以参数的形式给出时,要根据问题的实际情况对参数进行分类讨论.变式训练已知角α的终边过点P (12,a ),且tan α=512,求sin α+cos α的值.题型二、三角函数值符号的运用例2、(1)若sin αtan α<0,且cos αtan α<0,则角α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角(2)判断下列各式的符号:①sin 105°·cos 230°; ②cos 3·tan ⎝⎛⎭⎫-2π3.三角函数值的符号规律(1)当角θ为第一象限角时,sin θ>0,cos θ>0或sin θ>0,tan θ>0或cos θ>0,tan θ>0,反之也成立; (2)当角θ为第二象限角时,sin θ>0,cos θ<0或sin θ>0,tan θ<0或cos θ<0,tan θ<0,反之也成立; (3)当角θ为第三象限角时,sin θ<0,cos θ<0或sin θ<0,tan θ>0或cos θ<0,tan θ>0,反之也成立; (4)当角θ为第四象限角时,sin θ<0,cos θ>0或sin θ<0,tan θ<0或cos θ>0,tan θ<0,反之也成立.变式训练若sin 2α>0,且cos α<0,试确定α终边所在的象限.题型三、诱导公式一的应用例3、计算下列各式的值:(1)sin(-1 395°)cos 1 110°+cos(-1 020°)sin 750°; (2)sin ⎝⎛⎭⎫-11π6+cos 12π5·tan 4π.变式训练求下列各式的值:(1)sin 25π3+tan ⎝⎛⎭⎫-15π4; (2)sin 810°+cos 360°-tan 1 125°.课堂小测1、若三角形的两内角α,β满足sin αcos β<0,则此三角形必为( )A .锐角三角形B .钝角三角形C .直角三角形D .以上三种情况都可能2、若角α的终边过点(2sin 30°,-2cos 30°),则sin α的值等于( )A.12 B .-12 C .-32 D .-33 3、sin ⎝⎛⎭⎫-196π=________. 4、已知角θ的顶点为坐标原点,始边为x 轴的非负半轴,若P (4,y )是角θ终边上一点,且sin θ=-255,则y =________.5、化简下列各式:(1)a cos 180°+b sin 90°+c tan 0°; (2)p 2cos 360°+q 2sin 450°-2pq cos 0°; (3)a 2sin π2-b 2cos π+ab sin 2π-ab cos 3π2.同步练习1、25πsin6等于( )A .12 B .2 C .12- D .2-2、若角α的终边经过点34,55P ⎛⎫- ⎪⎝⎭,则sin tan αα⋅=( )A .1615 B .1615- C .1516D .1516- 3、利用余弦线比较cos1,πcos 3,cos 1.5的大小关系是( ) A .πcos1cos cos1.53<< B .πcos1cos1.5cos 3<< C .πcos1coscos1.53>> D .πcos1.5cos1cos 3>> 4、如图,在单位圆中角α的正弦线、正切线完全正确的是( ) A .正弦线PM ,正切线A T '' B .正弦线MP ,正切线A T '' C .正弦线MP ,正切线ATD .正弦线PM ,正切线AT5、角α的终边经过点(),4P b -且3cos 5α=-,则b 的值为( ) A .3 B .3- C .3± D .5 6、已知x 为终边不在坐标轴上的角,则函数()|sin |cos |tan |sin |cos |tan x x x x f x x x=++的值域是( ) A .{}3,1,1,3-- B .{}3,1-- C .{}1,3 D .{}1,3- 7、在[]0,2π上,满足3sin 2x ≥的x 的取值范围为( ) A .π0,3⎡⎤⎢⎥⎣⎦B .π2π,33⎡⎤⎢⎥⎣⎦ C .π2π,63⎡⎤⎢⎥⎣⎦ D .5π,π6⎡⎤⎢⎥⎣⎦8、若θ为第一象限角,则能确定为正值的是 ( ) A .sin2θB .cos2θC .tan2θD .cos 2θ9、已知α的终边经过点()36,2a a -+,且sin 0,cos 0,αα>≤则α的取值范围为________.10、若角α的终边与直线3y x =重合且sin 0α<,又(),P m n 是α终边上一点,且10OP =,则m n -=_____. 11、已知点()sin cos ,tan P ααα-在第一象限,则在[]0,2π内α的取值范围为__________. 12、(1)23π17πcos tan 34⎛⎫-+ ⎪⎝⎭; (2)sin 630tan 1 125tan 765cos 540︒+︒+︒+︒.13、当π0,2α⎛⎫∈ ⎪⎝⎭时,求证:sin tan ααα<<.14、已知角α的终边落在直线2y x =上,求sin α,cos α,tan α的值.。
三角函数基本概念与图形意义
三角函数基本概念与图形意义一、三角函数的定义与基本概念1.三角函数的定义:三角函数是描述直角三角形各边长度与角度之间关系的函数。
2.基本三角函数:主要包括正弦函数(sin)、余弦函数(cos)、正切函数(tan)、余切函数(cot)、正割函数(sec)和余割函数(csc)。
3.角度制与弧度制:角度制是度、分、秒的单位,弧度制是以圆的半径为1,以弧长等于半径的圆心角所对应的弧度值为1。
4.象限与坐标系:平面直角坐标系分为四个象限,第一象限(x>0,y>0)、第二象限(x<0, y>0)、第三象限(x<0, y<0)、第四象限(x>0,y<0)。
5.周期性:三角函数具有周期性,周期是指函数值重复出现的最小正数。
正弦函数、余弦函数的周期为2π,正切函数的周期为π。
6.奇偶性:根据函数的定义,可以判断三角函数的奇偶性。
正弦函数、余弦函数为偶函数,正切函数、余切函数为奇函数。
二、三角函数的图形意义1.正弦函数的图形意义:正弦函数表示单位圆上某一点的纵坐标值,随着角度的增大,正弦函数的值在-1与1之间波动。
2.余弦函数的图形意义:余弦函数表示单位圆上某一点的横坐标值,随着角度的增大,余弦函数的值在-1与1之间波动。
3.正切函数的图形意义:正切函数表示直角三角形中,对边与邻边的比值,随着角度的增大,正切函数的值在-∞与∞之间波动。
4.余切函数的图形意义:余切函数表示直角三角形中,邻边与对边的比值,随着角度的增大,余切函数的值在-∞与∞之间波动。
5.正割函数的图形意义:正割函数表示直角三角形中,斜边与对边的比值,随着角度的增大,正割函数的值在1与∞之间波动。
6.余割函数的图形意义:余割函数表示直角三角形中,斜边与邻边的比值,随着角度的增大,余割函数的值在1与∞之间波动。
三、三角函数的性质与变化规律1.奇偶性:正弦函数、余弦函数为偶函数,正切函数、余切函数为奇函数。
三角函数
三角函数求助编辑百科名片角θ的所有三角函数三角函数(Trigonometric)是数学中属于初等函数中的超越函数的一类函数。
它们的本质是任意角的集合与一个比值的集合的变量之间的映射。
通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。
另一种定义是在直角三角形中,但并不完全。
现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。
它包含六种基本函数:正弦、余弦、正切、余切、正割、余割。
由于三角函数的周期性,它并不具有单值函数意义上的反函数。
三角函数在复数中有较为重要的应用。
在物理学中,三角函数也是常用的工具。
目录定义锐角三角函数定义罕见三角函数任意角三角函数定义单位圆定义级数定义三角函数线起源三角学问题的提出独立三角学的产生现代三角学的确认正弦,余弦余弦“正弦”的由来“弦表”问世60进制特殊角的三角函数同角三角函数关系式诱导公式对称轴与对称中心两角和与差的三角函数和差化积公式积化和差公式倍角公式三倍角公式n倍角公式半角公式辅助角公式万能公式降幂公式三角和的三角函数特殊角的三角函数值幂级数泰勒展开式傅立叶级数三角函数的数值符号相关概念三角形与三角函数定义域和值域三角函数的画法初等三角函数导数倍半角规律反三角函数高等应用总体情况复数域内性质性质定理正弦定理余弦定理正切定理应用:一元三次方程复数三角函数三角函数常见考法定义锐角三角函数定义罕见三角函数任意角三角函数定义单位圆定义级数定义三角函数线起源三角学问题的提出独立三角学的产生现代三角学的确认正弦,余弦余弦“正弦”的由来“弦表”问世60进制特殊角的三角函数同角三角函数关系式诱导公式对称轴与对称中心两角和与差的三角函数和差化积公式积化和差公式倍角公式三倍角公式n倍角公式半角公式辅助角公式万能公式降幂公式三角和的三角函数特殊角的三角函数值幂级数泰勒展开式傅立叶级数三角函数的数值符号相关概念三角形与三角函数定义域和值域三角函数的画法初等三角函数导数倍半角规律反三角函数高等应用总体情况复数域内性质性质定理正弦定理余弦定理正切定理应用:一元三次方程复数三角函数三角函数常见考法展开编辑本段定义锐角三角函数定义如右图,当平面上的三点A、B、C的连线,AB、AC、BC,构成一个直角三角形,其中∠ACB为直角。
小学数学知识归纳三角函数的概念与计算
小学数学知识归纳三角函数的概念与计算三角函数是数学中的重要概念之一,也是解决三角形相关问题的基础工具。
它包括正弦、余弦和正切三种函数,分别用sin、cos和tan表示。
小学阶段,学生开始接触三角函数的概念,并进行简单的计算。
本文将对小学数学中的三角函数进行归纳与讲解。
1. 正弦函数正弦函数是指在直角三角形中,对于一个锐角的正弦值,等于该锐角对边的长度与斜边长度之比。
该比值可表示为sinA = 对边 / 斜边。
例如,在一个直角三角形中,如果锐角A的对边长度为3,斜边长度为5,则sinA = 3 / 5。
2. 余弦函数余弦函数是指在直角三角形中,对于一个锐角的余弦值,等于该锐角邻边的长度与斜边长度之比。
该比值可表示为cosA = 邻边 / 斜边。
例如,在一个直角三角形中,如果锐角A的邻边长度为4,斜边长度为5,则cosA = 4 / 5。
3. 正切函数正切函数是指在直角三角形中,对于一个锐角的正切值,等于该锐角对边的长度与邻边长度之比。
该比值可表示为tanA = 对边 / 邻边。
例如,在一个直角三角形中,如果锐角A的对边长度为3,邻边长度为4,则tanA = 3 / 4。
通过上述对正弦、余弦和正切函数的定义和计算方法的介绍,我们可以应用这些知识解决一些实际问题。
例如,已知一个直角三角形中的斜边长为10,而一个锐角的正切值为0.6,我们可以使用正切函数的计算公式来求出这个锐角的对边长度。
根据tanA = 对边 / 邻边的关系,我们可以将已知信息代入计算,得到0.6 = 对边 / 10。
通过移项和乘法,我们可以得到对边的长度为6。
除了基本的三角函数计算,我们还可以通过应用三角函数解决一些实际问题。
例如,小明站在一栋建筑物前,他朝上看这栋建筑物的顶端的角度为30度,他距离建筑物的距离为20米。
我们可以利用正弦函数来计算建筑物的高度。
根据sinA = 对边 / 斜边的关系,我们将已知信息代入计算,得到sin30° = 对边 / 20。
三角函数的定义
三角函数的定义三角函数是数学中一类重要的函数,经常用于描述角度和长度之间的关系。
三角函数包括正弦函数、余弦函数、正切函数等。
这些函数在几何学、物理学、工程学等领域中具有广泛的应用。
1. 正弦函数(sine function)正弦函数是一个以角度为自变量的周期函数,用sin表示,定义如下:sinθ = 对边 / 斜边其中,θ为一个锐角,对边指与角θ的其中一条直角边,斜边指与角θ挂接的斜边。
2. 余弦函数(cosine function)余弦函数也是一个以角度为自变量的周期函数,用cos表示,定义如下:cosθ = 临边 / 斜边其中,θ为一个锐角,临边指与角θ的另一条直角边,斜边同样指与角θ挂接的斜边。
3. 正切函数(tangent function)正切函数是一个以角度为自变量的周期函数,用tan表示,定义如下:tanθ = 对边 / 临边其中,θ为一个锐角,对边和临边同正弦函数和余弦函数的定义一样。
三角函数在数学中有许多重要的性质和应用。
下面介绍一些常见的性质和应用:1. 周期性三角函数都是以角度为自变量的周期函数,其周期长度为360度(或2π弧度)。
即sin(x+360°) = sinx,cos(x+360°) = cosx,tan(x+360°) = tanx。
2. 正弦函数和余弦函数的关系根据勾股定理,sin^2θ + cos^2θ = 1,这意味着对于任意的θ值,正弦函数和余弦函数的平方和等于1。
同时,由于sinθ = cos(90°-θ),因此正弦函数和余弦函数是相互关联的。
3. 三角函数的图像特点正弦函数和余弦函数的图像在坐标系中表现为以原点为中心的正弦曲线和余弦曲线。
它们的图像都是周期性的波动,且形状相似,只是相位不同。
正切函数的图像类似于一条渐近线,它在每个π/2(90°)的整数倍位置有一个奇点。
4. 应用领域三角函数在许多领域有广泛的应用。
三角函数定义公式
三角函数定义公式1. 正弦函数(sine function):正弦函数是一个周期函数,它的周期是2π。
在单位圆中,正弦函数的值等于对应角度的弧度值的纵坐标。
正弦函数的定义公式为:sin(θ) = 边长对θ / 斜边长度2. 余弦函数(cosine function):余弦函数也是一个周期函数,它的周期也是2π。
在单位圆中,余弦函数的值等于对应角度的弧度值的横坐标。
余弦函数的定义公式为:cos(θ) = 边长邻θ / 斜边长度3. 正切函数(tangent function):正切函数是一个奇函数,也是一个周期函数,其周期是π。
在单位圆中,正切函数的值等于对应角度的弧度值的纵坐标除以横坐标。
正切函数的定义公式为:tan(θ) = sin(θ) / cos(θ)4. 余切函数(cotangent function):余切函数是正切函数的倒数,即cot(θ) = 1 / tan(θ)。
5. 正割函数(secant function):正割函数是余弦函数的倒数,即sec(θ) = 1 / cos(θ)。
6. 余割函数(cosecant function):余割函数是正弦函数的倒数,即csc(θ) = 1 / sin(θ)。
三角函数在数学的各个领域中都有广泛的应用,尤其在解决与三角形和周期性问题相关的数学和物理问题时,三角函数是不可或缺的工具。
通过三角函数的定义公式,我们可以计算任意角度的正弦、余弦和正切值,从而解决各种实际问题。
同时,三角函数还具有许多重要的性质和关系,例如三角函数的和差公式、倍角公式、半角公式等,这些公式可以简化三角函数的计算,加快解题的速度。
在三角函数的定义公式的基础上,使用这些性质和公式,我们可以推导出更复杂的三角函数表达式,并解决更加复杂的问题。
综上所述,三角函数作为数学中重要的一类函数,通过其定义公式及相关性质,我们可以计算和解决与三角形和周期性问题相关的各种实际问题。
熟练掌握三角函数的定义公式,将有助于我们在数学和物理等领域中的应用。
三角函数定义的知识点总结
三角函数定义的知识点总结三角函数的定义1. 正弦函数正弦函数又称为sin函数,它是以单位圆上的点的y坐标为值域的周期函数。
在单位圆上,点P的坐标(x, y)和点A(1, 0)之间的连线与x轴所围成的角度被称为角α的正弦,记作sinα,即sinα=y。
2. 余弦函数余弦函数又称为cos函数,它是以单位圆上的点的x坐标为值域的周期函数。
在单位圆上,点P的坐标(x, y)和点A(1, 0)之间的连线与x轴所围成的角度被称为角α的余弦,记作cosα,即cosα=x。
3. 正切函数正切函数又称为tan函数,它是以单位圆上的点的y坐标与x坐标的比值为值域的周期函数。
在单位圆上,点P的坐标(x, y)和点A(1, 0)之间的连线与x轴所围成的角度被称为角α的正切,记作tanα,即tanα=y/x。
4. 余切函数余切函数又称为cot函数,它是以单位圆上的点的x坐标与y坐标的比值为值域的周期函数。
在单位圆上,点P的坐标(x, y)和点A(1, 0)之间的连线与x轴所围成的角度被称为角α的余切,记作cotα,即cotα=x/y。
这四个函数是三角函数中最基本的函数,它们可以用来描述角度和直角三角形中的边的关系,从而被广泛地应用于数学和物理中。
三角函数的性质1. 周期性正弦函数、余弦函数、正切函数和余切函数都是周期函数,它们的周期都是2π。
即对于任意实数x,有sin(x+2π)=sinx,cos(x+2π)=cosx,tan(x+π)=tanx,cot(x+π)=cotx。
2. 奇偶性正弦函数和正切函数是奇函数,余弦函数和余切函数是偶函数。
即对于任意实数x,有sin(-x)=-sinx,cos(-x)=cosx,tan(-x)=-tanx,cot(-x)=cotx。
3. 相关性正弦函数和余弦函数、正切函数和余切函数之间存在一定的相关性。
例如,sinx=cos(x-π/2),tanx=cot(x-π/2)。
4. 值域正弦函数和余弦函数的值域是[-1,1],而正切函数和余切函数的值域是实数集R。
初中数学三角函数
初中数学三角函数三角函数是数学中的重要概念,主要包括正弦函数、余弦函数和正切函数。
它们在三角形的边长比例、角度关系以及周期性方面有广泛的应用。
一、正弦函数正弦函数记作sin(x),其中x表示角度。
在单位圆上,正弦函数的值等于角度对应的弧度上的纵坐标值。
正弦函数的取值范围在-1到1之间,当x为0度、180度、360度等时,sin(x)的值为0;最大值1出现在90度、270度等,最小值-1出现在-90度、-270度等。
正弦函数的图像是一条连续曲线,呈现周期性。
二、余弦函数余弦函数记作cos(x),其中x表示角度。
在单位圆上,余弦函数的值等于角度对应的弧度上的横坐标值。
余弦函数的取值范围也在-1到1之间,当x为0度、360度等时,cos(x)的值为1;最大值1出现在-90度、270度等,最小值-1出现在90度、-270度等。
余弦函数的图像也是一条连续曲线,呈现周期性。
三、正切函数正切函数记作tan(x),其中x表示角度。
在单位圆上,正切函数的值等于角度对应的弧度上的纵坐标值与横坐标值的比值。
正切函数的取值范围是全体实数,但当x为90度、270度等奇数倍角时,tan(x)的值为无穷大。
正切函数的图像也是一条连续曲线,呈现周期性。
四、三角函数的性质和公式1. 基本关系式:sin^2(x) + cos^2(x) = 1,这是三角函数最基本的性质,称为勾股定理。
2. 倍角公式:sin(2x) = 2sin(x)cos(x),cos(2x) = cos^2(x) - sin^2(x)3. 半角公式:sin(x/2) = ±√[(1 - cos(x))/2],cos(x/2) = ±√[(1 +cos(x))/2]4. 三角函数的互余关系:sin(x) = cos(90° - x),tan(x) = 1/tan(90° - x)5. 诱导公式:sin(A ± B) = sin(A)cos(B) ± cos(A)sin(B),cos(A ± B) = cos(A)cos(B) ∓ sin(A)sin(B)五、三角函数的应用1. 三角函数可以用于计算三角形的边长比例,如正弦定理和余弦定理。
三角函数基础知识点
三角函数基础知识点三角函数是数学中的重要概念,是研究三角形及其相关性质的有力工具。
下面将整理三角函数的基础知识点。
一、三角函数的定义1. 正弦函数:定义为对于任意实数x,都有sin(x) = y,其中y为以x为角度的单位圆上的点的纵坐标。
2. 余弦函数:定义为对于任意实数x,都有cos(x) = y,其中y为以x为角度的单位圆上的点的横坐标。
3. 正切函数:定义为tan(x) = sin(x) / cos(x)。
4. 余切函数:定义为cot(x) = 1 / tan(x) = cos(x) / sin(x)。
5.值域:正弦函数和余弦函数的值域为[-1,1];正切函数和余切函数的值域为整个实数集。
二、三角函数的性质1.周期性:正弦函数和余弦函数的周期都是2π;正切函数和余切函数的周期都是π。
2. 对称性:正弦函数是奇函数,即sin(-x) = -sin(x);余弦函数是偶函数,即cos(-x) = cos(x);正切函数是奇函数,即tan(-x) = -tan(x);余切函数是奇函数,即cot(-x) = -cot(x)。
3.正交性:正弦函数和余弦函数在同一角度的情况下,它们的积分等于0。
4.互补性:正弦函数和余弦函数在同一角度的情况下,它们的平方和等于15.三角恒等式:(1) 正弦函数和余弦函数的平方和等于1,即sin^2(x) + cos^2(x)= 1(2) 正切函数和余切函数的平方差等于1,即tan^2(x) - cot^2(x)= 1(3) 正切函数可以用正弦函数和余弦函数表示,即tan(x) = sin(x) / cos(x)。
(4) 余切函数可以用正弦函数和余弦函数表示,即cot(x) = cos(x) / sin(x)。
6.三角函数的图像性质:正弦函数和余弦函数的图像是连续的周期函数;正切函数和余切函数的图像有无数个奇点。
三、三角函数的应用1.几何应用:三角函数可以用于求解三角形的各种性质,例如计算边长、角度、面积等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三第一轮复习材料2009-10-20
三角函数的概念
一、基本知识
1. 角的概念的推广 (1)终边相同的角; (2)象限角; (3)象限界角
2.弧度制
(1)1弧度的角的定义; (2)弧度与角度的互换;
(3)弧长公式与扇形的面积公式 3.任意角的三角函数 (1)定义:(建系、取点、定比) (2)三角函数在各象限内的符号 (3
(4)填表
4.用单位圆中的三角函数线来表示三角函数值
二、典型例题
例1 (1)若角α的终边和函数x y -=的图像重合,试写出角α的集合; (2)已知角α是第Ⅰ象限角,试确定2
α
所在象限. 感悟:
例2已知一扇形的中心角是α,所在圆的半径是R .
(1)若cm R 10,60==ο
α,求扇形的弧长及该弧所在的弓形面积.
(2)若扇形的周长是一定值)0(>C C ,当α为多少弧度时,该扇形有最大面积.
例3已知角α终边经过点)0(),2,(≠-x x P 且x 6
3
cos =α,求ααcot sin +的值.
例4解答下列问题
(1)若∈θⅣ,试判断)sin(cos θ、)cos(sin θ的符号.
(2)若0)cot(sin )tan(cos >⋅θθ,试指出θ所在象限,并用图形表示出
2
θ
所取值的范围.
例5 已知)2
,
0(π
α∈,求证:αααtan sin <<.(提示:用三角函数线证明)
例6写出满足下列条件的角α的范围 (1)0cos sin >-αα; (2)ααcos sin >;
(3)0cos sin >+αα; (4)0cos sin <+αα. 三、课堂练习
1.钟表的分针和时针在3点到5点40分这段时间里,分针转过了_______弧度的角,时针转过了_______弧度的角.
2.已知α是锐角,那么α2是( )
.A 第一象限 .B 第二象限
.C 小于ο180的正角
.D 不大于直角的正角
3.(05全国)已知α是第三象限角,则2
α
是( )
.A 第一象限或第二象限 .B 第一或第三象限
.C 第二或第三象限 .D 第二或第四象限 4. 2弧度的圆心角所对的弦长为2,这个圆心角所对的扇形面积的数值是( )
.
A 1
sin 1
.
B 1
sin 1
2
.
C 2
cos 11
-
.D 1tan
5.下列命题中正确的是( ) .A 若两扇形面积的比是1:4,则它们弧长的比是1:2 .B 若扇形的弧长一定,则面积存在最大值 .C 若扇形的面积一定,则弧长存在最小值 .D 任意角的集合可以与实数集R 之间建立一种一一对应关系 6.点P 从)0,1(出发,沿单位圆12
2
=+y x 逆时针方向运动
3
2π
弧长达到Q 点,则Q 的坐标为() .A )2
3,21(-
.B )21,23(--
.C )2
3
,21(--
.D )2
1
,23(-
7.(07北京)已知 cos tan 0θθ⋅<,则角θ是______
.A 第一象限或第二象限 .B 第一或第四象限 .C 第二或第三象限 .D 第三或第四象限
8.函数x
x
x x x x x x x f cot cot tan tan cos cos sin sin )(+++=的值域是( ) .A }4,2{-
.B }2,0,2,4{- .C }4,0,2{-
.D }4,0,2,4{--
四、规范训练
1.已知扇形的面积为2
25cm .求该扇形周长的最小值.
2.点O 是坐标原点,ο60角的终边上有一点M ,2=OM ,ο
120角的终边上有一点N ,
4=ON .P 为MN 的中点,求以OP 为终边的xOP ∠的正切值.
3.已知θθcos cos -=且0tan <θ ①试判断
)cos(sin )
sin(cos θθ的符号;
②化简
1
csc cot 2cot 1cos 2
2
-+
+θθθ
θ
.
4. 一段圆弧的长度等于其所在圆的内接正三角形的边长,求这个圆弧所对的圆心角?
5.扇形的中心角为,120ο
=α求此扇形的面积与其内切圆的面积的比.。