方法技巧专题(10) 隐圆问题训练

合集下载

圆中的重要几何模型-隐圆模型(解析版)精选全文完整版

圆中的重要几何模型-隐圆模型(解析版)精选全文完整版

圆中的重要几何模型-隐圆模型隐圆是各地中考选择题和填空题、甚至解答题中常考题,题目常以动态问题出现,有点、线的运动,或者图形的折叠、旋转等,大部分学生拿到题基本没有思路,更谈不上如何解答。

隐圆常见的有以下四种形式,动点定长、定弦对直角、定弦对定角、四点共圆(对角互补或等弦对等角),上述四种动态问题的轨迹是圆。

题目具体表现为折叠问题、旋转问题、角度不变问题等,此类问题综合性强,隐蔽性强,很容易造成同学们的丢分。

本专题就隐圆模型的相关问题进行梳理及对应试题分析,方便掌握。

模型1、动点定长模型(圆的定义)若P为动点,但AB=AC=AP,则B、C、P三点共圆,A圆心,AB半径圆的定义:平面内到定点的距离等于定值的所有点构成的集合.寻找隐圆技巧:若动点到平面内某定点的距离始终为定值,则其轨迹是圆或圆弧.例1.(2020·四川中考真题)已知:等腰直角三角形ABC的腰长为4,点M在斜边AB上,点P为该平面内一动点,且满足PC=2,则PM的最小值为()A.2B.22-2C.22+2D.22【答案】B【分析】根据等腰直角三角形的性质得到斜边AB=42,由已知条件得到点P在以C为圆心,PC为半径的圆上,当点P在斜边AB的中线上时,PM的值最小,于是得到结论.【详解】解:∵等腰直角三角形ABC的腰长为4,∴斜边AB=42,∵点P为该平面内一动点,且满足PC=2,∴点P在以C为圆心,PC为半径的圆上,当点P在斜边AB的中线上时,PM的值最小,∵△ABC是等腰直角三角形,∴CM=12AB=22,∵PC=2,∴PM=CM-CP=22-2,故选:B.【点睛】本题考查线段最小值问题,涉及等腰三角形的性质和点到圆的距离,解题的关键是能够画出图形找到取最小值的状态然后求解.例2.(2020·江苏连云港市·中考真题)如图,在平面直角坐标系xOy中,半径为2的eO与x轴的正半轴交于点A,点B是eO上一动点,点C为弦AB的中点,直线y=34x-3与x轴、y轴分别交于点D、E,则△CDE面积的最小值为.【答案】2【分析】如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.先证明点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.求出MN,当点C与C′重合时,△C′DE 的面积最小.【详解】解:如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.∵AC=CB,AM=OM,∴MC=12OB=1,∴点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.∵直线y=34x-3与x轴、y轴分别交于点D、E,∴D(4,0),E(0,-3),∴OD=4,OE=3,∴DE=OE2+OD2=32+42=5,∵∠MDN=∠ODE,∠MND=∠DOE,∴△DNM∽△DOE,∴MNOE=DMDE,∴MN3=35,∴MN=95,当点C与C′重合时,△C′DE的面积最小,△C′DE的面积最小值=12×5×95-1,故答案为2.【点睛】本题考查三角形的中位线定理,三角形的面积,一次函数的性质等知识,解题的关键是学会添加常用辅助线,构造三角形的中位线解决问题,属于中考常考题型.例3.(2022·北京市·九年级专题练习)如图,四边形ABCD中,AE、AF分别是BC,CD的中垂线,∠EAF=80°,∠CBD=30°,则∠ABC=,∠ADC=.【答案】 40°; 60°【分析】连接AC,根据线段垂直平分线的性质可得AB=AC=AD,从而得到B、C、D在以A为圆心,AB为半径的圆上,根据圆周角定理可得∠DAC=2∠DBC=60°,再由等腰三角形的性质可得∠DAF=∠CAF=30°,即可求解.【详解】解:连接AC,∵AE、AF分别是BC、CD的中垂线,∴AB=AC=AD,∴B、C、D在以A为圆心,AB为半径的圆上,∵∠CBD=30°,∴∠DAC=2∠DBC=60°,∵AF⊥CD,CF=DF,∴∠DAF=∠CAF=30°,∴∠ADC=60°,∵AB=AC,BE=CE,∴∠BAE=∠CAE,又∵∠EAC=∠EAF-∠CAF=80°-30°=50°,∴∠ABC=∠ACE=90°-50°=40°.故答案为:40°,60°.【点睛】本题主要考查了圆周角定理,线段垂直平分线的性质,等腰三角形的性质,根据题意得到B、C、D在以A为圆心,AB为半径的圆上是解题的关键.例4.(2022·广东·汕头市一模)如图,在△ABC中,∠C=90°,AC=8,AB=10,D是AC上一点,且CD =3,E是BC边上一点,将△DCE沿DE折叠,使点C落在点F处,连接BF,则BF的最小值为.【答案】35-3##-3+35【分析】先由折叠判断出F的运动轨迹是为以D为圆心,CD的长度为半径的圆,当B、D、F共线且F在B、D之间时BF最小,根据勾股定理及圆的性质求出此时BD、BF的长度即可.【详解】解:由折叠知,F点的运动轨迹为:以D为圆心,CD的长度为半径的圆,如图所示,可知,当点B、D、F共线,且F在B、D之间时,BF取最小值,∵∠C=90°,AC=8,AB=10,∴BC=6,在Rt△BCD中,由勾股定理得:BD=CD2+BC2=32+62=35,∴BF=BD-DF=35-3,故答案为:35-3.【点睛】本题考查了折叠的性质、圆的性质、勾股定理解直角三角形的知识,该题涉及的最值问题属于中考常考题型,根据折叠确定出F点运动轨迹是解题关键.模型2、定边对直角模型(直角对直径)固定线段AB 所对动角∠C 恒为90°,则A 、B 、C 三点共圆,AB 为直径寻找隐圆技巧:一条定边所对的角始终为直角,则直角顶点轨迹是以定边为直径的圆或圆弧.例1.(2022·湖北·武汉九年级阶段练习)如图,AB 是⊙O 的直径,AB =4,C 为AB的三等分点(更靠近A 点),点P 是⊙O 上一个动点,取弦AP 的中点D ,则线段CD 的最大值为.【答案】3+1【分析】如图,连接OD ,OC ,首先证明点D 的运动轨迹为以AO 为直径的⊙K ,连接CK ,当点D 在CK 的延长线上时,CD 的值最大,利用勾股定理求出CK 即可解决问题.【详解】解:如图,连接OD ,OC ,∵AD =DP ,∴OD ⊥PA ,∴∠ADO =90°,∴点D 的运动轨迹为以AO 为直径的⊙K ,连接CK ,AC ,当点D 在CK 的延长线上时,CD 的值最大,∵C 为AB的三等分点,∴∠AOC =60°,∴△AOC 是等边三角形,∴CK ⊥OA ,在Rt △OCK 中,∵∠COA =60°,OC =2,OK =1,∴CK =OC 2-OK 2=3,∵DK =12OA =1,∴CD =3+1,∴CD 的最大值为3+1,故答案为:3+1.【点睛】本题考查圆周角定理、轨迹、勾股定理、点与圆的位置关系等知识,解题的关键是正确寻找点D 的运动轨迹,学会构造辅助圆解决问题.例2.(2022·山东泰安·中考真题)如图,四边形ABCD 为矩形,AB =3,BC =4.点P 是线段BC 上一动点,点M 为线段AP 上一点.∠ADM =∠BAP ,则BM 的最小值为()A.52B.125C.13-32D.13-2【答案】D【分析】证明∠AMD =90°,得出点M 在O 点为圆心,以AO 为半径的园上,从而计算出答案.【详解】设AD 的中点为O ,以O 点为圆心,AO 为半径画圆∵四边形ABCD 为矩形∴∠BAP +∠MAD =90°∵∠ADM =∠BAP∴∠MAD +∠ADM =90°∴∠AMD =90°∴点M 在O 点为圆心,以AO 为半径的园上连接OB 交圆O 与点N∵点B 为圆O 外一点∴当直线BM 过圆心O 时,BM 最短∵BO 2=AB 2+AO 2,AO =12AD =2∴BO 2=9+4=13∴BO =13∵BN =BO -AO =13-2故选:D .【点睛】本题考查直角三角形、圆的性质,解题的关键是熟练掌握直角三角形和圆的相关知识.例3.(2022·内蒙古·中考真题)如图,⊙O 是△ABC 的外接圆,AC 为直径,若AB =23,BC =3,点P 从B 点出发,在△ABC 内运动且始终保持∠CBP =∠BAP ,当C ,P 两点距离最小时,动点P 的运动路径长为.【答案】33π.【分析】根据题中的条件可先确定点P 的运动轨迹,然后根据三角形三边关系确定CP 的长最小时点P 的位置,进而求出点P 的运动路径长.【详解】解:∵AC 为⊙O 的直径,∴∠ABC =90°.∴∠ABP +∠PBC =90°.∵∠PAB =∠PBC ,∴∠PAB +∠ABP =90°.∴∠APB =90°.∴点P 在以AB 为直径的圆上运动,且在△ABC 的内部,如图,记以AB 为直径的圆的圆心为O 1,连接O 1C 交⊙O 1于点P ,连接O 1P ,CP .∵CP ≥O 1C -O 1P ,∴当点O 1,P ,C 三点共线时,即点P 在点P 处时,CP 有最小值,∵AB =23∴O 1B =3在Rt ΔBCO 1中,tan ∠BO 1C =BC O 1B =33= 3.∴∠BO1C =60°.∴BP =60π×3180=33π.∴.C ,P 两点距离最小时,点P 的运动路径长为33π.【点睛】本题主要考查了直径所对圆周角是直角,弧长公式,由锐角正切值求角度,确定点P 的路径是解答本题的关键.模型3、定边对定角模型(定弦定角模型)固定线段AB 所对同侧动角∠P =∠C ,则A 、B 、C 、P 四点共圆根据圆周角定理:同圆或等圆中,同弧或等弧所对的圆周角都相.寻找隐圆技巧:AB 为定值,∠P 为定角,则P 点轨迹是一个圆.例1.(2021·广东·中考真题)在△ABC 中,∠ABC =90°,AB =2,BC =3.点D 为平面上一个动点,∠ADB =45°,则线段CD 长度的最小值为.【答案】5-2【分析】由已知∠ADB =45°,AB =2,根据定角定弦,可作出辅助圆,由同弧所对的圆周角等于圆心角的一半可知,点D 在以O 为圆心OB 为半径的圆上,线段CD 长度的最小值为CO -OD .【详解】如图:以12AB 为半径作圆,过圆心O 作ON ⊥AB ,OM⊥BC ,以O 为圆心OB 为半径作圆,则点D 在圆O 上,∵∠ADB =45°∴∠AOB =90°∵AB =2AN =BN =1∴AO =12+12=2∵ON =OM =12AB =1,BC =3∴OC =12+(3-1)2=5∴CO -OD =5-2线段CD 长度的最小值为:5-2.故答案为:5-2.【点睛】本题考查了圆周角与圆心角的关系,圆外一点到圆上的线段最短距离,勾股定理,正确的作出图形是解题的关键.例2.(2022·浙江湖州·中考真题)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.如图,在6×6的正方形网格图形ABCD 中,M ,N 分别是AB ,BC 上的格点,BM =4,BN =2.若点P 是这个网格图形中的格点,连接PM ,PN ,则所有满足∠MPN =45°的△PMN 中,边PM 的长的最大值是()A.42B.6C.210D.35【答案】C 【分析】根据同弧所对的圆周角等于所对圆心角的一半,过点M 、N 作以点O 为圆心,∠MON =90°的圆,则点P 在所作的圆上,观察圆O 所经过的格点,找出到点M 距离最大的点即可求出.【详解】作线段MN 中点Q ,作MN 的垂直平分线OQ ,并使OQ =12MN ,以O 为圆心,OM 为半径作圆,如图,因为OQ 为MN 垂直平分线且OQ =12MN ,所以OQ =MQ =NQ ,∴∠OMQ =∠ONQ =45°,∴∠MON =90°,所以弦MN 所对的圆O 的圆周角为45°,所以点P 在圆O 上,PM 为圆O 的弦,通过图像可知,当点P 在P 位置时,恰好过格点且P M 经过圆心O ,所以此时P M 最大,等于圆O 的直径,∵BM =4,BN =2,∴MN =22+42=25,∴MQ =OQ =5,∴OM =2MQ =2×5=10,∴P M =2OM =210,故选C .【点睛】此题考查了圆的相关知识,熟练掌握同弧所对的圆周角相等、直径是圆上最大的弦,会灵活用已知圆心角和弦作圆是解题的关键.例3.(2022·广西贵港·中考真题)如图,在边长为1的菱形ABCD 中,∠ABC =60°,动点E 在AB 边上(与点A 、B 均不重合),点F 在对角线AC 上,CE 与BF 相交于点G ,连接AG ,DF ,若AF =BE ,则下列结论错误的是()A.DF =CEB.∠BGC =120°C.AF 2=EG ⋅ECD.AG 的最小值为223【答案】D 【分析】先证明△BAF ≌△DAF ≌CBE ,△ABC 是等边三角形,得DF =CE ,判断A 项答案正确,由∠GCB +∠GBC =60゜,得∠BGC =120゜,判断B 项答案正确,证△BEG ∽△CEB 得BE GE=CE BE ,即可判断C 项答案正确,由∠BGC =120°,BC =1,得点G 在以线段BC 为弦的弧BC 上,易得当点G 在等边△ABC 的内心处时,AG 取最小值,由勾股定理求得AG =33,即可判断D 项错误.【详解】解:∵四边形ABCD 是菱形,∠ABC =60°,∴AB =AD =BC =CD ,∠BAC =∠DAC =12∠BAD =12×(180°-∠ABC )=60°=∠ABC ,∴△BAF ≌△DAF ≌CBE ,△ABC 是等边三角形,∴DF =CE ,故A 项答案正确,∠ABF =∠BCE ,∵∠ABC =∠ABF +∠CBF =60゜,∴∠GCB +∠GBC =60゜,∴∠BGC =180゜-60゜=180゜-(∠GCB +∠GBC )=120゜,故B 项答案正确,∵∠ABF =∠BCE ,∠BEG =∠CEB ,∴△BEG ∽△CEB ,∴BE GE=CE BE ,∴BE 2=GE ∙CE ,∵AF =BE ,∴AF 2=GE ∙CE ,故C 项答案正确,∵∠BGC =120°,BC =1,点G 在以线段BC 为弦的弧BC 上,∴当点G 在等边△ABC 的内心处时,AG 取最小值,如下图,∵△ABC 是等边三角形,BC =1,∴BF ⊥AC ,AF =12AC =12,∠GAF =30゜,∴AG =2GF ,AG 2=GF 2+AF 2,∴AG 2=12AG 2+12 2,解得AG =33,故D 项错误,故应选:D 【点睛】本题主要考查了菱形的基本性质、等边三角形的判定及性质、圆周角定理,熟练掌握菱形的性质是解题的关键.模型4、四点共圆模型(对角互补模型与等弦对等角)1)若平面上A 、B 、C 、D 四个点满足∠ABC +∠ADC =180°,则A 、B 、C 、D 四点共圆.条件:1)四边形对角互补;2)四边形外角等于内对角.2)若平面上A、B、C、D四个点满足∠ADB=∠ACB,则A、B、C、D四点共圆.条件:线段同侧张角相等.例1.(2022·广东·九年级专题练习)如图,在四边形ABCD中,∠BAD=∠BCD=90°,∠ACD=30°,AD =2,E是AC的中点,连接DE,则线段DE长度的最小值为.【答案】3-1【分析】先判断出四边形ABCD是圆内接四边形,得到∠ACD=∠ABD=30°,根据题意知点E在以FG为直径的⊙P上,连接PD交⊙P于点E,此时DE长度取得最小值,证明∠APD=90°,利用含30度角的直角三角形的性质求解即可.【详解】解:∵∠BAD=∠BCD=90°,∴四边形ABCD是圆内接四边形,∴∠ACD=∠ABD=30°,∴∠ADB=60°,∵AD=2,∴BD=2AD=4,分别取AB、AD的中点F、G,并连接FG,EF,EG,∵E是AC的中点,∴EF∥BC,EG∥CD,∴∠AEF=∠ACB,∠AEG=∠ACD,∴∠AEF+∠AEG=∠ACB+∠ACD=90°,即∠FEG=90°,∴点E在以FG为直径的⊙P上,如图:当点E恰好在线段PD上,此时DE的长度取得最小值,连接PA,BD=2,∴∵F、G分别是AB、AD的中点∴FG∥BD,FG=12∠ADB=∠AGF=60°,∵PA=PG,∴△APG是等边三角形,∴∠APG=60°,∵PG=GD=GA,且∠AGF=60°,∴∠GPD=∠GDP=30°,∴∠APD=90°,∴PD=AD2-PA2=22-12=3,∴DE长度的最小值为(3-1).故答案为:(3-1).【点睛】本题考查了圆周角定理,圆内接四边形的性质,等边三角形的判定和性质,含30度角的直角三角形的性质,得到点E 在以FG 为直径的⊙P 上是解题的关键.例2.(2022陕西中考模拟)如图,在等边△ABC 中,AB =6,点P 为AB 上一动点,PD ⊥BC 于点D ,PE ⊥AC 于点E ,则DE 的最小值为.【答案】92【详解】如解图,∵∠PEC =∠PDC =90°,故四边形PDCE 对角互补,故P 、D 、C 、E 四点共圆,∠EOD =2∠ECD =120°,故ED =3R ,要使得DE 最小,则要使圆的半径R 最小,故直径PC 最小,当CP ⊥AB 时,PC 最短为33,故R =332,故DE =3R =3×332=92.例3.(2022江苏九年级期末)如图,在Rt △ABC 中,∠ACB =90°,BC =3,AC =4,点P 为平面内一点,且∠CPB =∠A ,过C 作CQ ⊥CP 交PB 的延长线于点Q ,则CQ 的最大值为()A.175B.154C.455D.655【答案】B【分析】根据题意可得A 、B 、C 、P 四点共圆,由AA 定理判定三角形相似,由此得到CQ 的值与PC 有关,当PC 最大时CQ 即取最大值.【详解】解:∵在Rt △ABC 中,∠ACB =90°,∠CPB =∠A ,BC =3,AC =4∴A 、B 、C 、P 四点共圆,AB 为圆的直径,AB =BC 2+AC 2=5∵CQ ⊥CP ∴∠ACB =∠PCQ =90°∴△ABC ∽△PQC∴AC BC =PC CQ ,43=PC CQ,即CQ =34PC ∴当PC 取得最大值时,CQ 即为最大值∴当PC =AB =5时,CQ 取得最大值为154故选:B .【点睛】本题考查相似三角形的判定和性质以及四点共圆,掌握同圆或等圆中,同弧所对的圆周角相等确定四点共圆,利用相似三角形性质得到线段间等量关系是解题关键.课后专项训练例4.(2022·江苏无锡·中考真题)△ABC是边长为5的等边三角形,△DCE是边长为3的等边三角形,直线BD与直线AE交于点F.如图,若点D在△ABC内,∠DBC=20°,则∠BAF=°;现将△DCE绕点C旋转1周,在这个旋转过程中,线段AF长度的最小值是.【答案】 80 4-3##-3+4【分析】利用SAS证明△BDC≌△AEC,得到∠DBC=∠EAC=20°,据此可求得∠BAF的度数;利用全等三角形的性质可求得∠AFB=60°,推出A、B、C、F四个点在同一个圆上,当BF是圆C的切线时,即当CD⊥BF时,∠FBC最大,则∠FBA最小,此时线段AF长度有最小值,据此求解即可.【详解】解:∵△ABC和△DCE都是等边三角形,∴AC=BC,DC=EC,∠BAC=∠ACB=∠DCE =60°,∴∠DCB+∠ACD=∠ECA+∠ACD=60°,即∠DCB=∠ECA,在△BCD和△ACE中,CD=CE∠BCD=∠ACE BC=AC,∴△ACE≌△BCD(SAS),∴∠EAC=∠DBC,∵∠DBC=20°,∴∠EAC=20°,∴∠BAF=∠BAC+∠EAC=80°;设BF与AC相交于点H,如图:∵△ACE≌△BCD∴AE=BD,∠EAC=∠DBC,且∠AHF=∠BHC,∴∠AFB=∠ACB=60°,∴A、B、C、F四个点在同一个圆上,∵点D在以C为圆心,3为半径的圆上,当BF是圆C的切线时,即当CD⊥BF时,∠FBC最大,则∠FBA最小,∴此时线段AF长度有最小值,在Rt△BCD中,BC=5,CD=3,∴BD=52-32=4,即AE=4,∴∠FDE=180°-90°-60°=30°,∵∠AFB=60°,∴∠FDE=∠FED=30°,∴FD=FE,过点F作FG⊥DE于点G,∴DG=GE=32,∴FE=DF=DGcos30°=3,∴AF=AE-FE=4-3,故答案为:80;4-3.【点睛】本题考查了旋转的性质,等边三角形的性质,圆周角定理,切线的性质,解直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件.例5.(2021·湖北鄂州·中考真题)如图,Rt △ABC 中,∠ACB =90°,AC =23,BC =3.点P 为ΔABC 内一点,且满足PA 2+PC 2=AC 2.当PB 的长度最小时,ΔACP 的面积是()A.3B.33C.334D.332【答案】D 【分析】由题意知∠APC =90°,又AC 长度一定,则点P 的运动轨迹是以AC 中点O 为圆心,12AC 长为半径的圆弧,所以当B 、P 、O 三点共线时,BP 最短;在Rt ΔBCO 中,利用勾股定理可求BO 的长,并得到点P 是BO 的中点,由线段长度即可得到ΔPCO 是等边三角形,利用特殊Rt ΔAPC 三边关系即可求解.【详解】解:∵PA 2+PC 2=AC 2∴∠APC =90°取AC 中点O ,∴AO =PO =CO =12AC 点P 的轨迹为以O 为圆心,12AC 长为半径的圆弧上由题意知:当B 、P 、O 三点共线时,BP 最短∵CO =12AC =12×23=3,BC =3∴BO =BC 2+CO 2=23∴BP =BO -PO =3∴点P 是BO 的中点∴在Rt ΔBCO 中,CP =12BO =3=PO ∴ΔPCO 是等边三角形∴∠ACP =60°∴在Rt ΔAPC 中,AP =CP ×tan60°=3∴S ΔAPC =12AP ×CP =3×32=332.【点睛】本题主要考察动点的线段最值问题、点与圆的位置关系和隐形圆问题,属于动态几何综合题型,中档难度.解题的关键是找到动点P 的运动轨迹,即隐形圆.例6.(2020·西藏中考真题)如图,在矩形ABCD 中,E 为AB 的中点,P 为BC 边上的任意一点,把沿PE 折叠,得到,连接CF .若AB =10,BC =12,则CF 的最小值为.【答案】8【分析】点F 在以E 为圆心、EA 为半径的圆上运动,当E 、F 、C 共线时时,此时FC 的值最小,根据勾股定理求出CE ,再根据折叠的性质得到BE =EF =5即可.【详解】如图所示,点F 在以E 为圆心EA 为半径的圆上运动,当E 、F 、C 共线时时,此时CF 的值最小,根据折叠的性质,△EBP ≌△EFP ,∴EF ⊥PF ,EB =EF ,∵E 是AB 边的中点,AB =10,∴AE =EF =5,∵AD =BC =12,∴CE ===13,∴CF =CE -EF =13-5=8.故答案为8.【点睛】本题考查了折叠的性质、全等三角形的判定与性质、两点之间线段最短的综合运用,灵活应用相关知识是解答本题的关键.例7.(2022·北京·清华附中九年级阶段练习)如图,四边形ABCD 中,DA =DB =DC ,∠BDC =72°,则∠BAC 的度数为.【答案】36°##36度【分析】根据题意可得A ,B ,C 三点在以D 为圆心DA 为半径的圆上,根据圆周角定理即可求解.【详解】解:如图,∵DA =DB =DC ,∴A ,B ,C 三点在以D 为圆心DA 为半径的圆上,∵∠BDC =72°,CB =CB ∴∠BAC =12∠BDC =36°.故答案为:36°.【点睛】本题考查了圆周角定理,掌握圆周角定理是解题的关键.例8.(2022·河北·唐山九年级阶段练习)如图所示,在四边形ABCD 中,AB =AC =AD ,∠BAC =26°,∠CAD =74°,则∠BCD =°,∠DBC °.【答案】 130 37【分析】根据题意可得点B,C,D在以A为圆心的圆上,根据圆周角定理求得∠BDC,∠DBC,根据三角形内角和定理求得∠BCD.【详解】∵AB=AC=AD,∴点B,C,D在以A为圆心的圆上,∵∠BAC=26°∴∠BDC=12∠BAC=13°,∵∠CAD=74°,∴∠DBC=12∠CAD=37°.∴∠BCD=180-∠DBC-∠BDC=180°-13°-37°=130°故答案为:130,37【点睛】此题考查了圆周角定理,三角形内角和定理,综合运用以上知识是解题的关键.例9.(2022·安徽蚌埠·一模)如图,Rt△ABC中,AB⊥BC,AB=8,BC=6,P是△ABC内部的一个动点,满足∠PAB=∠PBC,则线段CP长的最小值为()A.325B.2C.213-6D.213-4【答案】D【分析】结合题意推导得∠APB=90°,取AB的中点O,以点O为圆心,AB为直径作圆,连接OP;根据直角三角形斜边中线的性质,得OP=OA=OB=12AB=4;根据圆的对称性,得点P在以AB为直径的⊙O上,根据两点之间直线段最短的性质,得当点O、点P、点C三点共线时,PC最小;根据勾股定理的性质计算得OC,通过线段和差计算即可得到答案.【详解】∵∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠PAB=∠PBC,∴∠BAP+∠ABP=90°,∴∠APB=90°,取AB的中点O,以点O为圆心,AB为直径作圆,连接OP,∴OP=OA=OB=12AB=4∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,当点O、点P、点C三点共线时,PC最小在Rt△BCO中,∵∠OBC=90°,BC=6,OB=4,∴OC=BO2+BC2=42+62=213,∴PC=OC-OP=213-4∴PC最小值为213-4故选:D.【点睛】本题考查了两点之间直线段最短、圆、勾股定理、直角三角形斜边中线的知识;解题的关键是熟练掌握圆的对称性、两点之间直线段最短、直角三角形斜边中线的性质,从而完成求解.例10.(2022·成都市·九年级专题练习)如图,在Rt ΔABC 中,∠ACB =Rt ∠,AC =8cm ,BC =3cm .D 是BC 边上的一个动点,连接AD ,过点C 作CE ⊥AD 于E ,连接BE ,在点D 变化的过程中,线段BE 的最小值是()A.1B.3C.2D.5【答案】A 【分析】由∠AEC =90°知,点E 在以AC 为直径的⊙M 的CN 上(不含点C 、可含点N ),从而得BE最短时,即为连接BM 与⊙M 的交点(图中点E ′点),BE 长度的最小值BE ′=BM -ME ′.【详解】如图,由题意知,∠AEC =90°,∴E 在以AC 为直径的⊙M 的CN上(不含点C 、可含点N ),∴BE 最短时,即为连接BM 与⊙M 的交点(图中点E ′点),在Rt ΔBCM 中,BC =3cm ,CM =12AC =4cm ,则BM =BC 2+CM 2=5cm .∵ME ′=MC =4cm ,∴BE 长度的最小值BE ′=BM -ME ′=1cm ,故选:A .【点睛】本题主要考查了勾股定理,圆周角定理,三角形的三边关系等知识点,难度偏大,解题时,注意辅助线的作法.例11.(2022·广东·九年级课时练习)如图,△ACB 中,CA =CB =4,∠ACB =90°,点P 为CA 上的动点,连BP ,过点A 作AM ⊥BP 于M .当点P 从点C 运动到点A 时,线段BM 的中点N 运动的路径长为()A.22πB.2πC.3πD.2π【答案】A【详解】解:设AB 的中点为Q ,连接NQ ,如图所示:∵N 为BM 的中点,Q 为AB 的中点,∴NQ 为△BAM 的中位线,∵AM ⊥BP ,∴QN ⊥BN ,∴∠QNB =90°,∴点N 的路径是以QB 的中点O 为圆心,14AB 长为半径的圆交CB 于D 的QD,∵CA =CB =4,∠ACB =90°,∴AB =2CA =42,∠QBD =45°,∴∠DOQ =90°,∴QD 为⊙O 的14周长,∴线段BM 的中点N 运动的路径长为:90π×14×42180=22π,故选:A .例12.(2022·全国·九年级专题练习)如图,在△ABC 中,∠ACB =90°,AC =BC ,AB =4cm ,CD 是中线,点E 、F 同时从点D 出发,以相同的速度分别沿DC 、DB 方向移动,当点E 到达点C 时,运动停止,直线AE 分别与CF 、BC 相交于G 、H ,则在点E 、F 移动过程中,点G 移动路线的长度为()A.2B.πC.2πD.22π【答案】D【详解】解:如图,∵CA =CB ,∠ACB =90°,AD =DB ,∴CD ⊥AB ,∴∠ADE =∠CDF =90°,CD =AD =DB ,在△ADE 和△CDF 中AD =CD∠ADE =∠CDF DE =DF,∴△ADE ≌△CDF (SAS ),∴∠DAE =∠DCF ,∵∠AED =∠CEG ,∴∠ADE =∠CGE =90°,∴A 、C 、G 、D 四点共圆,∴点G 的运动轨迹为弧CD ,∵AB =4,AB =2AC ,∴AC =22,∴OA =OC =2,∵DA =DC ,OA =OC ,∴DO ⊥AC ,∴∠DOC =90°,∴点G 的运动轨迹的长为90π×2180=22π.故选:D .例13.(2022·山西·九年级课时练习)如图,在等腰Rt ∆ABC 中,AC =BC =42,点P 在以斜边AB 为直径的半圆上,M 为PC 的中点.当点P 沿半圆从点A 运动至点B 时,点M 运动的路径长是()A.22π+4B.2πC.42+2D.4π【答案】B 【详解】分析:取AB 的中点O 、AC 的中点E 、BC 的中点F ,连结OC 、OP 、OM 、OE 、OF 、EF ,如图,利用等腰直角三角形的性质得到AB =2BC =8,则OC =12AB =4,OP =12AB =4,再根据等腰三角形的性质得OM ⊥PC ,则∠CMO =90°,于是根据圆周角定理得到点M 在以OC 为直径的圆上,由于点P 点在A 点时,M 点在E 点;点P 点在B 点时,M 点在F 点,则利用四边形CEOF 为正方得到EF =OC =4,所以M 点的路径为以EF 为直径的半圆,然后根据圆的周长公式计算点M 运动的路径长.详解:取AB 的中点O 、AC 的中点E 、BC 的中点F ,连结OC 、OP 、OM 、OE 、OF 、EF ,如图,∵在等腰Rt △ABC 中,AC =BC =42,∴AB =2BC =8,∴OC =12AB =4,OP =12AB =4. ∵M 为PC 的中点,∴OM ⊥PC ,∴∠CMO =90°,∴点M 在以OC为直径的圆上,点P 点在A 点时,M 点在E 点;点P 点在B 点时,M 点在F 点,易得四边形CEOF 为正方形,EF =OC =4,∴M 点运动的路径为以EF 为直径的半圆,∴点M 运动的路径长=12•4π=2π. 故选B .点睛:本题考查了轨迹:点按一定规律运动所形成的图形为点运动的轨迹.解决此题的关键是利用等腰三角形的性质和圆周角定理确定M 点的轨迹为以EF 为直径的半圆.例14.(2022·山东·烟台九年级期中)如图,平面直角坐标系中,点A 、B 坐标分别为(3,0)、(0,4),点C 是x 轴正半轴上一点,连接BC .过点A 垂直于AB 的直线与过点C 垂直于BC 的直线交于点D ,连接BD ,则sin ∠BDC 的值是.【答案】45【分析】根据图形的特点证明∠BDC =∠BAO ,故可出sin ∠BDC 的值.【详解】∵BA ⊥AD ,BC ⊥CD ∴∠BAD =∠BCD =90°∴A 、B 、C 、D 四点共圆∴∠BDA =∠BCA∵∠BDA +∠DBA =∠BCA +∠CBO =90°∴∠DBA =∠CBO∴∠DBA -∠CBA =∠CBO -∠CBA 即∠DBC =∠ABO又∠DBC +∠BDC =∠ABO +∠BAO =90°∴∠BDC =∠BAO∵点A 、B 坐标分别为(3,0)、(0,4),∴BO =4,OA =3,AB =42+32=5∴sin ∠BAO =BO AB=45∴sin ∠BDC =45故答案为:45.【点睛】此题主要考查三角函数的求解,解题的关键是熟知四点共圆的性质、勾股定理及三角函数的求解方法.例15.(2022·湖北·九年级期中)如图,△ABC 中,AC =BC =6,∠ACB =90°,若D 是与点C 在直线AB 异侧的一个动点,且∠ADB =45°,则CD 的最大值为.【答案】62+6##6+62【分析】以AB 为底边,在AB 的下方作等腰三角形AOB ,则OA =AC =6,根据∠ADB =45°,点与圆的位置关系可知,点D 在以O 为圆心,6为半径的圆上运动,当CD 过圆心时,CD 最大,根据OA =AC =6,∠CAO =90°,利用勾股定理可求出CO 的长,即可得.【详解】解:如图所示,以AB 为底边,在AB 的下方作等腰三角形AOB ,则OA =AC =6,∵∠ADB =45°,∴点D 在以O 为圆心,6为半径的圆上运动,当CD 过圆心时,CD 最大,∵OA =AC =6,∠CAO =90°,∴CO =62+62=62,∴CD 的最大值为:62+6,故答案为:62+6.【点睛】本题考查了等腰直角三角形的性质,圆周角定理,勾股定理,解题的关键是理解题意,掌握这些知识点.例16.(2022·浙江·九年级专题练习)如图,AB 是Rt △ABC 和Rt △ABD 的公共斜边,AC =BC ,∠BAD =32°,E 是AB 的中点,联结DE 、CE 、CD ,那么∠ECD =°.【答案】13【分析】先证明A 、C 、B 、D 四点共圆,得到∠DCB 与∠BAD 的是同弧所对的圆周角的关系,得到∠DCB 的度数,再证∠ECB =45°,得出结论.【详解】解:∵AB 是Rt △ABC 和Rt △ABD 的公共斜边,E 是AB 中点,∴AE =EB =EC =ED ,∴A 、C 、B 、D 在以E 为圆心的圆上,∵∠BAD =32°,∴∠DCB =∠BAD =32°,又∵AC =BC ,E 是Rt △ABC 的中点,∴∠ECB =45°,∴∠ECD =∠ECB -∠DCB =13°.故答案为:13.【点睛】本题考查直角三角形的性质、等腰三角形性质、圆周角定理和四点共圆问题,综合性较强.例17.(2022·黑龙江·九年级阶段练习)如图,等边△ABC 中,D 在BC 上,E 在AC 上,BD =CE ,连BE 、AD 交于F ,T 在EF 上,且DT =CE ,AF =50,TE =16,则FT =.【答案】17【分析】用“SAS ”可判定△ABD ≌△BCE ,得到∠AFE =60°,延长FE 至点G ,使得FG =FA ,连AG ,AT ,得到△AFG 是等边三角形,证明A 、B 、D 、T 四点共圆,设法证明△FAT ≌△GAE (ASA ),即可求得答案.【详解】∵△ABC 为等边三角形,∴AB =AC =BC ,∠ABD =∠BCE =60°,在△ABD 和△BCE 中,AB =BC∠ABD =∠BCE =60°BD =CE,∴△ABD ≌△BCE (SAS ),∴∠BAD =∠CBE ,∵∠ADC =∠CBE +∠BFD =∠BAD +∠B ,∴∠BFD =∠B =∠AFE =60°;延长FE 至点G ,使得FG =FA ,连AG ,AT ,∵∠AFE =60°,∴△AFG 是等边三角形,∴AG =AF =FG =50,∠AGF =∠FAG =60°,∵∠BAF +∠EAF =∠CAG +∠EAF =60°,∴∠BAF =∠CAG ,∵DT =CE ,∴∠DBT =∠BTD ,∵∠BAD =∠CBE ,∴∠BAD =∠BTD ,∴A 、B 、D 、T 四点共圆,∴∠BAD =∠DAT ,∴∠FAT =∠GAE ,在△FAT 和△GAE 中,∠FAT =∠GAEAF =AG ∠AFG =∠AGF =60°,∴△FAT ≌△GAE (ASA ),∴FT =GE ,∵FG =50,TE =16,∴FT =12(FG -TE )=17.故答案为:17.【点睛】本题主要考查了等边三角形的判定和性质,全等三角形的判定和性质,圆周角定理等,作出辅助线,判断出△FAT ≌△GAE 是解本题的关键.例18.(2020·四川成都·二模)如图,在矩形ABCD 中,AB =9,AD =6,点O 为对角线AC 的中点,点E 在DC 的延长线上且CE =1.5,连接OE ,过点O 作OF ⊥OE 交CB 延长线于点F ,连接FE 并延长交AC 的延长线于点G ,则FG OG=.【答案】455【分析】作OM ⊥CD 于M ,ON ⊥BC 于N ,根据三角形中位线定理分别求出OM 、ON ,根据勾股定理求出OE ,根据相似三角形的性质求出FN ,得到FC 的长,证明△GFC ∽△GOE ,根据相似三角形的性质列出比例式,代入计算得到答案.【详解】解:作OM ⊥CD 于M ,ON ⊥BC 于N ,∵四边形ABCD 为矩形,∴∠D =90°,∠ABC =90°,∴OM ∥AD ,ON ∥AB ,∵点O 为AC 的中点∴OM =12AD =3,ON =12AB =4.5,CM =4.5,CN =3,∵CE =1.5,∴ME =CM +CE =6在Rt △OME 中,OE =OM 2+ME 2=32+62=35,∵∠MON =90°,∠EOF =90°,∴∠MOE +∠NOE =∠NOF +∠NOE =90°,∴∠MOE =∠NOF ,又∠OME =∠ONF =90°,∴△OME ∽△ONF ,∴OM ON=ME FN ,即34.5=6FN ,解得,FN =9,∴FC =FN +NC =12,∵∠FOE =∠FCE =90°,∴F 、O 、C 、E 四点共圆,∴∠GFC =∠GOE ,又∠G =∠G ,∴△GFC ∽△GOE ,∴FG OG =FC OE =1235=455,故答案为:455.【点睛】本题考查了矩形的性质、相似三角形的判定和性质、圆周角定理的应用,掌握相似三角形的判定定理和性质定理是解题的关键.例19.(2022·成都市锦江区嘉祥外国语学校九年级阶段练习)如图,在△ABC 中,AC =6,BC =83,∠ACB =60°,过点A 作BC 的平行线l ,P 为直线l 上一动点,⊙O 为△APC 的外接圆,直线BP 交⊙O 于E 点,则AE 的最小值为.【答案】2【分析】如图,连接CE .首先证明∠BEC =120°,根据定弦定角,可得点E 在以M 为圆心,MB 为半径的BC 上运动,连接MA 交BC 于E ′,此时AE ′的值最小.【详解】解:如图,连接CE .∵AP ∥BC ,∴∠PAC =∠ACB =60°,∴∠CEP =∠CAP=60°,∴∠BEC =120°,∵BC =83,为定值,则点E 的运动轨迹为一段圆弧如图,点E 在以M 为圆心,MB 为半径的BC 上运动,过点M 作MN ⊥BC∴⊙M 中优弧BC 度数为2∠BEC =240°,则劣弧BC 度数为120°∴△BMC 是等腰三角形,∠BMC =120°,∵∠BCM =30°,BC =83,MB =MC∴BN =BM 2-MN 2==3MN =12BC =43∴MB =MC =8,∴连接MA 交BC 于E ′,此时AE ′的值。

隐圆问题(学生版)-2024年中考数学压轴题专项训练

隐圆问题(学生版)-2024年中考数学压轴题专项训练

隐圆问题3种模型通用的解题思路:隐圆一般有如下呈现方式:(1)定点定长:当遇到同一个端点出发的等长线段时,通常以这个端点为圆心,等线段长为半径构造辅助圆;(2)定弦定角:当遇到动点对定点对定线段所张的角为定值时,通常把张角转化为圆周角构造辅助圆。

当遇到直角时,通常以斜边为直径构造辅助圆。

(3)四点共圆:对角互补的四边形的四个顶点共圆。

隐圆常与线段最值结合考查。

类型1:定点定长1(2023•新城区校级三模)圆的定义:在同一平面内,到定点的距离等于定长的所有点所组成的图形.(1)已知:如图1,OA=OB=OC,请利用圆规画出过A、B.C三点的圆.若∠AOB=70°,则∠ACB=.如图,RtΔABC中,∠ABC=90°,∠BCA=30°,AB=2.(2)已知,如图2.点P为AC边的中点,将AC沿BA方向平移2个单位长度,点A、P、C的对应点分别为点D、E、F,求四边形BDFC的面积和∠BEA的大小.(3)如图3,将AC边沿BC方向平移a个单位至DF,是否存在这样的a,使得直线DF上有一点Q,满足∠BQA=45°且此时四边形BADF的面积最大?若存在,求出四边形BADF面积的最大值及平移距离a,若不存在,说明理由.2(2024•兰州模拟)综合与实践【问题情境】在数学综合实践课上,“希望小组”的同学们以三角形为背景,探究图形变化过程中的几何问题,如图,在ΔABC中,AB=AC,∠BAC=90°,点D为平面内一点(点A,B,D三点不共线),AE为ΔABD的中线.【初步尝试】(1)如图1,小林同学发现:延长AE至点M,使得ME=AE,连接DM.始终存在以下两个结论,请你在①,②中挑选一个进行证明:①DM=AC;②∠MDA+∠DAB=180°;【类比探究】(2)如图2,将AD绕点A顺时针旋转90°得到AF,连接CF.小斌同学沿着小林同学的思考进一步探究后发现:AE=12CF,请你帮他证明;【拓展延伸】(3)如图3,在(2)的条件下,王老师提出新的探究方向:点D在以点A为圆心,AD为半径的圆上运动(AD>AB),直线AE与直线CF相交于点G,连接BG,在点D的运动过程中BG存在最大值.若AB=4,请直接写出BG的最大值.3(2022•番禺区二模)已知抛物线y=ax2+bx-32(a>0)与x轴交于点A,B两点,OA<OB,AB=4.其顶点C的横坐标为-1.(1)求该抛物线的解析式;(2)设点D在抛物线第一象限的图象上,DE⊥AC垂足为E,DF⎳y轴交直线AC于点F,当ΔDEF面积等于4时,求点D的坐标;(3)在(2)的条件下,点M是抛物线上的一点,M点从点B运动到达点C,FM⊥FN交直线BD于点N,延长MF与线段DE的延长线交于点H,点P为N,F,H三点构成的三角形的外心,求点P经过的路线长.4(2021•红谷滩区校级模拟)(1)学习心得:小刚同学在学习完“圆”这一章内容后,感觉到有一些几何问题,如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.例如:如图1,在ΔABC中,AB=AC,∠BAC=80°,D是ΔABC外一点,且AD=AC,求∠BDC的度数.若以点A为圆心,AB为半径作辅助圆⊙A,则点C、D必在⊙A上,∠BAC是⊙A的圆心角,而∠BDC是圆周角,从而可容易得到∠BDC= 40° .(2)问题解决:如图,在四边形ABCD中,∠BAD=∠BCD=90°,∠BDC=25°,求∠BAC的度数.(3)问题拓展:抛物线y=-14(x-1)2+3与y轴交于点A,顶点为B,对称轴BC与x轴交于点C,点P在抛物线上,直线PQ⎳BC交x轴于点Q,连接BQ.①若含45°角的直线三角板如图所示放置,其中,一个顶点与C重合,直角顶点D在BQ上,另一顶点E在PQ上,求Q的坐标;②若含30°角的直角三角板一个顶点与点C重合,直角顶点D在BQ上,另一个顶点E在PQ上,点D与点B,点Q不重合,求点P的坐标.类型2:定弦定角5(2022•雁塔区校级三模)问题提出(1)如图①,已知ΔABC为边长为2的等边三角形,则ΔABC的面积为 3 ;问题探究(2)如图②,在ΔABC中,已知∠BAC=120°,BC=63,求ΔABC的最大面积;问题解决(3)如图③,某校学生礼堂的平面示意为矩形ABCD,其宽AB=20米,长BC=24米,为了能够监控到礼堂内部情况,现需要在礼堂最尾端墙面CD上安装一台摄像头M进行观测,并且要求能观测到礼堂前端墙面AB区域,同时为了观测效果达到最佳,还需要从点M出发的观测角∠AMB=45°,请你通过所学知识进行分析,在墙面CD区域上是否存在点M满足要求?若存在,求出MC的长度;若不存在,请说明理由.6(2023•灞桥区校级模拟)问题提出:(1)如图①,ΔABC为等腰三角形,∠C=120°,AC=BC=8,D 是AB上一点,且CD平分ΔABC的面积,则线段CD的长度为.问题探究:(2)如图②,ΔABC中,∠C=120°,AB=10,试分析和判断ΔABC的面积是否存在最大值,若存在,求出这个最大值;若不存在,请说明理由.问题解决:(3)如图③,2023年第九届丝绸之路国际电影开幕式在西安曲江竞技中心举行,主办方要在会场旁规划一个四边形花圃ABCD,满足BC=600米,CD=300米,∠C=60°,∠A=60°,主办方打算过BC 的中点M点(入口)修建一条径直的通道ME(宽度忽略不计)其中点E(出口)为四边形ABCD边上一点,通道ME把四边形ABCD分成面积相等并且尽可能大的两部分,分别规划成不同品种的花圃以供影迷休闲观赏.问是否存在满足上述条件的通道ME?若存在,请求出点A距出口的距离AE的长;若不存在,请说明理由.7(2023•柯城区校级一模)如图,点A与点B的坐标分别是(1,0),(5,0),点P是该直角坐标系内的一个动点.(1)使∠APB=30°的点P有个;(2)若点P在y轴上,且∠APB=30°,求满足条件的点P的坐标;(3)当点P在y轴上移动时,∠APB是否有最大值?若有,求点P的坐标,并说明此时∠APB最大的理由;若没有,也请说明理由.类型3:四点共圆8(2022•中原区校级模拟)阅读下列材料,并完成相应的任务.西姆松定理是一个平面几何定理,其表述为:过三角形外接圆上异于三角形顶点的任意一点作三边或其延长线的垂线,则三垂足共线(此线常称为西姆松线).某数学兴趣小组的同学们尝试证明该定理.如图(1),已知ΔABC 内接于⊙O ,点P 在⊙O 上(不与点A ,B ,C 重合),过点P 分别作AB ,BC ,AC 的垂线,垂足分别为点D ,E ,F .求证:点D ,E ,F 在同一条直线上.如下是他们的证明过程(不完整):如图(1),连接PB ,PC ,DE ,EF ,取PC 的中点Q ,连接QE .QF ,则EQ =FQ =12PC =PQ =CQ ,(依据1)∵点E ,F ,P ,C 四点共圆,∴∠FCP +∠FEP =180°.(依据2)又∵∠ACP +∠ABP =180°,∴∠FEP =∠ABP .同上可得点B ,D ,P ,E 四点共圆,⋯⋯任务:(1)填空:①依据1指的是中点的定义及;②依据2指的是.(2)请将证明过程补充完整.(3)善于思考的小虎发现当点P 是BC 的中点时,BD =CF ,请你利用图(2)证明该结论的正确性.9(2021•哈尔滨模拟)(1)【学习心得】于彤同学在学习完“圆”这一章内容后,感觉到一些几何问题如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.例如:如图1,在ΔABC中,AB=AC,∠BAC=90°,D是ΔABC外一点,且AD=AC,求∠BDC的度数.若以点A为圆心,AB为半径作辅助⊙A,则点C、D必在⊙A上,∠BAC是⊙A的圆心角,而∠BDC是圆周角,从而可容易得到∠BDC=°.(2)【问题解决】如图2,在四边形ABCD中,∠BAD=∠BCD=90°,∠BDC=25°,求∠BAC的度数.(3)【问题拓展】如图3,如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是.10(2022•潢川县校级一模)如图1,点B在直线l上,过点B构建等腰直角三角形ABC,使∠BAC= 90°,且AB=AC,过点C作CD⊥直线l于点D,连接AD.(1)小亮在研究这个图形时发现,∠BAC=∠BDC=90°,点A,D应该在以BC为直径的圆上,则∠ADB的度数为°,将射线AD顺时针旋转90°交直线l于点E,可求出线段AD,BD,CD的数量关系为;(2)小亮将等腰直角三角形ABC绕点B在平面内旋转,当旋转到图2位置时,线段AD,BD,CD的数量关系是否变化,请说明理由;(3)在旋转过程中,若CD长为1,当ΔABD面积取得最大值时,请直接写AD的长.。

数学隐形圆问题解题技巧

数学隐形圆问题解题技巧

数学隐形圆问题解题技巧1. 嘿,你知道吗?遇到那种动点问题,别慌!比如有个点在一个图形上运动,这时候就要想到隐形圆啦。

就好像一只小老鼠在迷宫里乱跑,咱们得找到它的规律呀!比如在一个直角三角形里,斜边就是那个“隐形成员”,动点到斜边中点的距离始终不变,这不就是个隐形圆嘛。

2. 哇塞,还有一种情况也会有隐形圆哦!当几个固定的点到一个动点的距离相等时,这不就是圆的定义嘛。

就好比一群小朋友围着一个大哥哥,这个大哥哥就是圆心呀!比如四边形的四个顶点到某点距离相等,那隐形圆不就出来啦。

3. 嘿呀,你想想,要是给你一些角度条件呢?当固定的边所对的角是定值的时候,也能发现隐形圆呀!就像一部精彩的电影,有了关键情节就能猜到后面的发展,比如一个三角形,一条边固定,它所对的角一直是 60 度,这不就是隐形圆在向你招手嘛。

4. 还有呢!当有两个动点,它们到同一点的距离比值是定值时,也可能有隐形圆哦。

这就像两个小伙伴比赛跑步,速度有个固定比例,那就能找出其中的秘密啦!比如两个点到另一个点的距离一直是 2 比 1,那隐形圆可能就藏在里面哟。

5. 哎呀呀,再告诉你一个秘密哦。

要是有几条线段长度不变,互相垂直呢?对啦,隐形圆就藏在那里!就像一个神奇的魔法阵,只要发现了就能破解谜题啦。

比如三条线段组成一个直角三角形,那这个直角三角形的外接圆不就是隐形圆嘛。

6. 你可别小瞧这些隐形圆呀!它们就像隐藏在数学世界里的宝藏,等你去发现呢。

比如在一些几何图形中,乍一看没啥特别,但是仔细一分析,哇,隐形圆出现啦!就像突然找到了宝藏的入口一样兴奋。

7. 总之呀,数学隐形圆问题有很多技巧呢,只要多观察多思考,就能找到它们。

不要怕难题,就像爬山一样,一步步往上爬,总会看到美丽的风景呀!记住这些技巧,以后再遇到隐形圆问题,就不会头疼啦,可以轻松搞定它们!我的观点就是,只要用心去钻研,数学隐形圆问题并不难,反而会很有趣呢!。

隐圆(2021第10题专题1)

隐圆(2021第10题专题1)

2021第10题专题——隐圆(一)知识导航1.质点运动特征:运动有相对,主动从动;运动有始末,动静互化;运动有轨迹,或直或曲;运动有不变,动中觅静;运动有数量,常量变量2.轨迹为圆弧的基本形式:定点定长型——到定点的距离等于定长的点的轨迹是以定点为圆心、定长为半径的圆;定弦定角型——对已知线段的张角为定值的点的轨迹,是以已知线段为弦,所含圆周角等于定角的两段弓形弧。

3.确定质点运动路径的常用方法:(1)画图定路径,三点判轨迹;(2)特征定路径,觅静是关键(3)坐标定路径,几何代数化4.辅助圆:适当发现并添出几何图形中的辅助圆,就为圆丰富的性质的运用创造了条件,让复杂难解的几何问题变得简洁明了。

求线段长或最值是隐圆问题的基本模式。

大量线段相等【例1】(1)如图,四边形ABCD中,AB=AC=AD,若∠CAD=76°,则∠CBD=_______度(2)已知四边形ABCD中,AB∥CD,AB=AC=AD=5,BC=6,则BD的长为_________直角对直径【例2】(1)如图,Rt△ABC中,AB⊥BC,AB=2,BC=3,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为.(2)如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是___________.(3)如图,正方形ABCD中,点F在线段AB上运动(不与端点重合),AB=4,连接DF,作CE⊥DF于E,连接BE,则BE长度的取值范围是__________【例3】(1)如图,△ABC中,∠BAC=90°,AC=12,AB=10,D是AC上一个动点,以AD 为直径的⊙O交BD于E,则线段CE的最小值是________.(2)如图,A(1,0)、B(3,0),以AB为直径作⊙M,射线OF交⊙M于E、F两点,C为弧AB的中点,D为EF的中点.当射线绕O点旋转时,CD的最小值为__________.定弦定角类【例4】(1)△ABC 中,∠A=90°,BC=1,I 为△ABC 的内心,则△IBC的外接圆的半径为_________.(2)△ABC 中,∠A=120°,BC=1,I 为△ABC 的内心,则△IBC 的外接圆的半径为_________.(3)如图,在△ABC 和△ADE 中,AB=AC,AD=AE,∠BAC=∠DAE=30°,BC=2,BD、CE 交于点F,则△BCF 外接圆半径为_________.【例5】(1)如图,点A 是直线y=--x 上的一个动点,点B 是x 轴上的动点,若AB=2,则△AOB 面积最大值为()A.2 B.12+ C.12- D.22(2)如图,⊙O 的半径为2,弦AB 的长为32,点P 为优弧AB 上一动点,AC⊥AP 交直线PB 于点C,则△ABC 的面积的最大值是()A.3612+B.336+C.3312+D.346+【例6】(1)如图,在动点C 与定线段AB 组成的△ABC 中,AB=6,AD⊥BC 于点D,BE⊥AC 于点E,连DE.当点C 在运动过程中,始终有22=AB DE ,则C 到AB 的距离的最大值是_________(2)已知∠MON=300,矩形ABCD 的顶点A、D 分别是OM、ON 上的动点,且AD=2,AB=3,则线段OB 长度的最大值为___________【例7】(1)如图,△ABC 中,AC=3,BC=24,∠ACB=45°,D 为△ABC 内一动点,⊙O 为△ACD 的外接圆,直线BD 交⊙O 于P 点,交BC 于E 点,弧AE=弧CP,则AD 的最小值为()A.1B.2C.2D.2441-(2)如图,边长为3的等边△ABC,D、E 分别为边BC、AC 上的点,且BD=CE,AD、BE 交于P 点,则CP 的最小值为_________(3)如图,在四边形ABCD 中,∠DAB=∠ABC=90°,AD=AB=1,BC=2,点P 为射线DA 上的一动点,过B,D,P 三点的圆交PC 于点Q,则DQ 的最小值为_____________【例8】(1)(2015武汉元调)如图,在⊙O 中,弦AD等于半径,B 为优弧 AD 上一动点,等腰△ABC 的底边BC 经过点D,若⊙O 的半径等于1,则OC 的长不可能为()A.23-B.31-C.2D.31+(2)(2014武汉元调)如图,扇形AOD 中,∠AOD=90°,OA=6,点P为弧AD 上任意一点(不与点A 和D 重合),PQ⊥OD 于Q,点I 为△OPQ 的内心,过O,I 和D 三点的圆的半径为r .则当点P 在弧AD 上运动时,r的值满足()A.30<<r B.3=r C.233<<r D.23=r【例9】(2017武汉元调)如图,在平面直角坐标系中,点A和点B的坐标分别为A(4,0),B(0,2),将△ABO绕点P(2,2)顺时针旋转得到△OCD,点A,B和O的对应点分别为点O,C和D.(1)画出△OCD,并直接写出点C和点D的坐标;(2)连接AC,在直线AC的右侧取点M,使∠AMC=45°.①若点M在x轴上,则点M的坐标为;②若△ACM为直角三角形,求点M的坐标;(3)若点N满足∠ANC>45°,请确定点N的位置(不要求说明理由).备用图配套训练1.△ABC 中,∠A=60°,BC=1,I 为△ABC 的内心,则△IBC 的外接圆的半径为______.2.如图,在四边形ABCD 中,AB=AC=AD=5,且AD∥BC,对角线BD=8,则CD 的长为________3.如图,AC=3,BC=5,且∠BAC=90°,D 为AC 上一动点,以AD 为直径作圆,连接BD 交圆于E 点,连CE,则CE 的最小值为()A.213-B.213+C.5D.9164.如图,AB 是⊙O 的直径,AB=2,∠ABC=60°,P 是上一动点,D 是AP 的中点,连接CD,则CD 的最小值为__________5.如图,点D 在线段BC 上运动(点D 不与点B、C 重合),△ABD 和△EDC 为BC 同侧等边三角形,AC 和BE 相交于点F,BC=3,则△BFC 外接圆半径为_______.6.如图,在△ABC 中,AC=3,BC=24,∠ACB=45°,AM∥BC,点P 在射线AM 上运动,连BP 交△APC 的外接圆于D,则AD 的最小值为()A.1B.2C.2D.324-7.如图,⊙O 的半径为1,弦AB=1,点P 为优弧AB 上一动点,AC⊥AP 交直线PB 于点C,则△ABC 的最大面积是()A.21B.22C.23D.438.已知∠MON=450,矩形ABDC的顶点A、C分别是OM、ON上的动点,且AC=2,AB=1,则线段OB长度的最大值为___________9.如图,△ABC中,BC=4,∠BAC=45°,以3为半径,过B,C两点作⊙O,则线段OA的最大值为_____________10.如图,△ABC为等边三角形,面积为,点P为△ABC内的一动点,且满足∠PAB=∠PCA,则线段BP的最小值为_____________11.如图,已知以BC为直径的⊙O,A为 BC中点,P为 AC上任意一点,AD⊥AP交BP于D,连CD.若BC=8,则CD的最小值为___________。

高中数学拓展训练【隐形圆(阿波罗尼斯圆)问题】

高中数学拓展训练【隐形圆(阿波罗尼斯圆)问题】

高中数学拓展训练【隐形圆(阿波罗尼斯圆)问题】近年来阿波罗尼斯圆及隐圆问题受到命题者的广泛青睐,难度为中档、高档题目.该类题目题设中没有明确给出圆的相关信息,而是隐含在题目中的,要通过分析、转化,发现圆(或圆的方程),从而最终利用圆的知识来求解.对优化思维过程,提升数学解题能力,培养学生数学核心素养大有裨益.【典例1】 (1)已知点A (-5,-5)在动直线mx +ny -m -3n =0上的射影为点B ,若点C (5,-1),那么|BC |的最大值为( ) A.16 B.14 C.12D.10(2)在平面直角坐标系xOy 中,点A (-12,0),B (0,6),点P 在圆O :x 2+y 2=50上,若PA →·PB →≤20,则点P 的横坐标的取值范围是( ) A.[0,2] B.[-52,1] C.[-2,2] D.[-2,0]答案 (1)C (2)B解析 (1)动直线方程化为m (x -1)+n (y -3)=0,知恒过定点Q (1,3). 又∵点A (-5,-5)在动直线mx +ny -m -3n =0上的射影为点B , ∴∠ABQ =90°,则点B 的轨迹是以AQ 为直径的圆, ∴圆心为AQ 的中点M (-2,-1), 圆的半径r =12|AQ |=5. 又|MC |=(5+2)2+(-1+1)2=7>r =5,∴点C (5,-1)在圆M 外,故|BC |的最大值为r +|MC |=7+5=12. (2)设点P (x ,y ),且PA →·PB→≤20.∴(x +12)x +y (y -6)≤20,则(x +6)2+(y -3)2≤65, 则点P 为圆O 在圆(x +6)2+(y -3)2=65内部及其上的点,联立⎩⎪⎨⎪⎧x 2+y 2=50,x 2+y 2+12x -6y =20,得⎩⎪⎨⎪⎧x =1,y =7或⎩⎪⎨⎪⎧x =-5,y =-5.结合图形(图略)可知-52≤x ≤1.点津突破 1.题目条件隐含“圆M ”及“圆(x +6)2+(y -3)2=65”,从而借助几何直观求解最值与范围. 2.发现确定隐圆的主要方法:(1)利用圆的定义或圆的几何性质确定隐圆.(2)在平面上给定相异两点A ,B ,设点P 在同一平面上且满足|PA |=λ|PB |,当λ>0且λ≠1时,点P 的轨迹是个圆,这个圆我们称作阿波罗尼斯圆. (3)两定点A ,B ,动点P 满足PA →·PB→=λ,确定隐圆. 【典例2】 已知圆C :x 2+y 2=9,点A (-5,0),直线l :x -2y =0. (1)求与圆C 相切,且与直线l 垂直的直线方程;(2)在直线OA 上(O 为坐标原点),是否存在定点B (不同于点A ),使对于圆C 上任一点P ,都有|PB ||PA |为一常数?若存在,求出定点B 的坐标;若不存在,请说明理由.解 (1)设所求直线方程为y =-2x +b ,即2x +y -b =0,因为直线与圆相切, 所以|-b |22+12=3,得b =±3 5. 所以所求直线方程为y =-2x +35或y =-2x -3 5.(2)设P (x 0,y 0),则y 20=9-x 20.假设存在这样的点B (t ,0)(t ≠-5),使得|PB ||PA |为常数λ(λ≠1), 则|PB |2=λ2|PA |2,所以(x 0-t )2+y 20=λ2[(x 0+5)2+y 20],将y 20=9-x 20,代入上式消去y 20,得(10λ2+2t )x 0+34λ2-t 2-9=0对x 0∈[-3,3]恒成立, 所以⎩⎨⎧10λ2+2t =0,34λ2-t 2-9=0,解得⎩⎪⎨⎪⎧λ=35,t =-95或⎩⎨⎧λ=1,t =-5(舍去).所以存在定点B ⎝ ⎛⎭⎪⎫-95,0,使得对于圆C 上任一点P ,都有|PB ||PA |为常数35.点津突破 1.本题考查直线与圆的位置关系及存在开放问题,考查数学运算与逻辑推理等数学核心素养.2.第(2)问其设置原型即来源于“阿波罗尼斯圆”的定义:平面内到两个定点 A (-a ,0),B (a ,0)(a >0)的距离之比为正数λ(λ≠1)的点的轨迹是以C ⎝ ⎛⎭⎪⎪⎫λ2+1λ2-1a ,0为圆心,⎪⎪⎪⎪⎪⎪ 2aλλ2-1为半径的圆(阿波罗尼斯圆).借助定义,可将方程化简,准确进行答案的取舍(舍去λ=1).【典例3】 (1)若平面内两定点A ,B 间的距离为2,动点P 满足|PA ||PB |=3,则12(|PA |2+|PB |2)的最大值为( ) A.3+ 3 B.7+4 3 C.8+4 3D.16+8 3(2)在平面直角坐标系xOy 中,已知圆C :(x -a )2+(y -a +2)2=1,点A (0,2),若圆C 上存在点M ,满足|MA |2+|MO |2=10,则实数a 的取值范围是________. 答案 (1)C (2)[0,3]解析 (1)以线段AB 的中点为原点,AB 所在直线为x 轴,AB 的垂直平分线为y 轴,建立平面直角坐标系.则A (-1,0),B (1,0),设P (x ,y ). 因为|PA ||PB |=3,则(x +1)2+y 2(x -1)2+y2= 3.化简得(x -2)2+y 2=3为动点P 满足的轨迹方程.易知|PA |2+|PB |22=(x +1)2+y 2+(x -1)2+y 22=x 2+y 2+1,其中x 2+y 2可以看作圆(x -2)2+y 2=3上的点(x ,y )到点(0,0)的距离的平方, 所以x 2+y 2的最大值为(2+3)2=7+43, 所以x 2+y 2+1的最大值为8+43, 即|PA |2+|PB |22的最大值为8+4 3.(2)设M (x ,y ),由|MA |2+|MO |2=10, 可得x 2+(y -1)2=4,∴M 点在圆x 2+(y -1)2=4上,故圆x 2+(y -1)2=4和圆(x -a )2+(y -a +2)2=1相交或相切, ∴1≤a 2+(a -3)2≤3,∴0≤a ≤3.点津突破 1.两题均是利用直接法求动点的轨迹方程,求解轨迹,关键在于找准题目中凸显的或隐含的等量关系,并把这种关系“翻译”成与动点坐标(x ,y )有关的等式,即可得到所求的轨迹方程.2.重视数形结合与转化思想的应用:一是借形解题,即能画出满足题意的动点的大致轨迹;二是会转化,如本例第(1)题,把圆上的动点到定点的距离的最大值问题,转化为圆心到定点的距离加上半径. [跟踪演练]1.若两定点A ,B 的距离为3,动点M 满足|MA |=2|MB |,则M 点的轨迹围成区域的面积为( ) A.π B.2π C.3π D.4π答案 D解析 以A 为原点,AB 所在直线为x 轴,过点A 垂直于AB 的直线为y 轴,建立平面直角坐标系(图略),则B(3,0).设M(x,y),依题意有,x2+y2(x-3)2+y2=2,化简整理得,x2+y2-8x+12=0,即(x-4)2+y2=4,则M点的轨迹围成区域的面积为4π.2.已知圆O:x2+y2=1,圆M:(x-a)2+(y-2)2=2.若圆M上存在点P,过点P 作圆O的两条切线,切点为A,B,使得PA⊥PB,则实数a的取值范围为() A.[0,2] B.[-52,1]C.[-2,2]D.[-2,2]答案 D解析由题意可知四边形PAOB为正方形,|OP|=2,∴点P在以O为圆心,以2为半径的圆上,其方程为x2+y2=2,若圆M上存在这样的点P,则圆M与x2+y2=2有公共点,则有2-2≤a2+4≤2+2,解得-2≤a≤2.3.已知圆C:(x-3)2+(y-4)2=1和两点A(-m,0),B(m,0),且m>0.若圆C上存在一点P,使得∠APB=90°,则m的最大值是()A.7B.6C.5D.4答案 B解析如图所示,圆C:(x-3)2+(y-4)2=1的半径为1,|OC|=5.所以圆C上的点到点O距离的最大值为6,最小值为4.由∠APB=90°知,以AB为直径的圆和圆C有交点,连接OP,故|OP|=12|AB|=m,故4≤m≤6.所以m 的最大值是6.4.已知等边三角形ABC 的边长为2,点P 在线段AC 上,若满足PA →·PB →-2λ+1=0的点P 恰有两个,则实数λ的取值范围是________. 答案 ⎝ ⎛⎦⎥⎤38,12解析 如图,以AB 的中点O 为坐标原点,AB 所在的直线为x 轴,OC 所在的直线为y 轴,建立平面直角坐标系,则A (-1,0),B (1,0),设P (x ,y ).则PA →·PB →-2λ+1=0,即为(-1-x )(1-x )+y 2-2λ+1=0,化简得x 2+y 2=2λ(λ>0),故所有满足PA →·PB →-2λ+1=0的点P 在以O 为圆心,2λ为半径的圆上. 过点O 作OM ⊥AC ,垂足为点M ,由题意知,线段AC 与圆x 2+y 2=2λ有两个交点,所以|OM |<2λ≤|OA |,即32<2λ≤1,解得38<λ≤12.。

初中数学《隐形圆》模型梳理与题型分类含答案解析

初中数学《隐形圆》模型梳理与题型分类含答案解析

隐形圆(4大模型与6类题型)第一部分【模型梳理与题型目录】隐形圆模型是初中数学中的重要知识点,常用于解决一些看似没有直接使用圆的知识但实际上需要运用圆的性质来解决的问题,隐形圆常常用于解决最值问题.本专题梳理了隐形圆四大模型,供大家参考使用.【模型1】 定点定长模型【模型分析】(1)出现共端点、等线段时,可以利用圆的定义构造辅助圆;(2)如图1,若OA=OB =OC,则A、B、C在以O为圆心,OA为半径的圆上.由圆周角定理可得:∠ABC= 1∠AOC,∠ACB=12∠AOB,∠BAC=12∠BOC.2图1【模型2】 90°圆周角模型【模型分析】如图2,在△ABC中,∠C=90°,点C为动点,则点C的轨迹是以AB为直径的⊙O (不包含A、B两点).注:作出辅助圆是关键,计算时结合求点圆、线圆、最值等方法进行相关计算.图2应用:常用于解决直角三角形中动点的轨迹问题。

【模型3】 定弦定角模型【模型分析】固定的线段只要对应固定的角度,那么这个角的顶点轨迹为圆的一部分.如图①,在⊙O中,若弦AB长度固定,则弦AB所对的圆周角都相等;(注意:弦AB所对的劣弧(AB)上也有圆周角,需要根据题目灵活运用)如图②,若有一固定线段AB及线段AB所对的∠C大小固定,根据圆的知识可知点C不唯一.当∠C<90°时,点C在优弧上运动;当∠C=90°时,点C在半圆上运动,且线段AB是⊙O的直径;当∠C >90°时,点C在劣弧上运动.【模型4】‌四点共圆模型【模型分析】在四边形ABCD中,若∠A+∠C=1800,则A、B、C、D在圆O上,称之为A、B、C、D四点共圆.图3应用:常用于解决四点共圆的问题,如角度相等、线段最值等问题.【题型1】‌定点定长模型......................................................3;【模型2】 90°圆周角模型...................................................6;【题型3】‌定弦定角模型.....................................................11;【题型4】‌四点共圆模型.....................................................15;【题型5】直通中考.........................................................20;【题型6】拓展延伸.........................................................23.第二部分【题型展示与方法点拨】【题型1】 定点定长模型1.(23-24九年级上·福建福州·期末)如图,在等边△ABC中,AB=4,D,E分别是边AB,BC上的动点(不与△ABC的顶点重合),连接AE,CD相交于点F,连接BF,若∠BDF+∠BEF=180°,则BF的最小值为.【433/433【∠BDF +∠BEF =180°,∠DFE =120°,∠AFC =120°,F 在以O 为圆心OA 的长为半径∠AOC =120°的圆弧上运动OA ,OC ,OB ,OF ,OA =OC =OF ,BF ≥OB -OF ,△AOB ≌△COB ,△AOB 为含30度角的直角三角形进行求解即可.解∵等边△ABC ,∴∠ABC =60°,AB =BC ,∵∠BDF +∠BEF =180°,∴∠DFE +∠ABC =360°-∠BDF +∠BEF =180°,∴∠DFE =120°,∴∠AFC =120°,∴点F 在以O 为圆心OA 的长为半径∠AOC =120°的圆弧上运动OA ,OC ,OB ,OF ,OA =OC =OF ,BF ≥OB -OF ,∵AB =BC ,OB =OB ,OA =OC ,∴△AOB ≌△COB ,∴∠ABO =∠CBO =12∠ABC =30°,∠AOB =∠BOC =12∠AOC =60°,∴∠BAO =90°,∴BO =2AO ,AB =3AO =4,∴AO =433,∴BO =2OA =833,OF =AO =433,∴BF ≤433,BF 的最小值为433;故答案为433.【30度角的直角三角形一点到圆上一点的最值F 的运动轨迹.2.(24-25九年级上·全国·课后作业)如图,P 是边长为1的正方形ABCD 内的一个动点,且满足∠PBC +∠PDC =45°,则CP 的最小值是()A.2-2B.12C.22D.2-1【答案】D【分析】本题考查了正方形的性质、等腰直角三角形的性质、勾股定理、圆周角定理,在凹四边形BCDP中,求出∠BPD=135°,得点P在运动过程中,使得∠BPD=135°,即点P在正方形ABCD内,以A为圆心,AB长为半径的圆弧上,如解图,连接AP,AC,当A、P、C三点共线时,CP取得最小值,最小值为AC-AP,求出AC和AP的长度,即可得到结果,解本题的关键是证明∠BPD是定值,从而得到点P的轨迹.解:∵四边形ABCD是正方形,∴∠BCD=90°,在凹四边形BCDP中,∵∠BCD=90°,∠PBC+∠PDC=45°,∴∠BPC+∠CPD=360°-∠BCD-(∠PBC+∠PDC)=225°,∴∠BPD=360°-(∠BPC+∠CPD)始终为135°,得点P在运动过程中,使得∠BPD=135°,即点P在正方形ABCD内,以A为圆心,AB长为半径的圆弧上,如解图,连接AP,AC,,由解图可得AP+CP≥AC,当A、P、C三点共线时,CP取得最小值,最小值为AC-AP,在Rt△ABC中,∵AB=BC=1,∴AC=AB2+BC2=2,∵AP=AB=1,∴CP最小=AC-AP=2-1,故选:D.3.(24-25九年级上·江苏宿迁)如图,在矩形ABCD中,AB=6,BC=8,点E、F分别是边AB、BC上的动点,且EF=4,点G是EF的中点,AG、CG,则四边形AGCD面积的最小值为()A.30B.32C.35D.38【答案】D【分析】首先连接AC,BG,证明G在以B为圆心,2为半径的圆弧上,过B作BH⊥AC于H,当G在BH 上时,△ACG面积取最小值,此时四边形AGCD面积取最小值,再进一步解答即可.解:连接AC,BG,∵矩形ABCD,∴∠ABC=90°,S矩形=48,∵EF=4,G为EF的中点,∴BG=12EF=2,∴G在以B为圆心,2为半径的圆弧上,过B作BH⊥AC于H,当G在BH上时,△ACG面积取最小值,此时四边形AGCD面积取最小值,四边形AGCD面积=三角形ACG面积+三角形ACD面积,即四边形AGCD面积=三角形ACG面积+24.设圆弧交BH于G ,此时四边形AGCD面积取最小值,由勾股定理得:AC=62+82=10,∵1 2AC⋅BH=12AB⋅BC,∴BH=4.8,∴G H=2.8,即四边形AGCD面积的最小值=12×10×2.8+24=38.故选:D.【点拨】本题考查了勾股定理及矩形中的与动点相关的最值问题,圆的确定,解题的关键是利用直角三角形斜边的直线等于斜边的一半确定出G点的运动轨迹.【题型2】 90°圆周角模型4.(2024·湖南娄底·一模)如图,正方形ABCD的边长为a,点E、F分别在BC、CD上,且BE=CF,AE与BF相交于点G,连接CG,则CG的最小值为.【答案】5-1 a2【分析】本题考查了正方形的性质,圆周角定理,勾股定理,以及全等三角形的判定与性质,熟练掌握90°的圆周角所对的弦是直径是解答本题的关键.通过证明△ABE ≌△BCF SAS ,可证∠AGB =90°,则点G 在以AB 为直径的一段弧上运动,当点G 在OC 与弧的交点处时,CG 最短,然后根据勾股定理求出OC 的长即可求解.解:∵四边形ABCD 是正方形,∴∠ABC =∠BCF =90°,AB =BC =a ,∴在△ABE 和△BCF 中,AB =BC∠ABC =∠BCFBE =CF∴△ABE ≌△BCF SAS ,∴∠BAE =∠CBF ,∵∠ABF +∠CBF =90°,∴∠ABF +∠BAE =90°,∴∠AGB =90°,∴点G 在以AB 为直径的一段弧上运动,设AB 的中点为O ,则当点G 在OC 与弧的交点处时,CG 最短,∵AB =a ,∴OB =OG =a 2,∴OC =a 2 2+a 2=52a ,∴CG=OC -OG =5-1 a 2,故答案为:5-1 a 2.5.(23-24九年级下·山东日照)如图,已知正方形ABCD 的边长为2,点F 是正方形内一点,连接CF ,DF ,且∠ADF =∠DCF ,点E 是AD 边上一动点,连接EB ,EF ,则EB +EF 长度的最小值为()A.13-1B.10-1C.10D.5+1【答案】A【分析】根据正方形的性质得到∠ADC=90°,推出∠DFC=90°,得到点F在以CD为直径的半圆上移动,如图,设CD的中点为O,正方形ABCD关于直线AD对称的正方形ADC B ,则点B 的对应点是B,连接B O交AD于E,交半圆O于F,线段B F的长即为EB+EF的长度最小值,根据勾股定理即可得到结论.解:∵四边形ABCD是正方形,∴∠ADC=90°,∴∠ADF+∠CDF=90°,∵∠ADF=∠DCF,∴∠DCF+∠CDF=90°,∴∠DFC=90°,∴点F在以CD为直径的半圆上移动,如图,设CD的中点为O,正方形ABCD关于直线AD对称的正方形ADC B ,则点B 的对应点是B,连接B O交AD于E,交半圆O于F,线段B F的长即为EB+EF的长度最小值,OF=1,∵∠C =90°,B C =C D =CD=2,∴OC =3,∴OB =B C 2+OC 2=13,∴B F=13-1,∴FD+FE的长度最小值为13-1,故选:A.【点拨】此题考查了正方形的性质,圆周角定理,轴对称的性质,点的运动轨迹,勾股定理,最小值问题,正确理解点的运动轨迹是解题的关键.6.(24-25九年级上·广东深圳·开学考试)如图,E,F是正方形ABCD的边AD上两个动点,满足AE= DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为1,则线段DH长度的最小值是()A.52-1 B.5-12C.52D.5-1【答案】B【分析】由SAS可判定△ABE≌△DCF,由全等三角形的性质得∠ABE=∠DCF,同理可证∠DCG=∠DAG,由角的和差得∠AHB=90°,取AB的中点O,连接OH,H的运动轨迹为以O为圆心,OH=1 2AB=12为半径的半圆,当O、H、D三点共线时,DH最小,即可求解.解:∵四边形ABCD是正方形,∴AB=AD=CD=1,∠BAE=∠CDF=90°,∠ADG=∠CDG,∵∠BAH+∠DAG=90°,在△ABE和△DCF中,AB=CD∠BAE=∠CDFAE=DF,∴△ABE≌△DCF(SAS),∴∠ABE=∠DCF,在△ADG和△CDG中,AD=CD∠ADG=∠CDGDG=DG,∴△ADG≌△CDG(SAS),∴∠DCG=∠DAG,∴∠ABE=∠DAG,∴∠ABE+∠BAH=90°,∴∠AHB=90°,如下图,取AB的中点O,连接OH,∴OA=12,∴H的运动轨迹为以O为圆心,OH=12AB=12为半径的半圆,如图,当O、H、D三点共线时,DH最小,∴OD=OA2+AD2=122+12=52,∴DH=OD-OH=52-1 2=5-12;故选:B.【点拨】本题考查了正方形的性质,全等三角形的判定及性质,勾股定理,直角三角形的特征,圆外一点到圆上任一点距离的最值等;能找出动点的运动轨迹及取得最小值的条件,熟练利用勾股定咯求解是解题的关键.【题型3】 定弦定角模型7.(22-23九年级上·江苏南京·阶段练习)如图,CD是△ABC的高,若AB=2,∠ACB=45°,则CD长的最大值为()A.1+2B.4-2C.2D.4【答案】A【分析】在AB上方作以AB为斜边的等腰直角三角形△AOB,根据“定线段对定角度”确定点C在以O为圆心,OA长为半径的圆上运动,当CD经过圆心时CD最长,再计算即可.解:在AB上方作以AB为斜边的等腰直角三角形△AOB,∵∠ACB=45°∴点C在以O为圆心,OA长为半径的圆上运动,∵AB=2,∴OA=OC=2,当CD经过圆心时CD最长∵CD是△ABC的高,∴AD=BD=OD=1AB=12此时CD=OC+OD=2+1,故选:A.【点拨】本题考查几何最值问题,解题的关键是确定点C在以O为圆心,OA长为半径的圆上运动.8.(20-21九年级上·江苏无锡·期末)如图,在平面直角坐标系中,动点A、B分别在x轴上和函数y=x的图象上,AB=4,CB⊥AB,BC=2,则OC的最大值为()A.22+2B.22+4C.25D.25+2【答案】A【分析】根据y=x与x轴的夹角为45°,以AB为斜边作等腰直角三角形,连接AD,CD,OD,则∠DBC= 45°,根据勾股定理求得DB的长,进而证明△DCB是直角三角形,求得DC的长,根据OD+DC≥OC,即可求得OC的最大值解:如图,以AB为斜边作等腰直角三角形,连接AD,CD,OD,∵y=x与x轴的夹角为45°,∴∠AOB=45°=1∠ADB2∴A,O,B在⊙D上,∵AB=4,∠ADB=90°,∴BD=AD=22,∴∠ABD=45°∵BC⊥AB∴∠CBA=90°∴∠CBD=45°∴△BCD中BC=2,BD=22,∠CBD=45°过点C作CE⊥BD于点E,如图则BE=CE=2=DE∴CD=CB=2∵OD+DC≥OC∴当O,D,C三点共线时,OC取得最大值,最大值为OD+DC=DB+DC=22+2故选A【点拨】本题主要考查了勾股定理,同弧所对的圆周角等于圆心角的一半,找到⊙D是解决本题的关键.9.(19-20九年级上·浙江宁波·期末)如图,在等腰Rt△ABC中,∠BAC=90°,BC=2,点P是△ABC内部的一个动点,且满足∠PBC=∠PCA,则线段AP长的最小值为()A.0.5B.2-1C.2-2D.13【答案】C 【分析】先计算出∠PBC +∠PCB =45°,则∠BPC =135°,利用圆周角定理可判断点P 在以BC 为弦的⊙O 上,如图,连接OA 交BC 于P ′,作BC 所对的圆周角∠BQC ,利用圆周角定理计算出∠BOC =90°,从而得到△OBC 为等腰直角三角形,四边形ABOC 为正方形,所以OA =BC =2,OB =2,根据三角形三边关系得到AP ≥OA -OP (当且仅当A 、P 、O 共线时取等号,即P 点在P ′位置),于是得到AP 的最小值.解:解:∵△ABC 为等腰直角三角形,∴∠ACB =45°,即∠PCB +∠PCA =45°,∵∠PBC =∠PCA ,∴∠PBC +∠PCB =45°,∴∠BPC =135°,∴点P 在以BC 为弦的⊙O 上,如图,连接OA 交BC于P ′,作BC 所对的圆周角∠BQC ,则∠BCQ =180°-∠BPC =45°,∴∠BOC =2∠BQC =90°,∴△OBC 为等腰直角三角形,∴四边形ABOC 为正方形,∴OA =BC =2,∴OB =22BC =2,∵AP ≥OA -OP (当且仅当A 、P 、O 共线时取等号,即P 点在P ′位置),∴AP 的最小值为2-2.故选:C .【点拨】本题考查了圆周角定理及等腰直角三角形的性质.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.【题型4】四点共圆模型10.(22-23九年级上·黑龙江哈尔滨·阶段练习)如图,在四边形ABCD 中,∠ABC =∠D =90°,连接AC ,点F 为边CD 上一点,连接BF 交AC 于点E ,AB =AE ,∠FGC +∠FBG =90°,∠BFG +2∠GFC =180°,若AD =722,BG =4,则CG 的长为.【答案】8【分析】延长BA 与CD 的延长线相交于点H ,证明∠FGC =∠ABF ,∠GFC =∠BFD ,由三角形内角和定理得到∠H=∠ACB,BH=BC,进一步得到∠H=∠DAH=45°,则AD=DH=722,由勾股定理得到AH=AD2+DH2=7,证明点C、G、E、F四点共圆,如图,连接EG,证明CE=CG,设CE=CG=x,则BH=BC=4+x,AE=AB=x-3,AC=2x-3,由勾股定理得AB2+BC2=AC2,即x-32+x+42 =2x-32,解方程即可得到答案.解:延长BA与CD的延长线相交于点H,∵∠FGC+∠FBG=90°,∠FBG+∠ABF=∠ABC=90°∴∠FGC=∠ABF,∵∠BFG+2∠GFC=180°,∠BFG+∠BFD+∠CFG=180°,∴2∠GFC=∠BFD+∠CFG,∴∠GFC=∠BFD,∵∠H+∠ABF+∠BFD=180°=∠ACB+∠FGC+∠GFC,∴∠H=∠ACB,∵∠ABC=90°,∴∠H=∠ACB=45°,BH=BC,∵∠ADH=90°,∴∠H=∠DAH=45°,∴AD=DH=722,∴AH=AD2+DH2=7,∵AB=AE,∴∠ABE=∠AEB,∵∠FGC=∠ABE,∠CEF=∠AEB,∴∠FGC=∠CEF,∴点C、G、E、F四点共圆,如图,连接EG,∴∠GFC=∠CEG,∠BFD=∠CGE,∵∠GFC=∠BFD,∴∠CGE=∠CEG,∴CE=CG,设CE=CG=x,则BH=BC=BG+CG=4+x,∴AE=AB=BH-AH=x+4-7=x-3,∴AC=AE+CE=x-3+x=2x-3,由勾股定理得,AB2+BC2=AC2,∴x-32+x+42=2x-32,解得x=-1(不合题意,舍去)或x=8,∴CG=8,故答案为:8【点拨】此题考查了等腰直角三角形的判定和性质、勾股定理、等腰三角形的判定和性质、四点共圆、圆周角定理、圆内接四边形的性质、解一元二次方程等知识,关键在于等腰直角三角形的判定和性质与证明四点共圆.11.(24-25九年级上·江苏宿迁·阶段练习)如图,等边三角形ABC中,AB=5,P为AB边上一动点,PD⊥BC ,PE ⊥AC ,垂足分别为D ,E 则DE 的最小值为.【答案】154【分析】如图,连接PC ,取CP 的中点O ,连接OE ,OD ,过点O 作OH ⊥DE 于H ,首先证明△ODE 是顶角为120°的等腰三角形,当OE 的值最小时,DE 的值最小,即可求出PC 的最小值.解:如图,连接PC ,取CP 的中点O ,连接OE ,OD ,过点O 作OH ⊥DE 于H ,∵△ABC 是等边三角形,∴∠ACB =60°,AB =BC =AC =5,∵PD ⊥BC ,PE ⊥AC ,∴∠PEC =∠PDC =90°,∵OP =OC ,∴OE =OP =OC =OD ,∴C 、D 、P 、E 四点共圆,∴∠EOD =2∠ECD =120°,∴当OE 的值最小时,DE 的值最小,根据垂线段最短可得,当CP ⊥AB 时,PC =532,此时OE 最小,OE =534,∵OE =OD ,OH ⊥DE ,∴DH =EH ,∠DOH =∠EOH =60°,∴∠OEH =30°,∴OH =12OE =538,∴DH =EH =OE 2-OH 2=158,∴DE =2DH =154,∴DE 的值最小为154,故答案为:154.【点拨】本题考查了四点共圆、垂线段最短、圆周角定理、含30°角的直角三角形的性质、等腰直角三角形的判定与性质等知识;正确判断当CP ⊥AB 时OE 最小是解题的关键.12.(23-24九年级下·江苏南京·阶段练习)如图,在△ABC 中,∠ACB =90°,AC =BC =2,点P 是射线AB 上一动点,∠CPD =90°,且PC =PD ,连接AD 、CD ,则AD +CD 的最小值是.【答案】25【分析】取AC中点H,连接DH交AB于点G,连接BD,PH,当DH⊥AC时,DH有最小值,此时易得△ACD是等腰三角形,推出AD=CD,即AD,CD有最小值,则AD+CD有最小值,此时根据∠AHD=∠CHD=∠ACB=90°,推出DH∥BC,设CD中点为O,根据∠CHD=∠CPD=90°,易得点C,H,P,D在以点O为圆心CD为直径的圆上,易得∠CHP+∠PDC=180°,由∠ABC=45°,易得此时点B在圆O上,进而推出∠CBD+∠CPD=180°,则∠CBD=90°,得到四边形BCHD是矩形,即HD=BC=2,利用勾股定理即可计算出CD的最小值,进而得出结果.解:取AC中点H,连接DH交AB于点G,连接BD,PH,当DH⊥AC时,DH有最小值,∵点H是AC中点,DH⊥AC,∴△ACD是等腰三角形,∴AD=CD,∵AH,CH是定值,DH有最小值时,即AD,CD有最小值,则AD+CD有最小值,∵∠AHD=∠CHD=∠ACB=90°,∴DH∥BC,设CD中点为O,∵∠CHD=∠CPD=90°,∴点C,H,P,D在以点O为圆心CD为直径的圆上,∴∠CHP+∠PDC=180°,∵∠ABC=45°,∴此时点B在圆O上,∴∠CBD+∠CPD=180°,∴∠CBD=90°,∵DH∥BC,∴四边形BCHD是矩形,∴HD=BC=2,∵HC=1AC=1,2在Rt△CHD中,∴CD=CH2+HD2=5,∴AD+CD的最小值为2CD=25,故答案为:25.【点拨】本题考查勾股定理求最短距离,圆周角定理,四点共圆,等腰三角形的判定与性质,矩形的判定与性质,正确作出辅助线,证明四点共圆是解题的关键.第三部分【中考链接与拓展延伸】1、直通中考1.(2023·山东泰安·中考真题)如图,在平面直角坐标系中,Rt △AOB 的一条直角边OB 在x 轴上,点A 的坐标为(-6,4);Rt △COD 中,∠COD =90°,OD =43,∠D =30°,连接BC ,点M 是BC 中点,连接AM .将Rt △COD 以点O 为旋转中心按顺时针方向旋转,在旋转过程中,线段AM 的最小值是()A.3B.62-4C.213-2D.2【答案】A【分析】如图所示,延长BA 到E ,使得AE =AB ,连接OE ,CE ,根据点A 的坐标为(-6,4)得到BE =8,再证明AM 是△BCE 的中位线,得到AM =12CE ;解Rt △COD 得到OC =4,进一步求出点C 在以O 为圆心,半径为4的圆上运动,则当点M 在线段OE 上时,CE 有最小值,即此时AM 有最小值,据此求出CE 的最小值,即可得到答案.解:如图所示,延长BA 到E ,使得AE =AB ,连接OE ,CE ,∵Rt △AOB 的一条直角边OB 在x 轴上,点A 的坐标为(-6,4),∴AB =4,OB =6,∴AE =AB =4,∴BE =8,∵点M 为BC 中点,点A 为BE 中点,∴AM 是△BCE 的中位线,∴AM =12CE ;在Rt △COD 中,∠COD =90°,OD =43,∠D =30°,∴OC =33OD =4,∵将Rt △COD 以点O 为旋转中心按顺时针方向旋转,∴点C 在以O 为圆心,半径为4的圆上运动,∴当点M 在线段OE 上时,CE 有最小值,即此时AM 有最小值,∵OE =BE 2+OB 2=10,∴CE 的最小值为10-4=6,∴AM 的最小值为3,故选A .【点拨】本题主要考查了一点到圆上一点的最值问题,勾股定理,三角形中位线定理,坐标与图形,含30度角的直角三角形的性质等等,正确作出辅助线是解题的关键.2.(2022·广西柳州·中考真题)如图,在正方形ABCD中,AB=4,G是BC的中点,点E是正方形内一个动点,且EG=2,连接DE,将线段DE绕点D逆时针旋转90°得到线段DF,连接CF,则线段CF长的最小值为.【答案】25-2【分析】如图,由EG=2,确定E在以G为圆心,半径为2的圆上运动,连接AE,再证明△ADE≌△CDF (SAS),可得AE=CF,可得当A,E,G三点共线时,AE最短,则CF最短,再利用勾股定理可得答案.解:如图,由EG=2,可得E在以G为圆心,半径为2的圆上运动,连接AE,∵正方形ABCD,∴AD=CD,∠ADC=90°,∴∠ADC=∠EDF=90°,∴∠ADE=∠CDF,∵DE=DF,∴△ADE≌△CDF(SAS),∴AE=CF,∴当A,E,G三点共线时,AE最短,则CF最短,∵G位BC中点,BC=AB=4,∴BG=2,此时AG=BG2+AB2=22+42=25,此时AE=25-2,所以CF的最小值为:25-2.故答案为:25-2【点拨】本题考查的是正方形的性质,圆的基本性质,勾股定理的应用,二次根式的化简,熟练的利用圆的基本性质求解线段的最小值是解本题的关键.2、拓展延伸3.(2022·辽宁抚顺·中考真题)如图,正方形ABCD的边长为10,点G是边CD的中点,点E是边AD上一动点,连接BE,将△ABE沿BE翻折得到△FBE,连接GF.当GF最小时,AE的长是.【答案】55-5【分析】根据动点最值问题的求解步骤:①分析所求线段端点(谁动谁定);②动点轨迹;③最值模型(比如将军饮马模型);④定线段;⑤求线段长(勾股定理、相似或三角函数),结合题意求解即可得到结论.解:①分析所求线段GF端点:G是定点、F是动点;②动点F的轨迹:正方形ABCD的边长为10,点E是边AD上一动点,连接BE,将△ABE沿BE翻折得到△FBE,连接GF,则BF=BA=10,因此动点轨迹是以B为圆心,BA=10为半径的圆周上,如图所示:③最值模型为点圆模型;④GF最小值对应的线段为GB-10;⑤求线段长,连接GB,如图所示:在RtΔBCG中,∠C=90°,正方形ABCD的边长为10,点G是边CD的中点,则CG=5,BC=10,根据勾股定理可得BG=CG2+BC2=52+102=55,当G、F、B三点共线时,GF最小为55-10,接下来,求AE的长:连接EG,如图所示=SΔEDG+SΔBCG+根据翻折可知EF=EA,∠EFB=∠EAB=90°,设AE=x,则根据等面积法可知S正方形SΔBAE+SΔBEG,即100=12DE⋅DG+12BC⋅CG+12AB⋅AE+12BG⋅EF=1 2510-x+5×10+10x+55x整理得5+1x=20,解得x=AE=205+1=205-15+15-1=55-5,故答案为:55-5.【点拨】本题考查动点最值下求线段长,涉及到动点最值问题的求解方法步骤,熟练掌握动点最值问题的相关模型是解决问题的关键.4.(2024·内蒙古兴安盟·二模)如图,在正方形ABCD中,点M,N分别为AB,BC上的动点,且AM= BN,DM,AN交于点E,点F为AB的中点,点P为BC上一个动点,连接PE,PF,若AB=4,则PE +PF的最小值为.【答案】210-2【分析】证明△DAM≌△ABN SAS,则∠ADM=∠BAN,∠AED=90°,如图,取AD的中点O,则E在以O为圆心,AD为直径的圆上运动,作F关于BC对称的点F ,连接PF ,连接OF 交⊙O于E ,则PF = PF,由PE+PF=PE+PF ,可知当O、E 、P、F 四点共线时,PE+PF最小为E F ,由勾股定理得,OF =AF 2+OA2=210,根据E F =OF -OE ,求解作答即可.解:∵正方形ABCD,∴AD=AB,∠DAM=∠ABN=90°,又∵AM=BN,∴△DAM≌△ABN SAS,∴∠ADM=∠BAN,∴∠ADM+∠DAE=∠BAN+∠DAE=90°,∴∠AED=90°,如图,取AD的中点O,则E在以O为圆心,AD为直径的圆上运动,作F关于BC对称的点F ,连接PF ,连接OF 交⊙O于E ,∴PF =PF,∴PE+PF=PE+PF ,∴当O、E 、P、F 四点共线时,PE+PF最小为E F ,由勾股定理得,OF =AF 2+OA2=62+22=210,∴E F =OF -OE =210-2,故答案为:210-2.【点拨】本题考查了正方形的性质,全等三角形的判定与性质,90°圆周角所对的弦为直径,轴对称的性质,勾股定理等知识.熟练掌握正方形的性质,全等三角形的判定与性质,90°圆周角所对的弦为直径,轴对称的性质,勾股定理是解题的关键.。

2020年中考数学解题技巧专题训练: 隐圆问题训练(含答案)

2020年中考数学解题技巧专题训练: 隐圆问题训练(含答案)

方法技巧专题:隐圆问题训练有些数学问题,将圆隐藏在已知条件里,隐晦地考查点和圆、直线和圆的位置关系.解题时,需要我们通过分析探索,发现这些隐藏的圆(简称隐圆),再利用和圆有关的一些知识进行求解.常见的隐圆模型有:定弦对定角;动点到定点的距离为定长;四点共圆等.1.[2019·徐州一模]在矩形ABCD中,已知AB=2 cm,BC=3 cm,现有一根长为2 cm的木棒EF紧贴着矩形的边(即两个端点始终落在矩形的边上),按逆时针方向滑动一周,则木棒的中点P在运动过程中所围成的图形的面积为()A.6 cm2B.3 cm2C.(2+π)cm2D.(6-π)cm22.如图F10-1,已知AB=AC=AD,∠CBD=2∠BDC,∠BAC=44°,则∠CAD的度数为.图F10-13.如图F10-2所示,四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2,则BD的长为.图F10-24.如图F10-3,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段CB边上的动点,将△EBF沿EF所在直线折叠得到△EB'F,连结B'D,则B'D的最小值是.图F10-35.如图F10-4,矩形ABCD中,AB=2,AD=3,点E,F分别为AD,DC边上的点,且EF=2,点G为EF的中点,点P为BC 边上一动点,则P A+PG的最小值为.图F10-46.如图F10-5,正方形ABCD中,AB=2,动点E从点A出发向点D运动,同时动点F从点D出发向点C运动,点E,F 运动的速度相同,当它们到达各自终点时停止运动,运动过程中线段AF,BE相交于点P,则线段DP的最小值为.图F10-57.如图F10-6,在边长为√3的等边三角形ABC中,动点D,E分别在BC,AC边上,且保持AE=CD,连结BE,AD,相交于点P,则CP的最小值为.图F10-68.如图F10-7,点A与点B的坐标分别是(1,0),(5,0),点P是该直角坐标系内的一个动点.(1)使∠APB=30°的点P有个;(2)若点P在y轴上,且∠APB=30°,求满足条件的点P的坐标;(3)当点P在y轴上移动时,∠APB是否有最大值?请说明理由.图F10-79.[2018·广州]如图F10-8,在四边形ABCD中,∠B=60°,∠D=30°,AB=BC.(1)求∠A+∠C的度数;(2)连结BD,探究AD,BD,CD三者之间的数量关系,并说明理由;(3)若AB=1,点E在四边形ABCD内部运动,且满足AE2=BE2+CE2,求点E运动路径的长度.图F10-810.如图F10-9,已知抛物线y=ax2+bx+c(a≠0)与x轴交于A(1,0),B(4,0)两点,与y轴交于C(0,2),连结AC,BC.(1)求抛物线解析式;(2)线段BC的垂直平分线交抛物线于D,E两点,求直线DE的解析式;(3)若点P在抛物线的对称轴上,且∠CPB=∠CAB,求出所有满足条件的P点坐标.图F10-9【参考答案】1.D [解析]如图所示:由题意,根据直角三角形斜边上的中线等于斜边的一半,得出P 到B 点距离始终为1 cm,则木棒EF 的中点P 在运动过程中的轨迹为分别以A ,B ,C ,D 为圆心,1 cm 为半径的弧. 故所围成的图形的面积为:矩形面积-4个扇形面积=6-4×90π×12360=(6-π)(cm 2).2.88° [解析]如图,∵AB=AC=AD ,∴点B ,C ,D 在以点A 为圆心,以AB 的长为半径的圆上, ∴∠BAC=2∠BDC.∵∠CBD=2∠BDC ,∴∠BAC=∠CBD ,∠CAD=2∠BAC ,而∠BAC=44°,∴∠CAD=88°.3.√15 [解析]以A 为圆心,AB 长为半径作圆,延长BA 交☉A 于F ,连结DF . ∵DC ∥AB ,∴DF=BC , ∴DF=CB=1,BF=2+2=4,∵FB 是☉A 的直径,∴∠FDB=90°, ∴BD=√BF 2-DF 2=√15.4.2√10-2 [解析]点B'在以E 为圆心,EA 长为半径的圆上运动,当D ,B',E 共线时,此时B'D 的值最小. 根据折叠的性质,得△EBF ≌△EB'F , ∴EB'⊥B'F ,EB'=EB.∵E 是AB 边的中点,AB=4,∴AE=EB'=2. ∵AD=6,∴DE=√62+22=2√10, ∴B'D=2√10-2.5.4 [解析]∵EF=2,点G 为EF 的中点,∴DG=1,∴G 是以D 为圆心,以1为半径的圆弧上的点.作A关于BC的对称点A',连结A'D,交BC于P,交以D为圆心,以1为半径的圆于G,此时的P A+PG值最小,最小值为A'G的长.∵AB=2,AD=3,∴AA'=4,∴A'D=5,∴A'G=A'D-DG=5-1=4.∴P A+PG的最小值为4.6.√5-1[解析]如图,∵动点F,E的速度相同,∴DF=AE.又∵正方形ABCD中,AB=2,∴AD=AB,∠BAE=∠ADF=90°.在△ABE和△DAF中,{AB=AD,∠BAE=∠ADF AE=DF,,∴△ABE≌△DAF.∴∠ABE=∠DAF.∵∠ABE+∠BEA=90°,∴∠F AD+∠BEA=90°,∴∠APB=90°.∴点P在运动中保持∠APB=90°,∴点P的路径是一段以AB为直径的弧.设AB的中点为G,连结DG交弧于点P,此时DP的长度最小,AG=BG=12AB=1.在Rt△ADG中,DG=2+AD22+22=√5.∵PG=AG=1,∴DP=DG-PG=√5-1,即线段DP的最小值为√5-1.7.1[解析]∵CD=AE,∴BD=CE.在△ABD 和△BCE 中,{AB =BC ,∠ABD =∠BCE ,BD =CE ,∴△ABD ≌△BCE (SAS ),故∠BAD=∠CBE.∵∠APE=∠ABE+∠BAD ,∠APE=∠BPD ,∠ABE+∠CBE=60°,∴∠BPD=∠APE=60°=∠ABC.∴∠APB=120°,∴点P 的运动轨迹是AB ⏜(如下图),∠AOB=120°. 连结CO ,∵OA=OB ,CA=CB ,OC=OC , ∴△AOC ≌△BOC (SSS ),∴∠OAC=∠OBC ,∠ACO=∠BCO=30°.∵∠AOB+∠ACB=180°,∴∠OAC+∠OBC=180°,∴∠OAC=∠OBC=90°. ∴OC=AC÷cos30°=2,OA=12OC=1, ∴OP=1.∵PC ≥OC-OP ,∴PC ≥1,∴PC 的最小值为1.8.解:(1)无数 [解析] 以AB 为边,在第一象限内作等边三角形ABC ,以点C 为圆心,AC 为半径作☉C ,交y 轴于点P 1,P 2.在优弧AP 1B 上任取一点P ,如图①,则∠APB=12∠ACB=12×60°=30°. ∴使∠APB=30°的点P 有无数个. 故答案为:无数.(2)a .当点P 在y 轴的正半轴上时,过点C 作CG ⊥AB ,垂足为G ,如图①. ∵点A (1,0),点B (5,0), ∴OA=1,OB=5. ∴AB=4.∵点C为圆心,CG⊥AB,∴AG=BG=1AB=2,∴OG=OA+AG=3.2∵△ABC是等边三角形,∴AC=BC=AB=4,∴CG=√AC2-AG2=√42-22=2√3,∴点C的坐标为(3,2√3).过点C作CD⊥y轴,垂足为D,P1,P2是☉C与y轴的交点,连结CP2,如图①.∵点C的坐标为(3,2√3),∴CD=3,OD=2√3.∵P1,P2是☉C与y轴的交点,∴∠AP1B=∠AP2B=30°.∵CP2=CA=4,CD=3,∴DP2=√42-32=√7.∵点C为圆心,CD⊥P1P2,∴P1D=P2D=√7,∴P2(0,2√3-√7),P1(0,2√3+√7).b.当点P在y轴的负半轴上时,同理可得:P3(0,-2√3-√7),P4(0,-2√3+√7).综上所述:满足条件的点P的坐标有:(0,2√3-√7),(0,2√3+√7),(0,-2√3-√7),(0,-2√3+√7).(3)如图②,当过点A,B的☉E与y轴相切于点P时,∠APB最大.理由:可证∠APB=∠AEH,当∠APB最大时,∠AEH最大.,得当AE最小即PE最小时,∠AEH最大.由sin∠AEH=2AE所以当圆与y轴相切时,∠APB最大.9.解:(1)∵在四边形ABCD中,∠B=60°,∠D=30°,∴∠A+∠C=360°-∠B-∠D=270°.(2)AD2+CD2=BD2.理由:如图,将△BCD绕点B逆时针旋转60°,得△BAD',连结DD'.∴BD=BD',CD=AD',∠DBD'=60°,∠BAD'=∠C ,∴△BDD'是等边三角形. ∴DD'=BD.又∠BAD+∠C=270°, ∴∠BAD+∠BAD'=270°, ∴∠DAD'=90°.∴AD 2+AD'2=DD'2.即AD 2+CD 2=BD 2.(3)如图,将△BEC 绕点B 逆时针旋转60°得△BE'A ,连结EE'. ∴BE=BE',∠EBE'=60°, ∴△BEE'是等边三角形. ∴∠BE'E=60°.∵AE 2=BE 2+CE 2,BE=EE',CE=AE', ∴AE 2=EE'2+AE'2.∴∠AE'E=90°. ∴∠BE'A=150°.∴∠BEC=150°.∴点E 在以BC 为弦,劣弧BC ⏜所对的圆心角为60°的圆上. 以BC 为边在下方作等边三角形BCO ,则O 为圆心,半径BO=1. ∴点E 运动路径为BC ⏜,l BC ⏜=60π×1180=π3.10.解:(1)由题意,得{a +b +c =0,16a +4b +c =0,c =2,解得{a =12,b =-52,c =2,故这个抛物线的解析式为y=12x 2-52x+2.(2)如图①,设BC 的垂直平分线DE 交BC 于M ,交x 轴于N ,连结CN ,过点M 作MF ⊥x 轴于F .∴△BMF ∽△BCO ,∴MF CO=BF BO=BM BC=12.∵B (4,0),C (0,2),∴CO=2,BO=4, ∴MF=1,BF=2,∴M (2,1).∵MN 是BC 的垂直平分线,∴CN=BN , 设ON=x ,则CN=BN=4-x , 在Rt △OCN 中,CN 2=OC 2+ON 2, ∴(4-x )2=22+x 2,解得x=32,∴N32,0.设直线DE 的解析式为y=kx+b , 依题意,得{2k +b =1,32k +b =0,解得{k =2,b =-3.∴直线DE 的解析式为y=2x-3.(3)由(1)得抛物线解析式为y=12x 2-52x+2,∴它的对称轴为直线x=52.(i)如图②,设线段BC 的垂直平分线交抛物线对称轴于点G ,则点G52,2,以G 为圆心,GA 长为半径画圆交对称轴于点P 1,则∠CP 1B=∠CAB ,GA=52, ∴点P 1的坐标为52,-12.(ii)如图③,GN 为线段BC 的垂直平分线,由(2)得BN=52, ∴BN=BG ,∴点G ,N 关于直线BC 对称.∴以N 为圆心,NB 长为半径的☉N 与☉G 关于直线BC 对称. ☉N 交抛物线对称轴于点P 2,则∠CP 2B=∠CAB.设对称轴与x 轴交于点H ,则NH=52-32=1,∴HP 2=√212,∴点P 2的坐标为52,√212.综上所述,当P 点的坐标为52,-12或52,√212时,∠CPB=∠CAB.。

培优点 隐圆(阿波罗尼斯圆)问题

培优点 隐圆(阿波罗尼斯圆)问题

培优点隐圆(阿波罗尼斯圆)问题隐圆问题近几年在高考题和各地模拟题中都出现过,难度为中高档,在题设中没有明确给出圆的相关信息,而是隐含在题目中,要通过分析、转化、发现圆(或圆的方程),从而最终利用圆的知识来求解,我们称这类问题为“隐圆问题”.考点一 利用圆的定义、方程确定隐形圆例1 (1)(2022·滁州模拟)已知A ,B 为圆C :x 2+y 2-2x -4y +3=0上的两个动点,P 为弦AB 的中点,若∠ACB =90°,则点P 的轨迹方程为( ) A .(x -1)2+(y -2)2=14B .(x -1)2+(y -2)2=1C .(x +1)2+(y +2)2=14D .(x +1)2+(y +2)2=1 答案 B解析 圆C 即(x -1)2+(y -2)2=2,半径r =2,因为CA ⊥CB , 所以|AB |=2r =2, 又P 是AB 的中点, 所以|CP |=12|AB |=1,所以点P 的轨迹方程为(x -1)2+(y -2)2=1.(2)(2022·茂名模拟)已知向量a ,b 满足|a |=1,|b |=2,a ·b =0,若向量c 满足|a +b -2c |=1,则|c |的取值范围是( ) A .[1,5-1] B.⎣⎢⎡⎦⎥⎤3-12,3+12 C.⎣⎢⎡⎦⎥⎤5-12,5+12D.⎣⎢⎡⎦⎥⎤5+12,52答案 C解析 |a |=1,|b |=2,a ·b =0,以a 为y 轴,b 为x 轴,建立平面直角坐标系, 设OA →=a =(0,1),OB →=b =(2,0), OC →=c =(x ,y ),所以a +b -2c =(2-2x ,1-2y ), 由|a +b -2c |=1,可得(2-2x )2+(1-2y )2=1, 化简可得(x -1)2+⎝⎛⎭⎫y -122=⎝⎛⎭⎫122, 所以点C 的轨迹是以⎝⎛⎭⎫1,12为圆心,以r =12为半径的圆,原点(0,0)到⎝⎛⎭⎫1,12的距离为d =12+⎝⎛⎭⎫122=52,所以|c |=x 2+y 2的取值范围是[d -r ,d +r ],即⎣⎢⎡⎦⎥⎤5-12,5+12.规律方法 对于动点的轨迹问题,一是利用曲线(圆、椭圆、双曲线、抛物线等)的定义识别动点的轨迹,二是利用直接法求出方程,通过方程识别轨迹.跟踪演练1 (2022·平顶山模拟)已知M ,N 为圆C :x 2+y 2-2x -4y =0上两点,且|MN |=4,点P 在直线l :x -y +3=0上,则|PM →+PN →|的最小值为( ) A .22-2 B .2 2 C .22+2 D .22- 5答案 A解析 设线段MN 的中点为D ,圆C :x 2+y 2-2x -4y =0的圆心为C (1,2),半径为 5.则圆心C 到直线MN 的距离为(5)2-⎝⎛⎭⎫422=1,所以|CD |=1,故点D 的轨迹是以C 为圆心,半径为1的圆,设点D 的轨迹为圆D ,圆D 上的点到直线l 的最短距离为t =|1-2+3|2-1=2-1.所以|PM →+PN →|=|2PD→|=2|PD →|≥2t =22-2.考点二 由圆周角的性质确定隐形圆例2 (1)已知点P (2,t ),Q (2,-t )(t >0),若圆C :(x +2)2+(y -3)2=1上存在点M ,使得∠PMQ =90°,则实数t 的取值范围是( )A .[4,6]B .(4,6)C .(0,4]∪[6,+∞)D .(0,4)∪(6,+∞)答案 A解析 由题意知,点P (2,t ),Q (2,-t )(t >0), 可得以PQ 为直径的圆的方程为(x -2)2+y 2=t 2, 则圆心C 1(2,0),半径R =t , 又由圆C :(x +2)2+(y -3)2=1, 可得圆心C (-2,3),半径r =1,两圆的圆心距为|CC 1|=(2+2)2+(0-3)2=5,要使得圆C :(x +2)2+(y -3)2=1上存在点M ,使得∠PMQ =90°,即两圆存在公共点,则满足⎩⎪⎨⎪⎧R +r ≥5,R -r ≤5,即⎩⎪⎨⎪⎧t +1≥5,t -1≤5,解得4≤t ≤6, 所以实数t 的取值范围是[4,6].(2)(2022·长沙雅礼中学质检)已知直线l :x -y +4=0上动点P ,过P 点作圆x 2+y 2=4的两条切线,切点分别为C ,D ,记M 是CD 的中点,则直线CD 过定点________,点M 的轨迹方程为______________________________. 答案 (-1,1) ⎝⎛⎭⎫x +122+⎝⎛⎭⎫y -122=12 解析 如图,连接PO ,CO ,DO ,因为PD ⊥DO ,PC ⊥CO ,所以P ,D ,O ,C 在以PO 为直径的圆上, 设P (x 0,x 0+4),则以OP 为直径的圆的方程为⎝⎛⎭⎫x -x 022+⎝⎛⎭⎫y -x 0+422=x 20+(x 0+4)24, 化简得x 2-x 0x -(x 0+4)y +y 2=0, 与x 2+y 2=4联立,可得CD 所在直线的方程为x 0x +(x 0+4)y =4⇒x 0(x +y )=4(1-y )⇒⎩⎪⎨⎪⎧ 1-y =0,x +y =0⇒⎩⎪⎨⎪⎧y =1,x =-1,直线CD 过定点Q (-1,1),又OM ⊥CD ,所以OM ⊥MQ ,所以点M 在以OQ 为直径的圆上, 所以点M 的轨迹为⎝⎛⎭⎫x +122+⎝⎛⎭⎫y -122=12. 规律方法 利用圆的性质,圆周角为直角,即可得到:若P A ⊥PB 或∠APB =90°,则点P 的轨迹是以AB 为直径的圆.注意轨迹中要删除不满足条件的点.跟踪演练2 (2022·北京海淀区模拟)在平面直角坐标系中,直线y =kx +m (k ≠0)与x 轴和y 轴分别交于A ,B 两点,|AB |=22,若CA ⊥CB ,则当k ,m 变化时,点C 到点(1,1)的距离的最大值为( )A .4 2B .3 2C .2 2 D. 2 答案 B解析 由y =kx +m (k ≠0)得A ⎝⎛⎭⎫-mk ,0,B (0,m ), 因为CA ⊥CB ,所以点C 的轨迹是以AB 为直径的圆,其方程为⎝⎛⎭⎫x +m 2k 2+⎝⎛⎭⎫y -m 22=m 24k 2+m24,设该动圆的圆心为(x ′,y ′),则x ′=-m 2k ,y ′=m2,整理得k =-y ′x ′,m =2y ′,代入到⎝⎛⎭⎫-mk 2+m 2=8中,得x ′2+y ′2=2, 即点C 轨迹的圆心在圆x ′2+y ′2=2上,故点(1,1)与该圆上的点(-1,-1)的连线的距离加上圆的半径即为点C 到点(1,1)的距离的最大值,最大值为[1-(-1)]2+[1-(-1)]2+2=3 2.考点三 阿波罗尼斯圆例3 (多选)古希腊著名数学家阿波罗尼斯发现“若A ,B 为平面上相异的两点,则所有满足:|P A ||PB |=λ(λ>0,且λ≠1)的点P 的轨迹是圆,后来人们称这个圆为阿波罗尼斯圆.在平面直角坐标系中,A (-2,0),B (4,0),若λ=12,则下列关于动点P 的结论正确的是( )A .点P 的轨迹方程为x 2+y 2+8x =0B .△APB 面积的最大值为6C .在x 轴上必存在异于A ,B 的两定点M ,N ,使得|PM ||PN |=12D .若点Q (-3,1),则2|P A |+|PQ |的最小值为5 2 答案 ACD解析 对于选项A ,设P (x ,y ), 因为P 满足|P A ||PB |=12,所以(x +2)2+y 2(x -4)2+y 2=12, 化简得x 2+y 2+8x =0,故A 正确; 对于选项B ,由选项A 可知, 点P 的轨迹方程为x 2+y 2+8x =0,即(x +4)2+y 2=16,所以点P 的轨迹是以(-4,0)为圆心,4为半径的圆, 又|AB |=6,且点A ,B 在直径所在直线上,故当点P 到圆的直径所在直线的距离最大时,△P AB 的面积取得最大值, 因为圆上的点到直径的最大距离为半径,即△P AB 的高的最大值为4, 所以△P AB 面积的最大值为12×6×4=12,故B 错误;对于选项C ,假设在x 轴上存在异于A ,B 的两定点M ,N ,使得|PM ||PN |=12,设M (m ,0),N (n ,0),故(x -m )2+y 2(x -n )2+y 2=12,即(x -n )2+y 2=2(x -m )2+y 2, 化简可得x 2+y 2-8m -2n 3x +4m 2-n 23=0, 又点P 的轨迹方程为x 2+y 2+8x =0, 可得⎩⎨⎧-8m -2n3=8,4m 2-n23=0,解得⎩⎪⎨⎪⎧ m =-6,n =-12或⎩⎪⎨⎪⎧m =-2,n =4(舍去),故存在异于A ,B 的两定点M (-6,0),N (-12,0), 使得|PM ||PN |=12,故C 正确;对于选项D ,因为|P A ||PB |=12,所以2|P A |=|PB |,所以2|P A |+|PQ |=|PB |+|PQ |,又点P 在圆x 2+8x +y 2=0上,如图所示,所以当P ,Q ,B 三点共线时2|P A |+|PQ |取得最小值,此时(2|P A |+|PQ |)min =|BQ | =[4-(-3)]2+(0-1)2=52,故D 正确.规律方法 “阿波罗尼斯圆”的定义:平面内到两个定点A (-a ,0),B (a ,0)(a >0)的距离之比为正数λ(λ≠1)的点的轨迹是以C ⎝ ⎛⎭⎪⎫λ2+1λ2-1a ,0为圆心,⎪⎪⎪⎪2aλλ2-1为半径的圆,即为阿波罗尼斯圆.跟踪演练3 若平面内两定点A ,B 间的距离为2,动点P 满足|P A ||PB |=3,则|P A |2+|PB |2的最大值为( ) A .16+8 3 B .8+4 3 C .7+4 3 D .3+ 3答案 A解析 由题意,设A (-1,0),B (1,0),P (x ,y ), 因为|P A ||PB |=3,所以(x +1)2+y 2(x -1)2+y 2=3,即(x -2)2+y 2=3,所以点P 的轨迹是以(2,0)为圆心,半径为3的圆,因为|P A |2+|PB |2=(x +1)2+y 2+(x -1)2+y 2=2(x 2+y 2+1),其中x 2+y 2可看作圆(x -2)2+y 2=3上的点(x ,y )到原点(0,0)的距离的平方, 所以(x 2+y 2)max =(2+3)2=7+43, 所以[2(x 2+y 2+1)]max =16+83, 即|P A |2+|PB |2的最大值为16+8 3.专题强化练1.已知圆O :x 2+y 2=1,圆M :(x -a )2+(y -2)2=2.若圆M 上存在点P ,过点P 作圆O 的两条切线,切点为A ,B ,使得P A ⊥PB ,则实数a 的取值范围为( ) A .[0,2]B .[-52,1]C .[-2,2]D .[-2,2]答案 D解析 由题意可知四边形P AOB 为正方形, |OP |=2,∴点P 在以O 为圆心,以2为半径的圆上,其方程为x 2+y 2=2, 若圆M 上存在这样的点P ,则圆M 与x 2+y 2=2有公共点, 则有2-2≤a 2+4≤2+2, 解得-2≤a ≤2.2.已知点A (-5,-5)在动直线mx +ny -m -3n =0上的射影为点B ,若点C (5,-1),那么|BC |的最大值为( )A .16B .14C .12D .10 答案 C解析 由动直线方程化为m (x -1)+n (y -3)=0,可知其恒过定点Q (1,3). 又∵点A (-5,-5)在动直线mx +ny -m -3n =0上的射影为点B , ∴∠ABQ =90°,则点B 的轨迹是以AQ 为直径的圆, ∴圆心为AQ 的中点M (-2,-1), 圆的半径r =12|AQ |=5.又|MC |=(5+2)2+(-1+1)2=7>r =5, ∴点C (5,-1)在圆M 外,故|BC |的最大值为r +|MC |=7+5=12.3.(2022·武汉模拟)已知O 为坐标原点,点A (cos α,sin α),B ⎝⎛⎭⎫cos ⎝⎛⎭⎫α+π3,sin ⎝⎛⎭⎫α+π3,以OA ,OB 为邻边作平行四边形AOBP ,Q (-2,0),则∠PQO 的最大值为( ) A.π6 B.π4 C.π3 D.π2 答案 C解析 已知圆O :x 2+y 2=1,A ,B 是圆O 上两动点,且∠AOB =π3,所以△AOB 为等边三角形, 又|AB |=|OA |=1, 取AB 的中点M ,则|OM |=32, 所以|OP |=3,所以点P 的轨迹方程为x 2+y 2=3, 当PQ 与x 2+y 2=3相切时,∠PQO 最大,此时sin ∠PQO =32, 则∠PQO =π3.4.已知△ABC 是等边三角形,E ,F 分别是AB 和AC 的中点,P 是△ABC 边上一动点,则满足PE →·PF →=BE →·CF →的点P 的个数为( ) A .1 B .2 C .3 D .4 答案 D解析 以BC 的中点O 为坐标原点,BC ,OA 所在直线为x 轴、y 轴,建立如图所示的平面直角坐标系.设△ABC 的边长为4,则B (-2,0),C (2,0),A (0,23),E (-1,3), F (1,3),BE →=(1,3),CF →=(-1,3), 设P (x ,y ),则PE →=(-1-x ,3-y ), PF →=(1-x ,3-y ), 由PE →·PF →=BE →·CF →得,(-1-x ,3-y )·(1-x ,3-y ) =(1,3)·(-1,3), 所以x 2+(y -3)2=3,即点P 的轨迹是以(0,3)为圆心,3为半径的圆,也就是以AO 为直径的圆,易知该圆与△ABC 的三边有4个公共点.5.(多选)已知AB 为圆O :x 2+y 2=49的弦,且点M (4,3)为AB 的中点,点C 为平面内一动点,若AC 2+BC 2=66,则( ) A .点C 构成的图象是一条直线 B .点C 构成的图象是一个圆 C .OC 的最小值为2 D .OC 的最小值为3 答案 BC解析 ∵点M (4,3)为AB 的中点,∴OM ⊥AB , |OM |=42+32=5,∴|AM |=|BM |=49-52=26, ∵AC 2+BC 2=66, ∴AC →2+BC →2=66,则(AM →+MC →)2+(BM →+MC →)2=66,即AM →2+2AM →·MC →+MC →2+BM →2+2BM →·MC →+MC →2=66, ∵AM →=-BM →,则可得2AM →2+2MC →2=66, 可解得|MC |=3,∴点C 构成的图象是以M 为圆心,3为半径的圆,故A 错误,B 正确; ∴可得OC 的最小值为|OM |-3=5-3=2,故C 正确,D 错误.6.(多选)(2022·福州模拟)已知A (-3,0),B (3,0),动点C 满足|CA |=2|CB |,记C 的轨迹为Γ.过A 的直线与Γ交于P ,Q 两点,直线BP 与Γ的另一个交点为M ,则( ) A .Q ,M 关于x 轴对称B .△P AB 的面积的最大值为6 3C .当∠PMQ =45°时,|PQ |=4 2D .直线AC 的斜率的范围为[-3,3] 答案 AC解析 设C (x ,y ),由|CA |=2|CB |得, (x +3)2+y 2=2(x -3)2+y 2,整理得Γ的方程为(x -5)2+y 2=16,其轨迹是以D (5,0)为圆心,半径r =4的圆.由图可知,由于AB =6,所以当DP 垂直于x 轴时,△P AB 的面积有最大值,所以(S △P AB )max =12|AB |·r =12×6×4=12,选项B 错误;因为|P A |=2|PB |,|MA |=2|MB |, 所以|P A ||MA |=|PB ||MB |,所以∠P AB =∠MAB ,又C 的轨迹Γ关于x 轴对称,所以Q ,M 关于x 轴对称,选项A 正确; 当∠PMQ =45°时,∠PDQ =45°×2=90°, 则△DPQ 为等腰直角三角形,|PQ |=2r =42, 选项C 正确;当直线AC 与圆D 相切时,CD ⊥AC ,此时|AD |=8=2r =2|CD |,所以sin ∠DAC =12,所以切线AC 的倾斜角为30°和150°, 由图可知,直线AC 的斜率的取值范围为⎣⎡⎦⎤-33,33,选项D 错误. 7.已知等边△ABC 的边长为2,点P 在线段AC 上,若满足P A →·PB →-2λ+1=0的点P 恰有两个,则实数λ的取值范围是______________. 答案 ⎝⎛⎦⎤38,12解析 如图,以AB 的中点O 为坐标原点,AB ,OC 所在直线为x 轴、y 轴,建立平面直角坐标系,则A (-1,0),B (1,0), 设P (x ,y ).则P A →·PB →-2λ+1=0,即为(-1-x )(1-x )+y 2-2λ+1=0,化简得x 2+y 2=2λ(λ>0),故所有满足P A →·PB →-2λ+1=0的点P 在以O 为圆心,2λ为半径的圆上. 过点O 作OM ⊥AC ,垂足为点M ,由题意知,线段AC 与圆x 2+y 2=2λ有两个交点, 所以|OM |<2λ≤|OA |,即32<2λ≤1,解得38<λ≤12. 8.已知⊙M :x 2+y 2-2x -2y -2=0,直线l :2x +y +2=0,P 为l 上的动点,过点P 作⊙M 的切线P A ,PB ,切点为A ,B ,当|PM |·|AB |取得最小值时,直线AB 的方程为________________. 答案 2x +y +1=0解析 ⊙M :(x -1)2+(y -1)2=4,①则圆心M (1,1),⊙M 的半径为2.如图,由题意可知PM ⊥AB ,∴S 四边形P AMB =12|PM |·|AB | =|P A |·|AM |=2|P A |,∴|PM |·|AB |=4|P A |=4|PM |2-4.当|PM |·|AB |最小时,|PM |最小,此时PM ⊥l .故直线PM 的方程为y -1=12(x -1), 即x -2y +1=0.由⎩⎪⎨⎪⎧ x -2y +1=0,2x +y +2=0,得⎩⎪⎨⎪⎧x =-1,y =0, ∴P (-1,0).依题意知P ,A ,M ,B 四点共圆,且PM 为圆的直径,∴该圆方程为x 2+⎝⎛⎭⎫y -122=54,② 由①-②整理得2x +y +1=0,即直线AB 的方程为2x +y +1=0.。

隐圆问题的十大类型:高考数学微专题

隐圆问题的十大类型:高考数学微专题

隐圆问题的十大类型:高考数学微专题隐圆问题是高中数学中难度较大的一个跨单元主题,它承接于初中的圆,融入了高中的平面向量,解三角形,解析几何等内容,综合性很高,更是学生学习的难点之一!当然,这部分内容在课本上也多有涉及,比如阿波罗尼斯圆,圆的参数方程等,基于此,本节将系统梳理相关内容,力争做成一份全面,完整的隐圆资料.类型1.利用圆的定义(到定点的距离等于定长的点的轨迹)确定隐形圆例1.如果圆4)3()2(22=--+-a y a x 上总存在两个点到原点的距离为1,则实数a 的取值范围为________.类型2.动点P 满足对两个定点B A ,的张角是90(1-=⋅PB P A k k 或者0=⋅→→PB P A )确定隐形圆.该类型实质就是直径所对的圆周角为直角的应用.例2.已知点P 在圆O :224x y +=上,点()30A -,,()0,4B ,满足AP BP ⊥的点P 的个数为()A.3B.2C.1D.0例3.已知点()3,0P -在动直线()30mx ny m n +-+=上的投影为点M ,若点32,2N ⎛⎫ ⎪⎝⎭,则MN 的最大值为()A.1B.32C.2D.1124.已知点P 是圆C :222430x y x y +--+=的动点,直线l :30x y --=上存在两点A ,B ,使得π2APB ∠=恒成立,则线段AB 长度的最小值是()A.B.C.D.5.已知EF 是圆22:2430C x y x y +--+=的一条弦,且CE CF ⊥,P 是EF 的中点,当弦EF 在圆C 上运动时,直线:30l x y --=上存在两点,A B ,使得2APB π∠≥恒成立,则线段AB 长度的最小值是()A.1B.C.D.2+6.若对于圆22:2220C x y x y +---=上任意的点A ,直线:4380l x y ++=上总存在不同两点M ,N ,使得90MAN ∠≥︒,则MN 的最小值为______.类型3.正弦定理对边对角模型.由正弦定理可知,当已知三角形任意一边和该边所对角大小时,即可得到外接圆半径,即AaR sin 2=.7.(2020年全国2卷)在ABC ∆中,C B C B A sin sin sin sin sin 222⋅=--(1)求A ;(2)若3=BC ,求ABC ∆周长的最大值.8.如图,正方形ABCD 的边长为6,点E ,F 分别在边AD ,BC 上,且2DE AE =,2CF BF =.点P 在正方形ABCD 的边AD 或BC 上运动,若1PE PF ⋅=,则满足条件的点P 的个数是()A.0B.2C.4D.6类型5.动点P 满足对两个定点B A ,满足:)0(||||22>=+λλPB P A .类型6.阿波罗尼斯圆定义:已知平面上两点B A ,,则所有满足1,||||≠=λλPB P A 的动点P 的轨迹是一个以定比为n m :内分和外分定线段AB 的两个分点的连线为直径的圆.若)0,(),0,(b B a A ,则圆的半径为|||1|2AB ⋅-λλ,圆心为)0|,|11(22AB ⋅-+λλ.解析:设(,0),(,0),(,)A c B c P x y -.因为(0,0AP BP c λλ=>>且1)λ≠由两点间距离=,化简得2222221211x c y c λλλλ⎛⎫+⎛⎫-+= ⎪ ⎪--⎝⎭⎝⎭.所以点P 的轨迹是以221,01c λλ⎛⎫+ ⎪-⎝⎭为圆心,以221c λλ-为半径的圆.9.ABC ∆中,2=AB ,BC AC 2=,则ABC ∆的面积最大值为_______.类型7.“从动点圆”,若A 为定点,点P 在圆上运动,则线段AP 的中点也在一个圆上.10.已知线段AB 的端点B 的坐标是(4,3),端点A 在圆22(1)4x y ++=上运动,则线段AB的中点M 的轨迹方程是__________.类型8.圆的内接四边形与托勒密定理若四边形ABCD 对角互补,或者BC AD CD AB DB AC ⋅+⋅=⋅,则D C B A ,,,四点共圆.11.在平面四边形ABCD 中,,AB AC AC ⊥=,AD =3,BD =则CD 的最小值为()B.2C.2类型9.向量隐圆12.已知向量→→→c b a ,,满足12||,1||-=⋅==→→→→b a b a ,且向量→→→→--c b c a ,的夹角为4π,则||→c 的最大值为_________.13.(2018年浙江高考)已知a 、b 、e 是平面向量,e是单位向量.若非零向量a与e的夹角为3π,向量b 满足2430b e b -⋅+= ,则a b - 的最小值是()11C.2D.214已知平面向量a 、b 、c 满足0a b ⋅= ,1a b == ,()()12c a c b -⋅-= ,则c a - 的最大值为()B.12+C.32D.2类型10.米勒圆与最大视角米勒定理1:已知点B A ,是MON ∠的边ON 上的两个定点,点P 是边OM 上的动点,则当且仅当ABP ∆的外接圆与边OM 相切于点P 时,APB ∠最大.13.(2022南昌一模)已知点)0,3(),0,1(B A -.点P 为圆45:22=+y x O 上一个动点,则APB ∠sin 的最大值为__________.隐圆问题的十大类型(解析版)隐圆问题是高中数学中难度较大的一个跨单元主题,它承接于初中的圆,融入了高中的平面向量,解三角形,解析几何等内容,综合性很高,更是学生学习的难点之一!当然,这部分内容在课本上也多有涉及,比如阿波罗尼斯圆,圆的参数方程等,基于此,本节将系统梳理相关内容,力争做成一份全面,完整的隐圆资料.类型1.利用圆的定义(到定点的距离等于定长的点的轨迹)确定隐形圆例1.如果圆4)3()2(22=--+-a y a x 上总存在两个点到原点的距离为1,则实数a 的取值范围为________.解析:转化为4)3()2(22=--+-a y a x 与圆122=+y x 有两个交点,求a 的取值范围问题,由两圆相交的条件可知:)0,56(-∈a .类型2.动点P 满足对两个定点B A ,的张角是90(1-=⋅PB P A k k 或者0=⋅→→PB P A )确定隐形圆.该类型实质就是直径所对的圆周角为直角的应用.例2.已知点P 在圆O :224x y +=上,点()30A -,,()0,4B ,满足AP BP ⊥的点P 的个数为()A.3B.2C.1D.0解析:设点(,)P x y ,则224x y +=,且(3,)(,4)AP x y BP x y =+=-,,由AP BP ⊥,得22(3)(4)340AP BP x x y y x y x y ⋅=++-=++-= ,即22325()(2)24x y ++-=,故点P 的轨迹为一个圆心为3(,2)2-,半径为52的圆,则两圆的圆心距为52,半径和为59222+=,半径差为51222-=,有159222<<,所以两圆相交,满足这样的点P 有2个.故选B.例3.已知点()3,0P -在动直线()30mx ny m n +-+=上的投影为点M ,若点32,2N ⎛⎫ ⎪⎝⎭,则MN 的最大值为()A.1B.32C.2D.112解析:由动直线方程()30mx ny m n +-+=得()()130m x n y -+-=,所以该直线过定点Q(1,3),所以动点M 在以PQ 为直径的圆上,5,2=圆心的坐标为3(1,)2-,所以点N 3=,所以MN 的最大值为5113+22=.故选:D.4.已知点P 是圆C :222430x y x y +--+=的动点,直线l :30x y --=上存在两点A ,B ,使得π2APB ∠=恒成立,则线段AB 长度的最小值是()A.B.C.D.解析:圆()()22:122C x y -+-=,圆心为()1,2C ,半径为1r 依题意,P 是圆C 上任意一点,直线l 上存在两点,A B ,使得π2APB ∠=恒成立,故以AB 为直径的圆D 始终与圆C 相切,即圆D 的半径2r 的最小值是P 到直线l 距离的最1r ==AB 的最小值是2⨯=.故选:A5.已知EF 是圆22:2430C x y x y +--+=的一条弦,且CE CF ⊥,P 是EF 的中点,当弦EF 在圆C 上运动时,直线:30l x y --=上存在两点,A B ,使得2APB π∠≥恒成立,则线段AB 长度的最小值是()A.1B.C.D.2+解析:由题可知:22:(1)(2)2C x y -+-= ,圆心()1,2C ,半径r =又CE CF ⊥,P 是EF 的中点,所以112CP EF ==,所以点P 的轨迹方程22(1)(2)1x y -+-=,圆心为点()1,2C ,半径为1R =,若直线:30l x y --=上存在两点,A B ,使得2APB π∠≥恒成立,则以AB 为直径的圆要包括圆22(1)(2)1x y -+-=,点()1,2C 到直线l 的距离为d =,所以AB 长度的最小值为()212d +=+,故选:B.6.若对于圆22:2220C x y x y +---=上任意的点A ,直线:4380l x y ++=上总存在不同两点M ,N ,使得90MAN ∠≥︒,则MN 的最小值为______.解析:由题设圆22:(1)(1)4C x y -+-=,故圆心(1,1)C ,半径为2r =,所以C 到:4380l x y ++=的距离3d r ==>,故直线与圆相离,故圆C 上点到直线:4380l x y ++=的距离范围为[1,5],圆C 上任意的点A ,直线:4380l x ++=上总存在不同两点M 、N ,使90MAN ∠≥︒,即以MN 为直径的圆包含圆C ,至少要保证直线上与圆C 最近的点,与圆上点距离最大值为半径的圆包含圆C ,所以10MN ≥.故答案为:10类型3.正弦定理对边对角模型.由正弦定理可知,当已知三角形任意一边和该边所对角大小时,即可得到外接圆半径,即AaR sin 2=.7.(2020年全国2卷)在ABC ∆中,C B C B A sin sin sin sin sin 222⋅=--(1)求A ;(2)若3=BC ,求ABC ∆周长的最大值.解析:(1)由正弦定理可得:222BC AC AB AC AB --=⋅,2221cos 22AC AB BC A AC AB +-∴==-⋅()0,A π∈ ,23A π∴=.(2)由余弦定理得:222222cos 9BC AC AB AC AB A AC AB AC AB =+-⋅=++⋅=,即()29AC AB AC AB +-⋅=.22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭(当且仅当AC AB =时取等号),()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:AC AB +≤(当且仅当AC AB =时取等号),ABC ∴ 周长3L AC AB BC =++≤+,ABC ∴ 周长的最大值为3+类型4.动点P 满足对两个定点B A ,满足:)0(≠=⋅→→λλPB P A .分析:由于||AB 定值,设AB 中点为M ,根据平面向量部分极化恒等式可得:222||41||)0(41AB PM AB PM PB P A +=⇒≠=-=⋅→→→→λλλ,故动点P 是以AB 中点M为圆心,半径为2||41AB +λ的圆.8.如图,正方形ABCD 的边长为6,点E ,F 分别在边AD ,BC 上,且2DE AE =,2CF BF =.点P 在正方形ABCD 的边AD 或BC 上运动,若1PE PF ⋅=,则满足条件的点P 的个数是()A.0B.2C.4D.6解析:由上述分析可知,故动点P 是以EF 中点M 为圆心,半径为2||41EF +λ的圆.故此题中点P 以EF 中点M 为圆心,半径为10的圆,所以,共有4个点满足条件.故选:C类型5.动点P 满足对两个定点B A ,满足:)0(||||22>=+λλPB P A .解析:由于→→→→⋅-+=+PB P A PB P A PB P A 2)(||||222,设AB 中点为M ,则由向量关系与极化恒等式可知:λ=--=⋅-+→→→→→→→)41(242)(2222AB PM PM PB P A PB P A ,整理可得:→→+=22412AB PM λ,显然动点P 以M 为圆心,→+2412AB λ为半径的圆.类型6.阿波罗尼斯圆定义:已知平面上两点B A ,,则所有满足1,||||≠=λλPB P A 的动点P 的轨迹是一个以定比为n m :内分和外分定线段AB 的两个分点的连线为直径的圆.若)0,(),0,(b B a A ,则圆的半径为|||1|2AB ⋅-λλ,圆心为)0|,|11(22AB ⋅-+λλ.解析:设(,0),(,0),(,)A c B c P x y -.因为(0,0AP BP c λλ=>>且1)λ≠由两点间距离=,化简得2222221211x c y c λλλλ⎛⎫+⎛⎫-+= ⎪ ⎪--⎝⎭⎝⎭.所以点P 的轨迹是以221,01c λλ⎛⎫+ ⎪-⎝⎭为圆心,以221c λλ-为半径的圆.9.ABC ∆中,2=AB ,BC AC 2=,则ABC ∆的面积最大值为_______.解析:由2,AB AC ==,见系代入得22(3)8x y -+=.设圆心为M ,显然当CM x ⊥轴时,ABC 面积最大,此时||CM =.所以()122ABC mx S ∆=⋅⋅=.类型7.“从动点圆”,若A 为定点,点P 在圆上运动,则线段AP 的中点也在一个圆上.10.已知线段AB 的端点B 的坐标是(4,3),端点A 在圆22(1)4x y ++=上运动,则线段AB 的中点M 的轨迹方程是__________.解析:设点M 的坐标为(,)x y ,点00(,)A x y ,M 为AB 的中点,B 的坐标为(4,3),004232x x y y +⎧=⎪⎪⎨+⎪=⎪⎩,解得002423x x y y =-⎧⎨=-⎩,点00(,)A x y 满足2200(1)4x y ++=22(241)(23)4x y ∴-++-=,即2233122x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,故点M 的轨迹是以33,22⎛⎫ ⎪⎝⎭为圆心,以1为半径的圆,点M 的轨迹方程为:2233122x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭.类型8.圆的内接四边形与托勒密定理若四边形ABCD 对角互补,或者BC AD CD AB DB AC ⋅+⋅=⋅,则D C B A ,,,四点共圆.11.在平面四边形ABCD中,,AB AC AC ⊥=,AD =3,BD=则CD 的最小值为()解析:如图,可设x AB =,则x BC x AC 3,2==,则由托勒密不等式可得:BD AC AB CD BC AD ⋅≥⋅+⋅,代值可得:362233≥⇒⋅≥⋅+⋅CD x x CD ,等号成立当且仅当D C B A ,,,四点共圆.B.2C.2类型9.向量隐圆12.已知向量→→→c b a ,,满足12||,1||-=⋅==→→→→b a b a ,且向量→→→→--c b c a ,的夹角为4π,则||→c 的最大值为_________.解析:依题→→b a ,夹角为43π,而向量→→→→--c b c a ,的夹角为4π,故由四点共圆结论可知,向量→c 的终点C 与B A O ,,四点共圆,则||→c 的最大值即为圆的直径,由于5||||=-=→→b a AB 则由正弦定理:1043sin||||max ==→πAB c .13.(2018年浙江高考)已知a 、b 、e 是平面向量,e是单位向量.若非零向量a 与e 的夹角为3π,向量b 满足2430b e b -⋅+= ,则a b - 的最小值是()11C.2D.2解析:设()()(),,1,0,,a x y e b m n ===,则由π,3a e =得πcos ,3a e e x y a ⋅=⋅=∴= ,由2430be b -⋅+= 得()2222430,21,m n m m n +-+=-+=因此,a b - 的最小值为圆心()2,0到直线y =的距离2321,为1.-选A.14已知平面向量a 、b 、c 满足0a b ⋅= ,1a b == ,()()12c a c b -⋅-= ,则c a - 的最大值为()B.12+C.32D.2解析:在平面内一点O ,作OA a = ,OB b = ,OC c = ,则0a b OA OB ⋅=⋅=,则OA OB ⊥,因为1a b ==,则1== OA OB ,故AOB为等腰直角三角形,则AB =uu u r取AB 的中点E ,则()()()11112222OE OA AE OA AB OA OB OA OA OB a b =+=+=+-=+=+,所以,()22222a ba b a b +=++⋅=,所以,2122a b ⎛⎫+= ⎪⎝⎭,因为()()()212c a c b c c a b -⋅-=-⋅+= ,所以,()()()22222142a b a b c c a b c OC OE EC +⎛⎫+-⋅++=-=-== ⎝⎭,则1EC = ,所以,12c a OC OA AC AE EC AE EC -=-==+≤+=+.11当且仅当AE 、EC 同向时,等号成立,故c a -1.故选:B.类型10.米勒圆与最大视角米勒定理1:已知点B A ,是MON ∠的边ON 上的两个定点,点P 是边OM 上的动点,则当且仅当ABP ∆的外接圆与边OM 相切于点P 时,APB ∠最大.13.(2022南昌一模)已知点)0,3(),0,1(B A -.点P 为圆45:22=+y x O 上一个动点,则APB ∠sin 的最大值为__________.解析:如图,设D 是圆O 上不同于点P 的任意一点,连结DA 与圆O 交于点E ,连接EC ,由三角形外角的性质,可知ADC AEC ∠>∠,由圆周角定理:=∠APC AEC ∠,因此ADC APC ∠>∠,当且仅当ACP ∆的外接圆与圆O 相切于点P 时,APC ∠最大.此时,可设ACP ∆的外接圆圆心),1(t M ,由于此时P M O ,,三点共线且MP OM OP +=,而42+==t MC MP ,则531422=+++t t ,解得:5442=t ,于是58=M R ,由正弦定理,则APB ∠sin 的最大值为45.。

初中数学隐圆模型题型归纳

初中数学隐圆模型题型归纳

初中数学隐圆模型题型归纳隐圆模型题是初中数学中的一种常见题型,通过解题者对隐圆特征的分析,运用相应的数学概念和方法,来解决与隐圆相关的问题。

本文将对初中数学中常见的隐圆模型题型进行归纳总结。

一、隐圆的定义与性质在开始讨论隐圆模型题之前,我们首先需要了解隐圆的定义与性质。

隐圆是一个在二维平面上的点的集合,满足到某一固定点的距离等于定长的条件。

其中,该固定点称为隐圆的圆心,定长称为隐圆的半径。

在解决隐圆模型题时,我们需要掌握以下隐圆的性质:1. 隐圆上任意一点到圆心的距离等于半径;2. 隐圆上任意两点的连线与圆心连线垂直。

了解了隐圆的定义与性质之后,我们就可以更好地解决隐圆模型题了。

二、隐圆模型题的分类根据隐圆的题干特征以及解题思路的不同,我们可以将隐圆模型题分为以下三类:关于圆心坐标的求解、关于半径的求解、关于圆上点的求解。

1. 关于圆心坐标的求解这类题目通常会给出圆上的几个点的坐标或者与隐圆相关的方程,要求解出隐圆的圆心坐标。

例如:已知隐圆C的直径的中点坐标为(-5,3),且圆上有一点A(-3,1),求隐圆C的圆心坐标。

解题思路:首先,我们知道隐圆上任意两点的连线与圆心连线垂直,所以点A 与圆心的连线与直径的中点连线垂直。

因此,我们可以利用斜率的性质求解。

设点A为(x1, y1),直径的中点为(x0, y0),隐圆的圆心为(x, y),则有直径的斜率为 k = (y1 - y0) / (x1 - x0) ,将斜率 k 乘以 -1 得到直径上的任意一条线段的垂线斜率为 -1/k。

我们可以利用点斜式方程来求解直线的表达式,并将直线的表达式化简为与隐圆相关的方程。

通过求解这个方程组,我们可以得到隐圆的圆心坐标。

2. 关于半径的求解这类题目通常会给出与隐圆相关的方程或者求出圆心坐标后,要求计算隐圆的半径。

例如:已知隐圆C的圆心坐标为(-1,2),且直径的斜率为 2/3,求隐圆C的半径。

解题思路:因为直径的中点坐标已知,且垂线斜率已知,我们可以通过计算直径的斜率来求出直径的方程。

练就火眼金睛,让隐圆无处藏身——谈寻找隐圆的常见方法

练就火眼金睛,让隐圆无处藏身——谈寻找隐圆的常见方法

高中解析几何中圆是一个非常重要的内容,有这样一类问题,在题设中没有直接给出圆的信息,而是隐藏在某些条件中的,那就需要通过分析和转化,来发现圆(或圆的方程),从而最终可以利用圆的知识进行求解,我们称这类问题为“隐圆”问题.解题时如何发现隐圆是关键,一般含有隐圆的问题总会有一些蛛丝马迹,本文就如何根据题目条件寻找隐圆提供一些常见的方法.例1 如果圆C :(2)(2)4x a y a −+−−=22上总有两个不同的点到原点O 的距离为2,则实数a 的取值范围是 .解析 两个点到原点的距离都是2,说明这两点在以原点O 为圆心、半径为2的圆上,即圆C 与圆O 有两个公共点,则两圆相交,所以圆心距OC 小于两圆的半径之和且大于两圆半径之差.所以OCa a =++<+(2)(2)2222,解得−<<2a 65.例2 已知A B ,是圆C x y 1:122+=上的两个动点,且AB =3,AB 的中点为M ,P 是圆C x y 2:(3)(4)1−+−=22上的动点,则PM 的取值范围是 .解析 记点O 到直线AB 的距离为d ,圆C 1的半径为练就火眼金睛,让隐圆无处藏身——谈寻找隐圆的常见方法刘 琳 平面内到定点的距离等于收纳袋例3 已知圆C x y :(3)(4)1-+-=22和两点A m B m (,0),(,0)-(0)m >,若圆C 上存在点P ,使得 APB =°90,则m 的取值范围是 .解析 因为 APB =°90,所以点P 在以线段AB 为直径的圆O 上,该圆方程为:x y m 222+=,点P 是圆O 与圆C 的公共点,则两圆相交或相切. 所以m OC m -11≤≤+,联系OC =5解得46≤≤m .例4 设m ∈R ,直线l x my 1:0+=与直线l mx y m 2:240---=交于点P x y (,)00,则x y x 00022++2的取值范围是 .解析 直线l l 12,分别过定点O M (0,0),(2,4)-,且l l 12⊥,则l l 12,的交点P 在以OM 为直径的圆上,设圆心为点N ,则圆N 的方程为:(1)(2)5x x -++=22. 又x y x x y 000002222++=++-2(1)1,设点Q (1,0)-,则(1)x y 00++22表示点P 到点Q 距离的平方.又QN =22,所以225225-≤≤+PQ ,则1341013410-≤≤+PQ 2,所以,x y x 00022++2的取值范围是12410,12410-+.例5 已知点A (2,3),B (6,-3),点P 在直线l x y :3430-+=上,若满足等式AP BP ⋅+=20λ的点P 有两个,则实数λ的取值范围是 .解析 设点P x y (,),则 AP x y =--(2,3),BP x y =-+(6,3),所以 AP BP x y x y ⋅=⋅+=(2,3)(6,3)2----λ,解得(4)132x y --22+=λ,即点P 在以点M (4,0)为圆心,132-λ为半径的圆上,则直线l 与圆M 相交.所以,圆心M 到直线l 距离d =3132<−λ,解得λ<2. 因为圆的直径所对的圆收纳袋收纳袋 当平面内一个动点与两由a b c 222++=28,则a b c 222+=−82,所以,x −2c 2++++=−y x y c 2222c 282,整理得:x y c 222+=−454,即点C 在以原点为圆心,4−5c 2为半径的圆上,所以△ABC 的面积 平面内一个动点到两个定点的距离的平方和为定值时,则动点的轨迹是一个圆.解决此类问题的思路可收纳袋 若平面内一动点与两个收纳袋。

中考数学隐形圆专题含答案

中考数学隐形圆专题含答案

类型一:定点到动点定长点A为定点,点B为动点,AB为定长,则点B的轨迹为圆心为点A,半径为AB的圆。

【经典例题1】如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F 是线段BC边上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连接B′D,则B′D的最小值是___.【解析】如图所示:当∠BFE=∠B′EF,点B′在DE上时,此时B′D的值最小,根据折叠的性质,△EBF≌△EB′F,∴EB′⊥B′F,∴EB′=EB,∵E是AB边的中点,AB=4,∴AE=EB′=2,∵AD=6,∴DE=1022622=+,∴B′D=102−2.练习1-1如图③,矩形ABCD 中,AB=3,BC=4,点E 是AB 边上一点,且AE=2,点F 是BC 边上的任意一点,把△BEF 沿EF 翻折,点B 的对应点为G ,连接AG 、CG ,四边形AGCD 的面积是否存在最小值,若存在,求这个最小值及此时BF 的长度。

若不存在,请说明理由。

【解析】(3)如图3,△四边形ABCD 是矩形,△CD=AB=3,AD=BC=4,△ABC=△D=90°,根据勾股定理得,AC=5, △AB=3,AE=2,△点F 在BC 上的任何位置时,点G 始终在AC 的下方,设点G 到AC 的距离为h ,△S 四边形AGCD =S △ACD +S △ACG =21AD×CD+21AC×h=21×4×3+21×5×h=25h+6, △要四边形AGCD 的面积最小,即:h 最小,△点G 是以点E 为圆心,BE=1为半径的圆上在矩形ABCD 内部的一部分点, △EG△AC 时,h 最小,由折叠知△EGF=△ABC=90°,延长EG 交AC 于H ,则EH△AC ,在Rt△ABC 中,sin△BAC=AC BC =54, 在Rt△AEH 中,AE=2,sin△BAC=AE EH =54, △EH=54AE=58,△h=EH -EG=58-1=53 △S 四边形AGCD 最小=25h+6=25×53+6=215. 练习1-2如图,等边△ABC 的边AB=8,D 是AB 上一点,BD=3,P 是AC 边上一动点,将△ADP 沿直线DP 折叠,A 的对应点为A',则CA'的长度最小值是 .【解析】2练习1-3如图,在平行四边形ABCD 中,△BCD =30°,BC =4,CD=M 是AD 边的中点,N 是AB 边上的一动点,将△AMN 沿MN 所在直线翻折得到△AMN ,连接A'C ,则A'C 长度的最小值是 .【解析】如图,连接MC ;过点M 作ME△CD ,交CD 的延长线于点E ;△四边形ABCD 为平行四边形,△AD△BC ,AD=BC=4,△点M 为AD 的中点,△BCD=30△,△DM=MA=2,△MDE=△BCD=30△, △ME=21DM=1,DE=3, △CE=CD+DE=43,由勾股定理得:CM 2=ME 2+CE 2,第4题图AB C DA'M N△CM=7;由翻折变换的性质得:MA′=MA=2,显然,当折线MA′C 与线段MC 重合时,线段A′C 的长度最短,此时A′C=7−2=5,故答案为5.练习1-4如图,在边长为2的菱形ABCD 中,∠A=60∘,点M 是AD 边的中点,点N 是AB 边上一动点,将△AMN 沿MN 所在的直线翻折得到△A′MN ,连结A′C ,则A′C 长度的最小值是( ) A. 7 B. 7−1 C. 3 D. 2【解析】如图所示:∵MA′是定值,A′C 长度取最小值时,即A′在MC 上时, 过点M 作MF ⊥DC 于点F ,∵在边长为2的菱形ABCD 中,∠A=60∘,M 为AD 中点,∴2MD=AD=CD=2,∠FDM=60∘,∴∠FMD=30∘,∴FD=21MD=21,∴FM=DM×cos30∘=23, ∴MC=722=+CF FM ,∴A′C=MC−MA′=7−1.故选:B.变式:在Rt △ABC 中,∠C=90°,AC=6,BC=8,点F 在边AC 上,并且CF=2,点E 为边BC 上的动点,将△CEF 沿直线EF 翻折,点C 落在点P 处,则点P 到边AB 距离的最小值是_____解题思路:同上题,不难看出点P 的运动轨迹为以点F 为圆心,PF 为半径的圆上运动,求点P 到AB 的距离最小,可过点F 作AB 的垂线于点M ,交圆 F 于点P ,此时,最小值为PM 。

最新中考数学专题训练 隐形圆问题大全

最新中考数学专题训练 隐形圆问题大全

中考数学复习隐形圆问题大全一定点+定长1.依据:到定点的距离等于定长的点的集合是以定点为圆心定长为半径的圆。

2.应用:(1)如图,四边形ABCD中,AB=AC=AD=2,BC=1,AB∥CD,求BD的长。

简析:因AB=AC=AD=2,知B、C、D在以A为圆2为半径的圆上,由AB∥CD 得DE=BC=1,易求BD=15。

(2)如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC 边上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连接B′D,则B′D的最小值是.简析:E为定点,EB′为定长,B′点路径为以E为圆心EB′为半径的圆,作穿心线DE得最小值为210。

(3)ΔABC中,AB=4,AC=2,以BC为边在ΔABC外作正方形BCDE,BD、CE 交于点O,则线段AO的最大值为.简析:先确定A、B点的位置,因AC=2,所以C点在以A为圆心,2为半径的圆上;因点O是点C以点B为中心顺时针旋转45度并1:√2缩小而得,所以把圆A旋转45度再1:2缩小即得O点路径。

如下图,转化为求定点A到定圆F的最长路径,即AF+FO=32。

二定线+定角1.依据:与一条定线的两端夹角一定的动点路径是以定线为弦,定角为圆周角的弧。

2.应用:(1)矩形ABCD中,AB=10,AD=4,点P是CD上的动点,当∠APB=90°时求DP的长.简析:AB为定线,∠APB为定角(90°),P点路径为以AB为弦(直径)的弧,如下图,易得DP为2或8。

(2)如图,∠XOY = 45°,等边三角形ABC的两个顶点A、B分别在OX、OY上移动,AB = 2,那么OC的最大值为.简析:AB为定线,∠XOY为定角,O点路径为以AB为弦所含圆周角为45°的弧,如下图,转化为求定点C到定圆M的最长路径,即CM+MO=3+1+2。

(3)已知A(2,0),B(4,0)是x轴上的两点,点C是y轴上的动点,当∠ACB最大时,则点C的坐标为_____.简析:作ΔABC的处接圆M,当∠ACB最大时,圆心角∠AMB最大,当圆M 半径最小时∠AMB最大,即当圆M与y轴相切时∠ACB最大。

隐圆问题 最值问题 7种题型 知识点+例题+练习(非常好 分类全面)

隐圆问题 最值问题 7种题型 知识点+例题+练习(非常好 分类全面)
4、如图,在Rt△ABC中,∠ACB=90∘,AC=4,BC=3,点D是平面内的一个动点,且AD=2,M为BD的中点,在D点运动过程中,线段CM长度的取值范围是_________.
3、过定点做折叠的可用圆
(定点为圆心,对应点到定点的距离为半径)
例1、如图,在△ABC中,∠ACB=90°,AB= 5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是.
例2、平面内有四个点A、O、B、C,其中∠AOB=120°,∠ACB=60°,AO=BO=2,则满足题意的OC长度为整数的值可以是___________
练习、如图,AB为直径,AB=4,C、D为圆上两个动点,N为CD中点,CM⊥AB于M,当C、D在圆上运动时保持∠CMN=30°,则CD的长( )
A.随C、D的运动位置而变化,且最大值为4
教学内容
隐圆问题
教学目标
掌握隐圆的题型
重点
隐圆
难点
隐圆
教学过程
隐圆专题
1、几个点到某个定点距离相等可用圆
(定点为圆心,相等距离为半径)
例1:如图,若AB=OA=OB=OC,则∠ACB的大小是_______
练习:如图,已知AB=AC=AD,∠CBD=2∠BDC,∠BAC=44°,则∠CAD的度数为__________
B.随C、D的运动位置而变化,且最小值为2
C.随C、D的运动位置长度保持不变,等于2
D.随C、D的运动位置而变化,没有最值
6、一边固定及其所对角不变可用圆(定弦定角角)
(圆心在弦的垂直平分线上且和弦的两端点形成的圆心角等于圆周角的两倍)
例1:已知在 中, , ,则 的最大面积为_____________

中考数学隐圆隐切线问题专题培优

中考数学隐圆隐切线问题专题培优
基本题型:
①、定角定边问题;②切线最值问题;③圆与特殊角问题;④圆与中点问题;⑤二次函数最值问题;⑥圆中基本图形基本结论问题。
题型分析:
隐圆、隐切线、最值结合问题,需要培养发展数学直觉、逻辑推理、特殊位置特殊时刻法,理解运动中的不变量作为解题的突破口。
(一)柯西不等式:
1、已知直角△AOB中,直角顶点O在单位圆心上,斜边与单位圆相切,延长AO,BO分别与单位圆交于C,D.试求四边形ABCD面积的最小值为( ).
2、如图,P为的⊙O内的一个定点,A为⊙O上的一个动点,射线AP、AO分别与⊙O交于B、C两点.若⊙O的半径长为3,OP= ,则弦BC的最大值为( )
A.2 .B.3.C. .D.3 .
3、如图,A、B两点的坐标分别为(2,0)、(0,2),⊙C的圆心的坐标为(-1,0),半径为1,若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值是( ).
A、3 B、 C、 D、
(二)圆与中点问题:
1、如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点D是平面内的一个动点,且AD=4,M为BD的中点,在D点运动过程中,线段CM长度的最大值是.
2、如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是.
A. B.2 C. D.
3、如图,在菱形ABCD中,设AE⊥BC于点E,cosB= ,EC=2,P为边AB上的一个动点。则PE+PC的最小值为__________.
(十)隐切线问题:
1、在平面直角坐标系中,点A的坐标为(3.0),点B为y轴正半轴上的一点,点C是第一象限内一点,且AC=2.设tan∠BOC=m,则m的取值范围是.

隐圆问题大全[精选.]

隐圆问题大全[精选.]

隐圆问题1.已知四边形ABCD中,AB∥CD,BC=6cm,AB=AC=AD=5cm,求BD=___思路分析:以A为圆心,AB为半径作圆,作直径BM,连DM,可证DM=BC=6,BM=10,BD=8樁稱艤缪唛閱议镙鹕肾鲡舊鉍數维颐廢摟燈项鎣鷚礼锉龃沧护滞飑痫雏宮誘鄖睑鰩从偿邐膚遷暂驍崭牽军飭巅鈁殤诖讼軫饵谯毁丽鄴罗锵。

2.如图,在△ABC内有一点D,且DA=DB=DC,若∠DAB=20°,∠ACB=___思路分析:以D为圆心,DA为半径作圆,∠ADB=1400,∠ACB=700.3.(2013武汉)如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF 交BD于G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是.思路分析:先证AG⊥BE,则H是⊙O上一点,O、D、H共线,DH最小。

DH=15-4.(2013武汉).如图,⊙A与⊙B外切于点D,PC,PD,PE分别是圆的切线,C,D,E是切点,若∠CED=x°,∠ECD=y°,⊙B的半径为R,则⋂DE的长度是()A.()9090Rx-πB.()9090Ry-πC.()180180Rx-πD.()180180Ry-π思路分析:C、D、E在⊙P上22yDCEDPE=∠=∠)2180(yDBE-=∠第16题图HGFEDC BAEBDFBAOO /C 故选B5.如图,半径为4的⊙O 中,CD 为直径,弦AB ⊥CD 且过半径OD 的中点,点E 为⊙O 上一动点,CF ⊥AE 与点F.当点E 从点B 出发顺时针运动到点D 时,点F 所经过的路径长为( ). A π3π B.23π C.332π D.33π答案:C 提示:点F 在⊙O /上运动,∠ACF=300,∠O /=600,6.在平面直角坐标系中,直线y=-x+ 6分别与x 轴、y 轴交与点A 、B 两点,点C 在y 轴左边,且∠ACB=90°,则点C 的横坐标xc的取值范围是________.答案:3-32≦Xc <0提示:隐圆问题,以AB 为直径作圆P. PC ⊥y 轴Xc 最小.7.如图,铁路MN 和公路PQ 在点O 处交汇,∠QON=30°,公路PQ 上A 处距O 点240米,如果火车行驶时,周围200米以内会受到噪音的影响,呢么货车在铁路MN 上沿ON 方向以72千米/时的速度行驶时,A 处受噪音影响的时间为( )A.12秒 B.16秒 C.20秒 D.24秒 答案:B提示:以A 为圆心200为半径画圆,交MN 于CD,火车在CD 上行驶的时间即为所求.8.在坐标系中,点A 的坐标为(3,0),点B 为y 轴正半轴上的一点,点C 时第一象限内一点,且AC=2,设tan ∠BOC=m,则m 的取值范围是_________.答案:m ≥255提示:隐圆问题;OC与⊙A相切时,m最小为2如图,等腰三角形ABC中,AB=AC,将△ABC沿DE折叠,使底角顶点C落在三角形三边的垂直平分线的交点O处,若BE=BO,则∠ABC的度数为( )A.540B.600C.630D.720答案:C提示:以O为圆心,OB为半径作圆,连OC,设∠OBC=x=∠OCB=∠EOC,则∠BOE=∠BEO=2x,5x=1800,x=360,∠A=540,∠ABC=630.最新文件仅供参考已改成word文本。

隐圆专题

隐圆专题
【灵活运用】:已知点P到⊙O上的点得最短距离为 3cm,最长距离为5cm,则⊙O的半径为__4_或__1__cm.
皖ICP 备裕安中学电教中心
二、合理发散,注意找根
(一)、找定点,定圆心,找定长,定半径 例1:如图,在矩形中,AB=4,AD=6,E是AB边的中点,F 是线段BC边上的动点,将△EBF沿EF所在直线折叠得到 △EB'F,连接B’D,则B’D的最小值是__2__1_0_- 2
A. 4+4 2 B. 2+4 2
C. 4 2 D.6
皖ICP 备裕安中学电教中心
练习:如图,正方形ABCD中,AB=2,动点E从点 A出发向点D运动,同时动点F从点D出发向点C运 动,点E、F运动的速度相同,当它们到达各自终 点时停止运动,运动过程中线段AF、BE相交于点 P,则线段DP的最小值为___5__1__.
C(0,5),点D在第一象限内,且∠ADB=60∘.则线段CD的最
小值为(
B)
A、2 3 B、2 7 - 2
C、4
D、2 13 - 2
皖ICP 备裕安中学电教中心
【拓展提高】:如图,矩形ABCD中,AB=2,AD=3, 点E、F分别为AD、DC边上的点,且EF=2,点G为EF的 中点,点P为BC上一动点,则PA+PG的最小值为____。
皖ICP 备裕安中学电教中心
三、小结 通过本节课的学习你有哪些收获?
1、圆O外一点A到圆上一点B的最值问题 当O,B,A三点共线, 若点A、B位于点O同侧时,AB取最小值, 若点A、B位于点O两侧时,AB取最大值。
2、口诀:定点定长走圆周,定线定角跑双弧。 直角必有外接圆,对角互补也共圆。
四、作业:完成发的强化练习
用“隐圆”巧解最值问题

隐圆专题大全精选

隐圆专题大全精选

隐圆问题一、根据圆的定义作辅助圆例1 如图,四边形ABCD 中,AB〃CD, AB=AC=AD=p, BC = q,求BD 的长.解析:以点A为圆心、AB为半径作。

A.因为AB=AC=AD,所以B、C、D 三点在。

A上.延长BA交。

A于点E,连结DE.因为DC〃EB,所以弧ED = < BC,所以ED=BC=q.在Rt△BDE中,根据勾股定理,得BD= .例 2 如图,PA=PB,N APB=2N ACB, AC 与PB 交于点D,且PB = 5, PD =3,求AD.DC的值.解析:以点P为圆心、P B为半径的作。

P.因为PA=PB,Z APB = 2Z ACB, 所以点A、B、C在。

P上.此时。

P的直径BE=10, DE=8, DB = 2,由相交弦定理,得AD-DC=DE-DB=8x2=16二、作三角形的外接圆例3如图,D、E为4ABC边BC上的两点,且BD=CE,N BAD=N CAE,求证:AB=AC.解析:作^人口£的外接圆,分别交AB、AC于点M、N,连结MD、NE.因为N BAD=N CAE,所以N BAD+N DAE=N CAE+N DAE,即N NAD = N MAE.因为N BDM=N MAE,N CEN=N NAD,所以N BDM=N CEN.又BD=CE, DM=EN,所以△BDM04CEN,所以/8 = /仁即AB=AC.例 4 如图,△ ABC 中,BF、CE 交于点D, BD=CD,N BDE=N A,求证:解析:作△ABC的外接。

O,延长CE交。

O于G,连接BG.因为/G =Z A,/BDE=Z A,所以N G =Z BDE,所以BG=BD.又BD = CD,所以BG=CD.又因为N G=N CDF,N GBE=N DCF,所以△GBE04DCF.所以BE=CF.例5如图,在△ ABC中,AB = AC,N BAC=100°,N B的平分线交AC于D,求证:BC=BD+AD.解析:作4ABD的外接圆交BC于E,连结DE.因为BD是/ABC的平分线,所以弧AD = < DE,所以AD=DE.在^BDE 中,N DBE=20°,N BED = 180°-100°= 80°,所以N BDE=80°, 所以BE=BD.在4DEC 中,N EDC=80°-40°=40°,所以EC=DE.所以BC=BE+EC=BD+AD.三、结论类似于圆幂定理的形式时作辅助圆例6如图,在4ABC中,AB=AC=、次,D是边BC上的一点,且A D=1, 求BD-DC的值.解析:以点A为圆心、AB为半径作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方法技巧专题(十) 隐圆问题训练有些数学问题,将圆隐藏在已知条件里,隐晦地考查点和圆、直线和圆的位置关系.解题时,需要我们通过分析探索,发现这些隐藏的圆(简称隐圆),再利用和圆有关的一些知识进行求解.常见的隐圆模型有:①定弦对定角;②动点到定点的距离为定长;③四点共圆等.1.如图F10-1,在矩形ABCD 中,AB =4,BC =6,E 是矩形内部的一个动点,且AE ⊥BE ,则线段CE 的最小值为( )A .32 B .2√10-2 C .2√13-2 D .42.在矩形ABCD 中,已知AB =2 cm,BC =3 cm,现有一根长为2 cm 的木棒EF 紧贴着矩形的边(即两个端点始终落在矩形的边上),按逆时针方向滑动一周,则木棒的中点P 在运动过程中所围成的图形的面积为 ( )A .6 cm 2B .3 cm 2C .(2+π)cm 2D .(6-π)cm 23.如图,在Rt △ABC 中,∠ACB =90°,AC =8,BC =6,点D 是AC 的中点,将CD 绕着点C 逆时针旋转一周,在旋转的过程中,点D 的对应点为点E ,连结AE ,BE ,则△AEB 的面积的最小值为( )A .1B .2C .3D .44.如图F10-3,AC =3,BC =5,且∠BAC =90°,D 为AC 上一动点,以AD 为直径作圆,圆心为O ,连结BD 交圆O 于点E ,连结CE ,则CE 的最小值为( )A .√13-2B .√13+2C .5D .1695.如图F10-4,已知AB =AC =AD ,∠CBD =2∠BDC , ∠BAC =44°,则∠CAD 的度数为 .6.如图所示,四边形ABCD 中,DC ∥AB ,BC =1, AB =AC =AD =2,则BD 的长为 .7.如图,在矩形ABCD 中,AB =4,AD =6,E 是AB 边的中点,F 是线段CB 边上的动点,将△EBF 沿EF 所在直线折叠得到△EB'F ,连结B'D ,则B'D 的最小值是 .8.如图,矩形ABCD 中,AB =2,AD =3,点E ,F 分别为AD ,DC 边上的点,且EF =2,点G 为EF 的中点,点P 为BC 边上一动点,则P A +PG 的最小值为 .9.如图,正方形ABCD 中,AB =2,动点E 从点A 出发向点D 运动,同时动点F 从点D 出发向点C 运动,点E ,F 运动的速度相同,当它们到达各自终点时停止运动,运动过程中线段AF ,BE 相交于点P ,则线段DP 的最小值为 .10.在平面直角坐标系中,已知点A (4,0),B (-6,0),点C 是y 轴上的一个动点,当∠BCA =45°时,点C 的坐标为 .11.如图,点A与点B的坐标分别是(1,0),(5,0),点P是该直角坐标系内的一个动点.(1)使∠APB=30°的点P有个.(2)若点P在y轴上,且∠APB=30°,求满足条件的点P 的坐标.(3)当点P在y轴上移动时,∠APB何时有最大值?请说明理由.12.[2019·衢州]如图F10-10,在Rt△ABC中,∠C=90°, AC=6,∠BAC=60°,AD平分∠BAC交BC于点D,过点D作DE∥AC交AB于点E,点M是线段AD上的动点,连结BM并延长分别交DE,AC于点F,G.(1)求CD的长.(2)若点M是线段AD的中点,求EFDF的值.(3)请问当DM的长满足什么条件时,在线段DE上恰好只有一点P,使得∠CPG=60°?备用图【参考答案】1.B [解析] 由AE ⊥BE ,可知点E 在以AB 为直径的圆弧上,取AB 中点O ,连结OE ,OC ,则CE 的最小值为OC -OE ,因为OC =√62+22=2√10,OE =12AB =2,所以CE的最小值为2√10-2,故选B .2.D [解析] 如图所示:由题意,根据直角三角形斜边上的中线等于斜边的一半,得出此时P 到B 点距离始终为1 cm,则木棒EF 的中点P 在运动过程中的轨迹为分别以A ,B ,C ,D 为圆心,1 cm 为半径的弧.故所围成的图形的面积为:矩形面积-4个扇形面积=6-4×90π×12360=(6-π)(cm 2).3.D [解析] 如图,作CH ⊥AB 于H ,易知AB =10,CH =245,由题意,得点E 在以点C 为圆心,CD =4为半径的圆上,故点E 到AB 的最小距离为CH -CD =245-4=45,所以△AEB 面积的最小值为12×10×45=4.4.A [解析] 如图,连接AE ,则∠AED =90°,即∠AEB =90°,故点E 在以AB 为直径的圆弧上,设AB 中点为F ,连结EF ,CF ,则CE 的最小值为点C 到圆心F 的距离减去圆F的半径,即CE ≥CF -EF =√32+22-2=√13-2,故选A .5.88° [解析] 如图,∵AB =AC =AD ,∴点B ,C ,D 在以点A 为圆心,以AB 的长为半径的圆上,∴∠BAC =2∠BDC.∵∠CBD =2∠BDC ,∴∠BAC =∠CBD ,∠CAD =2∠BAC ,而∠BAC =44°,∴∠CAD =88°.6.√15 [解析] 以A 为圆心,AB 长为半径作圆,延长BA 交☉A 于F ,连结DF . ∵DC ∥AB ,∴DF =BC , ∴DF =CB =1,BF =2+2=4,∵FB 是☉A 的直径,∴∠FDB =90°, ∴BD =√BF 2-DF 2=√15.7.2√10-2 [解析] 点B'在以E 为圆心,EA 长为半径的圆上运动,当D ,B',E 共线时,此时B'D 的值最小. 根据折叠的性质,得△EBF ≌△EB'F , ∴EB'⊥B'F ,EB'=EB.∵E 是AB 边的中点,AB =4,∴AE =EB'=2. ∵AD =6,∴DE =√62+22=2√10, ∴B'D =2√10-2.8.4 [解析] ∵EF =2,点G 为EF 的中点,∴DG =1,∴G 是以D 为圆心,以1为半径的圆弧上的点.作A 关于BC 的对称点A',连结A'D ,交BC 于P ,交以D 为圆心,以1为半径的圆于G ,此时的P A +PG 值最小,最小值为A'G 的长.∵AB=2,AD=3,∴AA'=4,∴A'D=5,∴A'G=A'D-DG=5-1=4.∴P A+PG的最小值为4.9.√5-1[解析] 如图,∵动点E,F的速度相同, ∴AE=DF.又∵正方形ABCD,∴AD=AB,∠BAE=∠ADF=90°.在△ABE和△DAF中,{AB=AD,∠BAE=∠ADF AE=DF,,∴△ABE≌△DAF.∴∠ABE=∠DAF.∵∠ABE+∠BEA=90°,∴∠F AD+∠BEA=90°,∴∠APB=90°.∴点P在运动中保持∠APB=90°,∴点P的路径是一段以AB为直径的弧.设AB的中点为G,连结DG交弧于点P,此时DP的长度最小,AG=BG=12AB=1.在Rt△ADG中,DG=√AG2+AD2=√12+22=√5.∵PG=AG=1,∴DP=DG-PG=√5-1,即线段DP的最小值为√5-1.10.(0,12)或(0,-12)[解析] 法一:设线段BA的中点为E,∵点A(4,0),B(-6,0),∴AB=10,E(-1,0).(1)如图①所示,过点E在第二象限作EP⊥BA,且EP=12AB=5,则易知△PBA为等腰直角三角形,∠BP A=90°,P A=PB=5√2.以点P为圆心,P A(或PB)长为半径作☉P,与y轴的正半轴交于点C.∵∠BCA为☉P的圆周角,∴∠BCA=12∠BP A=45°,则点C即为所求.过点P作PF⊥y轴于点F,则OF=PE=5,PF=1,在Rt△PFC中,PF=1,PC=5√2,由勾股定理得CF=√PC2-PF2=7,∴OC=OF+CF=5+7=12,∴点C坐标为(0,12);(2)如图②所示,在第三象限参照(1)作同样操作,同理求得y轴负半轴上的点C坐标为(0,-12).综上所述,点C坐标为(0,12)或(0,-12).法二:设点C的坐标为(0,c),∵点A(4,0),B(-6,0),点C是y轴上的一个动点,∠BCA=45°,∴AC=2+c2BC=√(-6)2+c2,AB=4-(-6)=10,∴AB·OC2=AC·(BC·sin∠ACB)2∴10×|c|2=√42+c2(√(-6)2+c2·sin45°)2解得,c=12或c=-12或c=2(舍去)或c=-2(舍去),即点C的坐标为(0,12)或(0,-12).11.解:(1)无数[解析] 以AB为边,在第一象限内作等边三角形ABC,以点C为圆心,AC为半径作☉C,交y轴于点P1,P2.在优弧AP1B上任取一点P,如图①,则∠APB=12∠ACB=12×60°=30°.∴使∠APB=30°的点P有无数个.故答案为:无数.(2)a .当点P 在y 轴的正半轴上时,过点C 作CG ⊥AB ,垂足为G ,如图①. ∵点A (1,0),点B (5,0), ∴OA =1,OB =5. ∴AB =4.∵点C 为圆心,CG ⊥AB ,∴AG =BG =12AB =2,∴OG =OA +AG =3. ∵△ABC 是等边三角形,∴AC =BC =AB =4, ∴CG =√AC 2-AG 2=√42-22=2√3, ∴点C 的坐标为(3,2√3).过点C 作CD ⊥y 轴,垂足为D ,P 1,P 2是☉C 与y 轴的交点,连结CP 2,如图①.∵点C 的坐标为(3,2√3),∴CD =3,OD =2√3. ∵P 1,P 2是☉C 与y 轴的交点, ∴∠AP 1B =∠AP 2B =30°. ∵CP 2=CA =4,CD =3, ∴DP 2=√42-32=√7. ∵点C 为圆心,CD ⊥P 1P 2, ∴P 1D =P 2D =√7,∴P 2(0,2√3−√7),P 1(0,2√3+√7). b .当点P 在y 轴的负半轴上时,同理可得:P 3(0,-2√3−√7),P 4(0,-2√3+√7). 综上所述:满足条件的点P 的坐标有:(0,2√3−√7),(0,2√3+√7),(0,-2√3−√7),(0,-2√3+√7).(3)如图②,当过点A ,B 的☉E 与y 轴相切于点P 时,∠APB 最大.理由:作EH ⊥AB 于H ,则∠APB =∠AEH ,当∠APB 最大时,∠AEH 最大.由sin ∠AEH =2AE ,得当AE 最小即PE 最小时,∠AEH 最大.∴当圆与y 轴相切时,∠APB 最大.12.[分析](1)根据三角函数求得DC ;(2)证明△DFM ≌△AGM ,再利用△BFE ∽△BGA ,由相似比求得EFDF 的值;(3)根据∠CPG =60°,过C ,P ,G 作圆,圆心为Q ,△CQG 是顶角为120°的等腰三角形,根据☉Q 与DE 相切,经过点E ,经过点D 三种情况分别求得DM 的长,最后得出DM 的长需满足的条件.解:(1)∵AD 平分∠BAC ,∠BAC =60°, ∴∠DAC =12∠BAC =30°.在Rt △ADC 中,DC =AC ·tan30°=2√3. (2)易得,BC =6√3,BD =4√3.由DE ∥AC ,得∠EDA =∠DAC ,∠DFM =∠AGM. ∵AM =DM ,∴△DFM ≌△AGM ,∴DF =AG. 由DE ∥AC ,得△BFE ∽△BGA , ∴EF AG =BE AB =BD BC ,∴EFDF =EFAG =BDBC =√36√3=23.(3)∵∠CPG =60°,过C ,P ,G 作圆,圆心为Q , ∴△CQG 是顶角为120°的等腰三角形.①当☉Q 与DE 相切时,如图①,过Q 点作QH ⊥AC ,并延长HQ 与DE交于点P,连接QC ,QG.设☉Q 的半径QP =r ,则QH =12r ,r +12r =2√3,解得r =43√3,∴CG =43√3×√3=4,AG =2.∴DF =23×4=83,易知△DFM ∽△AGM ,可得DM AM=DF AG=43,则DM AD=47.∵AD =2CD =4√3,∴DM =16√37. ②当☉Q 经过点E 时,如图②,过C 点作CK ⊥AB ,垂足为K.设☉Q 的半径QC =QE =r ,则QK =3√3-r. 在Rt △EQK 中,12+(3√3-r )2=r 2, 解得r =14√39,∴CG =14√39×√3=143,AG =43,DF =23×143=289,易知△DFM ∽△AGM ,∴DMAM =DFAG =73, ∴DM AD=710,∴DM =14√35. ③当☉Q 经过点D 时,如图③,此时点M 与点G 重合,且恰好在点A 处,可得DM =4√3.综上所述,当DM =16√37或14√35<DM ≤4√3时,满足条件的点P 只有一个.。

相关文档
最新文档