初中数学方程与不等式练习

合集下载

初中数学方程与不等式之分式方程技巧及练习题含答案

初中数学方程与不等式之分式方程技巧及练习题含答案
x+m﹣1=3(x﹣2),
解得:x= ,
∵分式方程的解为正整数,
∴m+5是2的倍数,
∵m≤3,
∴m=﹣3或m=﹣1或m=1或m=3,
∵x≠2,
∴ ≠2,
∴m≠﹣1,
∴m=﹣3或m=1或m=3,
∴符合条件的所有整数m的取值之和为1,
故选:A.
【点睛】
本题考查分式方程的解法、解一元一次不等式组;熟练掌握分式方程的解法、一元一次不等式组的解法,是解题关键,分式方程切勿遗漏增根的情况是本题易错点.
10.把分式方程 ,的两边同时乘以x-2,约去分母,得()
A.1-(1-x)=1B.1+(1-x)=1C.1-(1-x)=x-2D.1+(1-x)=x-2
【答案】D
【解析】
【分析】
本题需要注意的有两个方面:①、第二个分式的分母为2-x,首先要化成x-2;②、等式右边的常数项不要漏乘.
【详解】
解:
两边同时乘以x-2,约去分母,得1+(1-x)=x-2
故选:D.
【点睛】
本题考查了分式方程的解,解一元一次不等式,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.
6.某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同.设原计划平均每天生产 个零件,根据题意可列方程为()
A. B. C. D.
解:设走路线一时的平均速度为x千米/小时,
故选A.
20.若关于 的分式方程 有增根,则 的值是()
A. B.1C.2D.3
【答案】B
【解析】
【分析】
根据分式方程的增根的定义得出x-3=0,再进行判断即可.

初中数学方程与不等式25道典型题(含答案和解析)

初中数学方程与不等式25道典型题(含答案和解析)

初中数学方程与不等式25道典型题(含答案和解析)1. 楠楠老师在解方程2x−13=x +a 2−1去分母时,因为手抖发作,将方程右侧的-1漏乘了,因而求得的方程的解为x =2,请帮助楠楠老师求出正确的解. 答案:x =-3. 解析:漏乘后方程为:2(2X -1)=3(x +a )-1. 4x -2=3x +3a -1. x =3a +1 .∵ x =2.∴ a =13.∴ 原方程去分母后得: 2(2X -1)=3(x +13)-6. 4x -2=3x +1-6. X =-3.考点:方程与不等式—一元一次方程—含字母参数的一元一次方程—错解方程.2. 已知关于x 的方程3[x −2(x −a2)]=4x 与3x +a 12−1−5x 8=1有相同的解,求 a 的值及方程的解.答案:a =2711,方程的解为x =8177.解析:把a 当作常数,方程3[x −2(x −a2)]=4x 的解为x =37a .方程3x +a 12−1−5x 8=1的解为x =27−2a 21.故37a =27−2a 21.解得a =2711,所以x =8177.考点:方程与不等式—一元一次方程—同解方程—同解方程求参数.3. 解方程组.(1){m +n3−n−m4=24m +n 3=14 (2){1−0.3(y −2)=x +15y−14=4x +920−1答案:(1){m =185n =−65.(2){x =4y =2.解析:(1)化简方程组得,{7m +n =2412m +n =42,加减消元可解得答案为{m =185n =−65.(2)化简方程组得,{2x +3y =144x −5y =6,加减消元可解得答案为{x =4y =2.考点:方程与不等式—二元一次方程组—解二元一次方程组.4. 回答下列小题.(1)当k = 时,方程组{4x +3y =1kx +(k −1)y =3的解中,x 与y 的值相等.(2)关于x ,y 的方程组{ax +by =2cx −7y =8,甲正确的解得{x =3y =−2,乙因为把c 看错了,解得{x =−2y =2,求a ,b ,c 的值. (3)若方程组{2x +3y =7ax −by =4与方程组{ax +by =64x −5y =3有相同的解,则a ,b 的值为( ).A.{a =2b =1B. {a =2b =−3C. {a =2.5b =1D. {a =4b =−5 答案:(1)11.(2)a =4,b =5,c =-2. (3)C .解析:(1)因为x 和y 的值相等,所以x =y ,代入1式可得x =y =17,再代入2式可得k =11.(2)乙看错了c ,说明乙的解只满足1式;甲是正确的解,说明甲的解满足两个等式.将解代入方程可得{3a −2b =23c +14=8−2a +2b =2,解得a =4,b =5,c =-2.(3)由题中条件:有相同的解可知,这两个方程组可以联立,即{2x +3y =7ax−by =4ax +by =64x−5y =3,由1式和4式可以解得{x =2y =1,代入2式和3式可得{2a −b =42a +b =6. 解得{a =2.5b =1,故选C.考点:方程与不等式—二元一次方程组—同解方程组.5. 台湾是中国领土不可分割的一部分,两岸在政治、经济、文化等领域的交流越来越深入,2015年10月10日是北京故宫博物院成立90周年院庆日,两岸故宫同根同源,合作举办了多项纪念活动.据统计北京故宫博物院与台北故宫博物院现共有藏品约245万件,其中北京故宫博物院藏品数量比台北故宫博物院藏品数量的2倍还多50万件,求北京故宫博物院和台北故宫博物院各约有多少万件藏品.答案:北京故宫博物院约有180万件藏品,台北故宫博物院约有65万件藏品. 解析:设北京故宫博物院约有x 万件藏品,台北故宫博物院约有y 万件藏品.依题意,列方程组得:{x +y =245x =2y +50.解得{x =180y =65.答:北京故宫博物院约有180万件藏品,台北故宫博物院约有65万件藏品. 考点:方程与不等式—二元一次方程组—二元一次方程(组)的解.6.如图所示,宽为50cm的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为 cm2.答案:400.解析:设一个小长方形的长为x,宽为y,则可列方程组{x+y=50x+4y=2x.解得{x=40y=10.则一个小长方形的面积=40cm×10cm=400cm2.考点:方程与不等式—二元一次方程组—二元一次方程(组)的应用.7.高新区某水果店购进800千克水果,进价每千克7元,售价每千克12元,售出总量一半后,发现剩下的水果己经有5﹪受损(受损部分不可出售),为尽快售完,余下的水果准备打折出售.(1)若余下的水果打6折出售,则这笔水果生意的利润为多少元?(2)为使总利润不低于2506元,在余下的水果的销售中,营业员最多能打几折优惠顾客(限整数折,例如:5折、6折等)?答案:(1)这笔水果生意的利润为1936元.(2)营业员最多能打8折优惠顾客.解析:(1)根据题意得:400×12+(400-400×5﹪)×0.6×12-800×7=1936(元).答:这笔水果生意的利润为1936元.(2)设余下的水果应按原出售价打x折出售,根据题意列方程:400×12+(400-400×5﹪)×0.1x×12-800×7=2506.解方程得:x=7.25.答:营业员最多能打8折优惠顾客.考点:方程与不等式—一元一次方程—一元一次方程的应用.打折销售问题—经济利润问题.8. 二轮自行车的后轮磨损比前轮要大,当轮胎的磨损度(﹪)达到100时,轮胎就报废了,当两个轮的中的一个报废后,自行车就不可以继续骑行了.过去的资料表明:把甲、乙两个同质、同型号的新轮胎分别安装在一个自行车的前、后轮上后,甲、乙轮胎的磨损度(﹪)y1、y2与自行车的骑行路程x (百万米)都成正比例关系,如图(1)所示.(1)线段OB 表示的是 (填“甲”或“乙”),它的表达式是 (不必写出自变量的取值范围).(2)求直线OA 的表达式,根据过去的资料,这辆自行车最多可骑行多少百万米. (3)爱动脑筋的小聪,想了一个增大自行车骑行路程的方案:如图(2),当自行车骑行a百万米后,我们可以交换自行车的前、后轮胎,使得甲、乙两个轮胎在b 百万米处,同时报废,请你确定方案中a 、b 的值. 答案:(1)1.甲.2.y =20x. (2)OA 的解析式是y =1003x ,这辆自行车最多可骑行3百万米.(3){a =158b =154.解析:(1)∵ 线段OB 表示的是甲,设OB 的解析式是y =kx.∴ 1.5k =30. ∴ 解得:k =20. ∴ OB 的表达式是y =20x. ∴ 答案是:甲,y =20x .(2)∵ 设直线OA 的表达式为y =mx.∴ 根据题意得:1.5m =50. ∴ 解得:m =1003.∴ 则OA 的解析式是y =1003x .∵ 当y =100时,100=1003x .∴ 解得:x =3.答:这辆自行车最多可骑行3百万米.(3)∵ 根据题意,得:{1003a +20(b −a )=10020a +1003(b −a )=100. ∴ 解这个方程组,得{a =158b =154.考点:方程与不等式—二元一次方程组—解二元一次方程组.函数—一次函数—待定系数法求正比例函数解析式—一次函数的应用—一次函数应用题.9. 若关于x 的一元二次方程(x +1)2=1-k 无实根,则k 的取值范围为 .答案:k >1.解析:若方程(x +1)2=1-k 无实根,则1-k >0.∴k >1.考点:方程与不等式—一元二次方程—一元二次方程的定义—一元二次方程的相关概念.10. 小明在探索一元二次方程2x2-x -2=0的近似解时作了如下列表计算.观察表中对应的数据,可以估计方程的其中一个解的整数部分是( ).A.4B.3C.2D.1答案:D.解析:根据表格中的数据,可知:方程的一个解x的范围是:1<x<2.所以方程的其中一个解的整数部分是1.考点:方程与不等式—一元二次方程—估算一元二次方程的近似解.11.已知m、n、p分别是Rt△ABC的三边长,且m≤n<p.(1)求证:关于x的一元二次方程mx2+√2px+n=0必有实数根.(2)若x=-1是一元二次方程mx2+√2px+n=0的一个根,且Rt△ABC的周长为√2+2,求Rt△ABC的面积.答案:(1)证明见解析.(2)1.解析:(1)∵ m、n、p分别是Rt△ABC的三边长,且m≤n<p.∴ p2=m2+n2.∴ b2-4ac=2p2-4mn=2(m2+n2)-4mn=2(m-n)2≥0.∴关于x的一元二次方程mx2+√2px+n=0必有实数根.(2)∵ x=-1是一元二次方程mx2+√2px+n=0的一个根.∴ m-√2p+n=0 ①.∵ Rt△ABC的周长为2√2+2.∴ m+n+p=2√2+2②.由①、②得:m+n=2√2,p=2.∴(m+n)2=8.∴ m2+2mn+n2=8.又∵ m2+n2=p2=4.∴ 2mn=4.∴1=mn=1.2∴ Rt△ABC的面积是1.考点:方程与不等式—一元二次方程—根的判别式—判断一元二次方程根的情况.根与系数的关系—韦达定理应用.三角形—三角形基础—三角形面积及等积变换.12.关于x的方程(k-3)x2+2x+1=0有两个不等的实数根,则k的取值范围为.答案:k<4且k≠3.解析:∵关于x的方程(k-3)x2+2x+1=0有两个不等的实数根.∴ {k−3≠0△=4−4(k−3)>0.∴ k<4且k≠3.考点:方程与不等式—一元二次方程—一元二次方程的定义—根据一元二次方程求参数值.根的判别式—已知一元二次方程根的情况,求参数的取值范围.13.设a、b是方程x2+x-9=0的两个实数根,则a2+2a+b的值为.答案:8.解析:∵ a是方程x2+x-9=0的根.∴ a2+a==9.由根与系数的关系得:a+b=-1.∴ a2+2a+b=(a2+a)+(a+b)=9+(-1)=8.考点:方程与不等式—一元二次方程—根与系数的关系—韦达定理应用.14.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12cm的住房墙.另外三边用25cm长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门.(1)所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?(2)能否围成一个面积为100 m2的矩形猪舍?如能,说明了围法;如不能,请说明理由.答案:(1)矩形猪舍的长为10m,宽为8m.(2)不能围成一个面积为100 m2的矩形猪舍.解析:(1)设矩形猪舍垂直于房墙的一边长为xm,则矩形猪舍的另一边长为(26-2x)m.由题意得:x(26-2x)=80.解得:x1=5,x2=8,当x=5时,26-2x=16>12(舍去).当x=8时,26-2x=10<12.答:矩形猪舍的长为10m,宽为8m.(2)由题意得:x(26-2x)=100.整理得:x2-13x+50=0.∵△=(-13)2-4×1×50=-31<0.∴方程无解.故不能围成一个面积为100 m2的矩形猪舍.考点:方程与不等式—一元二次方程—根的判别式—判断一元二次方程根的情况.一元二次方程的应用.15.某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为 120元时,每天可售出20件,为了迎接“五一”国际劳动节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.(1)设每件童装降价x元时,每天可销售__________件,每件盈利__________元(用x的代数式表示).(2)每件童装降价多少元时,平均每天赢利1200元.(3)要想每天赢利2000元,可能吗?请说明理由.答案:(1)(20+2x),(40-x).(2)20元或10元.(3)不可能,理由见解析.解析:(1)根据题意得:每天可销售(20+2x);每件盈利(40-x).(2)根据题意得:(40-x)(20+2x)=1200.解得:x1=20,x2=10.答:每件童装降价20元或10元时,平均每天赢利1200元.(3)(40-x)(20+2x)=2000.整理得:x2-30x+600=0.△=62-4ac=(-30)2-4×1×600=900-2400<0.∴方程无解.答:不可能做到平均每天赢利2000元.考点:式—整式—代数式.方程与不等式—一元二次方程—一元二次方程的解.根的判别式—判断一元二次方程根的情况—一元二次方程的应用.16.若a>b,则下列不等式中正确的是.(填序号)① a-2<b-2 ② 5a<5b ③-2a<-2b ④a3<b3答案:③.解析:不等式的两边同时乘以(或除以)同一个负数,不等号改变方向.考点:方程与不等式—不等式与不等式组—不等式的基础—不等式的性质.17.解不等式:2−x+23>x+x−12.答案:x<1.解析:12-2(x+2)>6x+3(x-1).12-2x-4>6x+3x-3.-11x>-11.X<1.考点:方程与不等式—不等式与不等式组—解一元一次不等式.18.解不等式组{2x+4≤5(x+2)x−1<23x,把它的解集在数轴上表示出来,并求它的整数解.答案:原不等式组的整数解为-2,-1,0,1,2.解析:由2x+4≤5(x+2)得x≥-2.由x−1<23x得x<3.不等式组的解集在数轴上表示如下.∴原不等式组的解集为-2≤x<3.∴原不等式组的整数解为-2,-1,0,1,2.考点:方程与不等式—不等式与不等式组—在数轴上表示不等式的解集—一元一次不等式组的整数解.19.为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造A、B两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号沼气池的占地面积、使用农户数及造价见下表.已知可供建造沼气池的占地面积不超过370m2,该村农户共有498户.(1)满足条件的方案共有哪几种?写出解答过程.(2)通过计算判断,哪种建造方案最省钱?造价最低是多少万元?答案:(1)方案共三种:分别是A型6个,B型14个.A型7个,B型13个.A型8个,B型12个.(2)A型建8个的方案最省,最低造价52万元.解析:(1)设A型的建造了x个,得不等式组:{15x+20(20−x)≤370 18x+30(20−x)≥498.解得:6≤x≤8.5.三方案:A型6个,B型14个.A型7个,B型13个.A型8个,B型12个.(2)当x=6时,造价2×6+3×14=54.当x=7时,造价2×7+3×13=53.当x=8时,造价2×8+3×12=52.故A型建8个的方案最省,最低造价52万元.考点:方程与不等式—不等式与不等式组—一元一次不等式组的应用—最优化方案.20.服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元,计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?(2)在(1)条件下,该服装店在5月1日当天对甲种服装以每件优惠a(0<a<20)元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?答案:(1)甲种服装最多购进75件.(2)当0<a<10时,购进甲种服装75件,乙种服装25件.当a=10时,按哪种方案进货都可以.当10<a<20时,购进甲种服装65件,乙种服装35件.解析:(1)设购进甲种服装x件,由题意可知.80x+60(100-x)≤7500,解得:x≤75.答:甲种服装最多购进75件.(2)设总利润为w元,因为甲种服装不少于65件,所以65≤x≤75.W=(40-a)x+30(100-x)=(10-a)x+3000.方案1:当0<a<10时,10-a>0,w随x的增大而增大.所以当x=75时,w有最大值,则购进甲种服装75件,乙种服装25件.方案2:当a=10时,所有方案获利相同,所以按哪种方案进货都可以.方案3:当10<a<20时,10-a<0,w随x的增大而减小.所以当x=65时,w有最大值,则购进甲种服装65件,乙种服装35件.考点:方程与不等式—不等式与不等式组—一元一次不等式的应用—一元一次不等式组的应用—最优化方案.21.解答下列问题:(1)计算:2xx+1−2x+6x2−1÷x+3x2−2x+1.(2)解分式方程:3x+1+1x−1=6x2−1.答案:(1)2x+1.(2)x=2.解析:(1)原式=2xx+1−2(x+3)(x+1)(x−1)÷(x−1)2x+3.=2xx+1−2(x−1)x+1=2x+1.(2)3(x-1)+x+1=6.3x-3+x+1=6.4x=8.x=2.检验:当x=2时,x2+1≠0.故x=2是该分式方程的解.考点:式—分式—分式的加减法—简单异分母分式的加减.方程与不等式—分式方程—解分式方程—常规法解分式方程.22.解下列方程:(1)5x−4x−2=4x+103x−6−1.(2)x−2x+2−x+2x−2=8x2−4.答案:(1)x=2是方程的增根,原方程无解.(2)x=-1.解析:(1)等式两边同乘以3(x-2)得,3(5x-4)=4x+10.解得x=2.检验x=2时,2(x-2)=0.∴ x=2是方程的增根,原方程无解.(2)两边同乘x2-4.得:-8x=8.X=-1.经检验x=-1是原方程的解.考点:方程与不等式—分式方程—解分式方程—常规法解分式方程.分式方程解的情况—分式方程有解—分式方程有增根.23.若分式方程2xx+1−m+1x2+x=x+1x产生增根,则m的值为.答案:-2或1.解析:方程两边都乘x(x+1).得x2-(m+1)=(x+1)2.∵原方程有增根.∴最简公分母x(x+1)=0.解得x=0或-1.当x=0时,m=-2.当x=-1时,m=0.故m的值可能是-2或0.考点:方程与不等式—分式方程—分式方程解的情况—根据增根求参数.24.在“春节”前夕,某花店用13000元购进第一批礼盒鲜花,上市后很快销售一空.根据市场需求情况,该花店又用6000元购进第二批礼盒鲜花.已知第二批所购鲜花的盒数是第一批所购鲜花的12,且每盒鲜花的进价比第一批的进价少10元.问第二批鲜花每盒的进价是多少元?答案:第二批鲜花每盒的进价是 120元.解析:设第二批鲜花每盒的进价是x元.依题意有:6000x =12×13000x+10.解得x=120.经检验:x=120是原方程的解,且符合题意.答:第二批鲜花每盒的进价是120元.考点:方程与不等式—分式方程—分式方程的应用.25.甲、乙两个工程队共同承担一项筑路任务,甲队单独完成此项任务比乙队单独完成此项任务多用10天,且乙队每天的工作效率是甲队每天工作效率的1.5倍.(1)甲、乙两队单独完成此项任务各需要多少天?(2)若甲、乙两队共同工作4天后,乙队因工作需要停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,如果要完成任务,那么甲队再单独施工多少天?答案:(1)甲队单独完成此项任务需要30天,乙队单独完成此项任务需要20天.(2)甲队再单独施工10天.解析:(1)设乙队单独完成此项任务需要x天,则甲队单独完成此项任务需要(x+10)天.由题意可得:1x = 1.5x+10.解得:x=20.经检验,x=20是原方程的解.∴x+10=30(天).答:甲队单独完成此项任务需要30天,乙队单独完成此项任务需要20天.(2)设甲队再单独施工a天,由题意可得:(130+120)×4+230×a=1.解得:a=10.答:甲队再单独施工10天.考点:方程与不等式—一元一次方程—一元一次方程的应用—工程问题.分式方程—分式方程的应用.。

初中数学方程与不等式之无理方程知识点训练(1)

初中数学方程与不等式之无理方程知识点训练(1)

初中数学方程与不等式之无理方程知识点训练(1)一、选择题1.若关于x的方程存在整数解,则正整数m的所有取值的和为___________.【答案】18【解析】【分析】将原方程变形为,由m为正整数、被开方数非负,可得出2010≤x≤2018,依此代入各值求出m的值,再将是正整数的m的值相加即可得出结论.【详解】原题可得:,∵m为正整数,∴,∴2x-4020≥0,∴x≥2010.∵2018-x≥0,∴x≤2018,∴2010≤x≤2018.当x=2010时,m=0,m=0,不符合题意;当x=2011,m=,不符合题意;7当x=2012m=4,,不符合题意;当x=2013,m=,不符合题意;5当x=2014时,2m=8,m=4;当x=2015,,不符合题意;当x=2016m=12,,不符合题意;当x=2017时,m=14;当x=2018时,0=16,不成立.∴正整数m的所有取值的和为4+14=18.故答案为18.【点睛】本题考查了无理方程,由被开方数非负及m为正整数,找出x的取值范围是解题的关键.2.的根是 .【答案】x=3【解析】【分析】方程两边同时平方,即可转化成一元一次方程,解得x 的值,然后代入原方程进行检验即可.【详解】方程两边同时平方得:x+1=4,解得:x=3.检验:x=3时,左边,则左边=右边.故x=3是方程的解.故答案是:x=3.3.1=的解为 .【答案】x=1【解析】【分析】方程两边平方即可去掉绝对值符号,解方程求得x 的值,然后把x 的值代入进行检验即可.【详解】方程两边平方,得:2-x=1,解得:x=1.经检验:x=1是方程的解.故答案是:x=1.4.2=的解是_______________.【答案】2x =【解析】试题分析:方程两边平方,得324x -=,解得2x =.代入验根可得方程的根为2x =. 考点:解无理方程.5.x =的解为_____.【答案】x=1【解析】分析:方程两边平方,将无理方程转化为整式方程,求出x 的值,经检验即可得到无理方程的解.详解:两边平方得:-x+2=x 2,即(x-1)(x+2)=0,解得:x=1或x=-2,经检验x=-2是增根,无理方程的解为x=1,故答案为x=1点睛:此题考查了无理方程,利用了转化的思想,解无理方程注意要验根.6.方程(x 30-=的解是______.【答案】x=2【解析】【分析】求出x 0=,求出即可.【详解】解:(x 30-=Q ,2x 0∴-≥,x 2∴≤,x 30∴-≠,0=Q ,x 2=,故答案为:x 2=.【点睛】0=是解此题的关键.7.0的根是____.【答案】x=1【解析】【分析】将无理方程化为一元二次方程,然后求解即可.【详解】原方程变形为x (x-1)=0,∴x=0或x-1=0,∴x=0或x=1,∴x=0时,被开方数x-1=-1<0,∴x=0不符合题意,舍去,∴方程的根为x=1,故答案为x=1.【点睛】本题考查了无理方程,将无理方程化为一元二次方程是解题的关键.8.方程43x-=x的解是______.【答案】x=1【解析】【分析】将无理方程化为一元二次方程,然后求解即可.【详解】原方程变形为 4-3x=x2,整理得 x2+3x-4=0,∴(x+4)(x-1)=0,∴x+4=0或x-1=0,∴x1=-4(舍去),x2=1.故答案为x=1.【点睛】本题考查了无理方程,将无理方程化为一元二次方程是解题的关键.9.方程6+=的根为.x x【答案】x=3【解析】两边平方得x+6=x2,解一元二次方程得x1=3,x2=-2(舍去),所以方程的根为10.2120-=化为有理方程_______x x【答案】3x²+1=0【解析】【分析】先移项,然后方程两边平方即可去根号,转化为有理方程.【详解】212x x-=两边平方得:x²-1=4x²,即3x²+1=0.故答案是:3x²+1=0.【点睛】本题考查了无理方程的解法,利用平方法是转化为整式方程的基本方法.11.232+=的解是__________.x x【答案】1x =【解析】【分析】先左右两边同时平方,然后解整式方程即可,注意检验求出的整式方程的根是否为原方程的增根.【详解】2x =,∴22(2)x =,即2234x x += ,解得1x =或1x =-.当1x =-2,22,22x ==-≠- ,∴1x =-是原方程的增根,∴原方程的解为1x =.故答案为:1x =.【点睛】本题主要考查无理方程的解法,掌握无理方程的解法是解题的关键.12.无理方程(0x -=的根是____.【答案】x=2.【解析】【分析】根据0乘任何数都得零,可得方程的解,根据被开方数是非负数,可得答案.【详解】解:由(0x -=,∴x-5=0或2-x=0,解得:x=5,x=2,∵20x -≥,∴2x ≤,当x=5时,被开方数无意义;故方程的解为:x=2,故答案为:x=2.【点睛】本题考查了无理方程,利用0乘任何数都得零是解题关键,注意被开方数是非负数.13.方程x =_____.【答案】x =1【解析】【分析】先把方程两边同时平方转化为有理方程,然后解得有理方程的解,最后要进行检验,本题得以解决.【详解】x =x 2=4﹣3x ,解得,x =1或x =﹣4,检验:当x =﹣4不是原方程的根,故原无理方程的解是x =1,故答案为:x =1【点睛】本题考查无理方程,解题的关键是明确无理方程的解法,注意解方程最后要检验.14.3=的解的是x =__________________.【答案】8x =【解析】【分析】把方程两边平方去根号后即可转化成整式方程,解方程即可求出x 的值,然后进行检验.【详解】两边平方得:x+1=9,解得:x=8.检验:x=8是方程的解.故答案为x=8.【点睛】本题考查的知识点是平方根的定义,解题的关键是熟练的掌握平方根.15.如果关于x x =的一个根为3,那么a =_______【答案】3【解析】【分析】把3x =代入原方程即可得到答案.【详解】解:把3x =3=,两边平方得:69a +=,所以:3a =,经检验:3a =符合题意,故答案为:3.【点睛】本题考查方程的解的含义以及解无理方程,掌握方程的解及解无理方程的方法是关键.16.方程(x 0-=的解是_____________________【答案】4x =【解析】【分析】因为(x 0-=可以得出x−2=0,x−4=0且x−4≥0,由此求得原方程的解即可.【详解】解:(x 0-=Q20,40x x ∴-=-=,且40x -≥解得2,4x x ==且4x ≥4x ∴=故答案为4x =【点睛】此题考查解无理方程,注意被开方数必须大于或等于0,求此类方程的解必须满足这一条件.17.如果方程1k -=有实数解,那么k 的取值范围是________________________. 【答案】:k≤1【解析】【分析】根据二次根式有意义的条件列出关于k 的不等式求解即可.【详解】∵1k -=,1k =-,0≥,∴10k -≥,∴k ≤1.故答案为:k≤1.【点睛】本题考查了无理方程,根据二次根式有意义的条件列出关于k 的不等式是解答本题的关键.18.下列方程中:a 、421x x +=;b 、32x x -+=;c 、31x =;d 、412x =属于高次方程的是_____.【答案】a ,d【解析】【分析】根据高次方程的定义判断即可.【详解】解:421x x +=是高次方程;32x x -+=是分式方程;31x x +=是无理方程;412x =是高次方程,故答案为:a ,d .【点睛】本题考查了高次方程的定义:整式方程未知数次数高于2次的方程叫高次方程.19.方程12x -=的解是__________.【答案】5x =.【解析】试题分析:原方程两边平方,得:x -1=4,所以,5x =.故答案为5x =. 考点:根式方程.20.方程=0的解为__________. 【答案】【解析】【分析】将原方程两边平方得出关于x 的整式方程,解之求得x 的值,再由二次根式有意义的条件可确定x 的最终结果.【详解】解:将原方程两边平方得(x−5)(x−4)=0,则x−5=0或x−4=0,解得:x =5或x =4,∵x −5≥0,x−4≥0,解得:x≥5,∴x =5,故答案为:x =5.【点睛】本题主要考查解无理方程,解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法.常用的方法有:乘方法,配方法,因式分解法,设辅助元素法,利用比例性质法等.。

方程与不等式的应用大题专练(真题6道模拟30道)-中考数学重难题型押题培优导练案(专用)【原卷版】

方程与不等式的应用大题专练(真题6道模拟30道)-中考数学重难题型押题培优导练案(专用)【原卷版】

方程与不等式的应用大题专练(真题6道模拟30道)【方法归纳】题型概述,方法小结,有的放矢考点考查年份考查频率方程与不等式的应用(大题)2012、2013、2014、2015、2016/2019 十年5考方程与不等式的应用是北京中考以前常考的内容,主要考查分式方程的应用,同时也有可能会考查一元二次方程的应用、方程组的应用、不等式的应用.1、列方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.2、要掌握常见问题中的基本关系,如行程问题:速度=路程/时间,工作量问题:工作效率=工作量/工作时间,销售问题:利润=售价-进阶=进件×(1+利润率),总利润=单件利润×销售量等.列分式方程解应用题一定要审清题意,找相等关系是着眼点,要学会分析题意,提高理解能力.【典例剖析】典例精讲,方法提炼,精准提分【例1】(2015·北京·中考真题)为解决“最后一公里”的交通接驳问题,北京市投放了大量公租自行车供市民使用.到2013年底,全市已有公租自行车25000辆,租赁点600个.预计到2015年底,全市将有公租自行车50000辆,并且平均每个租赁点的公租自行车数量是2013年成平均每个租赁点的公租自行车数量的1.2倍.预计2015年底,全市将租赁点多少个?【例2】(2019·北京·中考真题)小云想用7天的时间背诵若干首诗词,背诵计划如下:①将诗词分成4组,第i组有x i首,i =1,2,3,4;①对于第i组诗词,第i天背诵第一遍,第(i+1)天背诵第二遍,第(i+3)天背诵第三遍,三遍后完成背诵,其它天无需背诵,i=1,2,3,4;第1天第2天第3天第4天第5天第6天第7天第1组x1x1x1第2组x2x2x2第3组第4组x4x4x4①每天最多背诵14首,最少背诵4首.解答下列问题:(1)填入x3补全上表;(2)若x1=4,x2=3,x3=4,则x4的所有可能取值为______;(3)7天后,小云背诵的诗词最多为______首.【真题再现】必刷真题,关注素养,把握核心1.(2012·北京·中考真题)列方程或方程组解应用题:据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.2.(2014·北京·中考真题)列方程或方程组解应用题:小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.3.(2013·北京·中考真题)列方程或方程组解应用题:某园林队计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比计划提前3小时完成任务.若每人每小时绿化面积相同,求每人每小时的绿化面积.4.(2016·北京·中考真题)阅读下列材料:北京市正围绕着“政治中心、文化中心、国际交往中心、科技创新中心”的定位,深入实施“人文北京、科技北京、绿色北京”的发展战略.“十二五”期间,北京市文化创意产业展现了良好的发展基础和巨大的发展潜力,已经成为首都经济增长的支柱产业.2011年,北京市文化创意产业实现增加值1938.6亿元,占地区生产总值的12.2%.2012年,北京市文化创意产业继续呈现平稳发展态势,实现产业增加值2189.2亿元,占地区生产总值的12.3%,是第三产业中仅次于金融业、批发和零售业的第三大支柱产业.2013年,北京市文化产业实现增加值2406.7亿元,比上年增长9.1%,文化创意产业作为北京市支柱产业已经排到了第二位.2014年,北京市文化创意产业实现增加值2749.3亿元,占地区生产总值的13.1%,创历史新高,2015年,北京市文化创意产业发展总体平稳,实现产业增加值3072.3亿元,占地区生产总值的13.4%.根据以上材料解答下列问题:(1)用折线图将2011-2015年北京市文化创意产业实现增加值表示出来,并在图中标明相应数据;(2)根据绘制的折线图中提供的信息,预估2016年北京市文化创意产业实现增加值约_____________亿元,你的预估理由_____________.【模拟精练】押题必刷,巅峰冲刺,提分培优一、解答题1.(2022·北京十一学校一分校模拟预测)列分式方程解应用题:截止到2020年11月23日,全国832个国家级贫困县全部脱贫摘帽.某单位党支部在“精准扶贫”活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗.已知每棵乙种树苗的价格比甲种树苗的价格贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同,求甲、乙两种树苗每棵的价格.2.(2020·北京朝阳·三模)通过使用手机app购票,智能闸机、手持验票机验票的方式,能够大大缩短游客排队购票、验票的等待时间,且操作极其简单,已知某公园采用新的售票、验票方式后,平均每分钟接待游客的人数是原来的10倍,且接待5000名游客的入园时间比原来接待600名游客的入园时间还少5分钟,求该公园原来平均每分钟接待游客的人数.3.(2021·北京·101中学三模)在“新冠”期间,某小区物管为预防业主感染传播购买A型和B型两种3M口罩,购买A型3M口罩花费了2500元,购买B型3M口罩花费了2000元,且购买A型3M口罩数量是购买B型3M口罩数量的2倍,已知购买一个B型3M口罩比购买一个A型3M口罩多花3元.则该物业购买A、B两种3M口罩的单价为多少元?4.(2022·北京四中九年级开学考试)今年通州区在老旧小区改造方面取得了巨大成就,人居环境得到了很大改善.如图,某小区规划在长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中的小路分别与AB和AD平行,其余部分种草.通过测量可知草坪的总面积为112m2,求小路的宽.5.(2022·北京丰台·九年级期末)某校举办了“冰雪运动进校园”活动,计划在校园一块矩形的空地上铺设两块完全相同的矩形冰场.如下图所示,已知空地长27m,宽12m,矩形冰场的长与宽的比为4:3,如果要,并且预留的上、下通道的宽度相等,左、中、右通道的宽度相等,那么预使冰场的面积是原空地面积的23留的上、下通道的宽度和左、中、右通道的宽度分别是多少米?6.(2022·北京东城·九年级期末)为了改善小区环境,某小区决定在一块一边靠墙(墙长25m)的空地上修建一个矩形小花园ABCD,小花园一边靠墙,另三边用总长40m的栅栏围住,如下图所示.若设矩形小花园AB边的长为x m,面积为ym2.(1)求y与x之间的函数关系式;(2)当x为何值时,小花园的面积最大?最大面积是多少?7.(2021·北京市三帆中学九年级期中)刘师傅开了一家商店,今年2月份盈利2500元,4月份的盈利达到3600元,且从2月到4月,每个月盈利的增长率相同.(1)求每个月盈利的增长率;(2)按照这个增长率,请你估计这家商店5月份的盈利将达到多少元?8.(2021·北京师范大学第二附属中学西城实验学校九年级期中)学生会要组织“西实杯”篮球赛,赛制为单循环形式(每两队之间都赛一场).(1)如果有4支球队参加比赛,那么共进行______场比赛;(2)如果全校一共进行36场比赛,那么有多少支球队参加比赛?9.(2021·北京市鲁迅中学九年级期中)某水果店出售一种进价为每千克10元的热带水果,原售价为每千克20元.(1)连续两次降价后,每千克售价16.2元,若每次下降的百分率相同,求每次下降的百分率.(2)这种水果每月的销售量y(千克)与销售单价x(元)之间存在着一次函数关系:y=-10x+200,当销售单价为多少元时,每月可获得最大利润?10.(2022·北京昌平·模拟预测)佳佳果品店刚试营业,就在批发市场购买某种水果销售,第一次用1200元购进若干千克水果,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了20%,用1500元所购买的数量比第一次多10千克.求第一次该种水果的进价是每千克多少元?11.(2022·北京四中九年级阶段练习)某单位党支部在“精准扶贫”活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗.已知每棵乙种树苗的价格比甲种树苗的价格贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同,求甲、乙两种树苗每棵的价格.12.(2021·北京西城·一模)奥林匹克森林公园南园(奥森南园)是深受北京长跑爱好者追捧的跑步地点.小华和小萱相约去奥森南园跑步踏青,奥森南园有5千米和3千米的两条跑道(如图所示).小华选择了5千米的路线,小萱选择了3千米的路线,已知小华平均每分钟比小萱平均每分钟多跑100米,两人同时出发,结果同时到达终点.求小萱的速度.13.(2021·北京·九年级专题练习)列方程解应用题开展“光盘行动”,拒绝“舌尖上的浪费”,已成为一种时尚.某学校食堂为了激励同学们做到光盘不浪费,提出如果学生每餐做到光盘不浪费,那么餐后奖励香蕉或橘子一份.近日,学校食堂花了2800元和2500元分别采购了香蕉和橘子,采购的香蕉比橘子多150千克,香蕉每千克的价格比橘子每千克的价格低30%,求橘子每千克的价格.14.(2021·北京·九年级专题练习)国家实施高效节能电器的财政补贴政策,某款空调在政策实施后,客户每购买一台可获得补贴500元,若同样用6万元购买此款空调,补贴后可购买的台数比补贴前多20%.该款空调补贴前的售价为每台多少元?15.(2021·北京·九年级专题练习)列方程解应用题为了提高学生的身体素质,落实教育部门“在校学生每天体育锻炼时间不少于1小时”的文件精神,某校开展了“阳光体育天天跑活动”,初中男生、女生分别进行1000米和800米的计时跑步.在一次计时跑步中,某班一名女生和一名男生的平均速度相同,且这名女生跑完800米所用时间比这名男生跑完1000米所用时间少56秒,求这名女生跑完800米所用时间是多少秒.16.(2021·北京·九年级专题练习)某环卫公司通过政府采购的方式计划购进一批A,B两种型号的新能源汽车据了解,2辆A型汽车和3辆B型汽车的进价共计80万元;3辆A型汽车和2辆B型汽车的进价共计95万元.(1)求A,B两种型号的汽车每辆进价分别为多少万元;(2)该公司计划恰好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),并使得购进的B种型号的新能源汽车数量多于A种型号的新能源汽车数量,请直接写出该公司的采购方案.17.(2012·北京海淀·中考模拟)某商场计划经销A、B两种新型节能台灯共50盏,这两种台灯的进价、售价如表所示:A型B型进价(元/盏)4065售价(元/盏)60100(1)若该商场购进这批台灯共用去2500元,问这两种台灯各购进多少盏?(2)在每种台灯销售利润不变的情况下,若该商场销售这批台灯的总利润不少于1400元,问至少购进B 种台灯多少盏?18.(2021·北京·九年级专题练习)列方程组或不等式解决实际问题某汽车专卖店销售A,B两种型号的新能源汽车,上周和本周的销售情况如下表:时间A型B型销售额型号上周1辆2辆70万元本周3辆1辆80万元(1)每辆A型车和B型车的售价各为多少万元?(2)甲公司拟向该店购买A,B两种型号的新能源汽车共7辆,且A型号车不少于2辆,购车费不少于154万元,则有哪几种购车方案?19.(2021·北京·九年级专题练习)某道路规划为城市主干路,全长7.6千米.如果该任务由甲、乙两工程队先后接力完成.甲工程队每天修建道路0.02千米,乙工程队每天修建道路0.01千米,两工程队共需修建560天,求甲、乙两工程队分别修建道路多少千米?根据题意,小刚同学列出了一个尚不完整的方程组{x+y= (x)0.02+y0.01=...(1)根据小刚同学列的方程组,请你分别指出未知数x,y表示的意义:x表示,y表示.(2)小红同学“设甲工程队的工作时间为x天,乙工程队的工作时间为y天”,请你利用小红同学设的未知数求甲、乙两工程队分别修建道路的长度.20.(2021·北京·九年级专题练习)商场正在销售帐篷和棉被两种防寒商品,已知购买1顶帐篷和2床棉被共需300元,购买2顶帐篷和3床棉被共需510元.(1)求1顶帐篷和1床棉被的价格各是多少元?(2)某部门准备购买这两种防寒商品共80件,要求每种商品都要购买,且帐篷的数量多于40顶,但因为资金不足,购买总金额不能超过8500元,请问共有几种购买方案?(要求写出具体的购买方案).21.(2022·北京·九年级单元测试)小志从甲、乙两超市分别购买了10瓶和6瓶cc饮料,共花费51元;小云从甲、乙两超市分别购买了8瓶和12瓶cc饮料,且小云在乙超市比在甲超市多花18元,在小志和小云购买cc饮料时,甲、乙两超市cc饮料价格不一样,若只考虑价格因素,到哪家超市购买这种cc饮料便宜?请说明理由.22.(2020·北京·首都师范大学附属中学九年级阶段练习)2018年9月17日世界人工智能大会在.上海召开,人工智能的变革力在教育、制造等领域加速落地.在某市举办的一次中学生机器人足球赛中,有四个代表队进入决赛,决赛中,每个队分别与其它三个队进行主客场比赛各一场(即每个队要进行6场比赛),以下是积分表的一-部分.(说明:积分=胜场积分十平场积分+负场积分)(1)D代表队的净胜球数m=______;(2)本次决赛中,胜一场积______分,平一场积______分,负一场积_______分;(3)此次竞赛的奖金分配方案为:进入决赛的每支代表队都可以获得参赛奖金6000元;另外,在决赛期间,每胜一场可以再获得奖金2000元,每平一场再获得奖金1000元.请根据表格提供的信息,求出冠军A 队一共能获得多少奖金.23.(2021·北京·九年级专题练习)某校举办初中生数学素养大赛,比赛共设四个项目:七巧拼图、趣题巧解、数学应用和魔方复原,每个项目得分都按一定百分比折算后记入总分,并规定总分在85分以上(含85分)设为一等奖.如表为甲、乙、丙三位同学的得分情况(单位:分),其中甲的部分信息不小心被涂黑了. 项目得分项目 学生 七巧拼图趣题巧解数学应用魔方复原折算后总分甲 66 95 68乙 66 80 60 68 70 丙 6690806880据悉,甲、乙、丙三位同学的七巧拼图和魔方复原两项得分折算后的分数之和均为20分.设趣题巧解和数学应用两个项目的折算百分比分别为x 和y ,请用含x 和y 的二元一次方程表示乙同学“趣题巧解和数学应用”两项得分折算后的分数之和为 ;如果甲获得了大赛一等奖,那么甲的“数学应用”项目至少获得 分. 24.(2020·北京市第一六一中学模拟预测)在抗击新冠肺炎疫情期间,老百姓越来越依赖电商渠道获取必要的生活资料.石经营的水果店也适时加入了某电商平台,并对销售的水果中的部分(如下表)进行 促销:参与促销的水果免配送费且一次购买水果的总价满 128 元减 x 元.每笔订单顾客网上支付成功后,小石会得到支付款的80%.(1)当x=8时,某顾客一次购买苹果和车厘子各 1 箱,小石会得到 ______________元;(2)在促销活动中,为保障小石每笔订单所得到的金额不低于促销前总价的七折,则 x 的最大值为_____ . 参入促销水果水果 促销单价 苹果 58元/箱 粑粑柑70元/箱车厘子100元/箱火龙果48元/箱25.(2020·北京·101中学九年级阶段练习)我国的传统佳节端午节,历来有吃“粽子”的习俗,某食品加工厂拥有A、B两条不同的粽子生产线,原计划A生产线每小时加工粽子400个,B生产线每小时加工粽子500个.(1)若生产线A,B一共加工12小时,且生产粽子总数量不少于5500个,则B生产线至少加工多少小时?(2)原计划A,B生产线每天均工作8小时,由于受其它原因影响,在实际生产过程中,A生产线每小时比原计划少生产100a个(a>0),B生产线每小时比原计划少生产100个,为了尽快将粽子投放到市场,A生产线每天比原计划多工作2a小时,B生产线每天比原计划多工作a小时,这样一天恰好生产粽子6400个,求a的值.26.(2020·北京石景山·二模)在抗击新冠肺炎疫情期间,老百姓越来越依赖电商渠道获取必要的生活资料.小石经营的水果店也适时加入了某电商平台,并对销售的水果中的部分(如下表)进行促销:参与促销的水果免配送费且一次购买水果的总价满128元减x元.每笔订单顾客网上支付成功后,小石会得到支付款的80%.参与促销水果水果促销前单价苹果58元/箱耙耙柑70元/箱车厘子100元/箱火龙果48元/箱(1)当x=8时,某顾客一次购买苹果和车厘子各1箱,需要支付_____元,小石会得到______元;(2)在促销活动中,为保障小石每笔订单所得到的金额不低于促销前总价的七折,则x的最大值为_____.27.(2021·北京·101中学九年级开学考试)在我市“青山绿水”行动中,某社区计划对面积为3600m2的区域进行绿化,经投标由甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,如果两队各自独立完成面积为600m2区域的绿化时,甲队比乙队少用6天.(1)求甲、乙两工程队每天各能完成多少面积的绿化;(2)若甲队每天绿化费用是1.2万元,乙队每天绿化费用为0.5万元,社区要使这次绿化的总费用不超过40万元,则至少应安排乙工程队绿化多少天?28.(2022·北京·景山学校九年级阶段练习)小云想用7天的时间背诵若干首诗词,背诵计划如下:①将诗词分成4组,第i组有x i首,i =1,2,3,4;①对于第i组诗词,第i天背诵第一遍,第(i+1)天背诵第二遍,第(i+3)天背诵第三遍,三遍后完成背诵,其它天无需背诵,i=1,2,3,4;第1天第2天第3天第4天第5天第6天第7天第1组x1x1x1第2组x2x2x2第3组第4组x4x4x4①每天最多背诵14首,最少背诵4首.解答下列问题:(1)填入x3补全上表;(2)若x1=4,x2=3,x3=4,则x4的所有可能取值为______;(3)7天后,小云背诵的诗词最多为______首.29.(2021·北京·九年级专题练习)某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆12万元,面包车每辆8万元,公司可投入的购车款不超过100万元;(1)符合公司要求的购买方案有几种?请说明理由;(2)如果每辆轿车的日租金为250元,每辆面包车的日租金为150元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于2000元,那么应选择以上哪种购买方案?30.(2021·北京·九年级专题练习)小宜跟几位同学在某快餐厅吃饭,如图为此快餐厅的菜单.若他们所点的餐食总共为10份盖饭,x杯饮料,y份凉拌菜.11(1)他们点了 份A 套餐, 份B 套餐, 份C 套餐(均用含x 或y 的代数式表示); (2)若x =6,且A 、B 、C 套餐均至少点了1份,则最多有几种点餐方案.12。

方程与不等式例题

方程与不等式例题

方程与不等式例题
以下是一些关于方程和不等式的例题及其解答:
例1:解方程2x - 3 = 4
解:将方程的常数项移到方程的右边,得到2x = 7,两边同时除以2,得到x = 3.5。

例2:解不等式5x - 2 > 3x + 1
解:将不等式中的常数项移到不等式的右边,得到5x - 3x > 1 + 2,合并同类项,得到2x > 3,两边同时除以2,得到x > 1.5。

例3:用一元一次方程解决实际问题
一个农场主有一群羊,如果每天增加两只羊,那么经过一段时间后,羊的总数将是100。

如果每天减少三只羊,那么经过一段时间后,羊的总数将是80。

问:农场主最初有多少只羊?
解:设农场主最初有x 只羊。

根据题目条件,可以得到两个方程:(x + 2)n = 100 和(x - 3)n = 80。

解这个方程组,得到x = 47,n = 10。

因此,农场主最初有47只羊。

初中数学方程与不等式之无理方程专项训练及解析答案

初中数学方程与不等式之无理方程专项训练及解析答案

初中数学方程与不等式之无理方程专项训练及解析答案一、选择题 1.如果方程252x k -+=无实数根,那么k 的取值范围是______________.【答案】k <2【解析】【分析】根据无理方程有实数根,则x =b ,b≥0,得关于k 的不等式,解得即可.【详解】解:∵252x k -+=,∴25-2x k -=,∴k-2<0, 解得:k <2.故答案是:k <2.【点睛】本题考查了无理方程根的情况,解题的关键是了解二次根式成立的条件.2.方程的解为 .【答案】3.【解析】首先把方程两边分别平方,然后解一元二次方程即可求出x 的值.解:两边平方得:2x+3=x 2∴x 2﹣2x ﹣3=0,解方程得:x 1=3,x 2=﹣1,检验:当x 1=3时,方程的左边=右边,所以x 1=3为原方程的解,当x 2=﹣1时,原方程的左边≠右边,所以x 2=﹣1不是原方程的解.故答案为3.3.23x x -的解是_________【答案】14x =-或【解析】【分析】方程两边平方可得到整式方程,再解之可得.【详解】方程两边平方可得x 2-3x=4,即x 2-3x-4=0,解得x 1=-1,x 2=4故答案为:14x =-或【点睛】本题考核知识点:二次根式,无理方程. 解题关键点:化无理方程为整式方程.4.0的根是____.【答案】x=1【解析】【分析】将无理方程化为一元二次方程,然后求解即可.【详解】原方程变形为x(x-1)=0,∴x=0或x-1=0,∴x=0或x=1,∴x=0时,被开方数x-1=-1<0,∴x=0不符合题意,舍去,∴方程的根为x=1,故答案为x=1.【点睛】本题考查了无理方程,将无理方程化为一元二次方程是解题的关键.5.1=的解是.【答案】x =1【解析】【分析】根据算术平方根的意义,方程两边分别平方,化为整式方程,然后求解即可.【详解】两边平方得2x﹣1=1,解得x=1.经检验x=1是原方程的根.故本题答案为:x=1.6.方程______.x=【答案】1【解析】【分析】两边平方解答即可.【详解】原方程可化为:(x-1)2=1-x,解得:x1=0,x2=1,经检验,x=0不是原方程的解,x=1是原方程的解x=.故答案为1【点睛】此题考查无理方程的解法,关键是把两边平方解答,要注意解答后一定要检验.7.方程43x -=x 的解是______. 【答案】x=1【解析】【分析】将无理方程化为一元二次方程,然后求解即可.【详解】原方程变形为 4-3x=x 2,整理得 x 2+3x-4=0,∴(x+4)(x-1)=0,∴x+4=0或x-1=0,∴x 1=-4(舍去),x 2=1.故答案为x=1.【点睛】本题考查了无理方程,将无理方程化为一元二次方程是解题的关键.8.方程320x x -⋅-=的解是_______________【答案】x=2【解析】【分析】由题意可知3-x=0或2-x=0,再结合二次根式有意义的条件即可求得答案.【详解】∵3x 2x 0-⋅-=,∴3x -=0或2x 0-=,∴x=3或x=2,检验:当x=3时,2-x<0,2x -无意义,故x=3舍去,∴x=2,故答案为x=2.【点睛】本题考查了解无理方程,熟练掌握解方程的一般步骤以及注意事项是解题的关键.9.方程6x x +=的根为 .【答案】x=3【解析】两边平方得x+6=x 2,解一元二次方程得x 1=3,x 2=-2(舍去),所以方程的根为10.1=的根是x=______.【答案】2.【解析】【分析】方程两边乘方,得整式方程,求解,检验即可.【详解】=1∴x-1=1∴x=2,经检验,x=2是原方程的根,所以,原方程的根是x=2.故答案为:2.【点睛】本题考查了解无理方程,注意别忘记检验哟!11.若方程4m+=无实数根,则m的取值范围是_________.【答案】m>4【解析】【分析】=-,由非负数的算术平方根不是负数求得答案.4m【详解】m=解:因为:4=-,4m-<0因为原方程无实根,所以:4m解得:m>4.故答案为:m>4.【点睛】本题考查无理方程的实数根的情况,掌握算数平方根不是非负数的性质是解题的关键.12.x=的根是__________.【答案】2【解析】【分析】本题可先对方程两边平方,得到x+2=x2,再对方程进行因式分解即可解出本题.原方程变形为:x+2=x 2即x 2−x−2=0∴(x −2)(x+1)=0∴x=2或x=−1∵x=−1时不满足题意.∴x=2.故答案为:2.【点睛】此题考查解无理方程,解题关键在于掌握方程解法.13.关于x 的方程2k +=无实数根,k 的取值范围是____________________.【答案】k<2【解析】【分析】原式整理后,根据二次根式的意义即可求解.【详解】2k =-,若方程无实数根,则k-2<0,即k<2,故答案为:k<2【点睛】此题考查无理方程的解,掌握由此根式有意义的条件时解答此题的关键.14.无理方程(0x -=的根是____.【答案】x=2.【解析】【分析】根据0乘任何数都得零,可得方程的解,根据被开方数是非负数,可得答案.【详解】解:由(0x -=,∴x-5=0或2-x=0,解得:x=5,x=2,∵20x -≥,∴2x ≤,当x=5时,被开方数无意义;故方程的解为:x=2,故答案为:x=2.本题考查了无理方程,利用0乘任何数都得零是解题关键,注意被开方数是非负数.15.1=的解为_____.【答案】x=2【解析】【分析】=两边同时乘方,即可解答.1【详解】方程两边平方得:x﹣1=1,解得:x=2,经检验x=2是原方程的解,故答案为:x=2【点睛】本题考点为无理方程求解,熟练掌握相关知识点是解题关键.16.x=的解为_____.【答案】3【解析】【分析】根据无理方程的解法,首先,两边平方解出x的值,然后验根,解答即可.【详解】解:两边平方得:2x+3=x2∴x2﹣2x﹣3=0,解方程得:x1=3,x2=﹣1,检验:当x1=3时,方程的左边=右边,所以x1=3为原方程的解,当x2=﹣1时,原方程的左边≠右边,所以x2=﹣1不是原方程的解.故答案为3.【点睛】此题考查无理方程的解,解题关键在于掌握运算法则17.4的解是_____.x=【答案】15【解析】【分析】两边同时平方,即可求出方程的解.【详解】=,4两边同时平方可得:116,x +=解得:15.x =经检验,15x =符合题意.故答案为15x =【点睛】考查无理方程的解法,两边同时平方是解题的关键.18.3=的解的是x =__________________.【答案】8x =【解析】【分析】把方程两边平方去根号后即可转化成整式方程,解方程即可求出x 的值,然后进行检验.【详解】两边平方得:x+1=9,解得:x=8.检验:x=8是方程的解.故答案为x=8.【点睛】本题考查的知识点是平方根的定义,解题的关键是熟练的掌握平方根.19.方程(0x +=的解是___________________.【答案】x=2【解析】试题解析:(10,x +=10x ∴+=0.=解得:1x =-或 2.x =当1x =-.故答案为 2.x =20.x =-的解________【答案】2x =-【解析】【分析】两边平方后解此无理方程可得.【详解】解:两边同时平方可得:2-x=x 2,解得:x 1=-2,x 2=1,检验得x2=1不是方程的根,a=-,故1a=-故答案为1【点睛】本题主要考查解无理方程的知识点,去掉根号把无理方程化成有理方程是解题的关键,注意无理方程需验根.需要同学们仔细掌握.。

初中数学不等式与方程综合试题含答案

初中数学不等式与方程综合试题含答案

目录第一套:第一套:方程与不等式复习巩固第二套:中考数学方程与不等式复习测试第三套:中考方程(组)与不等式(组)综合精讲30道第四套:方程思想在解决实际问题中的作用第五套:中考数学不等式(组)与方程(组)的应用第六套:方程(组)与不等式(组)综合检测试题第一套:方程与不等式复习巩固一.教学内容:方程与不等式 二. 教学目标:通过对方程与不等式基础知识的复习,解决中考中常见的问题。

三. 教学重点、难点:熟练地解决方程与不等式相关的问题 四、课堂教学: 中考导航一中考大纲要求一中考导航二中考大纲要求二⎪⎪⎩⎪⎪⎨⎧一元一次方程的应用一元一次方程的解法程的解一元一次方程定义、方等式及其性质一元一次方程⎪⎪⎩⎪⎪⎨⎧用题列二元一次方程组解应的解法简单的三元一次方程组解二元一次方程组义及其解二元一次方程(组)定二元一次方程组中考导航三中考大纲要求三中考导航四中考大纲要求四⎪⎪⎪⎩⎪⎪⎪⎨⎧的应用一元一次不等式(组)的解法一元一次不等式(组)解集的含义一元一次不等式(组)的概念一元一次不等式(组)不等式的性质一次不等式组一元一次不等式和一元⎪⎪⎩⎪⎪⎨⎧程的应用一元二次方程及分式方分式方程可化为一元二次方程的一元二次方程的解法一元二次方程的定义一元二次方程【典型例题】例1. 若关于x 的一元一次方程的解是,则k 的值是( )A.B. 1C.D. 0答案:B例2. 一元二次方程的两个根分别为( ) A. , B. , C. , D. , 答案:C例3. 如图所示,O 是原点,实数a 、b 、c 在数轴上对应的点分别为A 、B 、C ,则下列结论错误的是( ) A. B. C. D.答案:B 例4. 把不等式组的解集表示在数轴上,正确的是( )12k3x 3k x 2=---1x -=721113-03x 2x 2=--1x 1=3x 2=1x 1=3x 2-=1x 1-=3x 2=1x 1-=3x 2-=0b a >-0ab <0b a <+0)c a (b >- B A O C⎩⎨⎧>-≥-3x 604x 2答案:A例5. 某电视台在黄金时段的2分钟广告时间内,计划插播长度为15秒和30秒的两种广告。

(易错题精选)初中数学方程与不等式之不等式与不等式组基础测试题附答案解析(1)

(易错题精选)初中数学方程与不等式之不等式与不等式组基础测试题附答案解析(1)

(易错题精选)初中数学方程与不等式之不等式与不等式组基础测试题附答案解析(1)一、选择题1.a 的一半与b 的差是负数,用不等式表示为( )A .102a b -< B .102a b -≤ C .()102a b -< D .102a b -< 【答案】D【解析】【分析】列代数式表示a 的一半与b 的差,是负数即小于0. 【详解】解:根据题意得102a b -< 故选D .【点睛】 本题考查了列不等式,首先要列出表示题中数量关系的代数式,再由不等关系列不等式.2.不等式的解集在数轴上表示正确的是( )A .B .C .D .【答案】C【解析】【分析】 先解不等式,根据解集确定数轴的正确表示方法.【详解】解:不等式2x+1>-3,移项,得2x >-1-3,合并,得2x >-4,化系数为1,得x >-2.【点睛】本题考查解一元一次不等式,注意不等式的性质的应用.3.若x 2+在实数范围内有意义,则x 的取值范围在数轴上表示正确的是( ) A .B .C .D . 【答案】D【解析】【分析】根据二次根式有意义的条件:被开方数为非负数可得x+2≥0,再解不等式即可.【详解】2x +∴被开方数x+2为非负数,∴x+2≥0,解得:x≥-2.故答案选D.【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.4.关于x 的不等式组()02332x m x x ->⎧⎨-≥-⎩恰有五个整数解,那么m 的取值范围为( ) A .21m -≤<-B .21m -<<C .1m <-D .2m ≥-【答案】A【解析】【分析】先求出不等式组的解集,然后结合有五个整数解,即可求出m 的取值范围.【详解】 解:()02332x m x x ->⎧⎨-≥-⎩解不等式①,得:x m >,解不等式②,得:3x ≤,∴不等式组的解集为:3m x <≤,∵不等式组恰有五个整数解,∴整数解分别为:3、2、1、0、1-;∴m 的取值范围为21m -≤<-;【点睛】本题考查了解不等式组,根据不等式组的整数解求参数的取值范围,解题的关键是正确求出不等式组的解集,从而求出m 的取值范围.5.若不等式组0,122x a x x -≥⎧⎨->-⎩有解,则a 的取值范围是( ) A .a >-1B .a≥-1C .a≤1D .a <1【答案】D【解析】【分析】首先分别解出两个不等式的解集,再根据解集的规律:大小小大中间找,确定a 的取值范围是a <1.【详解】 解:0122x a x x -≥⎧⎨->-⎩①②, 由①得:x≥a ,由②得:x <1,∵不等式组有解,∴a <1,故选:D .【点睛】此题主要考查了一元一次不等式组的解法,关键是正确解出两个不等式的解集,掌握确定不等式组解集的方法.6.若a b >,则下列不等式中,不成立的是( )A .33a b ->-B .33a b ->-C .33a b > D .22a b -+<-+ 【答案】A【解析】【分析】 根据不等式的性质进行判断即可.【详解】解:A 、根据不等式的性质3,不等式的两边乘以(-3),可得-3a <-3b ,故A 不成立; B 、根据不等式的性质1,不等式的两边减去3,可得a-3>b-3,故B 成立;C 、根据不等式的性质2,不等式的两边乘以13,可得33a b >,故C 成立;D 、根据不等式的性质3,不等式的两边乘以(-1),可得-a <-b ,再根据不等式的性质1,不等式的两边加2,可得-a+2<-b+2,故D 成立.故选:A.【点睛】本题主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.7.若x y >,则下列各式正确的是( )A .0x y -<B .11x y -<-C .34x y +>+D .xm ym >【答案】B【解析】【分析】根据不等式的基本性质解答即可.【详解】由x >y 可得:x-y >0,1-x <1-y ,x+3>y+3,故选:B .【点睛】此题考查不等式的性质,熟练运用不等式的性质是解题的关键.8.不等式组21512x x ①②->⎧⎪⎨+≥⎪⎩中,不等式①和②的解集在数轴上表示正确的是( ) A .B .C .D .【答案】C【解析】分析:根据解一元一次不等式组的一般步骤解答,并把解集表示在数轴上,再作判断即可. 详解:解不等式①,得:x 1<;解不等式②,得:x 3≥-;∴原不等式组的解集为:3x 1-≤<,将解集表示在数轴上为:故选C.点睛:掌握“解一元一次不等式组的解法和将不等式的解集表示在数轴上的方法”是解答本题的关键.9.若a b <,则下列变形错误的是( )A .22a b <B .22a b +<+C .1122a b <D .22a b -<- 【答案】D【解析】【分析】根据不等式的性质解答.【详解】∵a b <,∴22a b <,故A 正确;∵a b <,∴22a b +<+,故B 正确;∵a b <,∴1122a b <,故C 正确; ∵a b <,∴2-a>2-b ,故D 错误,故选:D.【点睛】此题考查不等式的性质,熟记性质定理并运用解题是关键.10.运行程序如图所示,规定:从“输入一个值”到”结果是否“为一次程序操作.如果程序操作进行了三次才停止,那么x 的取值范围是( )A .11x ≥B .1123x ≤≤C .1123x <≤D .23x ≤【答案】C【解析】【分析】根据运算程序,前两次运算结果小于等于95,第三次运算结果大于95列出不等式组,然后求解即可.【详解】解依题意得:()()219522119522211195x x x ⎧+≤⎪⎪++≤⎨⎪⎡⎤+++>⎪⎣⎦⎩①②③ 解不等式①得,x≤47,解不等式②得,x≤23,解不等式③得,x >11,所以,x 的取值范围是11<x≤23.故选:C .【点睛】本题考查了一元一次不等式组的应用,读懂题目信息,理解运输程序并列出不等式组是解题的关键.11.某商品进价为800元,出售时标价为1200元,后来商店准备打折出售,但要保持利润率不低于20%,则最多打( )折.A .6折B .7折C .8折D .9折【答案】C【解析】【分析】设打了x 折,用售价×折扣﹣进价得出利润,根据利润率不低于20%,列不等式求解.【详解】解:设打了x 折,由题意得,1200×0.1x ﹣800≥800×20%,解得:x≥8.答:至多打8折.故选:C【点睛】本题考查一元一次不等式的应用,正确理解利润率的含义,理解利润=进价×利润率,是解题的关键.12.若关于x 的不等式组0521x a x -⎧⎨-<⎩…的整数解只有3个,则a 的取值范围是( ) A .6≤a <7B .5≤a <6C .4<a ≤5D .5<a ≤6【答案】B【解析】【分析】根据解不等式可得,2<x ≤a ,然后根据题意只有3个整数解,可得a 的范围.【详解】解不等式x ﹣a ≤0,得:x ≤a ,解不等式5﹣2x <1,得:x >2,则不等式组的解集为2<x ≤a .∵不等式组的整数解只有3个,∴5≤a <6.故选:B .【点睛】本题主要考查不等式的解法,根据题意得出a 的取值范围是解题的关键.13.若不等式组236x x x m -<-⎧⎨<⎩无解,那么m 的取值范围是( ) A .m >2B .m <2C .m ≥2D .m ≤2 【答案】D【解析】【分析】先求出每个不等式的解集,再根据不等式组解集的求法和不等式组无解的条件,即可得到m 的取值范围.【详解】解:236x x x m -<-⎧⎨<⎩②①由①得,x >2,由②得,x <m ,又因为不等式组无解,所以根据“大大小小解不了”原则,m ≤2.故选:D .【点睛】此题考查解一元一次不等式组,解题关键在于掌握求不等式组的解集,要根据以下原则:同大取较大,同小较小,小大大小中间找,大大小小解不了.14.关于x 的不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,则a 的取值范围是( )A .3a <B .23a <≤C .23a ≤<D .23a <<【答案】C【解析】【分析】 此题可先根据一元一次不等式组解出x 的取值范围,再根据不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,求出实数a 的取值范围.【详解】 解:由不等式113x -≤,可得:x ≤4, 由不等式a ﹣x <2,可得:x >a ﹣2, 由以上可得不等式组的解集为:a ﹣2<x ≤4, 因为不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,所以可得:0≤a ﹣2<1,解得:2≤a <3,故选C .【点睛】本题考查了不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.根据原不等式组恰有4个整数解列出关于a 的不等式是解答本题的关键.15.已知关于x 的不等式4x a 3+>1的解都是不等式2x 13+>0的解,则a 的范围是( ) A .a 5=B .a 5≥C .a 5≤D .a 5< 【答案】C【解析】【分析】先把a 看作常数求出两个不等式的解集,再根据同大取大列出不等式求解即可.【详解】 由413x a +>得,34a x ->, 由210,3x +> 得,1,2x >- ∵关于x 的不等式413x a +>的解都是不等式2103x +>的解, ∴3142a -≥-, 解得 5.a ≤即a 的取值范围是: 5.a ≤故选:C.【点睛】考查不等式的解析,掌握一元一次不等式的求法是解题的关键.16.如果不等式组26x x x m -+<-⎧⎨>⎩的解集为x >4,m 的取值范围为( ) A .m <4B .m ≥4C .m ≤4D .无法确定 【答案】C【解析】【分析】表示出不等式组中第一个不等式的解集,根据不等式组的解集确定出m 的范围即可.【详解】解不等式﹣x+2<x ﹣6得:x >4,由不等式组26x x x m -+<-⎧⎨>⎩的解集为x >4,得到m≤4, 故选:C .【点睛】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.17.下列不等式变形正确的是( )A .由a b >,得22a b -<-B .由a b >,得22a b -<-C .由a b >,得a b >D .由a b >,得22a b > 【答案】B【解析】【分析】根据不等式的基本性质结合特殊值法逐项判断即可.【详解】解:A 、由a >b ,不等式两边同时减去2可得a-2>b-2,故此选项错误;B 、由a >b ,不等式两边同时乘以-2可得-2a <-2b ,故此选项正确;C 、当a >b >0时,才有|a|>|b|;当0>a >b 时,有|a|<|b|,故此选项错误;D 、由a >b ,得a 2>b 2错误,例如:1>-2,有12<(-2)2,故此选项错误. 故选:B .【点睛】主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.18.如图,不等式组315215x x --⎧⎨-<⎩…的解集在数轴上表示为( ) A . B .C .D .【答案】C【解析】【分析】根据解一元一次不等式组的步骤:先解第一个不等式,再解第二个不等式,然后在数轴上表示出两个解集找公共部分即可.【详解】由题意可知:不等式组315215xx①②--⎧⎨-<⎩…,不等式①的解集为2x≥-,不等式②的解集为3x<,不等式组的解集为23x-≤<,在数轴上表示应为.故选C.【点睛】本题主要考查了一元一次不等式组的解法,熟知和掌握不等式组解法的步骤和在数轴上表示解集是解题关键.19.若关于x的不等式x<a恰有2个正整数解,则a的取值范围为()A.2<a≤3B.2≤a<3 C.0<a<3 D.0<a≤2【答案】A【解析】【分析】结合题意,可确定这两个正整数解应为1和2,至此即可求出a的取值范围【详解】由于x<a恰有2个正整数解,即为1和2,故2<a≤3故正确答案为A【点睛】此题考查了不等式的整数解,列出关于a的不等式是解题的关键20.下列命题中逆命题是真命题的是()A.若a > 0,b > 0,则a·b > 0 B.对顶角相等C.内错角相等,两直线平行D.所有的直角都相等【答案】C【解析】【分析】先写出各命题的逆命题,再分别根据不等式的性质、对顶角、平行线的性质、角的概念逐项判断即可.【详解】A 、逆命题:若0a b ->,则0,0a b >>反例:2,1a b ==-时,2(1)0a b -=-->即此逆命题是假命题,此项不符题意B 、逆命题:如果两个角相等,那么这两个角是对顶角相等的角不一定是对顶角即此逆命题是假命题,此项不符题意C 、逆命题:两直线平行,内错角相等此逆命题是真命题,此项符合题意D 、逆命题:相等的角都是直角此逆命题是假命题,此项不符题意故选:C .【点睛】本题考查了不等式的性质、对顶角、平行线的性质、角的概念,熟记各性质与定义是解题关键.。

(专题精选)初中数学方程与不等式之分式方程经典测试题及答案

(专题精选)初中数学方程与不等式之分式方程经典测试题及答案

(专题精选)初中数学方程与不等式之分式方程经典测试题及答案一、选择题1.八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.10x-102x=20 B.102x-10x=20 C.10x-102x=13D.102x-10x=13【答案】C【解析】【分析】根据八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,可以列出相应的方程,从而可以得到哪个选项是正确的.【详解】由题意可得,10 x -102x=13,故选:C.【点睛】此题考查由实际问题抽象出分式方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.2.若数a使关于x的不等式组()3x a2x11x2x2⎧-≥--⎪⎨--≥⎪⎩有解且所有解都是2x+6>0的解,且使关于y的分式方程y51y--+3=ay1-有整数解,则满足条件的所有整数a的个数是()A.5 B.4 C.3 D.2【答案】D【解析】【分析】由不等式组有解且满足已知不等式,以及分式方程有整数解,确定出满足题意整数a的值即可.【详解】不等式组整理得:13x ax≥-⎧⎨≤⎩,由不等式组有解且都是2x+6>0,即x>-3的解,得到-3<a-1≤3,即-2<a≤4,即a=-1,0,1,2,3,4,分式方程去分母得:5-y+3y-3=a ,即y=22a -, 由分式方程有整数解,得到a=0,2,共2个,故选:D .【点睛】 本题考查了分式方程的解,解一元一次不等式,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.3.下列说法中正确的是( )A .顺次连接一个四边形四边中点得到的四边形是平行四边形B .9的平方根为3C .抛物线21(1)32y x =-++的顶点坐标为(1,3) D .关于x 的分式方程121m x -=-的解为非负数,则m 的取值范围是m≥-1 【答案】A【解析】【分析】 根据各个选项中的说法,可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】A 、顺次连接一个四边形四边中点得到的四边形是平行四边形,该选项正确;B 、9的平方根是±3,该选项错误;C 、抛物线21(1)32y x =-++的顶点坐标为(-1,3) ,该选项错误; D 、由方程121m x -=-去分母得:12m x +=, ∵关于x 的分式方程的解为非负数, ∴102m +≥且112m x +=≠, 解得:1m ≥-且1m ≠,该选项错误;故选:A .【点睛】本题考查了二次函数的性质、平方根、平行四边形的判定、中点四边形、解分式方程,解答本题的关键是明确题意,可以判断各个选项中的说法是否正确.解分式方程要注意分母不能为0这个条件.4.甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg ,甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等,求甲、乙两人每小时分别搬运多少千克货物.设甲每小时搬运xkg 货物,则可列方程为A .B .C .D .【答案】B【解析】甲种机器人每小时搬运x 千克,则乙种机器人每小时搬运(x+600)千克, 由题意得:, 故选B.【点睛】本题考查了列分时方程解实际问题的运用,解答时根据甲搬运5000kg 所用时间与乙搬运8000kg 所用时间相等建立方程是关键.5.如果关于x 的分式方程11222a x x-+=--有整数解,且关于x 的不等式组43(1)211(1)22x x x x a ≥-⎧⎪⎨-+<-⎪⎩有且只有四个整数解,那么符合条件的所有整数a 的和是( ) A .4B .-2C .-3D .2 【答案】A【解析】【分析】分式方程去分母转化为整式方程,表示出整数方程的解,不等式组整理后,由解只有四个整数解,确定出a 的值,求出之和即可.【详解】解:分式方程去分母得:1-a+2x-4=-1, 解得:22a x +=,且222a +≠,a 为偶数, 即2a ≠,a 为偶数, 不等式组整理得:34x a x ≥-⎧⎪⎨⎪⎩<, 由不等式组只有四个整数解,得到x=-3,-2,-1,0,可得0<4a ≤1,即0<a≤4,即a=1,2,3,4, 经检验a=4,则和为4,故选:A .【点睛】 此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题6.从﹣4,﹣3,﹣2,﹣1,0,1,3,4,5这九个数中,随机抽取一个数,记为a ,则数a 使关于x 的不等式组()1242122123x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩至少有四个整数解,且关于x 的分式方程233a x x x ++--=1有非负整数解的概率是( ) A .29 B .13 C .49 D .59【答案】C【解析】【分析】先解出不等式组,找出满足条件的a 的值,然后解分式方程,找出满足非负整数解的a 的值,然后利用同时满足不等式和分式方程的a 的个数除以总数即可求出概率.【详解】解不等式组得:7x a x ≤⎧⎨>-⎩, 由不等式组至少有四个整数解,得到a≥﹣3,∴a 的值可能为:﹣3,﹣2,﹣1,0,1,3,4,5,分式方程去分母得:﹣a ﹣x+2=x ﹣3,解得:x =52a - , ∵分式方程有非负整数解,∴a =5、3、1、﹣3,则这9个数中所有满足条件的a 的值有4个,∴P =49故选:C .【点睛】本题主要考查解一元一次不等式组,分式方程的非负整数解,随机事件的概率,掌握概率公式是解题的关键.7.甲、乙二人做某种机械零件,甲每小时比乙多做6个,甲做90个所用的时间与做60个所用的时间相等.设甲每小时做x 个零件,下面所列方程正确的是( )A .90606x x =- B .90606x x =+ C .90606x x =- D .90606x x=+ 【答案】A解:设甲每小时做x个零件,则乙每小时做(x﹣6)个零件,由题意得:90606x x=-.故选A.8.甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地.已知A,C两地间的距离为110千米,B,C两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x千米/时.由题意列出方程.其中正确的是()A.1101002x x=+B.1101002x x=+C.1101002x x=-D.1101002x x=-【答案】A【解析】设乙骑自行车的平均速度为x千米/时,则甲骑自行车的平均速度为(x+2)千米/时,根据题意可得等量关系:甲骑110千米所用时间=乙骑100千米所用时间,根据等量关系可列出方程即可.解:设乙骑自行车的平均速度为x千米/时,由题意得:1102 x+=100x,故选A.9.方程10020x+=6020x-的解为()A.x=10 B.x=﹣10 C.x=5 D.x=﹣5【答案】C【解析】【分析】方程两边同时乘以(20+x)(20﹣x),解得,x=5,经检验,x=5是方程的根.【详解】解:方程两边同时乘以(20+x)(20﹣x),得100(20﹣x)=60(20+x),整理,得8x=40,解得,x=5,经检验,x=5是方程的根,∴原方程的根是x=5;故选:C.【点睛】本题考查分式方程的解法;熟练掌握分式方程的解法,切勿遗漏验根是解题的关键.10.张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x 千米,依题意,得到的方程是( )A .1515112x x -=+ B .1515112x x -=+ C .1515112x x -=- D .1515112x x -=- 【答案】B【解析】【分析】 设小李每小时走x 千米,则小张每小时走(x+1)千米,根据题意可得等量关系:小李所用时间-小张所用时间=半小时,根据等量关系列出方程即可.【详解】解:设小李每小时走x 千米,依题意得:1515112x x -=+ 故选B .【点睛】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系列出方程.11.对于实数a 、b ,定义一种新运算“⊗”为:23a b a ab⊗=-,这里等式右边是通常的四则运算.若32x x ⊗⊗(﹣)=,则x 的值为( )A .-2B .-1C .1D .2 【答案】B【解析】【分析】利用题中的新定义变形已知等式,然后解方程即可.【详解】 根据题中的新定义化简得:339342x x=+-,去分母得:12﹣6x =27+9x ,解得:x =﹣1,经检验x =﹣1是分式方程的解.故选B .【点睛】本题考查了新定义和解分式方程,利用了转化的思想,解分式方程注意要检验.12.某车间加工12个零件后,采用新工艺,工效比原来提高了50%,这样加工同样多的零件就少用1小时,那么采用新工艺前每小时加工的零件数为 ( )A .3个B .4个C .5个D .6个【答案】B【分析】根据题意,找出题目的等量关系,列出方程,解方程即可得到答案.【详解】解:根据题意,得:12121(150%)x x -=+, 解得:4x =;经检验,4x =是原分式方程的解.∴那么采用新工艺前每小时加工的零件数为4个;故选:B .【点睛】此题主要考查了分式方程的应用,其中找出方程的关键语,找出数量关系是解题的关键.注意解分式方程需要检验.13.已知A 、C 两地相距40千米,B 、C 两地相距50千米,甲乙两车分别从A 、B 两地同时出发到C 地.若乙车每小时比甲车多行驶12千米,则两车同时到达C 地.设乙车的速度为x 千米/小时,依题意列方程正确的是( )A .405012x x =- B .405012x x =- C .405012x x =+ D .405012x x=+ 【答案】B【解析】 试题解析:设乙车的速度为x 千米/小时,则甲车的速度为(x-12)千米/小时, 由题意得,405012x x=-. 故选B .14.方程31144x x x --=--的解是( ) A .-3B .3C .4D .-4【答案】B【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】去分母得:3-x-x+4=1,解得:x=3,经检验x=3是分式方程的解.【点睛】此题考查解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.15.如果关于x 的分式方程2ax 423x x 3++=--有正整数解,且关于y 的不等式组()3y 34y y a⎧-⎨≥⎩>无解,那么符合条件的所有整数a 的和是( ) A .﹣16B .﹣15C .﹣6D .﹣4 【答案】D【解析】【分析】先根据分式方程有正整数解确定出a 的值,再由不等式组无解确定出满足题意的a 的值,求出之和即可.【详解】解:分式方程去分母得:2+ax ﹣2x+6=﹣4,整理得:(a ﹣2)x =﹣12(a ﹣2≠0),解得:x 12a 2=--, 由分式方程有正整数解,得到a =1,0,﹣1,﹣2,﹣4,﹣10,当a =﹣2时,x =3,原分式方程无解,所以a =1,0,﹣1,﹣4,﹣10,不等式组整理得:y<9y a -⎧⎨≥⎩, 由不等式组无解,即a≥﹣9,∴符合条件的所有整数a 有1,0,﹣1,﹣4,∴a =1,0,﹣1,﹣4,之和为﹣4,故选:D .【点睛】此题考查了分式方程的解,解一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.16.若整数a 使得关于x 的方程3222a x x-=--的解为非负数,且使得关于y 的不等式组32212203y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩至少有四个整数解,则所有符合条件的整数a 的和为( ).A.17 B.18 C.22 D.25【答案】C【解析】【分析】表示出不等式组的解集,由不等式至少有四个整数解确定出a的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a的值,进而求出之和.【详解】解:3221223y yy a--⎧+>⎪⎪⎨-⎪⎪⎩„,不等式组整理得:1 yy a>-⎧⎨⎩„,由不等式组至少有四个整数解,得到-1<y≤a,解得:a≥3,即整数a=3,4,5,6,…,2-322ax x=--,去分母得:2(x-2)-3=-a,解得:x=72a -,∵72a-≥0,且72a-≠2,∴a≤7,且a≠3,由分式方程的解为非负数以及分式有意义的条件,得到a为4,5,6,7,之和为22.故选:C.【点睛】此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.17.小明上月在某文具店正好用 20 元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜 1 元,结果小明只比上次多用了 4 元钱,却比上次多买了 2 本.若设他上月买了 x 本笔记本,则根据题意可列方程()A.24x2+-20x=1 B.20x-24x2+=1C.24x-20x2+=1 D.20x2+-24x=1【答案】B【解析】试题解析:设他上月买了x本笔记本,则这次买了(x+2)本,根据题意得:2020412x x +-=+, 即:202412x x -=+. 故选B .考点:分式方程的应用.18.初二18班为课外体育活动购买了实心球和跳绳.已知跳绳的单价比实心球的单价贵40元,购买实心球总花费为1610元,购买跳绳总花费为1650元,购买实心球的数量比跳绳的数量多8个,求实心球的单价.设实心球单价为x 元,所列方程正确的是( ) A .16501610840x x -=+ B .16501610840x x -=+ C .16101650840x x -=+ D .16101650840x x -=+ 【答案】C【解析】【分析】设实心球单价为x 元,则跳绳单价为()40x +元,根据“购买实心球的数量比跳绳的数量多8个”即可得到方程.【详解】 解:设实心球单价为x 元,则跳绳单价为()40x +元,根据题意得,16101650840x x -=+. 故选:C【点睛】本题考查了分式方程的实际应用,解答本题的关键是审清题意,找到等量关系即可得解.19.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( ) A .606030(125%)x x -=+ B .606030(125%)x x -=+ C .60(125%)6030x x⨯+-= D .6060(125%)30x x⨯+-= 【答案】C【解析】 分析:设实际工作时每天绿化的面积为x 万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x 的分式方程.详解:设实际工作时每天绿化的面积为x 万平方米,则原来每天绿化的面积为125%x +万平方米, 依题意得:606030125%x x -=+,即()60125%6030x x ⨯+-=. 故选C .点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.20.“母亲节”当天,某花店主打“康乃馨花束”,上午销售额为3000元,下午因市场需求量增大,店家将该花束单价提高30元,且下午比上午多售出40束,销售额为7200元,设该花束上午单价为每束x 元,则可列方程为( )A .300072004030x x -=+ B .720030004030x x -=+ C .720030004030x x-=+ D .300072004030x x -=+ 【答案】C【解析】【分析】设该花束上午单价为每束x 元,则下午单价为每束(x+30)元,根据数量=总价÷单价,结合下午比上午多售出40束,即可得出关于x 的分式方程,此题得解.【详解】设该花束上午单价为每束x 元,则下午单价为每束(x+30)元,依题意,得:720030004030x x-=+ 故选:C【点睛】本题考查了列分式方程解决实际问题,审题是基础,难点是找出能够表示应用题全部含义的一个相等关系,关键是设未知数和用未知数的代数式表示有关的未知量.。

最新初中数学方程与不等式之分式方程经典测试题及解析

最新初中数学方程与不等式之分式方程经典测试题及解析

最新初中数学方程与不等式之分式方程经典测试题及解析一、选择题1.《九章算术》中记录的一道题译为白话文是:把一份文件用慢马送到900里外的城市,需要的时间比规定时间多一天,如果用快马送,所需的吋间比规定时间少3天,已知快马的速度是慢马的2倍,求规定时间. 设规定时间为x天,则可列方程为().A.900900213x x⨯=+-B.900900213x x=⨯+-C.900900213x x⨯=-+D.900900213x x=⨯++【答案】A【解析】【分析】设规定时间为x天,得到慢马和快马所需要的时间,根据速度关系即可列出方程.【详解】设规定时间为x天,则慢马的时间为(x+1)天,快马的时间是(x-3)天,∵快马的速度是慢马的2倍,∴900900213 x x⨯=+-,故选:A.【点睛】此题考查分式方程的实际应用,正确理解题意找到题中的等量关系即可列方程.2.方程10020x+=6020x-的解为()A.x=10 B.x=﹣10 C.x=5 D.x=﹣5【答案】C【解析】【分析】方程两边同时乘以(20+x)(20﹣x),解得,x=5,经检验,x=5是方程的根.【详解】解:方程两边同时乘以(20+x)(20﹣x),得100(20﹣x)=60(20+x),整理,得8x=40,解得,x=5,经检验,x=5是方程的根,∴原方程的根是x=5;故选:C.【点睛】本题考查分式方程的解法;熟练掌握分式方程的解法,切勿遗漏验根是解题的关键.3.某市在旧城改造过程中,需要整修一段全长2400m的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路xm,则根据题意可得方程( )A.240024008(120%)x x-=+B.240024008(120%)x x-=+C.240024008(120%)x x-=-D.240024008(120%)x x-=-【答案】A【解析】【分析】求的是原计划的工效,工作总量为2400,根据工作时间来列等量关系.本题的关键描述语是:“提前8小时完成任务”;等量关系为:原计划用的时间-实际用的时间=8.【详解】原计划用的时间为:2400x,实际用的时间为:()2400120%x+.所列方程为:2400 x -()2400120%x+=8.故选A【点睛】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.本题应用的等量关系为:工作时间=工作总量÷工效.4.若 x=3 是分式方程212ax x--=-的根,则 a 的值是A.5 B.-5 C.3 D.-3【答案】A【解析】把x=3代入原分式方程得,21332a--=-,解得,a=5,经检验a=5适合原方程.故选A.5.某施工队承接了60公里的修路任务,为了提前完成任务,实际每天的工作效率比原计划提高了25%,结果提前60天完成了这项任务.设原计划每天修路x公里,根据题意列出的方程正确的是()A.60(125%)6060x x⨯+-=B.6060(125%)60x x⨯+-=C .606060(125%)x x-=+D .606060(125%)x x-=+ 【答案】D 【解析】 【分析】设原计划每天修路x 公里,则实际每天的工作效率为(125%)x +公里,根据题意即可列出分式方程. 【详解】解:设原计划每天修路x 公里,则实际每天的工作效率为(125%)x +公里, 依题意得:606060(125%)x x-=+. 故选:D . 【点睛】此题主要考查分式方程的应用,解题的关键是根据题意找到等量关系进行列方程.6.对于非零实数a 、b ,规定a ⊗b =21a b a-.若x ⊗(2x ﹣1)=1,则x 的值为( ) A .1 B .13 C .﹣1D .-13【答案】A 【解析】 【分析】 【详解】解:根据题中的新定义可得:()21x x ⊗-=21121x x x-=-, 解得:x=1,经检验x=1是分式方程的解, 故选A . 【点睛】本题考查了新定义、解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.7.风筝会期间,几名同学租一辆面包车前去观看开幕式,面包车的租价为180元,出发时又增加两名同学,结果每人比原来少摊了3元钱车费,设前去观看开幕式的同学共x 人,则所列方程为( ) A .18018032x x -=+ B .18018032x x-=+ C .18018032x x -=- D .18018032x x-=-【答案】D 【解析】 【分析】先用x 表示出增加2名同学前和增加后每人分摊的车费钱,再根据增加后每人比原来少摊了3元钱车费列出方程即可. 【详解】解:设前去观看开幕式的同学共x 人,根据题意,得:18018032x x-=-. 故选:D. 【点睛】本题考查了分式方程的应用,解题的关键是弄清题意、找准等量关系,易错点是容易弄错增加前后的人数.8.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别一点M N 、为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P . 若点P 的坐标为11,423a a ⎛⎫⎪-+⎝⎭,则a 的值为( )A .1a =-B .7a =-C .1a =D .13a =【答案】D 【解析】 【分析】根据作图过程可得P 在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得11=423a a -+,再根据P 点所在象限可得横纵坐标的和为0,进而得到a 的数量关系. 【详解】根据作图方法可得点P 在第二象限角平分线上, 则P 点横纵坐标的和为0, 故11+423a a -+=0,解得:a=1 3 .故答案选:D.【点睛】本题考查的知识点是作图—基本作图, 坐标与图形性质, 角平分线的性质,解题的关键是熟练的掌握作图—基本作图, 坐标与图形性质, 角平分线的性质作图—基本作图, 坐标与图形性质, 角平分线的性质.9.某一景点改造工程要限期完成,甲工程队独做可提前一天完成,乙工程队独做要误期6天,现由两工程队合做4天后,余下的由乙工程队独做,正好如期完成,若设工程期限为x天,则下面所列方程正确的是()A.4116xx x+=+-B.416xx x=-+C.4116xx x+=--D.4116xx x+=-+【答案】D 【解析】【分析】首先根据工程期限为x天,结合题意得出甲每天完成总工程的11x-,而乙每天完成总工程的16x+,据此根据题意最终如期完成了工程进一步列出方程即可.【详解】∵工程期限为x天,∴甲每天完成总工程的11x-,乙每天完成总工程的16x+,∵由两工程队合做4天后,余下的由乙工程队独做,正好如期完成,∴可列方程为:4116xx x+=-+,故选:D.【点睛】本题主要考查了分式方程的实际应用,根据题意正确找出等量关系是解题关键.10.新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1~5月份每辆车的销售价格是多少万元?设今年1~5月份每辆车的销售价格为x万元.根据题意,列方程正确的是( )A .B .C .D .【答案】A 【解析】 【分析】首先根据所设今年每辆车的价格,可表示出去年的价格,同样根据销售总额的关系可表示出今年的销售总额,然后再根据去年和今年1~5月份销售汽车的数量相同建立方程即可得解. 【详解】∵今年1~5月份每辆车的销售价格为x 万元, ∴去年每辆车的销售价格为(x+1)万元, 则有故选A. 【点睛】此题主要考查分式方程的应用,解题的关键是找出题中去年和今年的关系.11.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( ) A .606030(125%)x x-=+ B .606030(125%)x x-=+C .60(125%)6030x x⨯+-=D .6060(125%)30x x⨯+-= 【答案】C 【解析】分析:设实际工作时每天绿化的面积为x 万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x 的分式方程.详解:设实际工作时每天绿化的面积为x 万平方米,则原来每天绿化的面积为125%x+万平方米,依题意得:606030125%x x-=+,即()60125%6030x x⨯+-=. 故选C .点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.12.为保证某高速公路在2019年底全线顺利通车,某路段规定在若干天内完成修建任务.已知甲队单独完成这项工程比规定时间多用10天,乙队单独完成这项工程比规定时间多用30天,如果甲乙两队合作,可比规定时间提前20天完成任务.若设规定的时间为x 天,由题意可以列出的方程是()A.111103020+=--+x x xB.111103020+=++-x x xC.111103020-=++-x x xD.111102030+=-+-x x x【答案】B【解析】【分析】设规定的时间为x天.则甲队单独完成这项工程所需时间是(x+10)天,乙队单独完成这项工程所需时间是(x+30)天.根据甲、乙两队合作,可比规定时间提前20天完成任务,列方程为111103020+=++-x x x.【详解】设规定时间为x天,则甲队单独一天完成这项工程的110 +x,乙队单独一天完成这项工程的130x+,甲、乙两队合作一天完成这项工程的120 x-.则111103020+=++-x x x.故选B.【点睛】此题考查分式方程,解题关键在于由实际问题抽象出分式方程.13.某工程队准备修建一条长1200米的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前两天完成任务,若设原计划每天修建道路x米,则根据题意可列方程为().A.120012002(120%)x x-=+B.120012002(120%)x x-=-C.120012002(120%)x x-=+D.120012002(120%)x x-=-【答案】A【解析】设原计划每天修建道路xm,则实际每天修建道路为(1+20%)xm,由题意得,()120012002120%x x-=+. 故选A.14.若数k 使关于x 的不等式组301132x k x x +≤⎧⎪-⎨-≤⎪⎩只有4个整数解,且使关于y 的分式方程1k y -+1=1y ky ++的解为正数,则符合条件的所有整数k 的积为( )A .2B .0C .﹣3D .﹣6【答案】A 【解析】 【分析】解不等式组求得其解集,根据不等式组只有4个整数解得出k 的取值范围,解分式方程得出y=-2k+1,由方程的解为整数且分式有意义得出k 的取值范围,综合两者所求最终确定k 的范围,据此可得答案. 【详解】解:解不等式组301132x k x x +≤⎧⎪-⎨-≤⎪⎩得:﹣3≤x ≤﹣3k ,∵不等式组只有4个整数解, ∴0≤﹣3k<1, 解得:﹣3<k ≤0,解分式方程1k y -+1=1y k y ++得:y =﹣2k +1,∵分式方程的解为正数, ∴﹣2k +1>0且﹣2k +1≠1, 解得:k <12且k ≠0, 综上,k 的取值范围为﹣3<k <0,则符合条件的所有整数k 的积为﹣2×(﹣1)=2, 故选A . 【点睛】本题考查了解一元一次不等式组、分式方程的解,有难度,注意分式方程中的解要满足分母不为0的情况.15.已知关于x 的分式方程213x mx -=-的解是非正数,则m 的取值范围是( ) A .3m ≤ B .3m <C .3m >-D .3m ≥-【答案】A 【解析】 【分析】分式方程去分母转化为整式方程,由分式方程解为正数确定出m 的范围即可 【详解】213x mx -=-, 方程两边同乘以3x -,得23x m x -=-,移项及合并同类项,得3x m =-,Q 分式方程213x mx -=-的解是非正数,30x -≠,30(3)30m m -≤⎧∴⎨--≠⎩, 解得,3m ≤, 故选:A . 【点睛】此题考查分式方程的解,解题关键在于掌握运算法则求出m 的值16.若关于x 的分式方程2233x mx x -=--有增根,则m 的值为( ).A .3B .CD .【答案】D 【解析】解关于x 的方程2233x mx x -=--得:26x m =-, ∵原方程有增根,∴30x -=,即2630m --=,解得:m = 故选D.点睛:解这类题时,分两步完成:(1)按解一般分式方程的步骤解方程,用含待定字母的式子表示出方程的根;(2)方程有增根,则把(1)中所得的结果代入最简公分母中,最简公分母的值为0,由此即可求得待定字母的值.17.若关于x的分式方程3222x m mx x++=--有增根,则m的值为()A.1-B.0 C.1 D.2【答案】C【解析】【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣2=0,得到x=2,然后代入化为整式方程的方程,满足即可.【详解】解:方程两边都乘x﹣2,得x+m﹣3m=2(x﹣2),∵原方程有增根,∴最简公分母x﹣2=0,解得x=2,当x=2时,2+m﹣3m=0,∴m=1,故选:C.【点睛】本题考查了分式方程的增根,难度适中.确定增根可按如下步骤进行:①让最简公分母为0确定可能的增根;②化分式方程为整式方程;③把可能的增根代入整式方程,使整式方程成立的值即为分式方程的增根.18.甲、乙两位同学做中国结,已知甲每小时比乙少做6个,甲做30个所用的时间与乙做45个所用的时间相等,求甲每小时做中国结的个数.如果设甲每小时做x个,那么可列方程为( )A.30x=456x+B.30x=456x-C.306x-=45xD.306x+=45x【答案】A【解析】【分析】设甲每小时做x个,乙每小时做(x+6)个,根据甲做 30 个所用时间与乙做 45 个所用时间相等即可列方程.【详解】设甲每小时做 x 个,乙每小时做(x+6)个,根据甲做 30 个所用时间与乙做 45 个所用时间相等可得30x=456x+.故选A.【点睛】本题考查了分式方程的应用,找到关键描述语,正确找出等量关系是解决问题的关键.19.若整数a使得关于x的方程3222ax x-=--的解为非负数,且使得关于y的不等式组3221223y yy a--⎧+>⎪⎪⎨-⎪≤⎪⎩至少有四个整数解,则所有符合条件的整数a的和为().A.17 B.18 C.22 D.25【答案】C【解析】【分析】表示出不等式组的解集,由不等式至少有四个整数解确定出a的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a的值,进而求出之和.【详解】解:3221223y yy a--⎧+>⎪⎪⎨-⎪⎪⎩…,不等式组整理得:1 yy a>-⎧⎨⎩…,由不等式组至少有四个整数解,得到-1<y≤a,解得:a≥3,即整数a=3,4,5,6,…,2-322ax x=--,去分母得:2(x-2)-3=-a,解得:x=72a -,∵72a-≥0,且72a-≠2,∴a≤7,且a≠3,由分式方程的解为非负数以及分式有意义的条件,得到a为4,5,6,7,之和为22.故选:C.【点睛】此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.20.若关于x 的方程244x a x x =+--有增根,则a 的值为( ) A .-4B .2C .0D .4【答案】D【解析】【分析】 增根是化为整式方程后产生的不适合分式方程的根.让最简公分母x-4=0,得到x=4.再将x=4代入去分母后的方程即可求出a=4.【详解】解:由分式方程的最简公分母是x-4,∵关于x 的方程244x a x x =+--有增根, ∴x-4=0,∴分式方程的增根是x=4. 关于x 的方程244x a x x =+--去分母得x=2(x-4)+a, 代入x=4得a=4故选D .【点睛】 本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.。

初中数学方程与不等式练习题及答案

初中数学方程与不等式练习题及答案

初中数学方程与不等式练习题及答案1. 方程练习题1) 解方程:3x + 5 = 14解答:首先,将等式转化为3x = 14 - 5,即3x = 9。

然后,除以3得到x = 3。

因此,方程的解为x = 3。

2) 解方程:2(x + 4) = 12解答:首先,根据分配律展开括号得到2x + 8 = 12。

然后,将等式转化为2x = 12 - 8,即2x = 4。

最后,除以2得到x = 2。

因此,方程的解为x = 2。

3) 解方程:4x - 7 = 5x - 2解答:首先,将等式转化为4x - 5x = -2 + 7,即-x = 5。

然后,乘以-1得到x = -5。

因此,方程的解为x = -5。

4) 解方程组:{x + y = 8,x - y = 2}解答:可以使用消元法解方程组。

首先,将第二个方程乘以2得到2x - 2y = 4。

然后,将第一个方程加上第二个方程得到2x + 2y = 12。

由于2y和-2y相互抵消,得到2x = 12,即x = 6。

将x = 6代入第一个方程,得到6 + y = 8,解得y = 2。

因此,方程组的解为x = 6,y = 2。

2. 不等式练习题1) 求解不等式2x - 5 < 7解答:首先,将不等式转化为2x < 7 + 5,即2x < 12。

然后,除以2得到x < 6。

因此,不等式的解为x小于6的所有实数。

2) 求解不等式4 - x > 9解答:首先,将不等式转化为-x > 9 - 4,即-x > 5。

然后,乘以-1并改变不等式的方向得到x < -5。

因此,不等式的解为x小于-5的所有实数。

3) 求解不等式组:{x + y ≥ 5,2x - y ≤ 3}解答:可以使用图像解法或代入法解不等式组。

首先,绘制出x + y = 5和2x - y = 3的图像,发现两条直线的交点为(2, 3)。

根据题意,交点以上和左侧的区域满足不等式组。

(易错题精选)初中数学方程与不等式之分式方程真题汇编附答案解析

(易错题精选)初中数学方程与不等式之分式方程真题汇编附答案解析

(易错题精选)初中数学方程与不等式之分式方程真题汇编附答案解析一、选择题1.已知关于x 的分式方程22124x mxx x --=+-无解,则m 的值为( ) A .0 B .0或-8C .-8或-4D .0或-8或-4【答案】D 【解析】 【分析】分式方程无解的条件是:去分母后所得整式方程无解或解这个整式方程得到的解使原方程的分母等于0. 【详解】解:分式方程去分母得:(x−2)2−mx =(x +2)(x−2), 整理得:(4+m )x =8, 当m =−4时整式方程无解;当x =−2时原方程分母为0,此时m =−8; 当x =2时原方程分母为0,此时m =0, 故选:D . 【点睛】本题考查了分式方程无解的条件,分式方程无解分两种情况:去分母后所得整式方程无解;分式方程产生增根;是需要识记的内容.2.某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路xm ,则根据题意可得方程( ) A .240024008(120%)x x -=+ B .240024008(120%)x x -=+C .240024008(120%)x x-=-D .240024008(120%)x x-=- 【答案】A 【解析】 【分析】求的是原计划的工效,工作总量为2400,根据工作时间来列等量关系.本题的关键描述语是:“提前8小时完成任务”;等量关系为:原计划用的时间-实际用的时间=8. 【详解】原计划用的时间为:2400x ,实际用的时间为:()2400120%x +.所列方程为:2400x-()2400120%x +=8.故选A 【点睛】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.本题应用的等量关系为:工作时间=工作总量÷工效.3.某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同.设原计划平均每天生产x 个零件,根据题意可列方程为( )A .60045025x x =- B .60045025x x =- C .60045025x x=+ D .60045025x x =+ 【答案】C 【解析】 【分析】原计划平均每天生产x 个零件,现在每天生产(x+25)个,根据现在生产600个零件所需时间与原计划生产450个零件所需时间相同即可列出方程. 【详解】由题意得:现在每天生产(x+25)个,∴60045025x x =+, 故选:C. 【点睛】此题考查分式方程的实际应用,正确理解题意是列方程的关键.4.如果关于x 的分式方程11222a x x-+=--有整数解,且关于x 的不等式组43(1)211(1)22x x x x a ≥-⎧⎪⎨-+<-⎪⎩有且只有四个整数解,那么符合条件的所有整数a 的和是( ) A .4 B .-2C .-3D .2【答案】A 【解析】 【分析】分式方程去分母转化为整式方程,表示出整数方程的解,不等式组整理后,由解只有四个整数解,确定出a 的值,求出之和即可. 【详解】解:分式方程去分母得:1-a+2x-4=-1, 解得:22a x +=,且222a +≠,a 为偶数, 即2a ≠,a 为偶数,不等式组整理得:34x a x ≥-⎧⎪⎨⎪⎩<,由不等式组只有四个整数解,得到x=-3,-2,-1,0,可得0<4a≤1,即0<a≤4,即a=1,2,3,4, 经检验a=4, 则和为4, 故选:A . 【点睛】此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.5.对于非零实数a 、b ,规定a ⊗b =21a b a-.若x ⊗(2x ﹣1)=1,则x 的值为( ) A .1 B .13 C .﹣1D .-13【答案】A 【解析】 【分析】 【详解】解:根据题中的新定义可得:()21x x ⊗-=21121x x x-=-, 解得:x=1,经检验x=1是分式方程的解, 故选A . 【点睛】本题考查了新定义、解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.6.甲、乙两人同时分别从A ,B 两地沿同一条公路骑自行车到C 地.已知A ,C 两地间的距离为110千米,B ,C 两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C 地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x 千米/时.由题意列出方程.其中正确的是( )A .1101002x x =+ B .1101002x x =+ C .1101002x x=- D .1101002x x =- 【答案】A 【解析】设乙骑自行车的平均速度为x 千米/时,则甲骑自行车的平均速度为(x+2)千米/时,根据题意可得等量关系:甲骑110千米所用时间=乙骑100千米所用时间,根据等量关系可列出方程即可.解:设乙骑自行车的平均速度为x千米/时,由题意得:1102 x+=100x,故选A.7.方程22111x xx x-=-+的解是()A.x=12B.x=15C.x=14D.x=14【答案】B【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】解:去分母得:2x2+2x=2x2﹣3x+1,解得:x=15,经检验x=15是分式方程的解,故选B.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.8.甲做480个零件与乙做360个零件所用的时间相同,已知两人每天共做140个零件,若设甲每天做x个零件,则可以列出方程为()A.480360140x x=-B.480480140x x=-C.480360140x x+=D.360480140x x-=【答案】A【解析】【分析】设甲每天做x个零件,根据甲做480个零件与乙做360个零件所用的时间相同,列出方程即可.【详解】解:设甲每天做x个零件,根据题意得:480360140x x=-,故选:A.【点睛】此题考查了由实际问题抽象出分式方程,找到关键描述语,找到等量关系是解决问题的关键.本题用到的等量关系为:工作时间=工作总量÷工作效率.9.方程10020x+=6020x-的解为()A.x=10 B.x=﹣10 C.x=5 D.x=﹣5【答案】C【解析】【分析】方程两边同时乘以(20+x)(20﹣x),解得,x=5,经检验,x=5是方程的根.【详解】解:方程两边同时乘以(20+x)(20﹣x),得100(20﹣x)=60(20+x),整理,得8x=40,解得,x=5,经检验,x=5是方程的根,∴原方程的根是x=5;故选:C.【点睛】本题考查分式方程的解法;熟练掌握分式方程的解法,切勿遗漏验根是解题的关键.10.新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1~5月份每辆车的销售价格是多少万元?设今年1~5月份每辆车的销售价格为x万元.根据题意,列方程正确的是( )A.B.C.D.【答案】A【解析】【分析】首先根据所设今年每辆车的价格,可表示出去年的价格,同样根据销售总额的关系可表示出今年的销售总额,然后再根据去年和今年1~5月份销售汽车的数量相同建立方程即可得解.【详解】∵今年1~5月份每辆车的销售价格为x万元,∴去年每辆车的销售价格为(x+1)万元,则有故选A. 【点睛】此题主要考查分式方程的应用,解题的关键是找出题中去年和今年的关系.11.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x 千米/小时,根据题意,得 A .25301018060(%)x x -=+ B .253010180(%)x x -=+ C .30251018060(%)x x -=+D .302510180(%)x x-=+【答案】A 【解析】若设走路线一时的平均速度为x 千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程. 解:设走路线一时的平均速度为x 千米/小时,()253010180%60x x -=+ 故选A .12.已知关于x 的分式方程13222mx x x-+=--有解,则m 应满足的条件是( ) A . 1 2m m ≠≠且 B .2m ≠C .1m =或2m =D .1m ≠或2m ≠【答案】A 【解析】 【分析】分式方程去分母转化为整式方程(m-2)x=-2,由分式方程有解可知m-2≠0,最简公分母x-2≠0,求出x 的值,进一步求出m 的取值即可. 【详解】13222mx x x-+=--, 去分母得,1-(3-mx )=2(x-2) 整理得,(m-2)x=-2∵分式方程13222mx x x-+=--有解, ∴m-2≠0,即m≠2,∴22x m -=- ∵分式方程13222mx x x-+=--有解, ∴x-2≠0,即x≠2,∴222m -≠-,解得,m≠1, 所以,m 的取值为: 1 m ≠且2m ≠ 故选:A. 【点睛】此题主要考查了分式方程的求解,关键是会解出方程的解,注意隐含条件.13.关于x 的方程无解,则m 的值为( )A .﹣5B .﹣8C .﹣2D .5 【答案】A 【解析】解:去分母得:3x ﹣2=2x +2+m ①.由分式方程无解,得到x +1=0,即x =﹣1,代入整式方程①得:﹣5=﹣2+2+m ,解得:m =﹣5.故选A .14.若关于x 的方程333x m mx x++--=3的解为正数,则m 的取值范围是( ) A .m <92 B .m <92且m≠32C .m >﹣94D .m >﹣94且m≠﹣34【答案】B 【解析】 【分析】 【详解】解:去分母得:x+m ﹣3m=3x ﹣9, 整理得:2x=﹣2m+9,解得:x=292m -+, 已知关于x 的方程333x m mx x++--=3的解为正数, 所以﹣2m+9>0,解得m <92, 当x=3时,x=292m -+=3,解得:m=32,所以m 的取值范围是:m <92且m≠32.故答案选B .15.某单位向一所希望小学赠送1080本课外书,现用A 、B 两种不同的包装箱进行包装,单独使用B 型包装箱比单独使用A 型包装箱可少用6个;已知每个B 型包装箱比每个A 型包装箱可多装15本课外书.若设每个A 型包装箱可以装书x 本,则根据题意列得方程为( ) A . B . C .D .【答案】C 【解析】设每个A 型包装箱可以装书x 本,则每个B 型包装箱可以装书(x+15)本,根据单独使用B 型包装箱比单独使用A 型包装箱可少用6个,列方程得:,故选C.16.若关于x 的分式方程2233x mx x -=--有增根,则m 的值为( ). A .3 B .3C 3D .3±【答案】D 【解析】解关于x 的方程2233x mx x -=--得:26x m =-, ∵原方程有增根,∴30x -=,即2630m --=,解得:3m = 故选D.点睛:解这类题时,分两步完成:(1)按解一般分式方程的步骤解方程,用含待定字母的式子表示出方程的根;(2)方程有增根,则把(1)中所得的结果代入最简公分母中,最简公分母的值为0,由此即可求得待定字母的值.17.关于x 的方程2111ax x x -=++的解为非正数,且关于x 的不等式组22533a x x +⎧⎪+⎨⎪⎩„…无解,那么满足条件的所有整数a 的和是( ) A .﹣19 B .﹣15C .﹣13D .﹣9【答案】C 【解析】解:分式方程去分母得:ax ﹣x ﹣1=2,整理得:(a ﹣1)x =3,由分式方程的解为非正数,得到31a -≤0,且 31a -≠﹣1,解得:a <1且a ≠﹣2. 不等式组整理得:224a x x -⎧≤⎪⎨⎪≥⎩,由不等式组无解,得到22a -<4,解得:a >﹣6,∴满足题意a 的范围为﹣6<a <1,且a ≠﹣2,即整数a 的值为﹣5,﹣4,﹣3,﹣1,0,则满足条件的所有整数a 的和是﹣13,故选C .点睛:此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.18.小明上月在某文具店正好用 20 元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜 1 元,结果小明只比上次多用了 4 元钱, 却比上次多买了 2 本.若设他上月买了 x 本笔记本,则根据题意可列方程( ) A .24x 2+ -20x=1 B .20x -24 x 2+ =1 C .24x - 20x 2+ =1 D .20x 2+ -24x=1 【答案】B 【解析】试题解析:设他上月买了x 本笔记本,则这次买了(x+2)本, 根据题意得:2020412x x +-=+, 即:202412x x -=+. 故选B .考点:分式方程的应用.19.关于x 的分式方程26344ax x x -+=---的解为正数,且关于x 的不等式组1722x a x x >⎧⎪⎨+≥-⎪⎩有解,则满足上述要求的所有整数a 的绝对值之和为( )A .12B .14C .16D .18【答案】C 【解析】 【分析】根据分式方程的解为正数即可得出a <2且a≠1,根据不等式组有解,即可得出a >-5,找出-5<a <2且a≠1中所有的整数,将其相加即可得出结论.【详解】解分式方程26344ax x x -+=---得:x=43a -,因为分式方程的解为正数,所以43a ->0且43a -≠4, 解得:a <3且a≠2,解不等式1722x a x x >⎧⎪⎨+≥-⎪⎩,得:x≤a+7,∵不等式组有解, ∴a+7>1, 解得:a >-6,综上,-6<a <3,且a≠2,则满足上述要求的所有整数a 的绝对值的和为: |-5|+|-4|+|-3|+|-2|+|-1|+|0|+|1|=16, 故选:C . 【点睛】本题考查了分式方程的解以及解一元一次不等式,根据分式方程的解为正数结合不等式组有解,找出-6<a <3且a≠2是解题的关键.20.若关于x 的方程244x ax x =+--有增根,则a 的值为( ) A .-4 B .2C .0D .4【答案】D 【解析】 【分析】增根是化为整式方程后产生的不适合分式方程的根.让最简公分母x-4=0,得到x=4.再将x=4代入去分母后的方程即可求出a=4. 【详解】解:由分式方程的最简公分母是x-4, ∵关于x 的方程244x a x x =+--有增根, ∴x-4=0,∴分式方程的增根是x=4.关于x 的方程244x a x x =+--去分母得x=2(x-4)+a, 代入x=4得a=4 故选D .【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.。

初中数学方程与不等式之不等式与不等式组基础测试题含答案

初中数学方程与不等式之不等式与不等式组基础测试题含答案

初中数学方程与不等式之不等式与不等式组基础测试题含答案一、选择题1.把不等式组的解集表示在数轴上,下列选项正确的是( ) A .B .C .D .【答案】B【解析】由(1)得x >-1,由(2)得x≤1,所以-1<x≤1.故选B .2.若关于x ,y 的方程组3,25x y m x y m -=+⎧⎨+=⎩的解满足x >y >0,则m 的取值范围是( ). A .m >2 B .m >-3 C .-3<m <2 D .m <3或m >2【答案】A【解析】【分析】先解方程组用含m 的代数式表示出x 、y 的值,再根据x >y >0列不等式组求解即可.【详解】解325x y m x y m -=+⎧⎨+=⎩,得 212x m y m =+⎧⎨=-⎩. ∵x >y >0,∴21220m m m +>-⎧⎨->⎩, 解之得m >2.故选A.【点睛】本题考查了二元一次方程组及一元一次不等式组的应用,用含m 的代数式表示出x 、y 的值是解答本题的关键.3.若某人要完成2.1千米的路程,并要在18分钟内到达,已知他每分钟走90米,若跑步每分钟可跑210米,问这人完成这段路程,至少要跑多少分钟?设要跑x 分钟,则列出的不等式为( )A .21090(18)2100x x +-≥B .90210(18)2100x x +-≤C .21090(18) 2.1x x +-≤D .21090(18) 2.1x x +->【答案】A【解析】 设至少要跑x 分钟,根据“18分钟走的路程≥2100米”可得不等式:210x+90(18–x )≥2100,故选A .4.不等式组30213x x +⎧⎨->⎩…的解集为( ) A .x >1B .x≥3C .x≥﹣3D .x >2【答案】D【解析】【分析】分别求出各不等式的解集,再求出其公共解集即可.【详解】 解:30213x x +>⎧⎨->⎩①②, 由①得,x ≥﹣3,由②得,x >2,故此不等式组的解集为:x>2.故选:D .【点睛】本题考查了解一元一次不等式组,解题的关键是分别解出各不等式的解集,利用数轴求出不等式组的解集,难度适中.5.不等式组1240x x >⎧⎨-≤⎩的解集在数轴上可表示为( ) A .B .C .D .【答案】A【解析】【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【详解】 解:1240x x >⎧⎨-≤⎩①② ∵不等式①得:x >1,解不等式②得:x≤2,∴不等式组的解集为1<x≤2,在数轴上表示为:,故选A.【点睛】 本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.6.不等式26x -≥0的解集在数轴上表示正确的是( )A .B .C .D . 【答案】B【解析】【分析】先求解出不等式的解集,再表示在数轴上【详解】解不等式:2x-6≥02x≥6x≥3 数轴上表示为:故选:B【点睛】本题考查不等式的求解,需要注意,若不等式两边同时乘除负数,则不等号需要变号7.若关于x 的不等式组21x x a <⎧⎨>-⎩无解,则a 的取值范围是( ) A .3a ≤-B .3a <-C .3a >D .3a ≥ 【答案】D【解析】【分析】利用不等式组取解集的方法:大大小小找不到即可得到a 的范围.【详解】∵关于x 的不等式组21x x a <⎧⎨>-⎩无解, ∴a-1≥2,∴a ≥3.故选:D.【点睛】考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.8.不等式组32110x x -<⎧⎨+≥⎩的解集在数轴上表示正确的是( ) A .B .C .D .【答案】D【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】 32110 x x -<⎧⎨+≥⎩①② 解不等式①得,1x <,解不等式②得,1x ≥-所以,不等式组的解集为:-11x ≤<,在数轴上表示为:故选D.【点睛】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.9.如果不等式(2)25a x a ->-的解集是4x <,则不等式251a y ->的解集是( ).A .52y < B .25y < C .52y > D .25y > 【答案】B【解析】【分析】根据不等式的性质得出20a -<,2542a a -=-,解得32a =,则2a=3,再解不等式251a y ->即可.【详解】解:∵不等式(a-2)x >2a-5的解集是x <4,∴20a -<, ∴2542a a -=-, 解得32a =, ∴2a=3, ∴不等式2a-5y >1整理为351y ->, 解得:25y <. 故选:B .【点睛】本题考查了含字母系数的不等式的解法,有一定难度,注意不等式两边同乘以(或除以)同一个负数,不等号的方向改变.10.下列不等式变形中,一定正确的是( )A .若ac bc >,则a b >B .若a b >,则22ac bc >C .若22a b c c >,则a b > D .若0a >,0b >,且11a b >,则a b > 【答案】C【解析】【分析】 根据不等式的基本性质分别进行判定即可得出答案.【详解】 A .当c <0,不等号的方向改变.故此选项错误;B .当c=0时,符号为等号,故此选项错误;C .不等式两边乘(或除以)同一个正数,不等号的方向不变,正确;D .分母越大,分数值越小,故此选项错误.故选:C .【点睛】此题主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.11.已知x=2是不等式()()5320x ax a --+≤的解,且x=1不是这个不等式的解,则实数a 的取值范围是( )A .a >1B .a≤2C .1<a≤2D .1≤a≤2【答案】C【解析】∵x=2是不等式(x−5)(ax−3a+2)⩽0的解,∴(2−5)(2a −3a+2)⩽0,解得:a ⩽2,∵x=1不是这个不等式的解,∴(1−5)(a −3a+2)>0,解得:a>1,∴1<a ⩽2,故选C.12.a 的一半与b 的差是负数,用不等式表示为( )A .102a b -< B .102a b -≤ C .()102a b -< D .102a b -< 【答案】D【解析】【分析】列代数式表示a 的一半与b 的差,是负数即小于0. 【详解】 解:根据题意得102a b -< 故选D .【点睛】 本题考查了列不等式,首先要列出表示题中数量关系的代数式,再由不等关系列不等式.13.若不等式组236x x x m -<-⎧⎨<⎩无解,那么m 的取值范围是( ) A .m >2B .m <2C .m ≥2D .m ≤2【答案】D【解析】【分析】先求出每个不等式的解集,再根据不等式组解集的求法和不等式组无解的条件,即可得到m 的取值范围.【详解】解:236 x xx m-<-⎧⎨<⎩②①由①得,x>2,由②得,x<m,又因为不等式组无解,所以根据“大大小小解不了”原则,m≤2.故选:D.【点睛】此题考查解一元一次不等式组,解题关键在于掌握求不等式组的解集,要根据以下原则:同大取较大,同小较小,小大大小中间找,大大小小解不了.14.不等式组2131xx+≥-⎧⎨<⎩的解集在数轴上表示正确的是()A .B .C .D .【答案】D【解析】【分析】分别求出各不等式的解集,并在数轴上表示出来,找出符合条件的选项即可.【详解】解不等式2x+1≥﹣3得:x≥﹣2,不等式组的解集为﹣2≤x<1,不等式组的解集在数轴上表示如图:故选:D.【点睛】本题考查了在数轴上表示一元一次不等式组的解集及解一元一次不等式组,熟知“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则是解答本题的关键.15.不等式组26020xx+>⎧⎨-≥⎩的解集在数轴上表示为()A .B .C .D .【答案】C【解析】【分析】 分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,表示在数轴上即可.【详解】解:26020x x +>⎧⎨-≥⎩①②, 由①得:3x >-;由②得:2x ≤,∴不等式组的解集为32x -<≤,表示在数轴上,如图所示:故选:C .【点睛】考核知识点:解不等式组.解不等式是关键.16.若整数a 使关于x 的分式方程111a x a x x ++=-+的解为负数,且使关于x 的不等式组1()022113x a x x ⎧-->⎪⎪⎨+⎪-≥⎪⎩无解,则所有满足条件的整数a 的值之和是( )A .5B .7C .9D .10 【答案】C【解析】【分析】解分式方程和不等式得出关于x 的值及x 的范围,根据分式方程的解不是增根且为负数和不等式组无解得出a 的范围,继而可得整数a 的所有取值,然后相加.【详解】解:解关于x 的分式方程111a x a x x ++=-+,得x =−2a+1, ∵x ≠±1,∴a ≠0,a≠1,∵关于x 的分式方程111a x a x x ++=-+的解为负数, ∴−2a+1<0, ∴12a >, 解不等式1()02x a -->,得:x <a , 解不等式2113x x +-≥,得:x≥4, ∵关于x 的不等式组1()022113x a x x ⎧-->⎪⎪⎨+⎪-≥⎪⎩无解, ∴a ≤4,∴则所有满足条件的整数a 的值是:2、3、4,和为9,故选:C .【点睛】本题主要考查分式方程的解和一元一次不等式组的解,熟练掌握解分式方程和不等式组的方法,并根据题意得到a 的范围是解题的关键.17.如果,0a b c ><,那么下列不等式成立的是( )A .a c b +>B .a c b c +>-C .11ac bc ->-D .()()11a c b c -<- 【答案】D【解析】【分析】根据不等式的性质即可求出答案.【详解】解:∵0c <,∴11c -<-,∵a b >,∴()()11a c b c -<-,故选:D .【点睛】本题考查不等式的性质,解题的关键是熟练运用不等式的性质,本题属于中等题型.18.下列不等式变形正确的是( )A .由a b >,得22a b -<-B .由a b >,得22a b -<-C .由a b >,得a b >D .由a b >,得22a b >【答案】B【解析】【分析】 根据不等式的基本性质结合特殊值法逐项判断即可.【详解】解:A 、由a >b ,不等式两边同时减去2可得a-2>b-2,故此选项错误;B 、由a >b ,不等式两边同时乘以-2可得-2a <-2b ,故此选项正确;C 、当a >b >0时,才有|a|>|b|;当0>a >b 时,有|a|<|b|,故此选项错误;D 、由a >b ,得a 2>b 2错误,例如:1>-2,有12<(-2)2,故此选项错误.故选:B .【点睛】主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.19.若关于x 的不等式组324x a x a <+⎧⎨>-⎩无解,则a 的取值范围是( ) A .a≤﹣3B .a <﹣3C .a >3D .a≥3【答案】A【解析】【分析】利用不等式组取解集的方法,根据不等式组无解求出a 的取值范围即可. 【详解】∵不等式组324x a x a <+⎧⎨>-⎩无解, ∴a ﹣4≥3a+2,解得:a≤﹣3,故选A .【点睛】本题考查了一元一次不等式组的解集,熟知一元一次不等式组的解集的确定方法“同大取大、同小取小、大小小大中间找、大大小小无处找”是解题的关键.20.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折 【答案】B【解析】【详解】设可打x 折,则有1200×10x -800≥800×5%, 解得x≥7.即最多打7折.故选B .【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.。

初中数学方程与不等式提高练习和常考题与压轴难题(含解析)

初中数学方程与不等式提高练习和常考题与压轴难题(含解析)

初中数学方程与不等式提高练习和常考题与压轴难题(含解析)一.选择题〔共16小题〕1.假设关于x的方程x﹣3k=5〔x﹣k〕+1的解为负数,那么k的值为〔〕A.k>B.k<C.k=D.k>且k≠22.以下各式,属于二元一次方程的个数有〔〕①xy+2x﹣y=7;②4x+1=x﹣y;③+y=5;④x=y;⑤x2﹣y2=2⑥6x﹣2y⑦x+y+z=1⑧y〔y﹣1〕=2y2﹣y2+x.A.1B.2C.3D.43.关于x的一元二次方程有实数根,那么实数a满足〔〕A.B.C.a≤且a≠3D.2+9x+1=0的两根,那么〔α2+2021α+1〕〔β2+2021β+1〕的值是4.设α,β是方程x〔〕A.0B.1C.2000D.40000002+〔a﹣b〕x+c2=0的根的 5.假设a,b,c为三角形三边,那么关于x的二次方程x情况是〔〕A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法确定6.方程﹣a=,且关于x的不等式组只有4个整数解,那么b的取值X围是〔〕A.﹣1<b≤3B.2<b≤3C.8≤b<9D.3≤b<47.观察以下方程:〔1〕;〔2〕;〔3〕;〔4〕其中是关于x的分式方程的有〔〕第1页〔共30页〕A.a>﹣1B.a>﹣2C.a>0D.a>﹣1且a≠09.假设关于x的不等式整数解共有2个,那么m的取值X围是〔〕A.3≤m<4B.3<m<4C.3<m≤4D.3≤m≤410.为引导居民节约用水,某市出台了城镇居民作用水阶梯水价制度.每年水费的计算方法为:年交水费=第一阶梯水价×第一阶梯用水量+第二阶梯水价×第二阶梯用水量+第三阶梯水价×第三阶梯用水量.该市某同学家在实施阶梯水价制度后的第一年缴纳水费1730元,那么该同学家这一年的用水量为〔〕某市居民用水阶梯水价表3〕水价〔元/m3〕阶梯户年用水量v〔m第一阶梯0≤v≤1805第二阶梯180<v≤2607第三阶梯v>26093B.270m3C.290m3D.310m3A.250m11.父子二人并排垂站立于游泳池中时,爸爸露出水面的高度是他自身身高的,儿子露出水面的高度是他自身身高的,父子二人的身高之和为3.2米.假设设爸爸的身高为x米,儿子的身高为y米,那么可列方程组为〔〕A.B.C.D.12.方程3x+y=9在正整数X围内的解的个数是〔〕A.1个B.2个C.3个D.有无数个2﹣4x+1=0,配成〔x+p〕2=q的形式,那么p、q的值是〔〕13.把一元二次方程xA.p=﹣2,q=5B.p=﹣2,q=3C.p=2,q=5D.p=2,q=32﹣2x﹣k+1=0有两个不相等的实数根,那么一次函14.假设关于x的一元二次方程x 数y=kx﹣k的大致图象是〔〕A.B.C.D.15.在求3x的倒数的值时,嘉淇同学误将3x看成了8x,她求得的值比正确答案小5.依上述情形,所列关系式成立的是〔〕A.=﹣5B.=+5C.=8x﹣5D.=8x+516.假设不等式组的解集是x>3,那么m的取值X围是〔〕A.m>3B.m≥3C.m≤3D.m<3二.填空题〔共14小题〕n〕′=n n﹣x1,假设〔x2〕′﹣=2,那么x=.17.对于实数x,规定〔x18.销售某件商品可获利30元,假设打9折每件商品所获利润比原来减少了10 元,那么该商品的进价是元.19.假设关于x、y的二元一次方程组的解是,那么关于x、y的二元一次方程组的解是x=,y=.20.实数m,n满足m﹣n2=1,那么代数式m2+2n2+4m﹣1的最小值等于.2﹣3x+8=0,那么△21.整数k<5,假设△ABC的边长均满足关于x的方程xABC的周长是.2﹣2m﹣1=0,n2﹣2n﹣1=0,那么m2+n222.假设两个不等实数m、n满足条件:m的值是.23.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮被感染后就会有144台电脑被感染.每轮感染中平均一台电脑会感染台电脑.2﹣m x++m+=0的根的情况是.24.假设m是实数,那么关于x的方程x25.假设关于x的方程=+1无解,那么a的值是.此就将具有这样性质的三个数称之为调和数,如6、3、2也是一组调和数.现有第3页〔共30页〕一组调和数:x、5、3〔x>5〕,那么x的值是.27.假设不等式组有解,那么a的取值X围是.28.如图A、B、C、D四人在公园玩跷跷板,根据图中的情况,这四人体重从小到大排列的顺序为.29.在一次数学知识竞赛中,竞赛题共30题.规定:答对一道题得4分,不答或答错一道题倒扣2分,得分不低于60分者得奖.得奖者至少应答对道题.30.假设关于x的不等式的解集为x<2,那么k的取值X围是.三.解答题〔共10小题〕31.甲,乙两位同学在解方程组时,甲正确地解得方程组的解为.乙因大意,错误地将方程中系数C写错了,得到的解为;假设乙没有再发生其他错误,试确定a,b,c的值.32.解方程组.33.参加一次篮球联赛的每两队之间都进展两次比赛,共要比赛30场,共有多少个队参加比赛?34.甲、乙两班同学同时从学校沿一路线走向离学校S千米的军训地参加训练.甲班有一半路程以V1千米/小时的速度行走,另一半路程以V2千米/小时的速度行走;乙班有一半时间以V1千米/小时的速度行走,另一半时间以V2千米/小时的速度行走.设甲、乙两班同学走到军训基地的时间分别为t1小时、t2小时.〔1〕试用含S、V1、V2的代数式表示t1和t2;〔2〕请你判断甲、乙两班哪一个的同学先到达军训基地并说明理由.35.对x,y定义一种新运算T,规定:T〔x,y〕=〔其中a,b均为非零常数〕,这里等式右边是通常的四那么运算,例如:T〔0,1〕==b,已知T〔1,1〕=2.5,T〔4,﹣2〕=4.〔1〕求a,b的值;〔2〕假设关于m的不等式组恰好有2个整数解,XX数P的取值X围.36.x=3是关于x的不等式的解,求a的取值X围.37.如果关于x的不等〔2m﹣n〕x+m﹣5n>0的解集为x<,试求关于x的不等式mx>n的解集.38.某养鸡厂方案购置甲、乙两种鸡苗共2000只进展饲养,甲种小鸡苗每只二元,乙种小鸡苗每只三元.〔1〕假设购置不超过4700元,应最少购置甲种小鸡苗多少只?〔2〕相关资料表示,甲、乙两种小鸡苗的成活率分虽是94%和99%,假设要使这两种小鸡苗成活率不低于96%且购置小鸡苗的总费用最低,应购置甲、乙两种小鸡各多少只?最少费用是多少元?39.为了相应“足球进校园〞的号召,某体育用品商店方案购进一批足球,第一次用6000元购进A品牌足球m个,第二次又用6000元购进B品牌足球,购进的B品牌足球的数量比购进的A品牌足球多30个,并且每个A品牌足球的进价是每个B品牌足球的进价的.〔1〕求m的值;〔2〕假设这两次购进的A,B两种品牌的足球分别按照a元/个,a元/个两种价格销售,全部销售完毕后,可获得的利润不低于4800元,求出a的最小值.40.为满足市场需求,新生活超市在端午节前夕购进价格为3元/个的某品牌粽子,根据市场预测,该品牌粽子每个售价4元时,每天能出售500个,并且售价每上涨0.1元,其销售量将减少10个,为了维护消费者利益,物价部门规定,该品牌粽子售价不能超过进价的200%,请你利用所学知识帮助超市给该品牌粽子定价,使超市每天的销售利润为800元.----初中数学方程与不等式提高练习和常考题与压轴难题(含解析)参考答案与试题解析一.选择题〔共16小题〕1.〔2021 春?蓬溪县校级月考〕假设关于x的方程x﹣3k=5〔x﹣k〕+1的解为负数,那么k的值为〔〕A.k>B.k<C.k=D.k>且k≠2【分析】此题首先要解这个关于x的方程,根据解是负数,可以得到一个关于k 的不等式,就可以求出k的X围.【解答】解:x﹣3k=5〔x﹣k〕+1,根据题意得,解得k<;应选B.【点评】此题是一个方程与不等式的综合题目.解关于x的不等式是此题的一个难点.2.〔2021春?文登市校级期中〕以下各式,属于二元一次方程的个数有〔〕①xy+2x﹣y=7;②4x+1=x﹣y;③+y=5;④x=y;⑤x2﹣y2=2⑥6x﹣2y⑦x+y+z=1⑧y〔y﹣1〕=2y2﹣y2+x.A.1B.2C.3D.4【分析】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面区分.【解答】解:①xy+2x﹣y=7,不是二元一次方程,因为其未知数的最高次数为2;②4x+1=x﹣y,是二元一次方程;③+y=5,不是二元一次方程,因为不是整式方程;④x=y是二元一次方程;⑤x2﹣y2=2不是二元一次方程,因为其未知数的最高次数为2;⑥6x﹣2y,不是二元一次方程,因为不是等式;⑦x+y+z=1,不是二元一次方程,因为含有3个未知数;⑧y〔y﹣1〕=2y2﹣y2+x,是二元一次方程,因为变形后为﹣y=x.应选C.【点评】二元一次方程必须符合以下三个条件:〔1〕方程中只含有2个未知数;〔2〕含未知数项的最高次数为一次;〔3〕方程是整式方程.注意⑧整理后是二元一次方程.3.〔2021?海拉尔区校级三模〕关于x的一元二次方程有实数根,那么实数a满足〔〕A.B.C.a≤且a≠3D.【分析】讨论:当a﹣3=0,原方程变形为一元一次方程,有一个实数根;当a﹣3≠0,△=〔﹣〕2﹣4×〔a﹣3〕×1≥0,然后综合这两种情况即可.【解答】解:当a﹣3=0,方程变形为﹣x+1=0,此方程为一元一次方程,有一个实数根;当a﹣3≠0,△=〔﹣〕2﹣4×〔a﹣3〕×1≥0,解得a≤且a≠3.所以a的取值X围为a≤且a≠3.应选C.【点评】此题考察了一元二次方程ax2+bx+c=0〔a≠0〕的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考察了一元二次方程的定义.2+9x+1=0的两根,那么〔α2+2021α+1〕4.〔2021?桂平市二模〕设α,β是方程x〔β2+2021β+1〕的值是〔〕A.0B.1C.2000D.4000000【分析】欲求〔α2+2021α+1〕〔β2+2021β+1〕的值,先把此代数式变形为两根之积或两根之和的形式〔α2+2021α+1〕〔β2+2021β+1〕=〔α2+9α+1+2000α〕〔β2+9β+1+2000β〕,再利用根与系数的关系代入数值计算即可.【解答】解:∵α,β是方程x2+9x+1=0的两个实数根,∴α+β=﹣9,α?β=.1〔α2+2021α+1〕〔β2+2021β+1〕2+9α+1+2000α〕〔β2+9β+1+2000β〕=〔α又∵α,β是方程x2+9x+1=0的两个实数根,∴α2+9α+1=0,β2+9β+1=0.∴〔α2+9α+1+2000α〕〔β2+9β+1+2000β〕=2000α?2000β=2000×2000αβ,而α?β=,1∴〔α2+9α+1+2000α〕〔β2+9β+1+2000β〕=4000000.应选D.【点评】将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.2+〔a﹣b〕5.〔1999?XX〕假设a,b,c为三角形三边,那么关于x的二次方程xx+c2=0的根的情况是〔〕A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法确定【分析】先求出△=b2﹣4ac,再结合a,b,c为三角形的三边,即可判断根的情况.【解答】解:∵x2+〔a﹣b〕x+c2=0,∴△=b2﹣4ac==〔a﹣b〕2﹣c2=〔a﹣b﹣c〕〔a﹣b+c〕∵a,b,c为三角形三边,第9页〔共30页〕∴b+c>a,a+c>b∴a﹣b﹣c<0,a﹣b+c>0∴〔a﹣b﹣c〕〔a﹣b+c〕<0,即二次方程x2+〔a﹣b〕x+c2=0无实数根.应选C.【点评】此题考察了一元二次方程根的判别式的应用及三角形三边的关系.6.〔2021?德阳〕方程﹣a=,且关于x的不等式组只有4个整数解,那么b的取值X围是〔〕A.﹣1<b≤3B.2<b≤3C.8≤b<9D.3≤b<4【分析】分式方程去分母转化为整式方程,求出整式方程的解得到a的值,经检验确定出分式方程的解,根据不等式组只有4个正整数解,即可确定出b的X围.【解答】解:分式方程去分母得:3﹣a﹣a2+4a=﹣1,即〔a﹣4〕〔a+1〕=0,解得:a=4或a=﹣1,经检验a=4是增根,故分式方程的解为a=﹣1,不等式组解得:﹣1<x≤b,∵不等式组只有4个整数解,∴3≤b<4.应选:D【点评】此题考察了分式方程的解,以及一元一次不等式组的整数解,弄清题意是解此题的关键.7.观察以下方程:〔1〕;〔2〕;〔3〕;〔4〕其中是关于x的分式方程的有〔〕A.〔1〕B.〔2〕C.〔2〕〔3〕D.〔2〕〔4〕【分析】根据分式方程的定义:分母里含有字母的方程叫做分式方程判断.第10页〔共30页〕【解答】解:〔1〕〔4〕中的方程分母中不含未知数,故不是分式方程;而〔2〕〔3〕的方程分母中含未知数x,所以是分式方程.应选C.【点评】判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数〔注意:仅仅是字母不行,必须是表示未知数的字母〕.8.〔2021 ?XX〕当1≤x≤2时,ax+2>0,那么a的取值X围是〔〕A.a>﹣1B.a>﹣2C.a>0D.a>﹣1且a≠0【分析】当x=1时,a+2>0;当x=2,2a+2>0,解两个不等式,得到a的X围,最后综合得到a的取值X围.【解答】解:当x=1时,a+2>0解得:a>﹣2;当x=2,2a+2>0,解得:a>﹣1,∴a的取值X围为:a>﹣1.【点评】此题考察了不等式的性质,解决此题的关键是熟记不等式的性质.9.〔2021?鼓楼区一模〕假设关于x的不等式整数解共有2个,那么m的取值X围是〔〕A.3≤m<4B.3<m<4C.3<m≤4D.3≤m≤4【分析】首先确定不等式组的解集,先利用含m的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于m的不等式,从而求出m的X围.【解答】解:解得不等式组的解集为:2≤x<m,因为不等式组只有2个整数解,所以这两个整数解为:2,3,因此实数m的取值X围是3<m≤4.应选:C.【点评】此题考察了一元一次不等组的整数解,正确解出不等式组的解集,确定第11页〔共30页〕m的X围,是解决此题的关键.10.〔2021?XX模拟〕为引导居民节约用水,某市出台了城镇居民作用水阶梯水价制度.每年水费的计算方法为:年交水费=第一阶梯水价×第一阶梯用水量+第二阶梯水价×第二阶梯用水量+第三阶梯水价×第三阶梯用水量.该市某同学家在实施阶梯水价制度后的第一年缴纳水费1730元,那么该同学家这一年的用水量为〔〕某市居民用水阶梯水价表3〕水价〔元/m3〕阶梯户年用水量v〔m第一阶梯0≤v≤1805第二阶梯180<v≤2607第三阶梯v>26093B.270m3C.290m3D.310m3A.250m【分析】利用表格中数据得出水费不超过1460元时包括第三阶梯水价费用,进而得出等量系求出即可.【解答】解:设该同学这一年的用水量为x,根据表格知,180×5+80×7=1460<1730,那么该同学家的用水量包括第三阶梯水价费用.依题意得:180×5+80×7+〔x﹣260〕×9=1730,解得x=290.应选:C.【点评】此题考察了一元一次方程的应用.根据表格中数据得出正确是等量关系是解题关键.11.〔2021?XX一模〕父子二人并排垂站立于游泳池中时,爸爸露出水面的高度是他自身身高的,儿子露出水面的高度是他自身身高的,父子二人的身高之和为3.2米.假设设爸爸的身高为x米,儿子的身高为y米,那么可列方程组为〔〕A.B.第12页〔共30页〕C.D.【分析】根据题意可得两个等量关系:①爸爸的身高+儿子的身高=3.2米;②父亲在水中的身高〔1﹣〕x=儿子在水中的身高〔1﹣〕y,根据等量关系可列出方程组.【解答】解:设爸爸的身高为x米,儿子的身高为y米,由题意得:,应选:D.【点评】此题主要考察了由实际问题抽象出二元一次方程组,关键是弄清题意,找出题目中的等量关系,解决此题的关键是知道父亲和儿子没在水中的身高是相等的.12.〔2021春?沈丘县期末〕方程3x+y=9在正整数X围内的解的个数是〔〕A.1个B.2个C.3个D.有无数个【分析】由题意求方程的解且要使x,y都是正整数,将方程移项将x和y互相表示出来,在由题意要求x>0,y>0根据以上两个条件可夹出适宜的x值从而代入方程得到相应的y值.【解答】解:由题意求方程3x+y=9的解且要使x,y都是正整数,∴y=9﹣3x>0,∴x≤2,又∵x≥0且x为正整数,∴x值只能是x=1,2,代入方程得相应的y值为y=6,3.∴方程3x+y=9的解是:,;应选:B.【点评】此题是求不定方程的整数解,主要考察方程的移项,合并同类项,系数化为1等技能,先将方程做适当变形,确定其中一个未知数的取值X围,然后枚举出适合条件的所有整数值,再求出另一个未知数的值.第13页〔共30页〕2﹣4x+1=0,配成〔x+p〕2=q的形式,那么13.〔2021?XX模拟〕把一元二次方程xp、q的值是〔〕A.p=﹣2,q=5B.p=﹣2,q=3C.p=2,q=5D.p=2,q=3【分析】移项后,两边配上一次项系数一半的平方即可得.【解答】解:∵x2﹣4x=﹣1,22=3,∴x﹣4x+4=﹣1+4,即〔x﹣2〕那么p=﹣2,q=3,应选:B.【点评】此题主要考察解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择适宜、简便的方法是解题的关键.2﹣2x﹣k+1=0有两个不相等的实数14.〔2021?XX〕假设关于x的一元二次方程x根,那么一次函数y=kx﹣k的大致图象是〔〕A.B.C.D.【分析】首先根据一元二次方程有两个不相等的实数根确定k的取值X围,然后根据一次函数的性质确定其图象的位置.【解答】解:∵关于x的一元二次方程x2﹣2x﹣k+1=0有两个不相等的实数根,∴〔﹣2〕2﹣4〔﹣k+1〕>0,即k>0,∴﹣k<0,∴一次函数y=kx﹣k的图象位于一、三、四象限,应选B.【点评】此题考察了根的判别式及一次函数的图象的问题,解题的关键是根据一元二次方程的根的判别式确定k的取值X围,难度不大.15.〔2021?XX〕在求3x的倒数的值时,嘉淇同学误将3x看成了8x,她求得第14页〔共30页〕的值比正确答案小5.依上述情形,所列关系式成立的是〔〕A.=﹣5B.=+5C.=8x﹣5D.=8x+5【分析】根据题意知:8x的倒数+5=3x的倒数,据此列出方程即可.【解答】解:根据题意,可列方程:=+5,应选:B.【点评】此题考察了由实际问题抽象出分式方程,关键是读懂题意,找到3x的倒数与8x的倒数间的等量关系,列出方程.16.〔2021?米东区校级一模〕假设不等式组的解集是x>3,那么m的取值X围是〔〕A.m>3B.m≥3C.m≤3D.m<3【分析】先将每一个不等式解出,然后根据不等式的解集是x>3求出m的X围【解答】解:①x+8<4x﹣1﹣3x<﹣9x>3②x>m∵不等式组的解集为x>3∴m≤3应选〔C〕【点评】此题考察不等式组的解法,解题的关键是熟练一元一次不等式的解法,以及正确理解不等式组的解集,此题属于中等题型.二.填空题〔共14小题〕n〕′=n n﹣x1,假设〔x2〕′﹣=2,那么x= 17.〔2021?丰台区一模〕对于实数x,规定〔x﹣1.【分析】根据规定,得:当n=2时,那么〔x2〕′=2,x解方程即可.【解答】解:根据题意得:2x=﹣2,x=﹣1.第15页〔共30页〕故答案为:﹣1.【点评】此题的关键是正确理解规定的运算,能够把方程的左边按要求进展转换.18.〔2005?乌鲁木齐〕销售某件商品可获利30元,假设打9折每件商品所获利润比原来减少了10元,那么该商品的进价是70元.【分析】此题的等量关系为:原售价的9折=新售价,而原售价=30+进价,新售价=30+进价﹣10.【解答】解:设该商品的进价是x元,那么〔30+x〕×0.9=30+x﹣10解得x=70,那么该商品的进价是70元.【点评】此题首先读懂题目的意思,根据题目给出的条件,找出适宜的等量关系,列出方程,再求解.19.〔1998?XX〕假设关于x、y的二元一次方程组的解是,那么关于x、y的二元一次方程组的解是x=4,y=3.【分析】此题先代入解求出得,再将其代入二元一次方程组得到,解出即可.【解答】解:∵二元一次方程组的解是,∴有,解得;将代入二元一次方程组,得,解得.【点评】此题主要考察二元一次方程组的解法,关键是熟练掌握二元一次方程组的解法即代入消元法和加减消元法.注意:在运用加减消元法消元时,两边同时乘以或除以一个不为0的整数或整式,第16页〔共30页〕一定注意不能漏项.20.〔2021?XX〕实数m,n满足m﹣n2=1,那么代数式m2+2n2+4m﹣1的最小值等于4.【分析】等式变形后代入原式,利用完全平方公式变形,根据完全平方式恒大于等于0,即可确定出最小值.2=1,即n2=m﹣1≥0,m≥1,【解答】解:∵m﹣n∴原式=m2+2m﹣2+4m﹣1=m2+6m+9﹣12=〔m+3〕2﹣12,那么代数式m2+2n2+4m﹣1的最小值等于〔1+3〕2﹣12=4.故答案为:4.【点评】此题考察了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解此题的关键.2﹣3 21.〔2021?XX〕整数k<5,假设△ABC的边长均满足关于x的方程xx+8=0,那么△ABC的周长是6或12或10.【分析】根据题意得k≥0且〔3〕2﹣4×8≥0,而整数k<5,那么k=4,方程变形为x2﹣6x+8=0,解得x1=2,x2=4,由于△ABC的边长均满足关于x的方程x2﹣6x+8=0,所以△ABC的边长可以为2、2、2或4、4、4或4、4、2,然后分别计算三角形周长.【解答】解:根据题意得k≥0且〔3〕2﹣4×8≥0,解得k≥,∵整数k<5,∴k=4,∴方程变形为x2﹣6x+8=0,解得x=2,x2=4,1∵△ABC的边长均满足关于x的方程x2﹣6x+8=0,∴△ABC的边长为2、2、2或4、4、4或4、4、2.∴△ABC的周长为6或12或10.故答案为:6或12或10..第17页〔共30页〕【点评】此题考察了一元二次方程ax2+bx+c=0〔a≠0〕的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考察了因式分解法解一元二次方程以及三角形三边的关系.22 22.〔2021?黔东南州〕假设两个不等实数m、n满足条件:m﹣2m﹣1=0,n﹣2n﹣1=0,那么m2+n2的值是6.【分析】根据题意知,m、n是关于x的方程x2﹣2x﹣1=0的两个根,所以利用根与系数的关系来求m2+n2的值.【解答】解:由题意知,m、n是关于x的方程x2﹣2x﹣1=0的两个根,那么m+n=2,mn=﹣1.所以,m2+n2=〔m+n〕2﹣2mn=2×2﹣2×〔﹣1〕=6.故答案是:6.【点评】此题主要考察了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.23.〔2021?武城县模拟〕某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮被感染后就会有144台电脑被感染.每轮感染中平均一台电脑会感染11台电脑.【分析】此题可设每轮感染中平均一台电脑会感染x台电脑,那么第一轮共感染x+1台,第二轮共感染x〔x+1〕+x+1=〔x+1〕〔x+1〕台,根据题意列方程解答即可.【解答】解:设每轮感染中平均一台电脑会感染x台电脑,根据题意列方程得〔x+1〕2=144解得x1=11,x2=﹣13〔不符合题意,舍去〕,即每轮感染中平均一台电脑会感染11台电脑.【点评】找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.判断所求的解是否符合题意,舍去不合题意的解.2﹣mx++m+=0的根的24.〔2003?XX〕假设m是实数,那么关于x的方程x情况是无解.【分析】计算一元二次方程的根的判别式△的值的符号后,再根据根的判别式与根的关系求解.【解答】解:∵关于x的方程x2﹣mx++m+=0可化为2x2﹣2mx+m2+2m+3=0,∴△=〔﹣2m〕2﹣4×2×〔m2+2m+3〕=﹣4m2﹣16m﹣24=﹣4〔m+2〕2﹣8<0∴方程没有实数根.【点评】总结:一元二次方程根的情况与判别式△的关系:〔1〕△>0?方程有两个不相等的实数根;〔2〕△=0?方程有两个相等的实数根;〔3〕△<0?方程没有实数根25.〔2021?XX〕假设关于x的方程=+1无解,那么a的值是2或1.【分析】把方程去分母得到一个整式方程,把方程的增根x=2代入即可求得a的值.【解答】解:x﹣2=0,解得:x=2.方程去分母,得:ax=4+x﹣2,即〔a﹣1〕x=2当a﹣1≠0时,把x=2代入方程得:2a=4+2﹣2,解得:a=2.当a﹣1=0,即a=1时,原方程无解.故答案是:2或1.【点评】首先根据题意写出a的新方程,然后解出a的值.26.〔2021?大丰市一模〕数学家们在研究15、12、10这三个数的倒数时发现:﹣=﹣.因此就将具有这样性质的三个数称之为调和数,如6、3、2也是一组调和数.现有一组调和数:x、5、3〔x>5〕,那么x的值是15.【分析】根据题意,利用规律求未知数,从x>5判断,x相当于规律中的15.【解答】解:∵x>5∴x相当于调和数15,代入得,﹣=﹣,解得,x=15.经检验得出:x=15是原方程的解.故答案为:15.【点评】此题主要考察了分式方程的应用,解决此题的关键是通过观察分析,未知调和数利用调和数来解得..27.〔2021?XX〕假设不等式组有解,那么a的取值X围是a>﹣1.【分析】先解出不等式组的解集,根据不等式组有解,即可求出a的取值X围.【解答】解:∵由①得x≥﹣a,由②得x<1,故其解集为﹣a≤x<1,∴﹣a<1,即a>﹣1,∴a的取值X围是a>﹣1.故答案为:a>﹣1.【点评】考察了不等式组的解集,求不等式组的公共解,要遵循以下原那么:同大取较大,同小取较小,小大大小中间找,大大小小解不了.此题是不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作数处理,求出不等式组的解集并与解集比较,进而求得另一个未知数的取值X围.28.〔2021春?XX月考〕如图A、B、C、D四人在公园玩跷跷板,根据图中的情况,这四人体重从小到大排列的顺序为B<A<D<C.【分析】先由第一幅图可得A<D,第二幅图可得B+D<A+C,第三幅图可得B+C=A+D,再根据等式与不等式的性质即可求解.【解答】解:由题意可得A<D,B+D<A+C,B+C=A+D.∵B+C=A+D,∴C=A+D﹣B,代入B+D<A+C中,得B+D<A+A+D﹣B,∴B<A,B﹣A<0,∵A<D,∴B<A<D.∵B+C=A+D,∴D﹣C=B﹣A<0,∴D<C,∴B<A<D<C.故答案为B<A<D<C.【点评】此题考察了不等式与等式性质的应用.解题的关键是采用代入法解不等式,并能使用统一的不等号进展连接,此题对式子的变形能力要求比较高,有一定难度.29.〔2021?XX〕在一次数学知识竞赛中,竞赛题共30题.规定:答对一道题得4分,不答或答错一道题倒扣2分,得分不低于60分者得奖.得奖者至少应答对20道题.【分析】答对题所得的分减去不答或答错题所扣的分数应>等于60分,列出不等式进展求解即可.【解答】解:设得奖者至少应答对x道题,那么答错或不答的题为30﹣x道,依题意得:4x﹣2〔30﹣x〕≥60解得:x≥20即得奖者至少应答对20道题.【点评】解决问题的关键是读懂题意,依题意列出不等式进展求解.30.〔1997?XX〕假设关于x的不等式的解集为x<2,那么k的取值X围是k≤﹣2.【分析】先化简不等式组,然后利用同小取小的原那么可判断﹣k≥2,即可求出k≤﹣2,注意不要漏掉相等时的关系.【解答】解:化简关于x的不等式为因为不等式组的解集为x<2,所以﹣k≥2,即k≤﹣2.故填k≤﹣2.【点评】主要考察了一元一次不等式解集求不等式中的字母的值,同样也是利用口诀求解,但是要注意当两数相等时,解集也是x<2,不要漏掉相等这个关系.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到.三.解答题〔共10小题〕31.〔2021?XX模拟〕甲,乙两位同学在解方程组时,甲正确地解得方程组的解为.乙因大意,错误地将方程中系数C写错了,得到的解为;假设乙没有再发生其他错误,试确定a,b,c的值.【分析】所谓“方程组〞的解,指的是该数值满足方程组中的每一方程的值,根据题意可得,解方程组可得原方程组中a、b、c的值.【解答】解:把代入到原方程组中,得可求得c=2,乙仅因抄错了c而求得,但它仍是方程ax+by=1的解,所以把代入到ax+by=1中得2a﹣b=1,.把2a﹣b=1与﹣a+b=1组成一个二元一次方程组,解得,所以a=2,b=3,c=2.【点评】此题主要考察了二元一次方程组解的定义以及解二元一次方程组的根本方法.32.〔2021?XX市校级模拟〕解方程组.【分析】利用代入消元法将y=x+1代入第②个方程求出即可.【解答】解:,将①代入②得:2﹣〔x+1〕2=﹣5, x解得:x=2,那么y=2+1=3,故方程组的解为:.【点评】此题主要考察了二元二次方程组的解法,利用代入消元的法得出是解题关键.33.〔2021?XX市模拟〕参加一次篮球联赛的每两队之间都进展两次比赛,共要比赛30场,共有多少个队参加比赛?【分析】设共有x个队参加比赛,根据参加一次篮球联赛的每两队之间都进展两次比赛,共要比赛30场,可列方程求解.【解答】解:设共有x个队参加比赛.⋯〔1分〕由题意得,x〔x﹣1〕=30.⋯〔3分〕解得,x1=6,x2=﹣5.⋯〔4分〕经检验,x1=6符合题意,x2=﹣5不符合题意舍去.∴x=6.⋯〔5分〕1答:共有6个队参加比赛.⋯〔6分〕【点评】此题考察理解题意的能力,设有x个对,每个对都要参加〔x﹣1〕场,根据总场数可列方程求解.34.〔2004?XX〕甲、乙两班同学同时从学校沿一路线走向离学校S千米的军训地参加训练.甲班有一半路程以V1千米/小时的速度行走,另一半路程以V2千米/小时的速度行走;乙班有一半时间以V1千米/小时的速度行走,另一半时间以V2千米/小时的速度行走.设甲、乙两班同学走到军训基地的时间分别为t1小时、t2小时.〔1〕试用含S、V1、V2的代数式表示t1和t2;〔2〕请你判断甲、乙两班哪一个的同学先到达军训基地并说明理由.【分析】〔1〕此题的等量关系是路程=速度×时间.根据甲到军训基地的时间=甲在一半路程内以速度V1行驶的时间+甲在另一半路程内以速度V2行驶的时间.来列出关于关于t1的代数式.根据乙以速度V1行驶一半时间走的路程+乙以速度V2行驶另一半时间走的路程=总路程S,来求出关于t2的代数式;〔2〕可将表示t1和t2的式子相减,按照分式的加减法进展合并化简后,看看当V1,V2在不同的条件下,t1和t2谁大谁小即可.【解答】解:〔1〕由,得:=t1=s解得:;〔2〕∵t1﹣t2=﹣=。

初中数学方程与不等式之分式方程综合练习

初中数学方程与不等式之分式方程综合练习
A. B.
C. D.
【答案】D
【解析】
【分析】
首先根据工程期限为x天,结合题意得出甲每天完成总工程的 ,而乙每天完成总工程的 ,据此根据题意最终如期完成了工程进一步列出方程即可.
【详解】
∵工程期限为x天,
∴甲每天完成总工程的 ,乙每天完成总工程的 ,
∵由两工程队合做4天后,余下的由乙工程队独做,正好如期完成,
【详解】
去分母得:3-x-x+4=1,
解得:x=3,
经检验x=3是分式方程的解.
故选:B.
【点睛】
此题考查解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
15.如果关于x的分式方程 有正整数解,且关于y的不等式组 无解,那么符合条件的所有整数a的和是()
【详解】
设原计划每小时植树x棵,实际工作效率提高为原计划的1.2倍,故每小时植1.2x棵,由题意得: ,
故选:D.
【点睛】
此题主要考查了由实际问题抽象出分式方程,关键是弄清题意,表示出原计划植300棵树所用时间与实际所用时间.
20.关于 的分式方程 解为 ,则常数 的值为( )
A. B. C. D.
A. B. C. D.
【答案】D
【解析】
【分析】
首先用x表示甲和乙每小时做的零件个数,再根据甲做120个所用的时间与乙做150个所用的时间相等即可列出一元一次方程.
【详解】
解:∵甲每小时做x个零件,∴乙每小时做(x+8)个零件,
∵甲做120个所用的时间与乙做150个所用的时间相等,∴ ,
故选D.
【点睛】

解得: ;
经检验, 是原分式方程的解.

初中数学一次函数与方程(组)与不等式经典练习题.docx

初中数学一次函数与方程(组)与不等式经典练习题.docx

xx 学校xx 学年xx 学期xx 试卷姓名:_____________ 年级:____________ 学号:______________一、xx 题(每空xx 分,共xx 分)试题1:(2006,绍兴)如图所示,一次函数y=x+5的图像经过点P (a ,b ),Q (c ,d ),•则a (c -d )-b (c -d )的值为______. 试题2:关于x 的一次函数y=(a -3)x+2a -5的图像与y 轴的交点不在x•轴的下方,且y 随x 的增大而减小,则a 的取值范围是______. 试题3:已知一次函数y=kx+b (k ≠0)的图像经过点(0,1),且y 随x 的增大而增大,•请你写出一个符合上述条件的函数关系式_______. 试题4:如图所示,L 甲,L 乙分别表示甲走路与乙骑自行车(在同一条路上)行走的路程s 与时间t 的关系,观察图像并回答下列问题:(1)乙出发时,与甲相距______km ;(2)走了一段路后,乙的自行车发生故障,停下来修理,修车为_____h ; (3)乙从出发起,经过_____h 与甲相遇;(4)甲行走的路程s 与时间t 之间的函数关系式_______;(5)如果乙自行车不出现故障,那么乙出发后经过______h 与甲相遇,相遇处离乙的出发点____km .并在图中标出其相遇点.试题5:直线y=-x+a与直线y=x+b的交点坐标为(m,8),则a+b=______.试题6:已知关于x的一次函数y=mx+2m-7在-1≤x≤5上的函数值总是正数,则m的取值范围是_______.试题7:(2008,绍兴)如图所示,已知函数y=x+b和y=ax+3的图像交点为P,•则不等式x+b>ax+3的解集为________.试题8:(2006,南安)如图所示,一个蓄水桶,60min可匀速将一满桶水放干.其中,水位h(cm)随着放水时间t(min)的变化而变化.h与t的函数的大致图像为()试题9:(2005,杭州市)已知一次函数y=kx-k,若y随x的增大而减小,则该函数的图像经过()A.第一,二,三象限 B.第一,二,四象限C.第二,三,四象限 D.第一,三,四象限试题10:(2008,济南)济南市某储运部紧急调拨一批物资,调进物资共用4h,调进物资2h后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资S(t)•与时间t(h)之间的函数关系如图5-35所示,•这批物资从开始调进到全部调出所需要的时间是()A.4h B.4.4h C.4.8h D.5h试题11:(2009年新疆)如图,直线与轴交于点,关于的不等式的解集是()A. B. C. D.试题12:(2005,重庆市)为了增强抗旱能力,保证今年夏粮丰收,某村新修建了一个蓄水池,这个蓄水池安装了两个进水管和一个出水管(两个进水管的进水速度相同),一个进水管和一个出水管的进出水速度如图a,b所示,某天0点到6点(•至少打开一个水管),该蓄水池的蓄水量如图c所示,并给出以下3个论断:①0点到1点不进水,只出水;②1点到4点不进水,不出水;③4点到6点只进水,不出水,则一定正确的论断是()(a) (b)(c)A.①③ B.②③ C.③ D.①②③试题13:函数y1=x+1与y2=ax+b(a≠0)的图像如图5所示,•这两个函数图像的交点在y轴上,那么使y1,y2的值都大于零的x的取值范围是()A.x>-1 B.x<2 C.1<x<2 D.-1<x<2试题14:小亮用作图像的方法解二元一次方程组时,在同一直角坐标系内作出了相应的两个一次函数的图像L1,L2如图所示,他解的这个方程组是()A. B.C. D.试题15:已知一次函数y=x+m和y=-x+n的图像都经过点A(-2,0),且与x轴交于A,B两点,那么△ABC的面积是() A.2 B.3 C.4 D.6试题16:(2009年烟台市)如图,直线经过点和点,直线过点A,则不等式的解集为()A.B.C. D.试题17:(2009年宁波市)以方程组的解为坐标的点在平面直角坐标系中的位置是()A.第一象限 B.第二象限 C.第三角限 D.第四象限试题18:(2008,南京)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发.设慢车行驶的时间为x(h),两车之间的距离为y(km),下图中的折线表示y•与x之间的函数关系.根据图像进行以下探究:信息读取:(1)甲,乙两地之间的距离为_____km;(2)请解释图中点B的实际意义.图像理解:(3)求慢车和快车的速度;(4)求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围.问题解决:(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.•在第一列快车与慢车相遇30min后,第二列快车与慢车相遇,•求第二列快车比第一列快车晚出发多少小时.试题19:(2009年陕西省)在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽车从甲地出发x(h)时,汽车与甲地的距离为y(km),y与x的函数关系如图所示.根据图像信息,解答下列问题:(1)这辆汽车的往、返速度是否相同?请说明理由;(2)求返程中y与x之间的函数表达式;(3)求这辆汽车从甲地出发4h时与甲地的距离.试题20:(2005,哈尔滨市)甲,乙两名同学进行登山比赛,图5-42所示为甲同学和乙同学沿相同的路线同时从山脚出发到达山顶过程中,•各自行进的路程随时间变化的图象,根据图像中的有关数据回答下列问题:(1)分别求出表示甲,乙两同学登山过程中路程s(km)与时间t(h)的函数解析式;(不要求写出自变量t的取值范围)(2)当甲到达山顶时,乙行进到山路上的某点A处,求A点距山顶的距离;(3)在(2)的条件下,设乙同学从A处继续登山,甲同学到达山顶后休息1h,沿原路下山,在点B处与乙相遇,此时点B与山顶距离为1.5km,相遇后甲,•乙各自按原来的线路下山和上山,求乙到达山顶时,甲离山脚的距离是多少千米?试题21:某校部分住校学生,放学后到学校锅炉房打水,每人接水2L,•他们先同时打开两个放水龙头,后来故故障关闭一个放水龙头,假设前后两个接水间隔时间忽略不计,且不发生泼洒,锅炉内的余水量y(L)与接水时间x(min)的函数图像如图所示.请结合图像,回答下列问题:(1)根据图中信息,请你写出一个结论;(2)问前15位同学接水结束共需要几分钟?(3)小敏说:“今天我们寝室的8位同学去锅炉房连续接完水恰好用了3min”.•你说可能吗?请说明理由.试题22:(2006,浙江舟山)近阶段国际石油迅速猛涨,中国也受期影响,为了降低运行成本,部分出租车进行了改装,改装后的出租车可以用液化气来代替汽油.•假设一辆出租车日平均行程为300km.(1)使用汽油的出租车,假设每升汽油能行驶12km,当前的汽油价格为4.6元/L,•当行驶时间为t天时,所耗的汽油费用为p元,试写出p关于t的函数关系式;(2)使用液化气的出租车,假设每千克液化气能行驶15~16km,•当前的液化气价格为4.95元/kg,当行驶时间为t 天时,所耗的液化气费用为w元,试求w的取值范围(用t表示);(3)若出租车要改装为使用液化气,每辆需配置成本为8000元的设备,•根据近阶段汽油和液化气的价位,请在(1)(2)的基础上,计算出最多几天就能收回改装设备的成本?•并利用你所学的知识简单说明使用哪种燃料的出租车对城市的健康发展更有益.(用20字左右谈谈感想).试题23:(2003,岳阳市)我市某化工厂现有甲种原料290kg,乙种原料212kg,计划利用这两种原料生产A,B两种产品共80件.生产一件A产品需要甲种原料5kg,•乙种原料1.5kg,生产成本是120元;生产一件B产品,需要甲种原料2.5kg,乙种原料3.5kg,•生产成本是200元.(1)该化工厂现有的原料能否保证生产?若能的话,有几种生产方案,请你设计出来;(2)设生产A,B两种产品的总成本为y元,其中一种的生产件数为x,试写出y与x之间的函数关系,并利用函数的性质说明(1)中哪种生产方案总成本最低?•最低生产总成本是多少?试题24:(2009年江苏省)某加油站五月份营销一种油品的销售利润(万元)与销售量(万升)之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元.(销售利润=(售价-成本价)×销售量)请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答下列问题:(1)求销售量为多少时,销售利润为4万元;(2)分别求出线段AB与BC所对应的函数关系式;(3)我们把销售每升油所获得的利润称为利润率,那么,在OA.AB.BC三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案)试题25:(2006,宁波市)宁波市土地利用现状通过国土资源部验收,该市在节约集约用地方面已走在全国前列.1996~2004年,市区建设用地总量从33万亩增加到48万亩,相应的年GDP从295亿元增加到985亿元.宁波市区年GDPy(亿元)与建设用地总量x(•万亩)之间存在着如图所示的一次函数关系.(1)求y关于x的函数关系式;(2)据调查2005年市区建设用地比2004年增加4万亩,•如果这些土地按以上函数关系式开发使用,那么2005年市区可以新增GDP多少亿元?(3)按以上函数关系式,该市年GDP每增加1亿元,需增建设用地多少万亩?(•精确到0.001万亩)试题26:.绿谷商场“家电下乡”指定型号冰箱、彩电的进价和售价如下表所示:类别冰箱彩电进价(元/台) 2 320 1 900售价(元/台) 2 420 1 980(1) 按国家政策,农民购买“家电下乡”产品可享受售价13%的政府补贴.农民田大伯到该商场购买了冰箱、彩电各一台,可以享受多少元的政府补贴?(2)为满足农民需求,商场决定用不超过85 000元采购冰箱、彩电共40台, 且冰箱的数量不少于彩电数量的.①请你帮助该商场设计相应的进货方案;②哪种进货方案商场获得利润最大(利润=售价进价),最大利润是多少?试题27:(2004,河北省)光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A,B两地区收割小麦,其中30台派往A地区,20•台派往B地区.两地区与该农村租赁公司商定的每天的租赁价格见下表:每台甲型收割机的租金每台乙型收割机的租金A地区 1800元 1600元B地区 1600元 1200元(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y与x之间的函数关系式,并写出x的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79600元,•说明有多少种分派方案,并将各种方案设计出来;(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华租赁公司提出一条合理建议.试题28:我市部分地区近年出来持续干旱现象,为确保生产生活用水,某村决定由村里提供一点,村民捐一点的办法筹集资金维护和新建一批储水池。

初中数学方程与不等式

初中数学方程与不等式

初中数学方程与不等式学校:___________姓名:___________班级:___________考号:___________一、填空题1.关于x 的不等式组0321x a x ->⎧⎨->-⎩整数解有2个,则a 的取值范围是________. 2.若关于x 的不等式组35128x x a -≥⎧⎨-<⎩的最大整数解为3,则符合条件的所有整数a 的和为________. 3.若关于x ,y 的二元一次方程组33247x y k x y k-=⎧⎨-=⎩的解满足不等式1x y ->-,则k 的取值范围是________. 4.关于x 的不等式组230x x x a ->-⎧⎨-<⎩有且只有三个整数解,求a 的最大值是____________. 5.若不等式组>162>0x a x -⎧⎨-⎩的解集为13x <<,则=a __________. 6.关于x 的一元一次方程235()13x k x k -=-+的解是正数,则k 的取值范围是_____. 7.已知关于x ,y 的二元一次方程组325x y a x y a -=+⎧⎨+=⎩的解满足x y >,且关于x 的不等式组212216x a x +<⎧⎨-≥⎩无解,那么所有符合条件的整数a 的个数为_______.8.如果关于x 的不等式组13x m x m ≤+⎧⎨>-⎩无解,那么m 的取值范围是___________; 9.已知关于x 的不等式组0520x a x ->⎧⎨->⎩无解,则a 的取值范围是______________. 10.若关于x 的方程2141x m x -+=-的解是负数,则m 的取值范围是____________.11.若关于x 的分式方程3211x m x x +=--的解为正数,则m 的取值范围是 ______. 12.若关于x 的分式方程2233mx x x x -=++无解,则m =________. 13.若方程212x a x +=--的解是非负数,则a 的取值范围___________. 14.已知关于x 的分式方程112ax x -=-无解,则=a _______.15.若关于x 的方程1222m x x x-+=--有增根,则m =_______. 16.如果关于x 的方程7766x m x x --=--的解是非负数,则m 的取值范围为 ___________. 17.若关于x 的方程()()152112x x ax x x x x ++-=+--+无解,则a 的值为______. 18.关于x 的方程1433x m x x -=+-- 有增根,则m =_______. 19.0111x k x x x x +-=--+有增根1x =,则k 的值为______. 20.关于x 的分式方程133122a x x =---有正数解,则a 的取值范围__________. 21.已知关于x 的方程525424x m m -=-的解为非负数,则m 的取值范围是_____. 22.若关于x 的分式方程7311+=--m x x 有增根,则m 的值为________. 23.若关于x 的方程22x a x ++=﹣1的解为正数,则实数a 的取值范围是___. 24.已知1322kx x x x --=--为分式方程,有增根,则k =__________; 25.关于x 的不等式组()02332x m x x -≥⎧⎨-≥-⎩恰有两个整数解,且41m -的值为正整数,则整数m 的值为______. 26.已知关于x 的分式方程111x k k x x +-=+-的解为负数,则k 的取值范围是_______.二、解答题27.解方程 (1)221146x x ---= (2)2(3)32(7)523x x x +-=-28.解方程(1)3845x x -=- (2)352123x x +-=(1)()()324217x x --+=; (2)12123x x-+-=.30.解方程: ①337(1)2()2x x x -+=-+; ②1231232x x++-=.31.解方程:(1)()4531x x +=-; (2)2151136x x +--=.32.解下列一元一次方程(1)()3(1223x x +-=-) (2)212134x x -+=-33.解下列方程组(1)233511x y x y +=⎧⎨-=⎩(2)32202153x y x y -=-⎧⎨+=⎩34.解二元一次方程组:(1)2314214x y x y +=⎧⎨-=-⎩ (2)()()2111532316x y y x y +-⎧-=⎪⎨⎪---=⎩35.解方程组:324x yx y +=⎧⎨-=⎩.(1)23328y x x y =-⎧⎨+=⎩(2)52253415x y x y +=⎧⎨+=⎩37.(1)321152x y x y +=-⎧⎨-=⎩; (2)213211x y x y +=⎧⎨-=⎩; (3)357x y y x +=⎧⎨=-⎩; (4)3401143x y x y y -=⎧⎪+⎨-=⎪⎩. 38.解方程组:222131x y z y x z y x ⎧++=⎪⎪⎪+-=⎨⎪=+⎪⎪⎩39.若231043215x y z x y z ++=++=,,求x y z ++的值. 40.解方程组:(1)6211x y z x y z y x ++=⎧⎪+-=⎨⎪=+⎩(2)2341234432x y z x y z x y z -+=⎧⎪-+=⎨⎪+-=-⎩(3)2321213x y x z x y z ⎧⎪+=-⎪⎪+=⎨⎪⎪++=⎪⎩①②③(4)2311322114324x y z x y z x y z ++=⎧⎪+-=⎨⎪--=⎩①②③ 41.解方程组:632123x y z x y z x y z +-=⎧⎪-+=⎨⎪+-=⎩.42.解不等式组2173112x x x -<⎧⎪⎨-≥+⎪⎩①②,并把解集在数轴上表示出来. 43.求不等式组343221132x x x x ⎧->-⎪⎪⎨++⎪-≤⎪⎩的整数解. 44.(1)化简:222221442x x x x x x x x x ⎛⎫-+---÷ ⎪-+⎝⎭(2)解不等式组3(1)1922x x x x +>-⎧⎪⎨+>⎪⎩ 45.解不等式组:()32252132x x x x ⎧+≥+⎪⎨--<⎪⎩,并把它的解集在数轴上表示出来.46.解不等式组:()12122124x x x x ⎧+<-⎪⎪⎨+⎪->⎪⎩ 47.(1)解方程:2340x x +-= ;(2)解不等式组:5431212x x x +<⎧⎪⎨+≥-⎪⎩. 48.计算(1)化简:2234221121x x x x x x ++⎛⎫-÷ ⎪---+⎝⎭; (2)解不等式组()21721323x x x x ⎧-<-⎪⎨++≥⎪⎩,并写出不等式组的最小整数解.49.已知关于x ,y 的二元一次方程组32121x y m x y m +=+⎧⎨+=-⎩①②,当m 为何值时,x y <且320x y ->? 50.老师在讲完乘法公式()2222a b a ab b ±=±+的各种运用后,要求同学们运用所学知识解答:求代数式245x x ++最小值?同学们经过交流、讨论,最后总结出如下解答方法: 解:()224521x x x ++=++∵()220x +≥ ∴()2211x ++≥即:当()220x +=时,()224521x x x ++=++的值最小,最小值是1,请你根据上述方法,解答下列各题:(1)直接写出:()212x +-的最小值为___________(2)求出代数式21028x x ++的最小值;(3)若2720x x y +++=,求x y +的最大值 51.(1)化简:2222a b ab b a a a ⎛⎫--÷- ⎪⎝⎭(2)解不等式组312(21)25123x x x x +>-⎧⎪--⎨≥-⎪⎩ 52.用两种不同的方法解不等式组:21153x --<≤. 53.已知关于x 的不等式30x m -≤的正整数解有四个,求m 的取值范围.54.当m 取何值时,关于x 的方程2165()3x m x m -=+-的解是非负数? 55.已知方程组713x y m x y m +=--⎧⎨-=+⎩的解满足x 为非正数,y 为负数. (1)求m 的取值范围;(2)化简:32m m --+.(3)在m 的取值范围内,当m 为何整数时,不等式221mx x m +<+的解为1x >?56.已知1x =是不等式组352,23()4(2)5x x a x a x -⎧≤-⎪⎨⎪-<+-⎩的解,求a 的取值范围.(1)342x x =-; (2)22111x x x -=--. 58.解方程 (1)231x x =- (2)()()31121x x x x +=-+-59.(1011|4|(1)()2--+--; (2)解方程:211212x x x -=+-. 60.解方程: (1)2332x x =-- (2)11222x x x-=--- 61.(1)解方程:21133x x x x =+++; (2)计算:()()()323253x x x x +---.62.我县教育局新建了一栋办公楼,需要内装修,甲工程队单独施工需要80天完工,由甲乙两工程队同时施工,那么16天完成了总工程的1325. (1)如果乙工程队单独施工,则需要多少天完成?(2)如果甲工程队单独施工一天的工钱是5000元,乙工程队单独施工一天的工钱是8100元,为了节约工钱,应选用哪个工程队单独施工比较划算?63.某店有A 、B 两种口罩出售,其中B 种口罩的单价要比A 种口罩的单价多0.3元,用27元购进A 种口罩数量是用18元购进B 种口罩数量的2倍.(1)求A 、B 两种口罩的单价;(2)某单位从该店购进A 、B 两种口罩共1000个,总费用为1080元,求购进A 种口罩多少个.(1)()()0220221 3.143π---+-(2)分解因式:3269a a a ++(3)()()232a b a b +-(4)解方程:21124xx x -=--65.解下列方程: (1)2131x x =+- (2)11222xx x -=--- (3)2134412142x x x x +=--+-66.解方程: (1)321223y y +--=(2)22411x x =-- 67.解方程: (1)281244yy y y -=--+; (2)28142xx x +=--.68.解下列方程: (1)23201x x x x +-=--;(2)21133x x x -+=--.69.(1)计算()101122π-⎛⎫-+ ⎪⎝⎭(2)解方程:()()31112xx x x -=--+(3)计算()()()2211x x x +-+- (4)计算2212111a aa a -⎛⎫+÷ ⎪--⎝⎭70.解方程:235(2)2x x x x +=-.参考答案:1.10a -≤<##01a 2.1- 3.14k >-4.5 5.2 6.12k >7.7 8.1m ##1m ≥ 9. 2.5a ≥ 10.m>2 11.2m <-且3m ≠- 12.4或2##2或4 13.2a ≤且4a ≠- 14.1或1215.1 16.35m ≥-且1m ≠ 17.2-或8-或1 18.2 19.1- 20.43a >-且23a ≠ 21.54m ≥22.7 23.a <−2 24.0 25.2 26.12k >且1k ≠. 27.(1)16x =-(2)8x =-28.(1)3x =- (2)175x =-29.(1)175x =-(2)13x =30.①2x =- ②43x =- 31.(1)8x =-;(2)3x =-.32.(1)7x =- (2)1011x =33.(1)21x y =⎧⎨=-⎩(2)61x y =-⎧⎨=⎩34.(1)522x y ⎧=-⎪⎨⎪=⎩ (2)4175x y =⎧⎪⎨=⎪⎩35.710x y =⎧⎨=⎩36.(1)21x y =⎧⎨=⎩; (2)50x y =⎧⎨=⎩37.(1)31x y =-⎧⎨=-⎩;(2)31x y =⎧⎨=-⎩;(3)34x y =⎧⎨=-⎩;(4)1634x y ⎧=⎪⎨⎪=⎩ 38.10233323823x y z ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩39.540.(1)123x y z =⎧⎪=⎨⎪=⎩(2)259625225x y z ⎧=⎪⎪⎪=-⎨⎪⎪=-⎪⎩(3)1312x y z ⎧⎪=⎪=-⎨⎪⎪=⎩(4)321x y z =⎧⎪=⎨⎪=⎩41.1033173x y z ⎧=⎪⎪=-⎨⎪⎪=-⎩42.3<4x ≤,见解析43.543---,,44.(1)234--x x ;(2)23x -<<45.0x >,数轴表示见解析46.6x >47.(1)1241x x =-=,;(2)1x <-48.(1)11x x -+(2)23x -≤<,2-49.1945m <<50.(1)2-(2)3(3)751.(1)a ba b +-;(2)23x ≤<52.18-<≤x53.1215m ≤<54.1m ≤-55.(1)23m -<≤(2)12m -(3)1m =-56.413a -<≤57.(1)6x =-;(2)原方程无解.58.(1)2x =-(2)无解59.(1)6;(2)13 x=60.(1)5x= (2)无解61.(1)32x=-(2)21254x x--62.(1)50天(2)应选用甲工程队单独施工比较划算63.(1)A,B两种口罩每个售价分别为0.9元和1.2元.(2)购进A种口罩400个.64.(1)1(2)()23a a+(3)22443a ab b+-(4)32 x=-65.(1)5x=(2)无解(3)6x= 66.(1)1y=-(2)无解67.(1)6y= (2)无解68.(1)无解(2)2x =69.(1(2)原方程无解;(3)45x +;(4)12a a +- 70.8x =。

初中数学方程与不等式之分式方程知识点训练(1)

初中数学方程与不等式之分式方程知识点训练(1)

初中数学方程与不等式之分式方程知识点训练(1)一、选择题1.为保证某高速公路在2019年底全线顺利通车,某路段规定在若干天内完成修建任务.已知甲队单独完成这项工程比规定时间多用10天,乙队单独完成这项工程比规定时间多用30天,如果甲乙两队合作,可比规定时间提前20天完成任务.若设规定的时间为x 天,由题意可以列出的方程是( ) A .111103020+=--+x x x B .111103020+=++-x x x C .111103020-=++-x x x D .111102030+=-+-x x x 【答案】B 【解析】 【分析】设规定的时间为x 天.则甲队单独完成这项工程所需时间是(x+10)天,乙队单独完成这项工程所需时间是(x+30)天.根据甲、乙两队合作,可比规定时间提前20天完成任务,列方程为111103020+=++-x x x . 【详解】设规定时间为x 天,则 甲队单独一天完成这项工程的110+x , 乙队单独一天完成这项工程的130x +, 甲、乙两队合作一天完成这项工程的120x -. 则111103020+=++-x x x . 故选B. 【点睛】此题考查分式方程,解题关键在于由实际问题抽象出分式方程.2.若数a 使关于x 的分式方程2311a x x x--=--有正数解,且使关于y 的不等式组21142y a y y a ->-⎧⎪⎨+⎪⎩…有解,则所有符合条件的整数a 的个数为( ) A .1 B .2C .3D .4【答案】B 【解析】根据分式方程的解为正数即可得出a>-1且a ≠1,根据不等式组有解,即可得:a<3,找出所有的整数a 的个数为2. 【详解】解方程2311a x x x --=--,得: 12a x +=,∵分式方程的解为正数, ∴1a +>0,即a>-1, 又1x ≠, ∴12a +≠1,a ≠1, ∴a>-1且a ≠1,∵关于y 的不等式组21142y a y y a ->-⎧⎪⎨+⎪⎩…有解,∴a-1<y ≤8-2a , 即a-1<8-2a , 解得:a<3,综上所述,a 的取值范围是-1<a<3,且a ≠1, 则符合题意的整数a 的值有0、2,有2个, 故选:B . 【点睛】本题考查了根据分式方程解的范围求参数的取值范围,不等式组的求解,找到整数解的个数,掌握分式方程的解法和不等式组的解法是解题的关键.3.某市从今年1月1日起调整居民用水价格,每立方米水费上涨13,小丽家去年12月份的水费是15元,而今年5月的水费则是30元,已知小丽家今年5月的用水量比去年12月的用水量多35m .求该市今年居民用水的价格.设去年居民用水价格为x 元/3m ,根据题意列方程,正确的是( )A .30155113x x -=⎛⎫+ ⎪⎝⎭ B .30155113x x -=⎛⎫- ⎪⎝⎭ C .15305113x x -=⎛⎫+ ⎪⎝⎭D .15305113x x -=⎛⎫- ⎪⎝⎭【答案】A【分析】利用总水费÷单价=用水量,结合小丽家今年5月的用水量比去年12月的用水量多5m 3得出方程即可. 【详解】解:设去年居民用水价格为x 元/3m ,根据题意得:30155113x x -=⎛⎫+ ⎪⎝⎭, 故选:A . 【点睛】此题主要考查了由实际问题抽象出分式方程,正确表示出用水量是解题关键.4.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是x 米/秒,则所列方程正确的是( ) A .4 1.2540800x x ⨯-=B .800800402.25x x -= C .800800401.25x x -= D .800800401.25x x-= 【答案】C 【解析】 【分析】先分别表示出小进和小俊跑800米的时间,再根据小进比小俊少用了40秒列出方程即可. 【详解】小进跑800米用的时间为8001.25x 秒,小俊跑800米用的时间为800x秒, ∵小进比小俊少用了40秒,方程是800800401.25x x-=, 故选C . 【点睛】本题考查了列分式方程解应用题,能找出题目中的相等关系式是解此题的关键.5.已知关于x 的分式方程12111m x x--=--的解是正数,则m 的取值范围是( ) A .m <4且m ≠3 B .m <4C .m ≤4且m ≠3D .m >5且m ≠6【答案】A 【解析】方程两边同时乘以x-1得,1-m-(x-1)+2=0,解得x=4-m.∵x为正数,∴4-m>0,解得m<4.∵x≠1,∴4-m≠1,即m≠3.∴m的取值范围是m<4且m≠3.故选A.6.方程22111x xx x-=-+的解是()A.x=12B.x=15C.x=14D.x=14【答案】B【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】解:去分母得:2x2+2x=2x2﹣3x+1,解得:x=15,经检验x=15是分式方程的解,故选B.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.7.甲队修路120 m与乙队修路100 m所用天数相同,已知甲队比乙队每天多修10 m,设甲队每天修路xm.依题意,下面所列方程正确的是A.120100x x10=-B.120100x x10=+C.120100x10x=-D.120100x10x=+【答案】A【解析】【分析】【详解】甲队每天修路xm,则乙队每天修(x-10)m,因为甲、乙两队所用的天数相同,所以,120100x x 10=-. 故选A.8.已知关于x 的分式方程22124x mxx x --=+-无解,则m 的值为( ) A .0 B .0或-8C .-8或-4D .0或-8或-4【答案】D 【解析】 【分析】分式方程无解的条件是:去分母后所得整式方程无解或解这个整式方程得到的解使原方程的分母等于0. 【详解】解:分式方程去分母得:(x−2)2−mx =(x +2)(x−2), 整理得:(4+m )x =8, 当m =−4时整式方程无解;当x =−2时原方程分母为0,此时m =−8; 当x =2时原方程分母为0,此时m =0, 故选:D . 【点睛】本题考查了分式方程无解的条件,分式方程无解分两种情况:去分母后所得整式方程无解;分式方程产生增根;是需要识记的内容.9.某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路xm ,则根据题意可得方程( )A .240024008(120%)x x -=+ B .240024008(120%)x x -=+ C .240024008(120%)x x-=- D .240024008(120%)x x-=- 【答案】A 【解析】 【分析】求的是原计划的工效,工作总量为2400,根据工作时间来列等量关系.本题的关键描述语是:“提前8小时完成任务”;等量关系为:原计划用的时间-实际用的时间=8. 【详解】原计划用的时间为:2400x,实际用的时间为:()2400120%x +.所列方程为:2400x-()2400120%x +=8.故选A 【点睛】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.本题应用的等量关系为:工作时间=工作总量÷工效.10.《九章算术》中记录的一道题译为白话文是:把一份文件用慢马送到900里外的城市,需要的时间比规定时间多一天,如果用快马送,所需的吋间比规定时间少3天,已知快马的速度是慢马的2倍,求规定时间. 设规定时间为x 天,则可列方程为( ). A .900900213x x ⨯=+- B .900900213x x =⨯+- C .900900213x x ⨯=-+ D .900900213x x =⨯++ 【答案】A 【解析】 【分析】设规定时间为x 天,得到慢马和快马所需要的时间,根据速度关系即可列出方程.【详解】设规定时间为x 天,则慢马的时间为(x+1)天,快马的时间是(x-3)天, ∵快马的速度是慢马的2倍,∴900900213x x ⨯=+-, 故选:A. 【点睛】此题考查分式方程的实际应用,正确理解题意找到题中的等量关系即可列方程.11.初二18班为课外体育活动购买了实心球和跳绳.已知跳绳的单价比实心球的单价贵40元,购买实心球总花费为1610元,购买跳绳总花费为1650元,购买实心球的数量比跳绳的数量多8个,求实心球的单价.设实心球单价为x 元,所列方程正确的是( ) A .16501610840x x-=+B .16501610840x x -=+ C .16101650840x x -=+ D .16101650840x x-=+ 【答案】C 【解析】 【分析】设实心球单价为x 元,则跳绳单价为()40x +元,根据“购买实心球的数量比跳绳的数量多8个”即可得到方程.【详解】解:设实心球单价为x 元,则跳绳单价为()40x +元,根据题意得,16101650840x x -=+. 故选:C 【点睛】本题考查了分式方程的实际应用,解答本题的关键是审清题意,找到等量关系即可得解.12.“绿水青山就是金山银山”某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原来计划提高了25%,结果提前30天完成了这任务,设原计划工作时每天绿化面积为x 万平方米,则下面所到方程中正确的是( ) A .()006060-30x 125x=+B .()6060-30125%x x=+C .()60125%60-30x x⨯+=D .()60125%60-30x x⨯+= 【答案】A 【解析】 【分析】根据实际工作时每天的工作效率比原来计划提高了25%,结果提前30天完成了这任务,可列出方程. 【详解】解:设原计划工作时每天绿化面积为x 万平方米,则根据题意可得:()00606030125x x-=+, 故答案为:A . 【点睛】本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出题目中的等量关系,列出方程.13.某工程队准备修建一条长1200米的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前两天完成任务,若设原计划每天修建道路x 米,则根据题意可列方程为( ). A .120012002(120%)x x -=+ B .120012002(120%)x x -=- C .120012002(120%)x x-=+D .120012002(120%)x x -=-【答案】A 【解析】设原计划每天修建道路xm ,则实际每天修建道路为(1+20%)xm ,由题意得,()12001200 2120%x x-=+. 故选A.14.解分式方程221112x x x x --=--时,去分母后所得的方程正确的是( ) A .220x x -+= B .4241x x x -+=- C .4241x x x +-=- D .221x x x +-=-【答案】C 【解析】 【分析】根据等式的性质,方程两边同时乘以最简公分母2(x-1),整理即可得答案. 【详解】 ∵221112x x x x --=--, ∴221112x x x x -+=--, 方程两边同时乘以最简公分母2(x-1)得:4x+2(x-2)=x-1, 去括号得:4x+2x-4=x-1, 故选:C . 【点睛】本题考查解分式方程,正确得出最简公分母是解题关键.15.若分式方程2+1kx x 2--=12x-有增根,则k 的值为( ) A .﹣2 B .﹣1C .1D .2【答案】C 【解析】 【分析】根据分式方程有增根得到x=2,将其代入化简后的整式方程中求出k 即可. 【详解】解:分式方程去分母得:2(x ﹣2)+1﹣kx =﹣1, 由题意将x =2代入得:1﹣2k =﹣1, 解得:k =1. 故选:C . 【点睛】此题考查分式方程的增根,由增根求方程中其他未知数的值,根据增根的定义得到方程的解是解题的关键.16.若关于x 的分式方程2233x mx x -=--有增根,则m 的值为( ).A .3B .CD .【答案】D 【解析】解关于x 的方程2233x mx x -=--得:26x m =-, ∵原方程有增根,∴30x -=,即2630m --=,解得:m = 故选D.点睛:解这类题时,分两步完成:(1)按解一般分式方程的步骤解方程,用含待定字母的式子表示出方程的根;(2)方程有增根,则把(1)中所得的结果代入最简公分母中,最简公分母的值为0,由此即可求得待定字母的值.17.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x 万千克,根据题意,列方程为( ) A .3036101.5x x-= B .3030101.5x x-= C .3630101.5x x -= D .3036101.5x x+= 【答案】A 【解析】 【分析】根据题意可得等量关系:原计划种植的亩数-改良后种植的亩数10=亩,根据等量关系列出方程即可. 【详解】设原计划每亩平均产量x 万千克,则改良后平均每亩产量为1.5x 万千克, 根据题意列方程为:3036101.5x x-=. 故选:A . 【点睛】本题考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.18.若整数a 使得关于x 的方程3222ax x-=--的解为非负数,且使得关于y 的不等式组3221223y yy a--⎧+>⎪⎪⎨-⎪≤⎪⎩至少有四个整数解,则所有符合条件的整数a的和为().A.17 B.18 C.22 D.25【答案】C【解析】【分析】表示出不等式组的解集,由不等式至少有四个整数解确定出a的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a的值,进而求出之和.【详解】解:3221223y yy a--⎧+>⎪⎪⎨-⎪⎪⎩„,不等式组整理得:1 yy a>-⎧⎨⎩„,由不等式组至少有四个整数解,得到-1<y≤a,解得:a≥3,即整数a=3,4,5,6,…,2-322ax x=--,去分母得:2(x-2)-3=-a,解得:x=72a -,∵72a-≥0,且72a-≠2,∴a≤7,且a≠3,由分式方程的解为非负数以及分式有意义的条件,得到a为4,5,6,7,之和为22.故选:C.【点睛】此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.19.《九章算术》中记录的一道题目译为白话文是:把一份文件用慢马送到900里外的城市,需要的时间比规定时间多1天,如果用快马送,所需的时间比规定时间少3天.已知快马的速度是慢马的2倍,求规定时间.设规定时间为x天,则可列方程为()A.900900213x x⨯=+-B.900900213x x=⨯+-C.900900213x x⨯=-+D.900900213x x=⨯-+【答案】A【解析】【分析】设规定时间为x天,可得到慢马和快马需要的时间,根据快马的速度是慢马的2倍的速度关系即可列出方程.【详解】解:设规定时间为x天,则慢马需要的时间为(x+1)天,快马的时间为(x-3)天,∵快马的速度是慢马的2倍∴900900213 x x⨯=+-故选A.【点睛】本题考查分式方程的实际应用,正确理解题意找到题中的等量关系即可列方程.20.关于x的方程无解,则m的值为()A.﹣5 B.﹣8 C.﹣2 D.5【答案】A【解析】解:去分母得:3x﹣2=2x+2+m①.由分式方程无解,得到x+1=0,即x=﹣1,代入整式方程①得:﹣5=﹣2+2+m,解得:m=﹣5.故选A.。

解方程式练习题初中

解方程式练习题初中

解方程式练习题初中解方程是初中阶段数学学习中的重要内容,通过解方程,我们可以寻找未知数的值,解答实际问题。

本文将为大家提供一些解方程的练习题,希望能够帮助大家巩固和提升解方程的能力。

一、一元一次方程1. 解方程5x + 3 = 18,求出x的值。

解:首先将方程中的常数项3移到等号右边,得到5x = 18 - 3,即5x = 15。

然后将方程两边同时除以系数5,得到x = 15/5,即x = 3。

因此方程的解为x = 3。

2. 解方程4y - 7 = 2y + 5,求出y的值。

解:首先将方程中的常数项7移到等号右边,得到4y - 2y = 5 + 7,即2y = 12。

然后将方程两边同时除以系数2,得到y = 12/2,即y = 6。

因此方程的解为y = 6。

3. 解方程2(x - 3) = 4,求出x的值。

解:首先将方程中的常数项4移到等号右边,得到2(x - 3) = 4,即2x - 6 = 4。

然后将方程中的常数项6移到等号右边,得到2x = 4 + 6,即2x = 10。

最后将方程两边同时除以系数2,得到x = 10/2,即x = 5。

因此方程的解为x = 5。

二、一元二次方程1. 解方程x^2 - 9 = 0,求出x的值。

解:首先将方程移项,得到x^2 = 9。

然后对方程两边开方,得到x = ±√9,即x = ±3。

因此方程的解为x = 3或x = -3。

2. 解方程2x^2 + 5x - 3 = 0,求出x的值。

解:我们可以使用因式分解或求根公式来解二次方程。

这里我们使用求根公式,即x = (-b ± √(b^2 - 4ac)) / 2a。

将方程中的系数代入公式,得到x = (-5 ± √(5^2 - 4×2×(-3))) / 2×2。

计算得x = (-5 ± √(25 + 24)) / 4,即x = (-5 ± √49) / 4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学方程与不等式练习卷
一、选择题
1、方程1 - 3x =0与方程5x+12−x =5的根之间的关系是( )
A.互为倒数;
B.互为相反数;
C.互为负倒数;
D.两根相等。

2、如果关于x 的方程mx 2- 3 x + 3 = 0 有两个实数根,那么m 的取值范围是( )
A. m <0.75;
B. m ≤ 0.75 ;
C. m ≤ 0.75且m ≠ 0;
D. m ≥ 0.75
3、根据条件“某数的四分之一比它的三分之一少5”,设某数为x 列方程,正确的是( )
A.14x −13x =5;
B. 13x −14x =5;
C. 13−15=14 x ;
D. 14x +13x =5 4、某商店销售一批服装,每件售价150元,可以获利25%,求这种服装的成本价,设这种服装的成本价x 元,则得到方程( )
A.150−x x =25%;
B.150 - x=25%;
C.
X=150×25% ; D.25% x =150. 5、王先谦同学借了一本共有280页书,要在两周借期内读完,当他读了一半时,平均每天要多读21页才能在借期内读完,他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下面所列方程中正确的是( )
A. 140x + 140x−21
=14 B. 280x + 280x+21=14 C. 140x + 140x+21=14 D.
280x + 280x−21=14 6、方程√a −x +√b +x =√a +b 的解是( )
A. x= a
B. x =b C .x = - b D. x = a 或 x = - b
二、填空题
7、如果x= – 4是一元二次方程2x 2+7x –8 k=0的一个根,则k 的值为_____________。

8、,当x=_______________时,代数式4x-5和5x-4的值互为相反数。

9、如果{x =0y =0是关于x 、y 的二元一次方程组{ax +by +a −1=0ax −by +b +2=0的解,则{a =________b =________
10、解方程组:{2x −3y +2z =−1
x + 2y +z =4 3x + 3y −z =3
若先消去未知数z 得到含x 、y 的方程组是{_________________ 11、如果分式方程
x x+3 + m x+3 =0 无解,则m =_____________. 12、同时满足2−3x 4+1≥0和2(x −2)>−5的整数解是_____________________。

13、已知关于x 的不等式组{x <2
x >−1x >a
,无解,则a 的取值范围是____________________.
14、如果用换元法解分式方程x 2−1x −3x x 2−1+2=0,并设y=x 2−1x ,那么原方程可以化为整式方
程为________________________________。

15、使得关于x 的一元二次方程2x (kx −4)−x 2+6=0无实数根的最小整数k 为_________。

16、不等式√3x ≥2(x −1)的解集是__________________________。

17、已知实数a 满足 a 2+1a 2+a +1a =0, 则a + 1a 的值为____________。

18、已知等腰三角形ABC 的一条边a=5,另外两条边b 、c 的长是方程x 2 – mx +12 = 0的两个根。

则m 的值为_________________。

三、简答题
19、解方程:
2x 2+2x−3−x−1x 2−9=1+x 1−x
20、解方程组:{4x 2−y 2=0x 2−xy +4=0
21、已知关于x 、y 的方程组{2x +y =m −3x −y =2m
的解均为负数,求m 的取值范围。

22、已知方程2x2- (3m+n)x + mn = 0, (m>n>0)
不解方程证明:(1)这个方程有两个不相等的实数根;
(2)这个方程的两个根中,有一个根比n大,另一个根比n小。

四、解答题
23、农民老王要围成如图所示的猪舍3间,它们的平面图是一排大小相等的3个矩形,总面积为32平方米,一面利用旧墙,其他各边都用旧木料,已知现有的旧木料可以围24米长的木栅栏,旧墙的长为a米,若木栅栏占地面积不计(1)猪舍长BC和宽AB各为多少米;(2)题中旧墙的长度a米对题目(1)的解起着怎样的作用?
24、解方程√x+m+√x+n=7时,甲将题目错抄成√x −m+√x+n=7,结果解得有一个根是x=12;乙将题目错抄成√x+m+√x −9=7,结果解得有一个根是x=13;若两个人解题过程都正确,求整数m、n的值。

25、(1)已知关于x、y的方程组{y=(m+1)x−2
y=−(m+1)x2+(m−5)x+6有两个实数解,求m的取值范围;
(2)在(1)的条件下若抛物线y=−(m+1)x2+(m−5)x+6与x轴交于A、B两点,与y轴交于点C,且三角形ABC的面积等于12,确定此抛物线及直线y=(m+1)x−2的解析式;
Y
O x。

相关文档
最新文档