人教版初中数学七年级上册第一章 《1.2有理数》同步练习题(含答案)

合集下载

人教版七年级数学上册第一章有理数1.2.2数轴同步练习题含答案

人教版七年级数学上册第一章有理数1.2.2数轴同步练习题含答案

人教版七年级数学上册1.2.2数轴同步练习题1.下列关于数轴的说法正确的是( )A .数轴是一条规定了原点、正方向和单位长度的直线B .数轴的正方向一定向右C .数轴上的点只能表示整数D .数轴上的原点表示有理数的起点 2.下列数轴的画法中,正确的是( )3.(1)将有理数-2,1,0,-212,314在数轴上表示出来;(2)写出数轴上点A ,B ,C 表示的数.4.如图所示,数轴上四点M ,N ,P ,Q 中,表示负整数的点是( ) A .点M B .点N C .点P D .点Q5.有下列一组数:1,4,0,-12,-3,这些数在数轴上对应的点中,不在原点右边的点有( )A .2个B .3个C .4个D .5个6.点A 是数轴上表示-2的点,当点A 沿数轴移动4个单位长度到点B 时,点B 表示的有理数是( ) A .-4 B .-6 C .2或-4 D .2或-67.有理数a ,b ,c 在数轴上的位置如图所示,则下列说法正确的是( )A .a ,b ,c 都为正数B .b ,c 为正数,a 为负数C .a ,b ,c 都为负数D .b ,c 为负数,a 为正数 8.如图,点A 表示的数是________.9.如图,小明在写作业时不慎将墨水滴在数轴上,墨迹遮住部分的整数共有________个.10.点A ,B ,C ,D 分别表示-3,-112,0,4.请解答下列问题:(1)在数轴上描出A ,B ,C ,D 四个点;(2)现在把数轴的原点取在点B 处,其余均不变,那么点A ,B ,C ,D 分别表示什么数?11.如图12,上七年级的小贝在一张纸上画了一条数轴,妹妹不知道它有什么用处,就在上面画了一只小猫和一只小狗,于是数轴上标的数字有的看不到了,请根据数轴回答下列问题:(1)被小猫遮住的是正数还是负数?(2)被小狗遮住的整数有几个?(3)此时小猫和小狗之间(即点A,B之间)的整数有几个?图1212.某公交路线经过一条东西向的大街,从西往东设置有公园、书店、学校、小区四个站点,相邻两个站点之间的距离依次为3 km,2 km,1.5 km.如果以学校为原点,向东为正方向,以图上1 cm长为单位长度表示实际距离1 km,请画出数轴,并将四个站点在数轴上表示出来.13.育才路上依次有八中、新华中学和九中三所中学,八中在新华中学东900米处,新华中学在九中东800米处,现小明从新华中学出发沿着公路向西走了300米后,接着又向东走了500米,这时小明在八中的什么方向上?距八中有多远?试用画数轴的方法解决此题.14.在正方形的四个顶点处逆时针依次标上“合”“格”“优”“秀”四个字,将正方形放置在数轴上,其中“优”“秀”对应的数分别为-2和-1,现将正方形绕着顶点按顺时针方向在数轴上向右无滑动地翻滚,例如第一次翻滚后“全”所对应的数为0,则连续翻滚后与数轴上数2018重合的字是( )A.合 B.格 C.优 D.秀15.如图所示,数轴被折成90°,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字2所对应的点与数轴上的数3所对应的点重合,数轴固定,圆紧贴数轴沿着数轴的正方向滚动,那么数轴上的数2018将与圆周上的数字________重合.16.如图,将一刻度尺贴放在数轴上(数轴的单位长度是1 cm),刻度尺上“0 cm”和“8 cm”分别对应数轴上的-3和x ,那么x 的值为( )A .8B .7C .6D .517.如图,把一根木棒放在数轴上,数轴的1个单位长度为1 cm ,木棒的左端点与数轴上的点A 重合,右端点与点B 重合.(1)若将木棒沿数轴水平向右移动,则当它的左端点移动到点B 处时,它的右端点在数轴上所对应的数为20;若将木棒沿数轴水平向左移动,则当它的右端点移动到点A 处时,它的左端点在数轴上所对应的数为5,由此可得到木棒的长为________cm.(2)图中点A 表示的数是________,点B 表示的数是________.(3)根据(1)(2),请你借助“数轴”这个工具帮助小红解决下列问题: 一天,小红问爷爷的年龄,爷爷说:“我若是你现在这么大,你还要40年才出生;你若是我现在这么大,我已经125岁,是老寿星了,哈哈!”请求出爷爷现在多少岁了.1.A 2.D3.解:(1)如图所示.(2)点A 表示-3,点B 表示-1,点C 表示4. 4.A 5.B . 6.D 7.D 8.-2 9.710.解:(1)如图所示:(2)点A 表示-112,点B 表示0,点C 表示112,点D 表示512.11.解:(1)被小猫遮住的是负数.(2)被小狗遮住的整数有12,13,14,15,16,17,18,共7个.(3)小猫和小狗之间的整数有-16,-15,-14,…,-1,0,1,2,…,10,11,共28个. 12.解:如图所示:13.解:数轴画法不唯一,示例如下:由题意得三所中学在数轴上的位置如图所示:通过数轴,能看出小明从新华中学出发沿着公路向西走了300米后,接着又向东走了500米,这时小明在新华中学的东边,且距离新华中学200米处,即小明在八中的西边,距离八中有700米.14.C .15.3 .16.D17.解:(1)由数轴观察知三根木棒的长是20-5=15(cm),则此木棒的长为15÷3=5(cm).故答案为5.(2)10 15(3)借助数轴,B表示爷爷的年龄,A表示小红的年龄,把小红与爷爷的年龄差看作木棒AB.当爷爷的年龄是小红现在的年龄时,即将B向左移与A重合,此时小红的年龄是-40岁;当小红的年龄是爷爷现在的年龄时,即将A向右移与B重合,此时爷爷的年龄为125岁,所以可知爷爷比小红大(125+40)÷3=55(岁),所以爷爷现在的年龄为125-55=70(岁).。

人教版七年级上册《1.2_有理数》2024年同步练习卷(2)+答案解析

人教版七年级上册《1.2_有理数》2024年同步练习卷(2)+答案解析

人教版七年级上册《1.2有理数》2024年同步练习卷(2)一、选择题:本题共11小题,每小题3分,共33分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列各数中,是负分数的是()A. B. C. D.02.在下列数,,,,中,属于分数的有()A.2个B.3个C.4个D.5个3.下列各数中:、、、2、、、0、负有理数有()A.2个B.3个C.4个D.5个4.在,3,,0,,中,正有理数有()A.2个B.3个C.4个D.5个5.给出一个数,下列说法正确的是()A.这个数不是分数,但是有理数B.这个数是负数,也是分数C.这个数不是有理数D.这个数是一个负小数,不是有理数6.关于“0”的说法,正确的是()A.是整数,也是正数B.是整数,但不是正数C.不是整数,是正数D.是整数,但不是有理数7.下列说法正确的是()A.整数就是正整数和负整数B.分数包括正分数、负分数C.有理数包括正有理数和负有理数D.一个数不是正数就是负数8.一定是()A.正数B.负数C.正数或负数D.正数或零或负数9.下列说法正确的个数为()①0是整数;②是负分数;③不是正数;④自然数一定是正数.A.1B.2C.3D.410.在有理数,0,23,,中,属于非负数的个数有()A.4个B.3个C.2个D.1个11.在下列有理数中,是负数但不是分数的数是()A.1B.0C.D.二、填空题:本题共4小题,每小题3分,共12分。

12.请把下列各数填入相应的集合中:4,,,0,,正数集合:______…;负数集合:______…;整数集合:______…;分数集合:______…13.在数,,,,29,0,,中,非负数有______个.14.在,,0,,,2,,这些数中,有理数有m个,自然数有n个,分数有k个,则的值为______.15.观察下面按一定规律排列的数:第5行最右边的数是______,第6行最左边的数是______;这个数在第______行的第______列从左往右数;在前100个数中,正数有______个,负数有______个.三、解答题:本题共1小题,共8分。

人教版初中数学七年级上册《1.2 有理数》同步练习卷

人教版初中数学七年级上册《1.2 有理数》同步练习卷

人教新版七年级上学期《1.2 有理数》同步练习卷一.选择题(共14小题)1.在﹣4,,0,,3.14159,1.,0.1010010001…有理数的个数有()A.2个B.3个C.4个D.5个2.0是一个()A.负整数B.正分数C.非负整数D.正整数3.在,,0.7070070007…(每两个7之间0的个数逐渐加1),0.6中不是有理数有()个.A.1个B.2个C.3个D.4个4.在下列各数中,非负数有()个.﹣3,0,+5,﹣3,﹣80%,+,2013A.1个B.2个C.3个D.4个5.下列各数:﹣,1.010010001,,0,﹣π,﹣2.626626662…,0.,其中有理数的个数是()A.3B.4C.5D.66.在下面各数中有理数的个数有()﹣3.14,,0.1010010001,+1.99,﹣.A.1个B.2个C.3个D.4个7.在下列数﹣,+1,6.7,﹣15,0,,﹣1,25%中,属于分数的有()A.2个B.3个C.4个D.5个8.在有理数﹣1,+7,0,﹣,0.101中,非负数有()A.1个B.2个C.3个D.4个9.若有理数a、b在数轴上的对应点的位置如图所示,则下列结论中错误的是()A.ab<0B.a<0<b C.a+b<0D.﹣a<010.如图,在数轴上,点A,B表示的数分别是﹣2和10,则线段AB的中点M表示的数为()A.4B.6C.8D.1011.数轴上到原点的距离是5个单位长度的点表示的数是()A.5B.﹣5C.0D.±512.|﹣2|=()A.0B.﹣2C.2D.113.下列各组数中,互为相反数的是()A.|﹣|与﹣B.|﹣|与﹣C.|﹣|与D.|﹣|与14.当x<3时,式子|x﹣3|化简为()A.﹣3B.x C.x﹣3D.3﹣x二.填空题(共17小题)15.在下列各数中:﹣3,﹣2.5,+2.25,0,+0.1,+3,π,﹣4,﹣x,10,非负整数的个数是.16.在数﹣1,20%,,0.3,0,﹣1.7,21,﹣2,1.0101001…,+6,π中,分数有个.17.有理数﹣3,2,0,﹣1,4,+10,﹣,其中整数有个.18.有理数:﹣2,4,﹣70%,﹣6,0,﹣0.3,﹣20,是负整数的数是.19.将有理数化为小数是3.4285,则小数点后第2018位上的数是.20.在数轴上与﹣2所对应的点相距4个单位长度的点表示的数是.21.数轴上与原点的距离小于3且表示整数的点有个.22.数轴上,将表示﹣1的点向右移动2个单位后,对应点表示的数是.23.若数轴经过折叠,﹣5表示的点与3表示的点重合,则2018表示的点与数表示的点重合.24.小红在写作业时,不慎将一滴墨水滴在数轴上,根据图中的数据,请确定墨迹遮盖住的整数的和为.25.在数轴上与2距离为5个单位的点所表示的数是.26.7的相反数是,0的相反数是.27.如果a的相反数是1,那么a2018等于.28.若a,b互为相反数,则5a+5b的值为.29.﹣2的相反数的值等于.30.如图,数轴上的有理数a,b满足|3a﹣b|﹣|a+2b|=|a|,则=.31.已知abc≠0,且+++的最大值为m,最小值为n,则m+n=.三.解答题(共9小题)32.把下列各数填入相应的大括号内(将各数用逗号分开)6,﹣3,2.4,﹣,0,﹣3.14,.正数:{…}非负整数:{…}整数:{…}负分数:{…}33.元旦放假时,小明一家三口一起乘小轿车去探望爷爷、奶奶和姥爷、姥姥.早上从家里出发,向东走了5千米到超市买东西,然后又向东走了2.5千米到爷爷家,下午从爷爷家出发向西走了10千米到姥爷家,晚上返回家里.(1)若以小明家为原点,向东为正方向,用1个单位长度表示1千米,请将超市、爷爷家和姥爷家的位置在下面数轴上分别用点A、B、C表示出来;(2)超市和姥爷家相距多少千米?(3)若小轿车每千米耗油0.08升,求小明一家从出发到返回家,小轿车的耗油量.34.一辆出租车从A地出发,在一条东西走向的街道上往返,每次行驶的情况(记向东为正)记录如下(x>5且x<14,单位:m):行驶次数第一次第二次第三次第四次行驶情况x﹣x x﹣32(5﹣x)行驶方向(填“东”或“西”)(1)请将表格补充完整;(2)求经过连续4次行驶后,这辆出租车所在的位置;(3)若出租车行驶的总路程为41m,求第一次行驶的路程x的值.35.已知m是8的相反数,n比m的相反数小2,求n比m大多少?36.已知a、b互为相反数,非零数b的任何次幂都等于它本身.(1)求a、b;(2)求a2016+a2017;(3)求++…+.37.化简:(1)﹣[﹣(﹣8)];(2)﹣|﹣|38.阅读下列材料完成相关问题:已知a,b、c是有理数(1)当ab>0,a+b<0时,求的值;(2)当abc≠0时,求的值;(3)当a+b+c=0,abc<0,的值.39.【归纳】(1)观察下列各式的大小关系:|﹣2|+|3|>|﹣2+3|,|﹣6|+|3|>|﹣6+3||﹣2|+|﹣3|=|﹣2﹣3|,|0|+|﹣8|=|0﹣8|归纳:|a|+|b||a+b|(用“>”或“<”或“=”或“≥”或“≤”填空)【应用】(2)根据上题中得出的结论,若|m|+|n|=13,|m+n|=1,求m的值.【延伸】(3)a、b、c满足什么条件时,|a|+|b|+|c|>|a+b+c|.40.计算:已知|x|=3,|y|=2,(1)当xy<0时,求x+y的值(2)求x﹣y的最大值人教新版七年级上学期《1.2 有理数》2019年同步练习卷参考答案与试题解析一.选择题(共14小题)1.在﹣4,,0,,3.14159,1.,0.1010010001…有理数的个数有()A.2个B.3个C.4个D.5个【分析】有理数就是整数与实数的统称,即整数,有限小数以及无限循环小数都是有理数,据此即可作出判断.【解答】解:﹣4,,0,3.14159,1.,是有理数,其它的是无理数.故选:D.【点评】本题主要考查了实数中的基本概念和相关计算.实数是有理数和无理数统称.要求掌握这些基本概念并迅速做出判断.2.0是一个()A.负整数B.正分数C.非负整数D.正整数【分析】根据有理数的定义解答即可.【解答】解:0是一个非负整数,故选:C.【点评】本题考查了有理数,熟记有理数的定义是解题的关键.3.在,,0.7070070007…(每两个7之间0的个数逐渐加1),0.6中不是有理数有()个.A.1个B.2个C.3个D.4个【分析】根据有理数的定义,可直接得答案.【解答】解:整数和分数统称有理数,因为,0.6是分数也是有理数;,0.7070070007…(每两个7之间0的个数逐渐加1)不是有理数,是无理数.故选:B.【点评】本题考查了有理数的定义.整数和分数统称有理数.解题中容易把当成分数而出错.4.在下列各数中,非负数有()个.﹣3,0,+5,﹣3,﹣80%,+,2013A.1个B.2个C.3个D.4个【分析】根据非负数的概念,找出非负数即可.【解答】解:非负数有0,+5,+,2013,故选:D.【点评】此题考查了有理数,熟练掌握非负数的概念是解本题的关键.5.下列各数:﹣,1.010010001,,0,﹣π,﹣2.626626662…,0.,其中有理数的个数是()A.3B.4C.5D.6【分析】直接利用有理数的概念分析得出答案.【解答】解:﹣,1.010010001,,0,﹣π,﹣2.626626662…,0.,其中有理数为:﹣,1.010010001,,0,0.,共5个.故选:C.【点评】此题主要考查了有理数的相关概念,正确把握相关定义是解题关键.6.在下面各数中有理数的个数有()﹣3.14,,0.1010010001,+1.99,﹣.A.1个B.2个C.3个D.4个【分析】根据整数和分数统称为有理数直接找到有理数的个数即可.【解答】解:﹣3.14,,0.1010010001,+1.99,﹣中有理数为﹣3.14,,0.1010010001,+1.99共4个,故选:D.【点评】本题是对有理数概念的考查,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.7.在下列数﹣,+1,6.7,﹣15,0,,﹣1,25%中,属于分数的有()A.2个B.3个C.4个D.5个【分析】根据有理数的分类即可解决问题.【解答】解:属于分数的有﹣,6.7,,25%这4个,故选:C.【点评】本题考查了有理数:正数和分数统称为有理数.有理数的分类:按整数、分数的关系分类;按正数、负数与0的关系分类.8.在有理数﹣1,+7,0,﹣,0.101中,非负数有()A.1个B.2个C.3个D.4个【分析】根据大于或等于零的数是非负数,可得答案.【解答】解:非负数有,+7,0,0.101,故选:C.【点评】本题考查了非负数,大于或等于零的数是非负数.9.若有理数a、b在数轴上的对应点的位置如图所示,则下列结论中错误的是()A.ab<0B.a<0<b C.a+b<0D.﹣a<0【分析】根据数轴得出a<0<b,|a|>|b|,进而可得出ab<0,a+b<0,﹣a>0,对比后即可得出选项.【解答】解:从数轴可知:a<0<b,|a|>|b|,∴ab<0,a+b<0,﹣a>0,即选项A,B,C均正确;选项D错误,故选:D.【点评】本题考查了数轴和有理数的运算,能根据数轴得出a<0<b和|a|>|b是解此题的关键.10.如图,在数轴上,点A,B表示的数分别是﹣2和10,则线段AB的中点M表示的数为()A.4B.6C.8D.10【分析】根据AM=BM得出方程,求出方程的解即可.【解答】解:设M点表示的数为x,∵M为线段AB的中点,∴AM=BM,∴10﹣x=x﹣(﹣2),解得:x=4,故选:A.【点评】本题考查了数轴和线段的中点,能根据题意得出关于x的方程是解此题的关键.11.数轴上到原点的距离是5个单位长度的点表示的数是()A.5B.﹣5C.0D.±5【分析】本题可根据题意得距离原点距离为5的数有5和﹣5两种.由此即可得出答案.【解答】解:数轴上到原点的距离是5个单位长度的点表示的数是|5|=±5.故选:D.【点评】解答此题要用到以下概念:数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴;(1)从原点出发朝正方向的射线上的点对应正数,相反方向的射线上的点对应负数,原点对应零.(2)在数轴上表示的两个数,正方向的数大于负方向的数.(3)正数都大于0,负数都小于0,正数大于一切负数.(4)若从点A向右移动|a|个单位,得到B,则B点坐标为A的坐标加|a|,反之B点坐标为A的坐标减|a|.12.|﹣2|=()A.0B.﹣2C.2D.1【分析】根据绝对值的定义进行填空即可.【解答】解:|﹣2|=2,故选:C.【点评】本题考查了绝对值,掌握绝对值的定义是解题的关键.13.下列各组数中,互为相反数的是()A.|﹣|与﹣B.|﹣|与﹣C.|﹣|与D.|﹣|与【分析】只有符号不同的两个数叫做互为相反数,从而分别分析A,B,C,D四项中符合相反数定义的选项.【解答】解:A项中,|﹣|=,与﹣互为相反数.B项中,|﹣|=,﹣<﹣,所以|﹣|与﹣不互为相反数.C项中,|﹣|=,=,|﹣|与相等,不互为相反数.D项中,|﹣|=,<,|﹣|与不互为相反数.故选:A.【点评】本题考查了绝对值的性质和相反数的定义,属于比较基本的问题.14.当x<3时,式子|x﹣3|化简为()A.﹣3B.x C.x﹣3D.3﹣x【分析】由x<3可得x﹣3<0,再根据绝对值的性质即可求解.【解答】解:∵x<3,∴x﹣3<0,∴|x﹣3|=3﹣x.故选:D.【点评】考查了绝对值,如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.二.填空题(共17小题)15.在下列各数中:﹣3,﹣2.5,+2.25,0,+0.1,+3,π,﹣4,﹣x,10,非负整数的个数是2.【分析】根据实数数的分类,对各数判断并得结论.【解答】解:∵非负整数就是正整数和0,当x是正数时,﹣x就是负数,π是无限不循环小数.∴非负整数有:0,10共2个.故答案为:2【点评】本题考查实数的分类,解题的关键是正确理解实数的分类,本题属于基础题型.16.在数﹣1,20%,,0.3,0,﹣1.7,21,﹣2,1.0101001…,+6,π中,分数有5个.【分析】根据分数的定义求解可得.【解答】解:分数有﹣1,20%,,0.3,﹣1.7,故答案为:5【点评】本题主要考查有理数,解题的关键熟练掌握分数的定义.17.有理数﹣3,2,0,﹣1,4,+10,﹣,其中整数有4个.【分析】根据有理数的分类即可求出答案.【解答】解:﹣3,0,4,+10是整数,故答案为:4【点评】本题考查有理数的分类,解题的关键是熟练运用有理数的分类,本题属于基础题型.18.有理数:﹣2,4,﹣70%,﹣6,0,﹣0.3,﹣20,是负整数的数是﹣2,﹣6,﹣20.【分析】根据有理数的分类即可解决问题.【解答】解:负整数的数是﹣2,﹣6,﹣20,故答案为:﹣2,﹣6,﹣20.【点评】本题考查了有理数:正数和分数统称为有理数.有理数的分类:按整数、分数的关系分类;按正数、负数与0的关系分类.19.将有理数化为小数是3.4285,则小数点后第2018位上的数是4.【分析】此循环小数中这6个数字为一个循环周期,要求小数点后面第2018位上的数字是几,就是求2018里面有几个6,再根据余数确定即可【解答】解:∵2018÷6=336……2,∴小数点后第2018位上的数与第2位数字相同,为4,故答案为:4.【点评】此题考查了数字的变化规律,解决此题关键是根据循环节确定6个数字为一个循环周期,进而求出2018里面有几个6,再根据余数确定即可20.在数轴上与﹣2所对应的点相距4个单位长度的点表示的数是2或﹣6.【分析】由于题目没有说明该点的具体位置,故要分情况讨论.【解答】解:当该点在﹣2的右边时,由题意可知:该点所表示的数为2,当该点在﹣2的左边时,由题意可知:该点所表示的数为﹣6,故答案为:2或﹣6【点评】本题考查数轴,涉及有理数的加减运算、分类讨论的思想.21.数轴上与原点的距离小于3且表示整数的点有5个.【分析】本题可通过数轴,直接得结果,亦可通过绝对值的意义得结果.【解答】解:由绝对值的意义知,与原点的距离小于3且表示整数的点,即绝对值小于3的整数有:±1,0,±2共5个.故答案为:5.【点评】本题考查了数轴上点的距离,题目比较简单,容易漏掉整数0而出错.22.数轴上,将表示﹣1的点向右移动2个单位后,对应点表示的数是1.【分析】根据题意列出算式﹣1+2,求出即可.【解答】解:﹣1+2=1,即数轴上,将表示﹣1的点向右移动2个单位后,对应点表示的数是1,故答案为:1.【点评】本题考查了数轴的应用,能根据题意列出算式是解此题的关键.23.若数轴经过折叠,﹣5表示的点与3表示的点重合,则2018表示的点与数﹣2020表示的点重合.【分析】直接根据题意得出中点,进而得出答案.【解答】解:∵数轴经过折叠,﹣5表示的点与3表示的点重合,∴两数中点是:×(﹣5+3)=﹣1,设2018表示的点与数x表示的点重合,∴×(2018+x)=﹣1,解得:x=﹣2020.故答案为:﹣2020.【点评】此题主要考查了数轴,正确得出两数中点是解题关键.24.小红在写作业时,不慎将一滴墨水滴在数轴上,根据图中的数据,请确定墨迹遮盖住的整数的和为﹣5.【分析】根据有理数大小比较的方法,判断出﹣和2之间的整数有多少个即可.【解答】解:∵﹣和2之间的整数有3个:﹣3,﹣2,﹣1,0,1,∴墨迹遮盖住的整数和=﹣3﹣2﹣1+0+1=﹣5故答案为:﹣5.【点评】此题主要考查了数轴的特征和应用,以及有理数大小比较的方法,要熟练掌握.25.在数轴上与2距离为5个单位的点所表示的数是7或﹣3.【分析】设数轴上与表示2的点的距离为5个单位的点表示的有理数是x,再根据数轴上两点间的距离公式求出x的值即可.【解答】解:设数轴上与表示2的点的距离为5个单位的点表示的有理数是x,则|x﹣2|=5,解得x=7或x=﹣3.故答案是:7或﹣3.【点评】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.26.7的相反数是﹣7,0的相反数是0.【分析】直接利用相反数的定义分析得出答案.【解答】解:7的相反数是:﹣7,0的相反数是:0.故答案为:﹣7,0.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.27.如果a的相反数是1,那么a2018等于1.【分析】直接利用相反数的定义得出a的值,进而得出答案.【解答】解:∵a的相反数是1,∴a=﹣1,∴a2018=(﹣1)2018=1.故答案为:1.【点评】此题主要考查了相反数,正确得出a的值是解题关键.28.若a,b互为相反数,则5a+5b的值为0.【分析】直接利用相反数的定义把原式变形得出答案.【解答】解:∵a,b互为相反数,∴5a+5b=5(a+b)=0.故答案为:0.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.29.﹣2的相反数的值等于2.【分析】根据相反数的定义作答.【解答】解:﹣2的相反数的值等于2.故答案是:2.【点评】考查了相反数的概念:只有符号不同的两个数叫做互为相反数.30.如图,数轴上的有理数a,b满足|3a﹣b|﹣|a+2b|=|a|,则=﹣.【分析】根据点a、b在数轴上的位置可判断出3a﹣b<0,a+2b>,a<0,然后化简绝对值,从而可求得答案.【解答】解:∵由题意可知:3a﹣b<0,a+2b>0,a<0,∴b﹣3a﹣(a+2b)=﹣a.整理得:﹣b=3a.∴.故答案为:﹣.【点评】本题主要考查的是绝对值的化简、数轴的认识,根据a、b在数轴上的位置,判断出3a﹣b<0,a+2b>,a<0是解题的关键.31.已知abc≠0,且+++的最大值为m,最小值为n,则m+n=0.【分析】利用①a,b,c都大于0,②a,b,c都小于0,③a,b,c一负两正,④a,b,c 一正两负,进而分析得出即可.【解答】解:∵a,b,c都不等于0,∴有以下情况:①a,b,c都大于0,原式=1+1+1+1=4;②a,b,c都小于0,原式=﹣1﹣1﹣1﹣1=﹣4;③a,b,c,一负两正,不妨设a<0,b>0,c>0,原式=﹣1+1+1﹣1=0;④a,b,c,一正两负,不妨设a>0,b<0,c<0,原式=1﹣1﹣1+1=0;∴m=4,n=﹣4,∴m+n=4﹣4=0.故答案为:0.【点评】此题主要考查了绝对值的性质,利用分类讨论得出是解题关键.三.解答题(共9小题)32.把下列各数填入相应的大括号内(将各数用逗号分开)6,﹣3,2.4,﹣,0,﹣3.14,.正数:{6,2.4,;…}非负整数:{6,2.4,0,;…}整数:{6,﹣3,0…}负分数:{﹣,﹣3.14…}【分析】根据分母为1的数是整数,可得整数集合;根据小于零的数是负数,可得负数集合;根据大或等于零的整数是非负整数,可的非负整数集合,根据小于零的分数是负分数,可得负分数集合,根据有理数是有限小数或无限循环小数,可得有理数集合.【解答】解:正数:{6,2.4,…}非负整数:{6,2.4,0,…}整数:{6,﹣3,0…}负分数:{﹣,﹣3.14…}故答案为:6,2.4,;6,2.4,0,;6,﹣3,0;﹣,﹣3.14.【点评】此题考查了有理数,熟练掌握有理数的分类是解本题的关键.33.元旦放假时,小明一家三口一起乘小轿车去探望爷爷、奶奶和姥爷、姥姥.早上从家里出发,向东走了5千米到超市买东西,然后又向东走了2.5千米到爷爷家,下午从爷爷家出发向西走了10千米到姥爷家,晚上返回家里.(1)若以小明家为原点,向东为正方向,用1个单位长度表示1千米,请将超市、爷爷家和姥爷家的位置在下面数轴上分别用点A、B、C表示出来;(2)超市和姥爷家相距多少千米?(3)若小轿车每千米耗油0.08升,求小明一家从出发到返回家,小轿车的耗油量.【分析】(1)由已知得:从家向东走了5千米到超市,则超市A表示5,又向东走了2.5,则爷爷家B表示的数为7.5,从爷爷家出发向西走了10千米到姥爷家,所以姥爷家C表示的数为7.5﹣10=﹣2.5,画数轴如图;(2)右边的数减去左边的数即可;(3)计算总路程,再根据耗油量=总路程×0.15即可求解.【解答】解:(1)点A,B,C即为如图所示.(2)5﹣(﹣2.5)=7.5(千米).故超市和姥爷家相距7.5千米;(3)(5+2.5+10+2.5)×0.08=1.6(升).故小轿车的耗油量是1.6升..【点评】考查了数轴,此类题的解题思路为:利用数形结合的思想,先根据条件找到超市、爷爷家和外公家的位置,再依次解决问题.34.一辆出租车从A地出发,在一条东西走向的街道上往返,每次行驶的情况(记向东为正)记录如下(x>5且x<14,单位:m):行驶次数第一次第二次第三次第四次行驶情况x﹣x x﹣32(5﹣x)东西东西行驶方向(填“东”或“西”)(1)请将表格补充完整;(2)求经过连续4次行驶后,这辆出租车所在的位置;(3)若出租车行驶的总路程为41m,求第一次行驶的路程x的值.【分析】(1)根据数的符号说明即可;(2)把路程相加,求出结果,看结果的符号即可判断出答案;(3)求出每个数的绝对值,相加求出总路程,再解方程求解即可.【解答】解:(1)填表如下:行驶次数第一次第二次第三次第四次行驶情况x﹣x x﹣32(5﹣x)东西东西行驶方向(填“东”或“西”)故答案为:东,东,西;(2)x+(﹣x)+(x﹣3)+2(5﹣x)=7﹣x,∵x>5且x<14,∴7﹣x>0,∴经过连续4次行驶后,这辆出租车所在的位置是向东(7﹣x)km.(3)|x|+|﹣x|+|x﹣3|+|2(5﹣x)|=x+x+x﹣3﹣2(5﹣x)=x﹣13,依题意有x﹣13=41,解得x=12.答:第一次行驶的路程x的值是12.【点评】本题考查了整式的加减,绝对值等知识点的应用,主要考查学生分析问题和解决问题的能力,用数学解决实际问题,题型较好.35.已知m是8的相反数,n比m的相反数小2,求n比m大多少?【分析】根据相反数定义确定m和n的值,然后可得答案.【解答】解:由题意得:m=﹣8,n=8﹣2=6,n﹣m=6﹣(﹣8)=14,答:n比m大14.【点评】此题主要考查了相反数,关键是掌握只有符号不同的两个数叫做互为相反数.36.已知a、b互为相反数,非零数b的任何次幂都等于它本身.(1)求a、b;(2)求a2016+a2017;(3)求++…+.【分析】(1)依据相反数、有理数的乘方法则可求得a、b的值;(2)将a的值代入进行计算即可;(3)将a、b的值代入,然后依据拆项裂项法即可.【解答】解:(1)∵a、b互为相反数,非零数b的任何次幂都等于它本身1,∴a=﹣1、b=1.(2)将a=﹣1代入得:原式=(﹣1)2016+(﹣1)2017=1﹣1=0;(3)将a、b的值代入得:原式=﹣1×(++…+)=﹣1××(1﹣+﹣+…+﹣)=﹣1××=﹣.【点评】本题主要考查的是求代数式的值,利用拆项裂项法求解是解题的关键.37.化简:(1)﹣[﹣(﹣8)];(2)﹣|﹣|【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:(1)﹣[﹣(﹣8)]=﹣[+8]=﹣8;(2)﹣|﹣|=﹣.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.38.阅读下列材料完成相关问题:已知a,b、c是有理数(1)当ab>0,a+b<0时,求的值;(2)当abc≠0时,求的值;(3)当a+b+c=0,abc<0,的值.【分析】(1)先由ab>0,a+b<0,判断a、b的正负,再求值;(2)对a、b、c的正负先进行讨论,然后再求值;(3)由a+b+c=0,变形为﹣﹣+的形式,根据abc<0分类讨论,计算出结果.【解答】解:(1)∵ab>0,a+b<0,∴a<0,b<0∴=﹣1﹣1=﹣2;(2)当a、b、c同正时,=1+1+1=3;当a、b、c两正一负时,=1+1﹣1=1;当a、b、c一正两负时,=﹣1﹣1+1=﹣1;当a、b、c同负时,=﹣1﹣1﹣1=﹣3;(3)∵a+b+c=0,∴b+c=﹣a,a+c=﹣b,a+b=﹣c∴=+﹣=﹣﹣+又∵abc<0,∴当c<0,a>0,b>0时,原式=﹣﹣+=﹣1﹣1﹣1=﹣3;当c<0,a<0,b<0时,原式=﹣﹣+=1+1﹣1=1;当c>0,a或b为负时,原式=﹣﹣+=1﹣1+1=1.【点评】本题考查了绝对值的意义、分式的商及有理数的运算等知识点.题目需要分类讨论,分类时注意不重不漏.39.【归纳】(1)观察下列各式的大小关系:|﹣2|+|3|>|﹣2+3|,|﹣6|+|3|>|﹣6+3||﹣2|+|﹣3|=|﹣2﹣3|,|0|+|﹣8|=|0﹣8|归纳:|a|+|b|≥|a+b|(用“>”或“<”或“=”或“≥”或“≤”填空)【应用】(2)根据上题中得出的结论,若|m|+|n|=13,|m+n|=1,求m的值.【延伸】(3)a、b、c满足什么条件时,|a|+|b|+|c|>|a+b+c|.【分析】(1)根据提供的关系式得到规律即可;(2)根据(1)中的结论分当m为正数,n为负数时和当m为负数,n为正数时两种情况分类讨论即可确定答案;(3)分第一类:a、b、c三个数都不等于0、第二类:a、b、c三个数中有1个0、第三类:a、b、c三个数中有2个0、第四类:a、b、c三个数都为0,此时|a|+|b|+|c|=|a+b+c|,四种情况分类讨论即可确定正确的答案.【解答】解:(1)根据题意得:|a|+|b|≥|a+b|,故答案为:≥;(2)由上题结论可知,因为|m|+|n|=13,|m+n|=1,|m|+|n|≠|m+n|,所以m、n异号.当m为正数,n为负数时,m﹣n=13,则n=m﹣13,|m+m﹣13|=1,m=7或6;当m为负数,n为正数时,﹣m+n=13,则n=m+13,|m+m+13|=1,m=﹣7或﹣6;综上所述,m为±6或±7(3)分析:若按a、b、c中0的个数进行分类,可以分成四类:第一类:a、b、c三个数都不等于0①1个正数,2个负数,此时|a|+|b|+|c|>|a+b+c|②1个负数,2个正数,此时|a|+|b|+|c|>|a+b+c|③3个正数,此时|a|+|b|+|c|=|a+b+c|,故排除④3个负数,此时|a|+|b|+|c|=|a+b+c|,故排除第二类:a、b、c三个数中有1个0【结论同第(1)问】①1个0,2个正数,此时|a|+|b|+|c|=|a+b+c|,故排除②1个0,2个负数,此时|a|+|b|+|c|=|a+b+c|,故排除③1个0,1个正数,1个负数,此时|a|+|b|+|c|>|a+b+c|第三类:a、b、c三个数中有2个0①2个0,1个正数:此时|a|+|b|+|c|=|a+b+c|,故排除②2个0,1个负数:此时|a|+|b|+|c|=|a+b+c|,故排除第四类:a、b、c三个数都为0,此时|a|+|b|+|c|=|a+b+c|,故排除综上所述:1个负数2个正数;1个正数2个负数;1个0,1个正数和1个负数.【点评】本题考查了绝对值的知识,解题的关键是能够根据题意分类讨论解决问题,难度不大.40.计算:已知|x|=3,|y|=2,(1)当xy<0时,求x+y的值(2)求x﹣y的最大值【分析】(1)由题意x=±3,y=±2,由于xy<0,x=3,y=﹣2或x=﹣3,y=2,代入x+y即可求出答案.(2)由题意x=±3,y=±2,根据几种情况得出x﹣y的值,进而比较即可.【解答】解:由题意知:x=±3,y=±2,(1)∵xy<0,∴x=3,y=﹣2或x=﹣3,y=2,∴x+y=±1,(2)当x=3,y=2时,x﹣y=3﹣2=1;当x=3,y=﹣2时,x﹣y=3﹣(﹣2)=5;当x=﹣3,y=2时,x﹣y=﹣3﹣2=﹣5;当x=﹣3,y=﹣2时,x﹣y=﹣3﹣(﹣2)=﹣1,所以x﹣y的最大值是5【点评】本题考查绝对值的性质,涉及代入求值,分类讨论的思想,属于基础题型.。

人教版七年级数学上册 第1章 有理数 1.2有理数 课后练习(含答案)

人教版七年级数学上册  第1章 有理数    1.2有理数  课后练习(含答案)

第1章有理数 1.2有理数一、选择题1.在12,0,1,-9四个数中,负数是( )A.12B.0 C.1 D.-92.如图,数轴上蝴蝶所在点表示的数可能为( )A.3 B.2 C.1 D.-13.相反数是它本身的数是( )A.1和-1 B.0C.0和±1 D.0和14.若|-3|=x,则x的值为( )A.3 B.-3C.±3 D.以上都不正确5.若a是有理数,则下列说法正确的是( )A.|a|一定为正数B.-a一定为负数C.-|a|一定为负数D.|a|+1一定为正数6.a,b是有理数,它们在数轴上的对应点的位置如图所示,把a,-a,b,-b按照从小到大的顺序排列是( )A.-b<-a<a<b B.a<-b<b<-aC.-b<a<-a<b D.a<-b<-a<b7.学校、冰冰家、书店依次坐落在一条南北走向的大街上,学校在冰冰家的南边20米,书店在冰冰家的北边100米,冰冰从家里出发,向北走了50米,接着又向南走了70米,此时冰冰的位置( )A.在家B.在学校C.在书店D.不在上述地方8.已知数轴上的点A表示的数是2,那么在数轴上到点A的距离是3的点表示的数是( ) A.3或-3 B.5C.-1 D.-1或5二、填空题9.在体育课的跳远比赛中,以4.00米为标准,若小东跳出了4.23米,记作+0.23米,那么小东跳出了3.75米,记作________.10.若a是最大的负整数,则a=________;若b是绝对值最小的有理数,则b=________;若c比最小的正整数大3,则c=________.11.如图所示,表示0.5的点是________,表示-1.5的点是________,点A表示的数是________.12.化简下列各数:+(-5)=________,-(-313)=________,-[-(-335)]=________.13.A是数轴上的一个点,将点A先向右移动5个单位长度,再向左移动3个单位长度(向右为正方向),终点恰好是原点,则点A表示的数是________.14.比较大小:(1)-2.1________1;(2)-23________-34;(3)-(-5)________-|-5|.15.小明在写作业时不慎将墨水滴在数轴上,请根据图中的数值,判断墨迹盖住部分的整数有________个.三、解答题16.在数轴上表示出下列各数,并将它们用“<”号连接起来:0,-4.5,-|-3|,-(-1),1 3 .17.2018·淮安清江浦区期中把下列各数分别填入相应的大括号里:-4,-|-43|,0,227,-3.14,2020,-(+5),+1.88.(1)正数:{ …};(2)负数:{ …};(3)整数:{ …};(4)分数:{ …}.18.某汽车配件厂生产一种圆形橡胶垫,从中抽取6件产品进行检验.规定:其直径比标准直径大的部分记作正数;比标准直径小的部分记作负数.检查的结果(单位:毫米)记录如下:(1)请找出三个误差相对较小的零件,并用绝对值的知识来说明;(2)若规定与标准直径相差不大于0.2毫米的为合格产品,则6件产品中有几件不合格产品?请写出不合格产品的序号.19.观察下面一列数,探求其规律:1 2,-23,34,-45,56,-67,….(1)写出第7,8,9个数;(2)第2022个数是什么?(3)如果这一列数无限排列下去,与哪两个有理数越来越接近?20.小华骑车从家出发,先向东骑行2 km到达A村,继续向东骑行3 km到达B村,接着又向西骑行9 km到达C村,最后回到家,试解答下列问题:(1)以家为原点,向东为正方向,用1个单位长度表示1 km画数轴,并在数轴上表示出家以及A,B,C三个村庄的位置;(2)C村与A村的距离是多少?(3)小华一共行驶了多少千米?21.已知a,b,c为有理数,且它们在数轴上对应的点的位置如图所示.(1)试判断a,b,c的正负性.(2)根据数轴化简:①|a|=________;②|b|=________;③|c|=________;④|-a|=________;⑤|-b|=________;⑥|-c|=________.(3)若|a|=5.5,|b|=2.5,|c|=5,求a,b,c的值.参考答案1.D 2.D 3.B 4.A5.D 6.B 7.B 8.D 9.-0.25米10.-1 0 411.G D -3 12.-5 313 -33513.-2 14.(1)< (2)> (3)>15.9 [解析] 墨迹盖住部分的整数有-5,-4,-3,-2,1,2,3,4,5,共9个.16.解:将各数表示在数轴上如下:用“<”号连接为-4.5<-|-3|<0<13<-(-1). 17.解:(1)正数:{227,2020,+1.88,…}; (2)负数:{-4,-|-43|,-3.14,-(+5),…}; (3)整数:{-4,0,2020,-(+5),…};(4)分数:{-|-43|,227,-3.14,+1.88,…}. 18.解:(1)三个误差相对较小的零件是3号,4号,5号.理由:|+0.5|=0.5,|-0.3|=0.3,|+0.1|=0.1,|0|=0,|-0.1|=0.1,|+0.2|=0.2.因为0<0.1<0.2<0.3<0.5,故三个误差相对较小的零件是3号,4号,5号.(2)6件产品中有2件不合格产品,分别是1号和2号.19.解:(1)第7,8,9个数分别为78,-89,910. (2)-20222023. (3)与1和-1越来越接近. 20.解:(1)如图:(2)2+|-4|=2+4=6(km).答:C 村与A 村的距离是6 km.(3)|2|+|3|+|-9|+|4|=2+3+9+4=18(km).答:小华一共行驶了18 km.21.解:(1)a为负数,b为正数,c为正数.(2)①-a ②b③c④-a ⑤b⑥c(3)a=-5.5,b=2.5,c=5.。

人教版七上数学第一章1.2.1有理数同步练习(带答案)

人教版七上数学第一章1.2.1有理数同步练习(带答案)

人教版七上数学第一章1.2.1有理数同步练习一、单选题(共18题;共36分)1. 下列各数中:+5、-2.5、4-3、2、75、-(-7)、0、-|+3|负有理数有()A .2个B .3个C .4个D .5个2. 在-4,0,-1,3这四个数中,既不是正数又不是负数的数是( )A .-4B .0C .-1D .33. 在下列各数22-7,0,1.5,-3,152,50%,+8中,是整数的有()A .5个B .4个C .3个D .2个4. 设a是最小的自然数,b是最大的负整数,c是绝对值最小的有理数,a,b,c三个数的和为()A .-1B .0C .1D .不存在5. 下列各数:1、﹣0.10、58、﹣789、325、0、﹣30、10.10、π、1000.1中分数有()A .1个B .3个C .4个D .5个6. 在-2,+3.5,0,2-3,-0.7,11中,负分数有()A .1个B .2个C .3个D .4个7. 下列说法中不正确的是()A .﹣3.14既是负数,分数,也是有理数B .0既不是正数,也不是负数,但是整数C .﹣2000既是负数,也是整数,但不是有理数D .0是非正数8. 下列四个数中,是正整数的是()A .﹣1B .0C .12D .19. 下列说法正确的是()A .零是最小的整数B .有理数中存在最大的数C .整数包括正整数和负整数D .0是最小的非负数10. 下列说法中,正确的有( )①4-27是负分数;②1.5不是整数;③非负有理数不包括0;④正整数,负整数统称为有理数;⑤0是最小的整数.A .1个B .2个C .3个D .4个11. 下列说法错误的是()A .负整数和负分数统称为负有理数B .正整数、0、负整数统称为整数C .正有理数与负有理数组成全体有理数D .3.14是小数,也是分数12. 某班学习小组在课外活动中收集到到以下信息,你认为其中不是用自然数排序的是()A .某地的国民生产总值列全国第五位B .某城市有16条公共汽车线路C .小刚乘T32次火车去北京D .小风在校运会上获得跳远比赛第一名13. 在数4.19,5-6,-1,120%,29,0,1-33,-0.97中,非负数有()A .3个B .4个C .5个D .6个14. 下列说法中正确的是()A .正整数与正分数统称为正有理数B .正整数与负整数统称为整数C .正分数、0、负分数统称为分数D .一个有理数不是正数就是负数15. 下列各数中,是负数的是()A .1--5⎛⎫⎪⎝⎭B .1--4C .21-3⎛⎫⎪⎝⎭D .1-616. 下列说法正确的是()A .-a一定是负数B . a一定是正数C . a一定不是负数D .a-一定是负数17. 在-[-(-3)],(-1)2,-22,0,+(-12)中,负数的个数为()A .2B .3C .4D .518. 下面说法正确的有( )A .正整数、负整数统称为整数B .零是整数,但不是正数,也不是负数C .分数包括正分数、负分数和零D .有理数不是正数就是负数二、填空题(共7题;共16分)19. 把下列各数填入相应的集合里:﹣3,5-,+(- 13),﹣3.14,0,﹣1.2121121112…,﹣(﹣2.5),34 ,45--,3π 正数集合:{_________________________};整数集合:{_________________________};负分数集合:{_________________________};无理数集合:{_________________________}.20. 小明的妈妈在超市买了一瓶消毒液,发现在瓶上印有这样一段文字:“净含量(750±5)ml ”,这瓶消毒液至少有___________mL .21. 有理数﹣5,34-,﹣12,0,﹣3.14,+1.99,﹣(﹣6),227 中,整数有____个,分数有____个,负数有____个.22. 有理数包含正数、负数和_____.23. 把下列各数填入它所在的数集的括号里. ﹣12 ,+5,﹣6.3,0,﹣1213 ,425,6.9,﹣7,210,0.031,﹣43,﹣10% 正数集合:{________________________…}整数集合:{________________________…}非负数集合:{________________________…}负分数集合:{________________________…}.24. 根据如图所示的车票信息,车票的价格为___元.25. 在数+8.3、-4、-0.8、15- 、0、90、343- 、-|-24|中,___________是正数,_____________不是整数.三、解答题(共2题;共10分)26. 小红在做作业时,不小心将两滴墨水洒在一个数轴上,如图所示,根据图中标出的数值,判断墨水盖住的整数有哪几个?答:27. 下列各数填入相应的大括号里:5, -1 , 0 ,-6 ,π, 0.3 ,132-,154+,-0.72 ,…①正数集合:{ ____________________ }②整数集合:{ ____________________ }③负数集合:{ ____________________ }④分数集合:{ ____________________ }.答案:1-5.BBCAC 6-10.BCDDB BAB 16-18.CBB19.第一空5-,﹣(﹣2.5),34,3π第二空﹣3,5-,0 第三空+(-13),﹣3.14,45--第四空﹣1.2121121112 (3)20.74521. 4 4 422.023.略24.77.525.略26.-12,-11,-10,-9,-8,11,12,13,14,15,16,1727.略。

1_2_1有理数的概念同步练习题(含简单答案)人教版(2024)数学七年级上册

1_2_1有理数的概念同步练习题(含简单答案)人教版(2024)数学七年级上册

A.整数集合 B.负数集合
C.有理数集合 D.非负数集合
5.如图表示负数集合与整数集合,则图中重合部分 A 处可以填入的数是( )
A.3
B.0
C.-2.6
D.-7
6.下列说法中,正确的是( ).
A.有理数分为正数、0 和负数 B.有理数分为正整数、0 和负数
C.有理数分为分数和整数
D.有理数分为正整数、0 和负整数
7
3
﹣2. 5 ,3.01,+9,4.020020002…,+10%,﹣2π, 100 中符合条件的数填入相应
5
的圈中.
15.小颖与小聪一起制作了10 张数字卡片.两个人规定做出一张正数卡片给小颖 加1分,做出一张负数卡片给小聪加1分.
1.2323
9
32333
0
0.3
(1)小颖得到 ___________ 分. (2)请找出正分数: ___________ ;负整数: ___________ .
1.A
参考答案:
2.D
3.C
4.D
5.D
6.C
7.C
8. 整数 分数 正有理 负有理 零
9. 4 2
10.
5
2
3
11. 正数有:0.6, 2011 ,368;
2012
负数有: ,是 0;
12. ﹣2.3 ﹣1.5(答案不唯一).
13.(1)1, 108

4

π
,其中有理数有
个,负数有个

10.有理数 1.7,﹣17,0, 5 2 ,﹣0.001,﹣ 9 ,2003 和﹣1 中,负数有
7
2
个,
其中负整数有 个,负分数有 个.

人教版七年级数学上册《1.2有理数》同步练习题-带答案

人教版七年级数学上册《1.2有理数》同步练习题-带答案

人教版七年级数学上册《1.2有理数》同步练习题-带答案一、选择题1.-4的绝对值是()A.−14B.14C.4 D.-42.已知下列各数-8, 2.1与19, 3, 0,﹣2.5, 10, -1中,其中非负数的个数是()A.2个B.3个C.4个D.5个3.如果a与1互为相反数,那么a=()A.2 B.-2 C.1 D.-14.下列各式中,结果是100的是()A.-(+100) B.-(-100) C.-|+100| D.-|-100| 5.如图,数轴上点A所表示的数的相反数是()A.−2B.2C.12D.−126.下列四个数中,最小的一个数是()A.-6 B.10 C.0 D.-1 7.下列说法正确的是()A.-|a|一定是负数B.只有两个数相等时它们的绝对值才相等C.若|a|=|b|,则a与b相等D.若一个数小于它的绝对值,则这个数为负数8.如图,数轴上有A,B,C,D四个点,其中绝对值最小的数对应的点是()A.点A B.点B C.点C D.点D 二、填空题9.有理数中,最大的负整数是.10.比较大小:−35−34(填“>”、“<”或“=”).11.数轴上到原点的距离等于3个单位长度的点所表示的数为.12.|﹣6|的相反数是.13.若|x| =5,则x=.三、解答题14.求+358,-2.35,0,−227的相反数和绝对值.15.把下列各数填入相应的大括号里:-1, 3.5,-0.5与13,0,-95%,-3,2023.整数集:{...};非负整数集:{...};正分数集:{...};16.如图,数轴上点A,B,C,D,E分别表示什么数?其中哪些数是互为相反数?17.在数轴上表示下列各数,并用“<”符号将它们连接起来.-4,|-2.5|,-|3|,-112,-(-1),0参考答案1.C2.D3.D4.B5.B6.A7.D8.B9.-110.>11.﹣3或312.﹣613.±514.解:相反数分別是:绝对值分别是:15.解:整数集:{-1,0,-3,2023 ...};非负整数集:{ 0,2023...};...};正分数集:{3.5与1316.解:点A,B,C,D,E分别表示什么数-4.5,-1,1,2,4.5-4.5与4.5, -1与1分别是互为相反数 .17.解:|-2.5|=2.5,-|3|=-3,-(-1)=1在数轴上表示各数如图所示:<0<-(-1)<|-2.5|.故:-4<-|3|<-112。

人教版数学七年级上册 第1章有理数 1.1---1.2练习题含答案

人教版数学七年级上册 第1章有理数 1.1---1.2练习题含答案

1.1正数和负数一.选择题1.如果收入1000元记作+1000元,那么“﹣300元”表示()A.收入300元B.支出300元C.支出﹣300元D.获利300元2.在﹣(﹣1),﹣|﹣3.14|,0,﹣(﹣3)5中,正数有()个.A.1B.2C.3D.43.在﹣(﹣),95%,﹣|﹣|,﹣,0中正数有()A.1个B.2个C.3个D.4个4.下列说法正确的是()A.零是正数不是负数B.不是正数的数一定是负数C.零既是正数也是负数D.零既不是正数也不是负数5.下列各式,①﹣(﹣2);②﹣|﹣2|;③﹣23;④﹣(﹣2)2.计算结果为负数的个数有()A.4个B.3个C.2个D.1个6.如果+2%表示增加2%,那么﹣6%表示()A.增加14%B.增加6%C.减少6%D.减少26%7.陆地上最高处是珠穆朗玛峰顶,高出海平面8844m,记为+8844m;陆地上最低处是地处亚洲西部的死海,低于海平面约415m,记为()A.+415 m B.﹣415 m C.±415 m D.﹣8848 m8.张倩同学记录了某天一天的温度变化的数据,如表所示,则温暖上升的时段是()024681012141618202224时刻/时温度﹣3﹣5﹣6﹣4﹣3﹣1010﹣1﹣2﹣4﹣4 A.0~4时B.4~14时C.14~22时D.14~24时9.下列式子中结果为负数的是()A.|﹣2|B.﹣(﹣2)C.﹣|﹣2|D.(﹣2)210.在下列各数中:﹣,(﹣4)2,+(﹣3),﹣52,﹣|﹣2|,(﹣1)2016,0.其中是负数的有()个.A.2个B.3个C.4个D.5个二.填空题11.如果收入1500元记作+1500元,那么支出900元应记作元.12.若气温为零上10℃记作+10℃,则﹣3℃表示气温为.13.一种零件的直径尺寸在图纸上是30±(单位:mm),它表示这种零件的标准尺寸是30mm,加工要求尺寸最大不超过mm.14.若向北走5km记作﹣5km,则+10km的含义是.15.在一次全市的数学监测中某6名学生的成绩与全市学生的平均分80的差分别为5,﹣2,8,11,5,﹣6,则这6名学生的平均成绩为分.三.解答题16.出租车司机小李某天下午的营运全是在县城人民路上进行的,如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:+15、﹣2、+5、﹣1、+10、﹣3、﹣2、+12、+4、﹣5.(1)小李下午出发地记为0,他将最后一名乘客送抵目的地时,小李距下午出车时的出发地有多远?(2)若汽车耗油量为0.2升/千米,这天下午小李共耗油多少升?(3)若小李家距离出车地点的西边35千米处,送完最后一名乘客,小李还要行驶多少千米才能到家?17.某公路检修小组从A地岀发,在东西方向的公路上检修路面,如果规定向东行驶为正,向西行驶为负,一天行驶记录如下(单位:千米):﹣5、﹣3,+6,﹣7,+9,+8,+4,﹣2.(1)求收工时距A地多远;(2)距A地最远的距离是多少千米(3)若每千米耗油0.2升,问这个小组从出发到收工共耗油多少升18.出租车司机小李某天下午的营运全是在东西走向的万松路上进行的,如果规定向东行驶为正,他这天下午行车的里程(单位:千米)如下:﹣8,+6,+10,+3,﹣2,﹣6,﹣5(1)小李下午出发地记为0,他将最后一名乘客送抵目的地时,小李距下午出发地有多远?(2)如果汽车耗油量为0.55升/千米,那么这天下午汽车共耗油多少升?(3)距出发地最远是多少千米?19.徐州地铁1号线,西起杏山子大道,止于高铁徐州东站,共设18座站点,18座站点如下所示.徐州轨道交通试运营期间,小苏从苏堤北路站开始乘坐地铁,在地铁各站点做志愿者服务,到A站下车时,本次志愿者服务活动结束,约定向徐州东站站方向(即箭头方向)为正,当天的乘车记录如下(单位:站):+5,﹣2,﹣6,+8,+3,﹣4,﹣9,+8(1)请通过计算说明A站是哪一站?(2)如果相邻两站之间的距离为2.5千米,求这次小苏志愿服务期间乘坐地铁行进的总路程是多少千米?参考答案与试题解析一.选择题1.【解答】解:由题意得:﹣300元表示支出300元.故选:B.2.【解答】解:因为﹣(﹣1)=1,﹣|﹣3.14|=﹣3.14,﹣(﹣3)5=﹣(﹣35)=35,所以正数有﹣(﹣1),﹣(﹣3)5共两个.故选:B.3.【解答】解:﹣(﹣)=,﹣|﹣|=﹣,所以,在﹣(﹣),95%,﹣|﹣|,﹣,0中正数有﹣(﹣),95%,共2个.故选:B.4.【解答】解:零既不是正数也不是负数,故选:D.5.【解答】解:,①﹣(﹣2)=2是正数;②﹣|﹣2|=﹣2是负数;③﹣23=﹣8是负数;④﹣(﹣2)2=﹣4是负数,故选:B.6.【解答】解:如果+2%表示增加2%,那么﹣6%表示减少6%,故选:C.7.【解答】解:∵高出海平面8844m,记为+8844m,∴低于海平面约415m,记为﹣415m,故选:B.8.【解答】解:观察函数图标得,上升的时段是:4时﹣﹣﹣14时.故选:B.9.【解答】解:A、|﹣2|=2是正数,故A错误;B、﹣(﹣2)=2是正数,故B错误;C、﹣|﹣2|=﹣2是负数,故C正确;D、(﹣2)2=4是正数,故D错误;故选:C.10.【解答】解:﹣,(﹣4)2=16,+(﹣3)=﹣3,﹣52,=﹣25,﹣|﹣2|=﹣2,(﹣1)2016=1,0.负数有:数中:﹣,+(﹣3),﹣52,﹣|﹣2|.共4个,故选:C.二.填空题(共5小题)11.【解答】解:如果收入1500元记作+1500元,那么支出900元应记作﹣900;故答案为:﹣900.12.【解答】解:若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃,故答案为:零下3℃.13.【解答】解:根据正数和负数的意义可知,图纸上是30±0.03(单位:mm),它表示这种零件的标准尺寸是30mm,误差不超过0.03mm;加工要求尺寸最大不超过30.03mm.故答案为:30.0314.【解答】解:∵向北走5km记作﹣5km,∴+10km的含义是向南走10km.故答案为:向南走10km15.【解答】解:由题意知,这6名学生的平均成绩=80+(5﹣2+8+11+5﹣6)÷6=83.5(分).故答案为83.5.三.解答题(共4小题)16.【解答】解:(1)他将最后一名乘客送抵目的地时,小李距下午出车时的出发地的距离为:+15﹣2+5﹣1+10﹣3﹣2+12+4﹣5=33(千米)小李距下午出车时的出发地有33千米.(2)这天下午小李共走的距离为:15+2+5+1+10+3+2+12+4+5=59(千米)∵汽车耗油量为0.2升/千米∴共耗油:59×0.2=11.8(升)∴这天下午小李共耗油11.8升.(3)∵小李家距离出车地点的西边35千米处,即﹣35千米处,由(1)可知小李距下午出车时的出发地有33千米.∴送完最后一名乘客,小李还要行驶33﹣(﹣35)=68(千米)∴送完最后一名乘客,小李还要行驶68千米才能到家.17.【解答】解:(1)(﹣5)+(﹣3)+6+(﹣7)+9+8+4+(﹣2)=10千米答:收工时在A地的东面10千米的地方.(2)﹣5﹣3+6﹣7+9+8+4=12千米,答:在向东行驶+4千米后,距A地的距离最远为12千米.(3)|﹣5|+|﹣3|+|+6|+|﹣7|+|+9|+|+8|+|+4|+|﹣2|=44千米,44×0.2=8.8升答:收工时一共需要行驶44千米,共用汽油8.8升.18.【解答】解:(1)﹣8+6+10+3﹣2﹣6﹣5=2千米.答:最后一名乘客送抵目的地时,小李距下午出发地有2千米.(2)[|﹣8|+|+6|+|+10|+|=3|+|﹣2|+|﹣6|+|﹣5|]×0.55=22升.答:这天下午汽车共耗油22升.(3)第一名乘客下车时小王离下午出发地是﹣8千米;第二名乘客下车时小王离下午出发地是﹣8+6=﹣2;第三名乘客下车时小王离下午出发地是﹣2+10=8;第四名乘客下车时小王离下午出发地是8+3=11,第五名乘客下车时小王离下午出发地是11﹣2=9;第六名乘客下车时小王离下午出发地是9﹣6=3;第七名乘客下车时小王离下午出发地是3﹣5=﹣2;取绝对值可以看出最远是11千米;答:距出发地最远是11千米.19.【解答】解:(1)+5﹣2﹣6+8+3﹣4﹣9+8=3.答:A站是民主北路站1.2有理数一.选择题1.下列化简错误的是()A.﹣(﹣2)=2B.﹣(+3)=﹣3C.+(﹣4)=﹣4D.﹣|5|=52.如图,数轴上A,B两点所表示的数互为相反数,则下列说法正确的是()A.原点O在点B的右侧B.原点O在点A的左侧C.原点O与线段AB的中点重合D.原点O的位置不确定3.有理数a,b在数轴上的对应点的位置如图所示,则下列各式成立的是()A.a>b B.ab>0C.|a|<|b|D.﹣a>b4.﹣的相反数是()A.2020B.﹣2020C.D.﹣5.有理数a、b在数轴上的对应点的位置如图所示,则化简|a+b|的结果正确的是()A.a+b B.a﹣b C.﹣a+b D.﹣a﹣b6.一只小球落在数轴上的某点P0,第一次从P0向左跳1个单位到P1,第二次从P1向右跳2个单位到P2,第三次从P2向左跳3个单位到P3,第四次从P3向右跳4个单位到P4……若按以上规律跳了100次时,它落在数轴上的点P100所表示的数恰好是2019,则这只小球的初始位置点P0所表示的数是()A.1969B.1968C.﹣1969D.﹣19687.﹣2019的绝对值和相反数分别为()A.2019,﹣2019B.﹣2019,2019C.2019,2019D.﹣2019,﹣20198.若|x|=9,则x的值是()A.9B.﹣9C.±9D.09.下列分数中,不能化成有限小数的是()A.B.C.D.10.如图,在数轴上,手掌遮挡住的点表示的数可能是()A.0.5B.﹣0.5C.﹣1.5D.﹣2.5二.填空题11.若|x﹣2|=3,则x=.12.表示a、b两数的点在数轴上的位置如图,则|a﹣1|+|1+b|=.13.已知下列8个数:﹣3.14,24,+17,,,﹣0.01,0,﹣12,其中整数有个,负分数有个,非负数有个.14.a是最大的负整数,b是绝对值最小的数,则a+b=.15.已知,化简:|a+2b|﹣|c﹣a|+|﹣b﹣a|=.三.解答题16.已知|a﹣1|=2,求﹣3+|1+a|值.17.已知有理数a,b,c在数轴上的对应点分别为A,B,C.点A,B,C在数轴上的位置如图所示.若O是BC中点,A是OC中点,AC=2.(1)求a,b,c的值;(2)求线段AB的长度.18.我们在《有理数》这一章中学习过绝对值的概念:一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|.实际上,数轴上表示数﹣3的点与原点的距离可记作|﹣3﹣0|,数轴上表示数﹣3的点与表示数2的点的距离可记作|﹣3﹣2|,那么,(1)①数轴上表示数3的点与表示数1的点的距离可记作.②数轴上表示数a的点与表示数2的点的距离可记作.③数轴上表示数a的点与表示数﹣3的点的距离可记作.(2)数轴上与表示数﹣2的点的距离为5的点有个,它表示的数为.(3)拓展:①当数a取值为时,数轴上表示数a的点与表示数﹣1的点的距离最小.②当整数a取值为时,式子|a+1|+|a﹣2|有最小值为.③当a取值范围为时,式子|a+1|+|a﹣2|有最小值.19.已知a>b,a与b两个数在数轴上对应的点分别为点A、点B,求A、B两点之间的距离.【探索】小明利用绝对值的概念,结合数轴,进行探索:因为a>b,则有以下情况:情况一、若a>0,b≥0,如图,A、B两点之间的距离:AB=|a|﹣|b|=a﹣b;……(1)补全小明的探索【应用】(2)若点C对应的数c,数轴上点C到A、B两点的距离相等,求c.若点D对应的数d,数轴上点D到A的距离是点D到B的距离的n(n>0)倍,请探索n的取值范围与点D个数的关系,并直接写出a、b、d、n的关系.参考答案与试题解析一.选择题1.【解答】解:∵﹣(﹣2)=2,∴选项A不符合题意;∵﹣(+3)=﹣3,∴选项B不符合题意;∵+(﹣4)=﹣4,∴选项C不符合题意;∵﹣|5|=﹣5,∴选项D符合题意.故选:D.2.【解答】解:∵互为相反数的两数到原点的距离相等,所以原点到A、B的距离相等,若线段AB的中点为O,则OA=OB,所以原点O在点B的左侧,原点O在点A的右侧,原点O与线段AB的中点重合,原点O的位置不确定.故选:C.3.【解答】解:由图可知a<﹣1<0<b<1,则ab<0,|a|>|b|,﹣a>b.故选:D.4.【解答】解:﹣的相反数是:.故选:C.5.【解答】解:由数轴可得:a<0<b,|a|>|b|∴|a+b|=﹣a﹣b故选:D.6.【解答】解:设P0所表示的数是a,则a﹣1+2﹣3+4﹣…﹣99+100=2019,即:a+(﹣1+2)+(﹣3+4)+…+(﹣99+100)=2019.a+50=2019,解得:a=1969.点P0表示的数是1969.故选:A.7.【解答】解:|﹣2019|=2019,﹣2019的相反数是2019.故选:C.8.【解答】解:∵|x|=9,∴x的值是±9.故选:C.9.【解答】解:A、=0.875,能化成有限小数,不符合题意;B、=0.25,能化成有限小数,不符合题意;C、=1.08,能化成有限小数,不符合题意;D、=0.41,不能化成有限小数,符合题意;故选:D.10.【解答】解:设小手盖住的点表示的数为x,则﹣1<x<0,则表示的数可能是﹣0.5.故选:B.二.填空题(共5小题)11.【解答】解:当x﹣2>0时,x﹣2=3,解得,x=5;当x﹣2<0时,x﹣2=﹣3,解得,x=﹣1.故x=5或﹣1.12.【解答】解:由数轴可知:a<1,b<﹣1,所以a﹣1<0,1+b<0,故|a﹣1|+|1+b|=1﹣a﹣1﹣b=﹣a﹣b.13.【解答】解:整数包括正整数,0,负整数,所以整数有24,+17,0,﹣12四个;负分数包括负的小数和负的分数,所以负分数有﹣3.14,﹣7,﹣0.01三个;非负数包括0和正数,非负数包括24,17,,0四个.故应填4,3,4.14.【解答】解:∵a是最大的负整数,∴a=﹣1,b是绝对值最小的数,∴b=0,∴a+b=﹣1.故答案为:﹣1.15.【解答】解:∵|a|+a=0,∴|a|=﹣a,∴a≤0;∵=﹣1,∴|b|=﹣b,∴b≤0;∵|c|=c,∴c≥0,∴|a+2b|﹣|c﹣a|+|﹣b﹣a|=﹣(a+2b)﹣(c﹣a)+(﹣b﹣a)=﹣a﹣2b﹣c+a﹣b﹣a=﹣a﹣3b﹣c.故答案为:﹣a﹣3b﹣c.三.解答题(共4小题)16.【解答】解:∵|a﹣1|=2,∴a=3或a=﹣1,当a=3时,﹣3+|1+a|=﹣3+4=1;当a=﹣1时,﹣3+|1+a|=﹣3;综上所述,所求式子的值为1或﹣3.17.【解答】解:(1)∵AC=2,A是OC中点∴OA=AC=2OC=2AC=4∵O是BC中点∴OB=OC=4∴a=2,b=﹣4,c=4(2)AB=OA+OB=2+4=6∴线段AB的长度为6.18.【解答】解(1)由题意可得,①数轴上表示数3的点与表示数1的点的距离可记作|3﹣1|;故答案为:|3﹣1|;②数轴上表示数a的点与表示数2的点的距离可记作|a﹣2|;故答案为:|a﹣2|;③数轴上表示数a的点与表示数﹣3的点的距离可记作|a+3|;故答案为:|a+3|;(2)根据绝对值的含义可知数轴上与表示数﹣2的点的距离为5的点有2个,表示的数为﹣7 或3;故答案为:2;﹣7或3;(3)①由两点间的距离最小为0,可知数轴上表示数a的点与表示数﹣1的点的距离最小.则a=﹣1;故答案为:﹣1;②∵|a+1|+|a﹣2|表示数a与表示数﹣1和2的点之间的距离之和,则符合题意的整数a有﹣1,0,1,2;|a+1|+|a﹣2|的最小值为3;故答案为:﹣1,0,1,2;3;③∵|a+1|+|a﹣2|表示数a与表示数﹣1和2的点之间的距离之和∴﹣1≤a≤2时,|a+1|+|a﹣2|有最小值;故答案为:﹣1≤a≤2.19.【解答】解:(1)情况二:若a≥0,b<0 时,A、B两点之间的距离:AB=a+|b|=a ﹣b;情况三:若a<0,b<0 时,A、B两点之间的距离:AB=|b|﹣|a|=a﹣b;(2)∵点C对应的数c,点C到A、B两点的距离相等,∴a﹣c=c﹣b,∴2c=a+b,即c=(a+b);+n(d﹣b).。

人教版数学七年级上册 1.2有理数同步测验题(一)

人教版数学七年级上册   1.2有理数同步测验题(一)

有理数同步测验题(一)一.选择题1.已知:有理数a,b,c满足abc≠0,则的值不可能为()A.3B.﹣3C.1D.22.下列哪个分数不能化成有限小数()A.B.C.D.3.已知a是一个正整数,记G(x)=a﹣x+|x﹣a|.若G(1)+G(2)+G(3)+…+G(2019)+G(2020)=90,则a的值为()A.11B.10C.9D.84.如图,a,b是数轴上的两个有理数,则下列结论正确的是()A.﹣a﹣b>0B.a+b>0C.﹣>D.a+2b>05.若|a﹣6|=|a|+|﹣6|,则a的值是()A.任意有理数B.任意一个非负数C.任意一个非正数D.任意一个负数6.下列各组数中,互为相反数的一组是()A.|﹣3|和﹣3B.3和C.﹣3和D.|﹣3|和37.的绝对值和相反数分别是()A.,B.,C.,D.,8.如图,数轴上蚂蚁所在点表示的数可能为()A.3B.0C.﹣1D.﹣29.下面的说法正确的是()A.正有理数和负有理数统称有理数B.整数和分数统称有理数C.正整数和负整数统称整数D.有理数包括整数、自然数、零、负数和分数10.下列各数:﹣,1.010010001,,0,﹣π,﹣2.626626662…(每两个2之间多一个6),0.1,其中有理数的个数是()A.3B.4C.5D.6二.填空题11.8的相反数是,﹣4的绝对值是.12.在7,0.15,﹣,﹣301.3,﹣,﹣3001中,整数为.13.已知a是一个正整数,记G(x)=a﹣x+|x﹣a|,若G(1)+G(2)+G(3)+G(4)+…+G(2020)=90,则a=.14.一质点P从距原点1个单位的A点处向原点方向跳动,第一次跳动到OA的中点A处,第二次从A1点跳动到OA1的中点A2处,第三次从A2点跳动到OA2的中点A3处,如此不断跳动下去,则第6次跳动后,该质点到原点O的距离为.15.已知有理数a,b,c在数轴上对应位置如图所示,化简:|a+b|﹣|c﹣b|+|a﹣c|=.三.解答题16.请把下列各数填在相应的集合内:+4,﹣1,,﹣,0,2.5,﹣1.22,10%.正分数集合:{};整数集合:{};负数集合:{}.17.有理数a,b,c在数轴上的位置如图所示,化简:|a+b|﹣|b﹣2|+|a﹣c|﹣|2﹣c|.18.分别用a,b,c,d表示有理数,a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,d是数轴上到原点距离为5的点表示的数,求|3a﹣b+2c﹣d|的值.19.为了创建“全国文明城市”,我校志愿者小组成员从学校出发,在学校门口东西方向的道路上进行义务保洁.规定向东行为正,向西行为负,已知某志愿者一个下午的七次行走记录如下表所示(单位:千米):第一次第二次第三次第四次第五次第六次第七次+1﹣1.5+2+0.5﹣1+1.5﹣3.5(1)该志愿者保洁结束时是否回到出发地点?如果没有,那么距离出发点多少千米?(2)在第次保洁时离出发地点最远;(3)若每千米平均用时15分钟,则该志愿者完成这次保洁任务一共用时多少小时?参考答案与试题解析一.选择题1.【解答】解:当a、b、c没有负数时,原式=1+1=1=3;当a、b、c有一个负数时,原式=﹣1+1=1=1;当a、b、c有两个负数时,原式=﹣1﹣1+1=﹣1;当a、b、c有三个负数时,原式=﹣1﹣1﹣1=﹣3.故选:D.2.【解答】解:A、,是最简分数,分母中只含有质因数2,能化成有限小数,故本选项不合题意;B、是最简分数,分母中只含有质因数2,能化成有限小数,故本选项不合题意;C、是最简分数,分母中只含有质因数5,能化成有限小数,故本选项不合题意;D、,是最简分数,分母中只含有质因数3,不能化成有限小数,故本选项符合题意.故选:D.3.【解答】解:当x≥a时,则|x﹣a|=x﹣a,∴G(x)=a﹣x+x﹣a=0;当x<a时,则|x﹣a|=﹣(x﹣a)=﹣x+a,∴G(x)=a﹣x﹣x+a=2a﹣2x,∵G(1)+G(2)+G(3)+G(4)+…+G(2020)=90,∴设第n个数时,即x=n,G(x)开始为0,即x=a=n,∴G(n)=2n﹣2n=0,∴G(1)+G(2)+G(3)+G(4)+…+G(2020)=2n﹣2+2n﹣4+2n﹣6+…+2n﹣2n+0+0+…+0=2n×n﹣2(1+2+3+…+n)=2n2﹣2×=n2﹣n,即n2﹣n=90,解得n1=10,n2=﹣9(舍去).故选:B.4.【解答】解:由有理数a、b在数轴上的位置可知,b<0<a,且|b|>|a|,所以,a+b<0,﹣a﹣b>0,a+b+b<0,﹣<,因此选项A符合题意,选项B、C、D均不符合题意,故选:A.5.【解答】解:∵|a﹣6|=|a|+|﹣6|,∴a的值是任意一个非正数.故选:C.6.【解答】解:|﹣3|=3,3与﹣3互为相反数.3和互为倒数,﹣3与互为负倒数,|﹣3|与3是相等的数.故选:A.7.【解答】解:∵||=,的相反数是﹣.故选:D.8.【解答】解:由数轴可知,蚂蚁在原点的右侧,故数轴上蚂蚁所在点表示的数为正数,故选:A.9.【解答】解:A、正有理数、0和负有理数统称有理数,故本选项错误;B、整数和分数统称为有理数,故本选项正确;C、整数还包括0,故本选项错误;D、零属于自然数的范围,这样的表达不正确,故本选项错误.故选:B.10.【解答】解:﹣,1.010010001,,0,﹣π,﹣2.626626662…(每两个2之间多一个6),0.1,其中有理数有:﹣,1.010010001,,0,0.1,个数是5.故选:C.二.填空题(共5小题)11.【解答】解:8的相反数是﹣8,﹣4的绝对值是4.故答案为﹣8;4.12.【解答】解:在7,0.15,﹣,﹣301.3,﹣,﹣3001中,整数为7,﹣3001.故答案为:7,﹣3001.13.【解答】解:当x≥a时,则|x﹣a|=x﹣a,∴G(x)=a﹣x+x﹣a=0;当x<a时,则|x﹣a|=﹣(x﹣a)=﹣x+a,∴G(x)=a﹣x﹣x+a=2a﹣2x,∵G(1)+G(2)+G(3)+G(4)+…+G(2020)=90,∴设第n个数时,即x=n,G(x)开始为0,即x=a=n,∴G(n)=2n﹣2n=0,∴G(1)+G(2)+G(3)+G(4)+…+G(2020)=2n﹣2+2n﹣4+2n﹣6+…+2n﹣2n+0+0+…+0=2n×n﹣2(1+2+3+…+n)=2n2﹣2×=n2﹣n,即n2﹣n=90,解得n1=10,n2=﹣9(舍去).故答案为10.14.【解答】解:第一次跳动到OA的中点A1处,即在离原点的处,第二次从A1点跳动到A2处,即在离原点的()2处,…则跳动n次后,即跳到了离原点处,则第6次跳动后,该质点到原点O的距离为.故答案为:.15.【解答】解:由题意得:a<b<0<c,∴|a+b|﹣|c﹣b|+|a﹣c|=﹣a﹣b﹣(c﹣b)+c﹣a=0,故答案为:0.三.解答题(共4小题)16.【解答】解:正分数集合:{,2.5,10%};整数集合:{+4,﹣1,0};负数集合:{﹣1,﹣,﹣1.22}.故答案为:,2.5,10%;+4,﹣1,0;﹣1,﹣,﹣1.22.17.【解答】解:由数轴可知,c<b<0<a,|a|<|b|,∴a+b<0,b﹣2<0,a﹣c>0,2﹣c>0,∴|a+b|﹣|b﹣2|+|a﹣c|﹣|2﹣c|=﹣a﹣b+b﹣2+a﹣c﹣2+c=﹣4.18.【解答】解:最小的正整数是1,则a=1,最大的负整数,则b=﹣1,绝对值最小的有理数是0,则c=0,数轴上到原点距离为5的点表示的数是±5,则d=±5,当a=1,b=﹣1,c=0,d=5时,原式=|3×1﹣(﹣1)+2×0﹣5|=1,当a=1,b=﹣1,c=0,d=﹣5时,原式=|3×1﹣(﹣1)+2×0+5|=9,综上所述,|3a﹣b+2c﹣d|的值为1或9.19.【解答】解:(1)1﹣1.5+2+0.5﹣1+1.5﹣3.5=﹣1,答:该志愿者保洁结束时没有回到出发地点,距离出发点1千米;(2)各次离A地的距离分别为:第一次:1;第二次:1.5﹣1=0.5;第三次:2﹣0.5=1.5;第四次:1.5+0.5=2;第五次:2﹣1=1;第六次:1+1.5=2.5;第七次:3.5﹣2.5=1。

人教版七年级数学上册《1.2有理数》专题训练-附带答案

人教版七年级数学上册《1.2有理数》专题训练-附带答案

人教版七年级数学上册《1.2有理数》专题训练-附带答案【名师点睛】1 有理数的概念:整数和分数统称为有理数.2 有理数的分类:【典例剖析】【例1】(2021秋•越城区校级月考)把下列各数填入相应的大括号里: ﹣1 +514 ﹣6 +8 −312 0 ﹣0.72 ①正数:{ +514+8 …} ②整数:{ ﹣1 ﹣6 +8 0 …} ③负分数:{ −312 ﹣0.72 …} ④非负数:{ +514 +8 0 …}.【分析】利用正数 整数 负分数以及非负数定义判断即可. 【解析】①正数:{+514 +8…} ②整数:{﹣1 ﹣6 +8 0 …} ③负分数:{−312 ﹣0.72 …} ④非负数:{+514+8 0 …}.故答案为:+514 +8 ﹣1 ﹣6 +8 0 −312 ﹣0.72 +514 +8 0. 【变式】(2020秋•郫都区校级月考)把下列各数的序号填到相应的括号中: ①﹣0.3⋅②3.1415 ③﹣10 ④0.28 ⑤−27 ⑥18 ⑦0 ⑧﹣2.3 ⑨213.(1)整数集合:{ ③⑥⑦⑨ …}(2)负数集合:{ ①③⑤⑧ …} (3)非正数集合:{ ①③⑤⑦⑧ …} (4)分数集合:{ ①②④⑤⑧ …} (5)非负整数集合:{ ⑥⑦⑨ …}.【分析】根据正数 负数 整数及分数的定义 结合所给数据进行解析即可. 【解析】(1)整数集合:{﹣10 18 0213⋯}(2)负数集合:{﹣0.3⋅﹣10 −27 ﹣2.3…} (3)非正数集合:{﹣0.3⋅﹣10 −27 0 ﹣2.3…} (4)分数集合:{﹣0.3⋅ 3.1415 0.28 −27﹣2.3…} (5)非负整数集合:{18 0 213⋯}.故答案为:(1)③⑥⑦⑨ (2)①③⑤⑧ (3)①③⑤⑦⑧ (4)①②④⑤⑧ (5)⑥⑦⑨.【满分训练】一.选择题(共10小题)1.(2022•冠县二模)下列各数是负分数的是( ) A .﹣7B .12C .﹣1.5D .0【分析】理解负分数的定义.【解析】A .﹣7是负整数 故A 错误 不符合题意 B .12是正分数 故B 错误 不符合题意C .﹣1.5=−32是负分数 故C 正确 符合题意 D .0既不是正数也不是负数 故D 错误 不符合题意. 故选:C .2.(2022春•开州区期中)在﹣1 0 1 −513这四个数中 属于负整数的是( ) A .﹣1B .0C .1D .−513【分析】根据负整数的定义即可求解.【解析】在﹣1 0 1 −513这四个数中 属于负整数的是﹣1. 故选:A .3.(2021秋•雁峰区校级期末)下列各数25﹣6 25 0 3.14 20%中 分数的个数是( )A .1B .2C .3D .4【分析】根据整数和分数统称为有理数 即可解析. 【解析】下列各数25 ﹣6 25 0 3.14 20%中是分数的有:253.14 20%所以 共有3个分数 故选:C .4.(2022春•沙坪坝区校级月考)在12 ﹣4 0 −73这四个数中 属于负整数的是( )A .−73B .12C .0D .﹣4【分析】根据实数分类的相关概念 可辨别此题结果. 【解析】∵−73 12都是分数∴选项A B 不符合题意 ∵0既不是正数 也不是负数 ∴选项C 不符合题意 ∵﹣4是负整数 ∴选项D 符合题意 故选:D .5.(2021秋•原阳县期末)在﹣3.5 2270.161161116… π2中 有理数有( )个.A .1B .2C .3D .4【分析】有理数包括整数和分数 无理数包括三类:一是无限不循环小数 二是含有π的数 三是开方开不尽的数 可知答案. 【解析】A ﹣3.5是负分数 故是有理数 B227是正分数 故为有理数C 0.161161116…是无限不循环小数 是无理数 故不是有理数D π2是含有π的数 是无理数 故不是有理数 所以有理数有两个 故选:B .6.(2021秋•常宁市期末)在﹣3 π3 1.62 0四个数中 有理数的个数为( )A .4B .3C .2D .1【分析】根据有理数的定义进行判断即可.【解析】∵在﹣3 π3 1.62 0四个数中 ﹣3 1.62 0是有理数∴有理数的个数为3 故选:B .7.(2021秋•宜城市期末)下列说法错误的是( ) A .正分数一定是有理数B .整数和分数统称为有理数C .整数包括正整数 0 负整数D .正数和负数统称为有理数【分析】根据有理数的定义逐一判断即可.【解析】A .正分数一定是有理数 说法正确 故本选项不合题意 B .整数和分数统称为有理数 说法正确 故本选项不合题意 C .整数包括正整数 0 负整数 说法正确 故本选项不合题意 D .正数 零和负数统称为有理数 原说法错误 故本选项符合题意. 故选:D .8.(2021秋•南阳期末)下列说法中正确的是( ) A .正分数和负分数统称为分数 B .正整数 负整数统称为整数 C .零既可以是正整数 也可以是负整数 D .一个有理数不是正数就是负数【分析】分别根据有理数的定义以及正数和负数的定义逐一判断即可. 【解析】A .正分数和负分数统称为分数 说法正确 故本选项符合题意 B .正整数 零和负整数统称为整数 原说法错误 故本选项不符合题意 C .零既不是正整数 也不是负整数 原说法错误 故本选项不符合题意D .零是有理数 但零既不是正数 也不是负数 原说法错误 故本选项不符合题意 故选:A .9.(2021秋•道里区期末)下列各组数中相等的是( ) A .π和3.14 B .25%和14C .38和0.625D .13.2%和1.32【分析】比较各个选项两个数的大小即可作出选择. 【解析】A π>3.14 故A 不符合题意. B 25%=14 故B 符合题意.C 38<0.625 故C 不符合题意.D 13.2%<1.32 故D 不符合题意. 故选:B .10.(2021秋•农安县期末)下列说法正确的个数为( ) ①0是整数 ②﹣0.2是负分数 ③3.2不是正数 ④自然数一定是正数. A .1B .2C .3D .4【分析】按照实数分类逐个判断即可. 【解析】∵0为整数 故①正确 ∵﹣0.2为负分数 故②正确 ∵3.2>0∴3.2为正数 故③错误∵自然数里面包括0 但0不是正数 故④错误. 故正确的有:①②. 故选:B .二.填空题(共6小题)11.(2021秋•顺义区期末)在有理数﹣3 13 0 −72 ﹣1.2 5中 整数有 0 ﹣3 5负分数有 −72 ﹣1.2 .【分析】根据有理数的分类进行填空即可. 【解析】整数有:0 ﹣3 5 负分数有:﹣1.2 −72故答案为:0 ﹣3 5 ﹣1.2 −72.12.(2021秋•门头沟区期末)在有理数﹣0.5 ﹣3 0 1.2 2 312中 非负整数有 02 .【分析】找出有理数中非负整数即可.【解析】在0.5 ﹣3 0 1.2 2 312中 非负整数有0 2.故答案为:0 2.13.(2021春•徐汇区校级期中)在﹣15 13 ﹣0.23 0.51 0 ﹣0.65 7.6 2 −35 314%中 非负数有 6 个.【分析】根据利用符号对有理数分类求解即可.【解析】∵13 0.51 0 7.6 2 314%是非负数 ﹣15 ﹣0.23 ﹣0.65 −35是负数∴非负数共有6个 故答案为:6.14.(2021秋•凉州区校级月考)在﹣512 0 ﹣1.5 ﹣5 2114中 整数是 0 ﹣5 2 .【分析】利用整数的定义判断即可. 【解析】在﹣512 0 ﹣1.5 ﹣5 2114中 整数有:0 ﹣5 2故答案为:0 ﹣5 2.15.(2021秋•靖江市月考)下列各数:−741.010010001 0 ﹣π ﹣2.626626662…(每两个2之间多一个6) 0.1222… 其中有理数有 4 个. 【分析】根据有理数的定义逐一判断即可.【解析】下列各数:−74 1.010010001 0 ﹣π ﹣2.626626662…(每两个2之间多一个6) 0.1222… 其中有理数有−74 1.010010001 0 0.1222… 共4个. 故答案为:4.16.(2021秋•潢川县期中)有理数−15 0 ﹣1.8 ﹣3 32 4中整数有3 个 负分数有 2 个.【分析】根据有理数的分类进行填空即可. 【解析】整数有:0 ﹣3 4 共3个 负分数有:−15﹣1.8 共2个 故答案为:3 2. 三.解析题(共6小题)17.(2020秋•香洲区校级月考)把下列各数分别填在相应的大括号里. 13 −67﹣31 0.21 ﹣3.14 0 21% 13﹣2020.负有理数:{ −67﹣31 ﹣3.14 ﹣2020 …} 正分数:{ 0.21 21% 13 …}非负整数:{ 13 0 …}.【分析】根据负有理数 正分数 非负整数的定义即可求解. 【解析】负有理数:{−67 ﹣31 ﹣3.14 ﹣2020…}正分数:{0.21 21%13⋯}非负整数:{13 0…}.故答案为:−67 ﹣31 ﹣3.14 ﹣2020 0.21 21% 1313 0.18.(2021秋•沈河区校级期中)把下列各数填到相应的集合中. 1 13 0.5 +7 0 ﹣π ﹣6.4 ﹣96130.3 5% ﹣26 1.010010001….正数集合:{ 1 130.5 +76130.3 5% 1.010010001… …}负数集合:{ ﹣π ﹣6.4 ﹣9 ﹣26 …} 整数集合:{ 1 +7 0 ﹣9 ﹣26 …} 分数集合:{130.5 ﹣6.46130.3 5% …}.【分析】利用正数 负数 整数以及分数定义判断即可. 【解析】正数集合:{1 13 0.5 +76130.3 5% 1.010010001…}负数集合:{﹣π ﹣6.4 ﹣9 ﹣26} 整数集合:{1 +7 0 ﹣9 ﹣26} 分数集合:{13 0.5 ﹣6.4613 0.3 5%}.故答案为:1 130.5 +76130.3 5% 1.010010001…﹣π ﹣6.4 ﹣9 ﹣26 1 +7 0 ﹣9 ﹣26130.5 ﹣6.46130.3 5%.19.(2019秋•昭平县期中)把下列各数分别填在相应的括号内: ﹣0.1 0 +2 12 ﹣3.整数:{ 0 +2 ﹣3 } 分数:{ ﹣0.1 12 }正数:{ +2 12}负数:{ ﹣0.1 ﹣3 }有理数:{ ﹣0.1 0 +2 12 ﹣3 }【分析】根据有理数的分类即可解析. 【解析】整数:{0 +2 ﹣3}分数:{﹣0.1 12}正数:{+2 12}负数:{﹣0.1 ﹣3}有理数:{﹣0.1 0 +2 12 ﹣3}故答案为:0 +2 ﹣3 ﹣0.1 12+2 12﹣0.1 ﹣3 ﹣0.1 0 +2 12﹣3.20.把下列各数填在相应的位置:2019 ﹣6 +2 ﹣0.9 120 0.2020 −13 1410%.正数: 2019 +2 120.2020 1410%负数: ﹣6 ﹣0.9 −13正分数:120.2020 14 10%负分数: ﹣0.9 −13 整数: 2019 ﹣6 +2 0有理数: 2019 ﹣6 +2 ﹣0.9 120 0.2020 −131410% .【分析】根据有理数的分类把数分类即可. 【解析】正数:2019 +2 120.2020 1410%负数:﹣6 ﹣0.9 −13正分数:120.2020 1410%负分数:﹣0.9 −13整数:2019 ﹣6 +2 0有理数:2019 ﹣6 +2 ﹣0.9 120 0.2020 −131410%.。

人教版数学七年级上册 第一章 《1.2有理数》同步练习题(含答案)

人教版数学七年级上册 第一章 《1.2有理数》同步练习题(含答案)

《1.2有理数》同步练习题一、单选题1.下列各数不是..有理数的是( ) A .0B .12-C .-2D .π 2.2019-等于( )A .2019-B .2019C .12019D .12019- 3.若有理数a ,b ,c 在数轴上的对应点A ,B ,C 位置如图,化简|c |﹣|c ﹣b |+|a +b |=( )A .aB .2b +aC .2c +aD .﹣a 4.如果m 的相反数是最大的负整数,n 的相反数是它本身,则m n +的值为( ) A .1 B .0 C .2 D .-1 5.2-的相反数是( )A .2-B .2C .12D .12- 6.若|m|=5,|n|=7,m+n <0,则m ﹣n 的值是( )A .﹣12或﹣2B .﹣2或12C .12或2D .2或﹣12 7.已知点O ,A ,B ,C 在数轴上的位置如图所示,O 为原点,BC =1,OA =OB .若点C 所表示的数为a ,则点A 所表示的数为( )A .-a -1B .-a +1C .a +1D .a -1 8.如果-a 的绝对值等于a,下列各式成立的是( )A .a>0B .a<0C .a ≥0D .a ≤0二、填空题9.绝对值小于2的整数有________个.10.如图,数轴上A 、B 两点表示的数互为相反数,且点A 与点B 之间的距离是5个单位长度,则点A 表示的数是_________.11.计算:3π-=________.12.若m ﹣1的相反数是3,那么﹣m =__.13.若a≠0,b≠0,c≠0,求a cb a bc ++的可能值为_____.三、解答题14.下列各数填入它所在的数集的圈里;2019,﹣15%,﹣0.618,172,﹣9,23-,0,3.14,﹣72(2)如图中,这两个圈的重叠部分表示什么数的集合?15.把下列各数在数轴上表示出来,并按从小到大的顺序用“<”连接起来.11.503, 2.5(1)42------,,,,,16.小明早晨跑步,他从自己家出发,向东跑了2km 到达小彬家,继续向东跑了1.5km 到达小红家,然后又向西跑了4.5km 到达学校,最后又向东跑回到自己家. )1)以小明家为原点,向东为正方向,用1个单位长度表示1km ,在图中的数轴上,分别用点A 表示出小彬家,用点B 表示出小红家,用点C 表示出学校的位置;)2)求小彬家与学校之间的距离;)3)如果小明跑步的速度是250米/分钟,那么小明跑步一共用了多长时间?word 版 初中数学1 / 3 参考答案1.D 2.B 3.D 4.A 5.B.6.C 7.A 8.C9.3 10.-2.5 11.3π- 12.2 13.3或1或-1或-314. 解:(1)根据题意如图:(2)这两个圈的重叠部分表示负分数集合.15. 解:(1)144--=--=-, ∴143 1.50(1) 2.52--<-<-<<<--< 16.解:)1)如图所示:)2)小彬家与学校的距离是:2)))1)=3)km))故小彬家与学校之间的距离是 3km))3)小明一共跑了(2+1.5+1)×2=9)km)) 小明跑步一共用的时间是:9000÷250=36(分钟).答:小明跑步一共用了 36 分钟长时间.。

人教版数学七年级上册 第1章 1.2有理数同步测验题(一) (3)

人教版数学七年级上册 第1章 1.2有理数同步测验题(一) (3)

有理数同步测验题(一)一.选择题1.下列各数中,是负整数的是()A.﹣B.0C.2D.﹣62.关于数﹣3.1415的说法正确的是()A.是负数,也是有理数B.是小数但不是分数C.不是整数,也不是有理数D.是小数,但不是有理数3.如图,把半径为1的圆放到数轴上,圆上一点A与表示1的点重合,圆沿着数轴正方向滚动一周,此时点A表示的数是()A.πB.2π+1C.2πD.2π﹣14.若数轴上点A表示﹣1,且AB=3,则点B表示的数是()A.﹣4B.2C.﹣3或3D.﹣4或25.若|a|=a,那么表示数a的点在数轴上的位置是()A.原点B.原点右侧C.原点或原点右侧D.原点或原点左侧6.下列比较大小,正确的是()A.﹣3<﹣4B.9﹣(﹣3)<|﹣3|C.D.7.a,b,c三个数的位置如图所示,下列结论不正确的是()A.a+b<0B.b+c<0C.b﹣a>0D.c﹣a>08.数a在数轴上对应点位置如图,若数b满足b<|a|,则b的值不可能是()A.﹣2B.0C.1D.29.如图1,圆的周长为4个单位,在该圆的4等分点处分别标上字母m、n、p、q,如图2,先让圆周上表示m的点与数轴原点重合,再将数轴按逆时针方向环绕在该圆上,则数轴上表示﹣2020的点与圆周上重合的点对应的字母是()A.m B.n C.p D.q10.下列说法中,正确的是()A.0是最小的有理数B.任何有理数都有相反数C.只有0的绝对值等于它本身D.有理数可以分为正有理数和负有理数二.填空题11.用“<”、“>”或“=”连接:﹣0.6.12.数轴上的A点表示的数是2,则距A点5个单位的B点表示的数是.13.与﹣1的和为0的数是.14.有理数a,b在数轴上的位置如图所示,化简|b﹣a|﹣|a﹣1|的结果是.15.如图,在数轴上被墨汁覆盖的所有整数的和为.三.解答题(共4小题)16.把下列各数填入相应的大括号里.﹣0.78,3,,﹣10,0,﹣4.正数:{…};分数:{…};非负整数:{…}.17.把下列各数填在相应的集合里:,+3,﹣6.3,,0,﹣4,6.9,,﹣10%,0.031,+4.整数:{…};比﹣2小的数:{…};非负数:{…}.18.已知x、y两数在数轴上表示如图.(1)试在数轴上找出表示﹣x,﹣y的点,并用“<”连接x,y,﹣x,﹣y.(2)化简:|2x﹣3y|﹣|y|+|x|.19.某检修小组从A地出发,在东西走向的马路上检修线路.如果规定向东行驶为正,向西行驶为负,一天中7次行驶的情况记录如下(单位:千米):第一次第二次第三次第四次第五次第六次第七次﹣4+7﹣9+8+6﹣5﹣2(1)这一天检修小组行驶的路程是多少?(2)求收工时距A地多远?在A地的正东方向还是正西方向?说明理由.参考答案与试题解析一.选择题1.【解答】解:由负整数的定义可知,是负整数的是﹣6.故选:D.2.【解答】解:﹣3.1415这个数是负数,是小数,是分数,也是有理数.故选:A.3.【解答】解:∵圆的半径为1,∴圆的周长为:2π,∵点A与表示1的点重合,∴圆沿着数轴正方向滚动一周,此时点A表示的数是2π+1,故选:B.4.【解答】解:如图所示:点B表示的数是﹣4或2,故选:D.5.【解答】解:∵|a|=a,∴a≥0,∴表示数a的点在数轴上的位置是原点或原点右边.故选:C.6.【解答】解:A、∵|﹣3|=3,|﹣4|=4,3<4,∴﹣3>﹣4,故本选项不合题意;B、∵9﹣(﹣3)=9+3=12,|﹣3|=3,∴9﹣(﹣3)>|﹣3|,故本选项不合题意;C、∵||=,||=,,∴,故本选项不合题意;D、∵|﹣|=,∴|﹣|>,故本选项符合题意.故选:D.7.【解答】解:由数轴可得﹣1<a<0,﹣4<b<﹣3,1<c<2,A、a+b<0,故原题说法正确;B、b+c<0,故原题说法正确;C、b﹣a<0,故原题说法错误;D、c﹣a>0,故原题说法错误;故选:C.8.【解答】解:由数轴可知,|a|<2,∵b<|a|,∴b不可能是2,故选:D.9.【解答】解:由题意可得,﹣1与q对应,﹣2与p对应,﹣3与n对应,﹣4与m对应,﹣2020÷4=﹣505,∴数轴上表示﹣2020的点与圆周上重合的点对应的字母是m,故选:A.10.【解答】解:A、0不是最小的有理数,0是绝对值最小的有理数,原说法错误,故此选项不符合题意;B、任何有理数都有相反数,原说法正确,故此选项符合题意.C、绝对值等于它本身的数有0和正数,原说法错误,故此选项不符合题意;D、有理数分为正有理数、0和负有理数,原说法错误,故此选项不符合题意;故选:B.二.填空题(共5小题)11.【解答】解:∵|﹣0.6|=,|﹣|=,,∴﹣0.6>﹣.故答案为:>.12.【解答】解:当B点在A点的左边时,点B表示的数为2﹣5=﹣3,当B点在A点的右边时,点B表示的数为2+5=7.故点B表示的数为7或﹣3.故答案为:7或﹣3.13.【解答】解:与﹣1的和为0的数是1.故答案为:1.14.【解答】解:由数轴可知:b<a<1,∴b﹣a<0,a﹣1<0,原式=a﹣b﹣(1﹣a)=a﹣b+a﹣1=2a﹣b﹣1.故答案为2a﹣b﹣1.15.【解答】解:∵由图可知:数轴上被墨汁盖住的整数大于﹣小于π,∴被遮住的整数为:﹣2,﹣1,0,1,2,3.故在数轴上被墨汁覆盖的所有整数的和为﹣2﹣1+0+1+2+3=3.故答案为:3.三.解答题(共4小题)16.【解答】解:正数:{3,…};分数:{﹣0.78,…};非负整数:{3,0…}.故答案为:3,;﹣0.78,;3,0.17.【解答】解:整数:{+3,0,﹣4,+4 …};比﹣2小的数:{﹣6.3,﹣4,…};非负数:{+3,0,6.9,2,0.031,+4,…}.故答案为:+3,0,﹣4,+4;﹣6.3,﹣4;+3,0,6.9,2,0.031,+4.18.【解答】解:(1)由题意得:y<0<x,且|y|<|x|,∴﹣x<y<﹣y<x;(2)∵y<0<x,∴2x﹣3y>0,∴|2x﹣3y|﹣|y|+|x|=2x﹣3y+y+x=3x﹣2y.19.【解答】解:(1)这一天检修小组行驶的路程为:4+7+9+8+6+5+2=41(千米),所以这一天检修小组行驶的路程为41千米;(2)﹣4+7﹣9+8+6﹣5﹣2=+1,故收工时在A的东面,距A地1千米.。

人教版七年级数学上册第一章《有理数》全章练习题题(含答案解析)

人教版七年级数学上册第一章《有理数》全章练习题题(含答案解析)
创新应用 ★11.如图所示的是两个正方体纸盒的表面展开图,请分别在标有字母的正方形内填入适当 的数,使得它们折成正方体后相对面上的两个数互为相反数.
能力提升 1.C 2.D
参考答案
1.2.2 数轴
能力提升 1.在数轴上,原点及原点右边的点表示的数是( )
A.正数
B.整数
C.非负数
D.非正数
2.数轴上的点 A 与原点距离 6 个单位长度,则点 A 表示的数为( )
A.6 或-6
B.6
C.-6
D.3 或-3
3.在数轴上,表示-17 的点与表示-10 的点之间的距离是( )
A.27 个单位长度 B.-27 个单位长度
参考答案
能力提升 1.C 在数轴上,原点及原点右边的点表示的数是 0 和正数. 2.A 3.C 4.D 5.4 -6 6.2 7.7 符合条件的点有-3,3,-2,2,-1,1,0,共 7 个. 8.-5 或 1 画出数轴,找出-2 表示的点,与该点距离 3 个单位长度的点有两个,分别表示 -5,1. 9.分析:从图中可见墨迹盖住两段,一段是在-8~-3 之间,另一段在 4~9 之间. 解:-8~-3 之间的整数有-4,-5,-6,-7;4~9 之间的整数有 5,6,7,8.
D.Q 站点与 R 站点之间
5. 在 数 轴 上 , 表 示 数 -6,2.1,- ,0,-4 ,3,-3 的 点 中 , 在 原 点 左 边 的 点 有
个,
表示的点与原点的距离最远.
7
6.点 M 表示的有理数是-1,点 M 在数轴上向右移动 3 个单位长度后到达点 N,则点 N 表示的有
理数是 .
5 -0.8 0 -2 -3
整数
分数
负整数

秋人教版七年级上《1.2.2数轴》同步练习题(含答案)

秋人教版七年级上《1.2.2数轴》同步练习题(含答案)

初中数学·人教版·七年级上册——第一章有理数1.2.2 数轴测试时间:15分钟一、选择题1.下列数轴画法正确的是( )答案 C A.没有单位长度,故A错误;B.没有正方向,故B错误;C.原点、单位长度、正方向都符合,故C正确;D.原点左边的数字位置不对,应是从左到右由小到大排列,故D错误,故选C.2.如图,在数轴上点A表示的数最可能是( )A.-2B.-2.5C.-3.5D.-2.9答案 B 由题图知数轴上点A在-3与-2的正中间, ∴A、C、D三选项错误,B选项正确.故选B.3.在数轴上,到表示3的点的距离为5个单位长度的点表示的正数是( )A.-2B.8C.-2或8D.5答案 B 如图,在数轴上,到表示3的点的距离为5个单位长度的点有两个(A和B),点A表示的数为-2,点B表示的数为8,8为正数,故选B.4.文具店、书店和玩具店依次坐落在一条南北走向的大街上,文具店在书店北边20米处,玩具店位于书店南边100米处.小花从书店沿街向南走了40米,接着又向南走了-60米,此时小花在( )A.文具店B.玩具店C.文具店北边40米D.玩具店南边-60米答案 A 将这条南北大街看作数轴,以向南为正,向北为负,书店的位置为原点,在数轴上按照题意标出文具店、书店和玩具店的位置,即可得出结论.二、填空题5.在数轴上,表示-5的点在原点的 边,它到原点的距离是 个单位长度.答案 左;5解析 -5比0小,因此表示-5的点在原点左边,该点到原点的距离为5个单位长度.6.在数轴上,表示+2的点在原点的 边,距原点 个单位长度;表示-7的点在原点的 边,距原点 个单位长度;这两点之间的距离为 个单位长度.答案 右;2;左;7;9解析 +2比0大,因此表示+2的点在原点右边;-7比0小,因此表示-7的点在原点左边,求数轴上两点间的距离一般借助数轴直观地解决.7.在数轴上,把表示3的点沿着数轴向负方向移动5个单位长度,则移动后的点表示的数是 . 答案 -2解析 在数轴上,把表示3的点沿着数轴向负方向移动5个单位长度,则移动后的点表示的数是-2.8.小红在写作业时,不慎将一滴墨水滴在数轴上,根据图中的数据,可确定被墨迹遮盖住的整数共有 个.答案 3解析 ∵-74和2之间的整数有-1、0、1, ∴被墨迹遮盖住的整数共有3个.三、解答题9.画一个数轴,把-3,12,0,-32,2在数轴上表示出来.解析 如图.点拨 (1)先观察这列数据,这列数据中最小的数是-3,最大的数是2,因此我们画数轴时,原点左边的刻度线只需画到-3即可,原点右边的刻度线只需画到2即可.(2)根据画数轴的方法,画出数轴,刻度线用小短线表示,刻度标在相应刻度线的下方.(3)在数轴上找出表示-3,12,0,-32,2这些数的点,并用实心小圆点在数轴上标出,然后把表示的数写在对应点的上方.10.根据下面给出的数轴,解答下面的问题:(1)请你根据图中A 、B 两点的位置,分别写出它们所表示的有理数A: ,B: ;(2)观察数轴,求与点A 的距离为4的点表示的数.解析 (1)1;-2.5.(2)与点A 距离为4的点有两个,一个在点A 的左边,一个在点A 的右边,左边的点表示的数是-3;右边的点表示的数是5.故与点A 的距离为4的点表示的数是-3或5.11.数轴上的点M 表示的数是-223,那么与M 相距1个单位长度的点N 所表示的数是多少?解析 距M 点1个单位长度的点N 在点M 的左边或右边,若点N 在点M 的左边,则其表示的数为-323;若点N 在点M 的右边,则其表示的数是-123. 所以点N 表示的数是-323或-123.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级上册第一章 《1.2有理数》同步练习题
一、选择题(每小题只有一个正确答案)
1.﹣15的绝对值是( ) A. ﹣15 B. 15 C. ﹣5 D. 5
2.在−3﹣−1﹣0﹣1这四个数中,最小的数是( )
A. −3
B. −1
C. 0
D. 1
3.如图,在数轴上表示互为相反数的两数的点是( )
A. 点A 和点C
B. 点B 和点A
C. 点C 和点B
D. 点D 和点B
4.﹣﹣﹣2)等于( )
A. ﹣2
B. 2
C. 12
D. ±2 5.已知a 是有理数,则下列结论正确的是( )
A. a≥0
B. |a|﹣0
C. ﹣a﹣0
D. |a|≥0
6.|﹣3|的相反数是( )
A. 3
B. ﹣3
C. 13
D. ﹣13
7.有理数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是﹣ ﹣
A. a >−1
B. a ×b >0
C. −b <0<−a
D. |a |>|b |
8.下列各数中: (−3)2﹣0﹣ −(−12)2﹣ 227﹣ (−1)2017﹣ −22﹣ −(−8)﹣ −|−34|中,非负数有( ﹣
A. 2个
B. 3个
C. 4个
D. 5个
二、填空题
9.计算:|−2018|=______﹣
10.比较大小:-3__________0.(填“< ”“=”“ > ”﹣
11.如果水位上升8米记作+8米,那么﹣5米表示_____﹣
12.已知数轴上有A﹣B 两点,A﹣B 之间的距离为3,点A 对应的数为1,那么点B 对应的数是_____﹣
13.写出一个数,使这个数的绝对值等于它的相反数:__________﹣
三、解答题
14.把下列各数填入它所在的数集的括号里.
﹣12﹣+5﹣﹣6.3﹣0﹣﹣1213﹣245﹣6.9﹣﹣7﹣210﹣0.031﹣﹣43﹣﹣10% 正数集合:{ …}
整数集合:{ …}
非负数集合:{ …}
负分数集合:{ …}﹣
15.有一列数:12﹣1﹣3﹣﹣3﹣﹣1﹣﹣2.5﹣
﹣1)画一条数轴,并把上述各数在数轴上表示出来;
﹣2)把这一列数按从小到大的顺序排列起来,并用“﹣”连接.
16.在抗洪抢险中,人民解放军的冲锋舟沿东西方向的河流抢救灾民,早晨从A 地出发,晚上到达B 地,规定向东为正方向.当天航行路程记录如下:(单位:千米)
14﹣﹣9﹣18﹣﹣7﹣13﹣﹣6﹣10﹣﹣5
问:(1﹣B 地在A 地的何位置;
﹣2)若冲锋舟每千米耗油0.5升,油箱容量为29升,求途中需补充多少升油?
17.化简:(1)−(−3);
(2)+(−6); (3)−[−(−2017)].
参考答案
1.B2.A3.A4.B5.D6.B7.C8.C
9.2018
10.<
11.下降5米.
12.﹣2或4﹣
13.−1(答案不唯一)
14.解:
正数集合:{+5﹣245﹣6.9﹣210﹣0.031 …}﹣ 整数集合:{+5﹣0﹣﹣7﹣210﹣﹣43 …}﹣
非负数集合:{+5﹣0﹣245﹣6.9﹣210﹣0.031 …}﹣ 负分数集合:{﹣12﹣﹣6.3﹣﹣1213﹣﹣10% …}﹣
故答案为:
{+5﹣245﹣6.9﹣210﹣0.031…}﹣{+5﹣0﹣﹣7﹣210﹣﹣43…}﹣{+5﹣0﹣245﹣6.9﹣210﹣0.031 …}﹣{﹣12﹣﹣6.3﹣﹣1213﹣﹣10%…}﹣
15.解:
﹣1﹣把各数表示到数轴上如下图所示﹣ ﹣
﹣2)根据数轴上的点表示的数﹣左边的总小于右边的结合﹣1)可得: ﹣3﹣﹣2.5﹣﹣1﹣12﹣1﹣3. 16.解: :(1)∵14-9-18-7+13-6+10-5=-8,
∴B 在A 正西方向,离A 有8千米.
(2)∵|14|+|-9|+|-18|+|-7|+|13|+|-6|+|10|+|-5|=82千米,
∴82×0.5-29=12升.
∴途中要补油12升.
17.﹣1﹣3﹣﹣2﹣-6﹣﹣3﹣-2017
【解析】﹣1﹣−(−3)=3﹣﹣2﹣+(−6)=−6﹣﹣3﹣−[−(−2017)]=−2017﹣。

相关文档
最新文档