结构力学第三章
合集下载
结构力学第三章静定结构受力分析
MA
0, FP
l 2
YB
l
0,YB
FP 2
()
Fy
0,YA
YB
0,YA
YB
Fp 2
()
例2: 求图示刚架的约束力 q
C
A
ql
l
l
l
B
A
ql
ql
C
XC
YC
FNAB
解:
Fy 0,YC 0
MA
0, ql
l 2
XC
l
0,
XC
1 2
ql()
弹性变形,而附属部分上的荷载可使其自身和基本部分均产生内力和 弹性变形。因此,多跨静定梁的内力计算顺序也可根据作用于结构上 的荷载的传力路线来决定。
40k N
80k N·m
20k N/m
AB
CD
EF
G
H
2m 2m 2m 1m 2m 2m 1m
4m
2m
50构造关系图 40k N
C 20 A B 50
Fy 0,YA YB 2ql 0,YA ql() 3)取AB为隔离体
2)取AC为隔离体
Fy 0, YC YA ql 0
Fx 0, XB X A ql / 2()
l MC 0, X A l ql 2 YB l 0, X A ql / 2()
A
B
C D E FG
1m 1m 2m 2m 1m 1m
A C D E FG B
13 17
26 8
7 15 23 30
结构力学第三章
极 值
有尖角
(尖角突出方 向同Fy指向)
有突变
(突变值 为MO)
为 零
注:
• (1)在铰结处一侧截面上如无集中力偶 作用,M=0。 • 在铰结处一侧截面上如有集中力偶作用, 则该截面弯矩=此外力偶值。
• (2)自由端处如无集中力偶作用,则该 端弯矩为零。 • 自由端处如有集中力偶作用,则该端弯 矩=此外力偶值。
FQBA
B
FQBE
D E FP3=1kN
FxA =3kN FyA =3kN
A
MA=15kN· m
(2)、作弯矩图:
• • • • • • • • 求各杆杆端弯矩: 5 1 CB段: MCB=0 MBC=1kN· (左侧受拉) 1.25 m BE段: MEB=0 MBE= - 4kN· m(上侧受拉) BA段: MBA=5kN· (左侧受拉) m MAB=15kN· m(左侧受拉) 15
一系列简支梁的M图
21.25kN· m
静定多跨梁与相应的多个简支梁弯矩图的比较 后,可以看到:在多跨静定梁中弯矩分布要均匀一 些。这是由于多跨静定梁中设置了带伸臂梁的基本 部分。这样,一方面减小了附属部分的跨度,另一 方面,在基本部分的支座处产生了负弯矩,它使跨 中正弯矩减小。 一般来说,多跨静定梁较相应的多个简支梁, 材料用量可以少一些,但构造要复杂一些。
FP2=4kN
q=0.4kN/m
FP3=1kN
FxA=3kN 先求各杆杆端弯 矩,再用分段叠加法 MA=15kN· m FyA =3kN 作弯矩图。
作隔离体图,如左图:
FP1=1kN FP2=4kN
FP1=1kN
C
MBC
B FQBC
FP2=4kN
结构力学第3章
D (a)
B C YC A C
Q
q P
D
XD (b) C YC XC XC
q
Q
B YB A YA XA
(c)
刚架指定截面内力计算
与梁的指定截面内力计算方法相同(截面法).
注意未知内力正负号的规定(未知力先假定为正)
注意结点处有不同截面(强调杆端内力) 注意正确选择隔离体(选外力较少部分)
注意利用结点平衡(用于检验平衡,传递弯矩) 连接两个杆端的刚结点,若结点上无外力偶作用, 则两个杆端的弯矩值相等,方向相反
刚架内力图的绘制
弯矩图
取杆件作隔离体
剪力图
轴力图
取结点作隔离体
静定刚架的内力图绘制方法: 一般先求反力,然后求控 制弯矩,用区段叠加法逐杆 绘制,原则上与静定梁相同。
例一、试作图示刚架的内力图
求反力
(单位:kN . m)
48 192
144 126
12
48 kN
42 kN
22 kN
例一、试作图示刚架的内力图
计算关键
正确区分基本结构和附属结构 熟练掌握单跨静定梁的绘制方法
多跨度梁形式
并列简支梁
多跨静定梁
超静定连续梁
为何采用 多跨静定梁这 种结构型式?
作内力图
例
叠层关系图
先附属,后基本, 先求控制弯矩,再区段叠加
18 10 10
5
12
例
9
12
18
+ 9 9
4
其他段仿 此计算 5
5
2.5 FN 图(kN)
l
q
A
ql2 8 l
B
a m l m A b m l a b l B
B C YC A C
Q
q P
D
XD (b) C YC XC XC
q
Q
B YB A YA XA
(c)
刚架指定截面内力计算
与梁的指定截面内力计算方法相同(截面法).
注意未知内力正负号的规定(未知力先假定为正)
注意结点处有不同截面(强调杆端内力) 注意正确选择隔离体(选外力较少部分)
注意利用结点平衡(用于检验平衡,传递弯矩) 连接两个杆端的刚结点,若结点上无外力偶作用, 则两个杆端的弯矩值相等,方向相反
刚架内力图的绘制
弯矩图
取杆件作隔离体
剪力图
轴力图
取结点作隔离体
静定刚架的内力图绘制方法: 一般先求反力,然后求控 制弯矩,用区段叠加法逐杆 绘制,原则上与静定梁相同。
例一、试作图示刚架的内力图
求反力
(单位:kN . m)
48 192
144 126
12
48 kN
42 kN
22 kN
例一、试作图示刚架的内力图
计算关键
正确区分基本结构和附属结构 熟练掌握单跨静定梁的绘制方法
多跨度梁形式
并列简支梁
多跨静定梁
超静定连续梁
为何采用 多跨静定梁这 种结构型式?
作内力图
例
叠层关系图
先附属,后基本, 先求控制弯矩,再区段叠加
18 10 10
5
12
例
9
12
18
+ 9 9
4
其他段仿 此计算 5
5
2.5 FN 图(kN)
l
q
A
ql2 8 l
B
a m l m A b m l a b l B
结构力学第三章
第三章 静定结构的内力计算
§3-1 静定结构的一般概念 §3-2 静定平面刚架 §3-3 三铰拱 §3-4 静定桁架 §3-5 静定组合结构 §3-6 静定结构的特性
§3-1 静定结构的一般概念
一、静定结构的定义
定义:一个几何不变的结构,在荷载等因素作用下其结构的全部支座反力 和内力均可由静力平衡条件唯一确定的结构称静定结构
FxA
FxB
Fx
M
0 C
f
(2)支座反力
设拱轴线方程 y f已(x知) 。
任意截面K的内力为:
MK 0
MK
FyAx FP1(x a1) FxA y
M
0 K
FxA y
F 0 FQK FyA cos FP1 cos FxA sin FQ0K cos FxA sin
F 0 FNK FyA sin FP1 sin FxA cos (FQ0K sin FxA cos)
二、静定平面桁架的内力计算
静定平面桁架的内力计算方法:结点法、截面法及两法的联合应用。 1.结点法:
切取结点为隔离体用 Fx 0、求F解y 未0知的轴力。
例 求图示桁架内力
解:(1)支座反力
FyB 24 12 2kN()、FyA 8 2 6kN()、FxA 0
(2)内力(设各杆轴力以拉为正):
1.支座反力:
FyA
Fy0A
10(16 16
4)
7.5kN
FyB
Fy0B
10 4 16
2.5kN
F A
F B
Fx
M
0 C
f
7.58 10(8 4) 4
5kN
2、内力:集中荷载 F左P 右分段列内力方程。
§3-1 静定结构的一般概念 §3-2 静定平面刚架 §3-3 三铰拱 §3-4 静定桁架 §3-5 静定组合结构 §3-6 静定结构的特性
§3-1 静定结构的一般概念
一、静定结构的定义
定义:一个几何不变的结构,在荷载等因素作用下其结构的全部支座反力 和内力均可由静力平衡条件唯一确定的结构称静定结构
FxA
FxB
Fx
M
0 C
f
(2)支座反力
设拱轴线方程 y f已(x知) 。
任意截面K的内力为:
MK 0
MK
FyAx FP1(x a1) FxA y
M
0 K
FxA y
F 0 FQK FyA cos FP1 cos FxA sin FQ0K cos FxA sin
F 0 FNK FyA sin FP1 sin FxA cos (FQ0K sin FxA cos)
二、静定平面桁架的内力计算
静定平面桁架的内力计算方法:结点法、截面法及两法的联合应用。 1.结点法:
切取结点为隔离体用 Fx 0、求F解y 未0知的轴力。
例 求图示桁架内力
解:(1)支座反力
FyB 24 12 2kN()、FyA 8 2 6kN()、FxA 0
(2)内力(设各杆轴力以拉为正):
1.支座反力:
FyA
Fy0A
10(16 16
4)
7.5kN
FyB
Fy0B
10 4 16
2.5kN
F A
F B
Fx
M
0 C
f
7.58 10(8 4) 4
5kN
2、内力:集中荷载 F左P 右分段列内力方程。
结构力学 第三章 静定梁和静定平面钢架
2、截面法 若要求某一横截面上的内力,假想用一平面沿杆轴垂直方向将该 截面截开,使结构成两部分;在截开后暴露的截面上用力(内力)代 替原相互的约束。
对于截开后结构的两部分上,截面上的内力已成为外力,因此,
由任一部分的静力平衡条件,均可列出含有截面内力的静力平衡方程。 解该方程即将内力求出。
3、截面内力 截开一根梁式杆件的截面上有三个内力(分量),即:轴力FN 、 剪力FQ和弯矩Μ 。
dFN/dx=-qx
dFQ/dx=-qy dM/dx=Q
d2M/dx2=-qy
增量关系: DFN=-FPx
DFQ=-FPy
DM=m
1)微分关系及几何意义: dFN/dx=-qx dFQ/dx=-qy dM/dx=Q d2M/dx2=-qy (1)在无荷载区段,FQ图为水平直线;
当FQ≠0时,Μ图为斜直线;
右右为正。
FQ=截面一侧所有外力在杆轴垂直方向上投影的代数和。左上为正, 右下为正。
Μ =截面一侧所有外力对截面形心力矩代数和。弯矩的竖标画在杆
件受拉一侧。
例3-1-1 求图(a)所示简支梁在图示荷载下截面的内力。
解:1)支座反力 ∑ΜA=0 FBy×4﹣10×4×2﹣100× (4/5)×2=0 Fby=60kN (↑) ∑ΜB=0 FAy=60kN (↑) ∑Fx= 0 FAx+100×(3/5)=0 FAx=-60kN (← ) 由 ∑Fy= 0 校核,满 足。
(下侧受拉)
区段叠加法求E、D截面弯矩; ΜE=20×42/8+120/2=100kNm ΜD=40×4/4+120/2=100kNm
(下侧受拉) (下侧受拉)
内力应考虑
说明:集中力或集中力偶作用点,注意对有突变的 分两侧截面分别计算。
结构力学-第三章
M FN FQ M+dM
dx dx
FN+d FN FQ+dFQ
内力图-表示结构上各截面内力值的图形 横坐标--截面位置;纵坐标--内力的值
1.结构力学的截面内力分量及其正负号规定
FN FN
轴力—截面上应力沿杆轴切线方向的 合力,使杆产生伸长变形为正,画轴力图 要注明正负号;
剪力—截面上应力沿杆轴法线方向的
C
25 5 20 25 50 20
F
55
G
85 40 10
H
50
40k N A 25 2m B 2m C 2m 5 50 20 50 40k N D 1m
80k N· m E 2m 2m 1m 55 40 40 20 F
20k N/m G 4m 85 40 10 2m H
M 图(k N· m)
20k N/m
A
2
2
YA
C
YB
XC
YC
B
XB
2)取右部分为隔离体 Fp l M C 0, X B l YB 2 0, X B 4 () Fp Fy 0, YC YB 0, YC YB 2 () Fp Fx 0, X B X C 0, X C 4 ()
分析下列多跨连续梁结构几何构造关系,并确定内力计算顺序。 q F
A B C D E F G H
q F
E C A B D F G H
F A F A B C D E B C D E
q F q F
注意: 从受力和变形方面看:基本部分上的荷载仅能在其自身上产生内力和
弹性变形,而附属部分上的荷载可使其自身和基本部分均产生内力和 弹性变形。因此,多跨静定梁的内力计算顺序也可根据作用于结构上 的荷载的传力路线来决定。
dx dx
FN+d FN FQ+dFQ
内力图-表示结构上各截面内力值的图形 横坐标--截面位置;纵坐标--内力的值
1.结构力学的截面内力分量及其正负号规定
FN FN
轴力—截面上应力沿杆轴切线方向的 合力,使杆产生伸长变形为正,画轴力图 要注明正负号;
剪力—截面上应力沿杆轴法线方向的
C
25 5 20 25 50 20
F
55
G
85 40 10
H
50
40k N A 25 2m B 2m C 2m 5 50 20 50 40k N D 1m
80k N· m E 2m 2m 1m 55 40 40 20 F
20k N/m G 4m 85 40 10 2m H
M 图(k N· m)
20k N/m
A
2
2
YA
C
YB
XC
YC
B
XB
2)取右部分为隔离体 Fp l M C 0, X B l YB 2 0, X B 4 () Fp Fy 0, YC YB 0, YC YB 2 () Fp Fx 0, X B X C 0, X C 4 ()
分析下列多跨连续梁结构几何构造关系,并确定内力计算顺序。 q F
A B C D E F G H
q F
E C A B D F G H
F A F A B C D E B C D E
q F q F
注意: 从受力和变形方面看:基本部分上的荷载仅能在其自身上产生内力和
弹性变形,而附属部分上的荷载可使其自身和基本部分均产生内力和 弹性变形。因此,多跨静定梁的内力计算顺序也可根据作用于结构上 的荷载的传力路线来决定。
结构力学第3章静定梁的内力计算
以此类推
❖ 荷载图、剪力图和弯矩图 的特征依次为:零、平、斜; 平、斜、二曲;斜、二曲、三 曲;……
(2)荷载与内力的增量关系
在图3-1-3所示杆件上,取含 有集中力和集中力偶在内的微 段dx,见图 3-1-4(b),建立 微段平衡方程:
dx
图3-1-4 (b)
FY 0
FQ FQ FQ FP 0
例3-1-1
M
用截面法,求图(a) 所示伸臂梁截面1 上的内力。
M
F A x F A y
F B y
(a) (b)
求解:
1)求支座反力
➢ 去掉支座约束,取整体为隔离 体,见图(b)。建立隔离体的平衡 方程并解之:
MB 0
FAy
3a
M
q 3a
3a 2
FP
4 5
a
0
FAy
MA 0
FAy
1 7
(14 4 3
7 6)
30kN
m
(Hale Waihona Puke )1 FBy 7 (14 4 4 7 1) 33kN m
(↑)
q = 1 4 k N /m
F A x = 0 F A y = 3 0 k N
(a) F B y = 3 3 k N
2)计算控制截面弯矩值
截面法的一般步骤:
1. 计算结构的支座反力和约束
取结构整体(切断结构与大地的约 束)、或取结构的一部分(切开结 构的某些约束)为隔离体,建立平 衡方程。
2. 计算控制截面的内力(指定 截面的内力)
用假想的平面垂直于杆轴切开指 定截面,取截面的任意一侧为隔 离体并在其暴露的横截面上代以 相应的内力(按正方向标出), 建立平衡方程并求解。
❖ 荷载图、剪力图和弯矩图 的特征依次为:零、平、斜; 平、斜、二曲;斜、二曲、三 曲;……
(2)荷载与内力的增量关系
在图3-1-3所示杆件上,取含 有集中力和集中力偶在内的微 段dx,见图 3-1-4(b),建立 微段平衡方程:
dx
图3-1-4 (b)
FY 0
FQ FQ FQ FP 0
例3-1-1
M
用截面法,求图(a) 所示伸臂梁截面1 上的内力。
M
F A x F A y
F B y
(a) (b)
求解:
1)求支座反力
➢ 去掉支座约束,取整体为隔离 体,见图(b)。建立隔离体的平衡 方程并解之:
MB 0
FAy
3a
M
q 3a
3a 2
FP
4 5
a
0
FAy
MA 0
FAy
1 7
(14 4 3
7 6)
30kN
m
(Hale Waihona Puke )1 FBy 7 (14 4 4 7 1) 33kN m
(↑)
q = 1 4 k N /m
F A x = 0 F A y = 3 0 k N
(a) F B y = 3 3 k N
2)计算控制截面弯矩值
截面法的一般步骤:
1. 计算结构的支座反力和约束
取结构整体(切断结构与大地的约 束)、或取结构的一部分(切开结 构的某些约束)为隔离体,建立平 衡方程。
2. 计算控制截面的内力(指定 截面的内力)
用假想的平面垂直于杆轴切开指 定截面,取截面的任意一侧为隔 离体并在其暴露的横截面上代以 相应的内力(按正方向标出), 建立平衡方程并求解。
《结构力学》第三章 单跨静定梁
l
l/2 l/2
MM
l
l
练习: 利用微分关系等作弯矩图
M
1 ql2 2
P 1 ql2
4
l
l/2 l/2
l
M
2M
MM
l
l
lM
M
l
练习: 利用微分关系等作弯矩图
1 ql2 2
P 1 ql2
4
q
1 ql2
l
l/2 l/2
2l
l
M
2M
M
MM
M
M
M
M MM
M
l
l
MM
练习: 利用微分关系,叠加法等作弯矩图
M图
Q图
例: 作内力图
铰支座有外 力偶,该截面弯矩 等于外力偶.
M图 Q图
无剪力杆的 弯矩为常数.
M图
自由端有外
力偶,弯矩等于外
Q图 力偶
练习: 利用上述关系作弯矩图,剪力图
练习: 利用上述关系作弯矩图,剪力图
5.叠加法作弯矩图
注意:
是竖标相加,不是 图形的简单拼合.
练习:
1 ql2 16
种结构型式?
简支梁(两个并列) 多跨静定梁
连续梁
例.对图示静定梁,欲使AB跨的最大正弯矩与支座B截
面的负弯矩的绝对值相等,确定铰D的位置.
q
A
D
B
C
x
l
l
RD
q
q(l x)2 / 8
RD
B
解: RD q(l x) / 2()
M B qx2 / 2 q(l x)x / 2 q(l x)2 / 8 qx2 / 2 q(l x)x / 2
结构力学第3章
MA
MB
(b)
Fp
(c)
abFp/l MA MB
(d)
下面把上述叠加法推广应用于直杆的任一区段——区段 区段 下面把上述叠加法推广应用于直杆的任一区段 叠加法。 叠加法。 以图示简支梁的KJ段为例说明区段叠加法应用过程 段为例说明区段叠加法应用过程。 以图示简支梁的 段为例说明区段叠加法应用过程。
q
M CA = M CB = VB × 4 − Fp × 2 = 120 kN.m
1 V A = (F p × 2 + q × 4 × 6 ) = 70kN 8
MC FNC C FQC
图(b) 70
Fp=40kN
B
VB
FQ图(kN): :
⊕
x 10
⇓ 50 M图(kN.m): 图 :
极值点的弯矩 在剪力图中, 在剪力图中,利用几何关系得
(1)无荷载区段,M图为斜直线,故只需求出该区段任意 无荷载区段, 图为斜直线 无荷载区段 图为斜直线, 两控制截面的弯矩便可绘出; 两控制截面的弯矩便可绘出; (2)均布荷载区段,M图为抛物线且其凸出方向与荷载指 均布荷载区段, 图为抛物线且其凸出方向与荷载指 均布荷载区段 向相同; 向相同; (3)M图的极值点,或在 Q=0处,或在 Q发生变号处; M图的极值点,或在F 处 或在F 发生变号处;
1.1 截面法的基本步骤 (1)将结构沿所求内力的截面,用一假想的平面切开(截); 将结构沿所求内力的截面,用一假想的平面切开 截 ; 将结构沿所求内力的截面 (2)取其任一部分为研究对象(称隔离体),把丢弃部分对 取其任一部分为研究对象( ),把丢弃部分对 取其任一部分为研究对象 称隔离体), 研究的作用用内力代替( 研究的作用用内力代替(取); (3)对研究对象应用平衡方程,即可求出指定截面的内力 对研究对象应用平衡方程, 对研究对象应用平衡方程 (列方程求解)。 列方程求解)。 注意:在列方程求内力之前,结构的全部外力(荷载及约 注意:在列方程求内力之前,结构的全部外力( 束反力)必须为已知或已求出。 束反力)必须为已知或已求出。 1.2 梁的内力正负符号规定 轴力F 拉力为正; 轴力 N——拉力为正; 拉力为正 剪力F 绕隔离体顺时针方向转的为正; 剪力 Q——绕隔离体顺时针方向转的为正; 绕隔离体顺时针方向转的为正 弯矩M——使梁下部纤维受拉的为正。 使梁下部纤维受拉的为正。 弯矩 使梁下部纤维受拉的为正 下面举例说明截面法及其应注意的事项
结构力学第三章-扭转.
对于空心圆截面:
d
I p A 2 dA 2 d
2 D 2 d 2
d
O D
4 4 (D d ) 32 D4 4 (1 ) 32
d ( ) D
④ 应力分布
(实心截面)
(空心截面)
工程上采用空心截面构件:提高强度,节约材料,重量轻,
代入物理关系式
d T dx GI p
d 得: G dx
T Ip
T Ip
— 横截面上距圆心为 处任一点切应力计算公式。
4. 公式讨论:
① 仅适用于各向同性、线弹性材料,在小变形时的等圆截面
直杆。
② 式中:T—横截面上的扭矩,由截面法通过外力偶矩求得。
第三章
§3–1 概述
扭 转
§3–2 薄壁圆筒的扭转
§3–3 传动轴的外力偶矩 ·扭矩及扭矩图
§3–4 等直圆杆扭转时的应力 ·强度条件
§3–5 等直圆杆扭转时的变形 ·刚度条件
§3–6 等直圆杆扭转时的应变能
§3–7 非圆截面等直杆在自由扭转时的应力和变形
§ 3–1
概 述
轴:工程中以扭转为主要变形的构件。如:机器中的传动轴、
石油钻机中的钻杆等。
扭转:外力的合力为一力偶,且力偶的作用面与直杆的轴线 垂直,杆发生的变形为扭转变形。 B
A
O
A
O B
m
m
工 程 实 例
§ 3–2
薄壁圆筒的扭转
略
扭转角():任意两截面绕轴线转动而发生的角位移。
切应变():直角的改变量。
剪切胡克定律: T=m
剪切胡克定律: 当剪应力不超过材料的剪切比例极限时(τ ≤τp), 剪应力与剪应变成正比关系。
结构力学第3章
M图(kNm)
12
3-3 静定平面刚架
例
2kN/m
解
(1)求支反力
x xB yA
C
D
3m
F 0, F F 0, F M 0, M
y A
0 12 kN
A
12 kNm
A 12kNm 4m
B
1m
FxB=0
(2)作内力图
2m
FyA=12kN
3-3 静定平面刚架
8
4 12 12 4 16
例
l q
解
FP=ql
l ql
l/2
l/2 ql FN图 ql2/2 ql2/8
ql
ql
0
ql FQ图
ql2/2
M图
3-3 静定平面刚架
例 M M/2l M/2l l l 0 M/2 M/2l FN图 l l M/2l 解 M/2l
FQ图
M图
M/2
3-3 静定平面刚架
例 FP l FP l 0 Pl FP FPl FN图 解 FP
FP 2 FP FP 2
xB yA
FyA=FP /2
FP /2
(2)作内力图
FPa
FP /2
FN图
FP FQ图
M图
3-3 静定平面刚架
例
2FP A FyA=3FP/4 B FxB=2FP l C FP
解 (1)求支反力
l
(2)作内力图
l/2
FyC=7FP/4 FP
l/2
3FPa/4 F a/2 P FPa/4 FQ图 M图
R NC
FQ图
5kN
5kN
FN图
★取隔离体时: a:约束必须全部断开,用相应的约束反力来代替。 b:正确选择隔离体,标上全部荷载。
结构力学第03章
四个平衡方程就可以求出这四个支座反力。
C q (a) A l /2 l /2 B XA A l /2 YA q (b) l /2 B YB XB C
f
f
MB 0
f YA l q f 0 2 qf 2 YA 2l
qf 2 YB 2l
X 0
X A q f XB 0
(a)
(b)
(c)
刚架结构特点:
(1)内部有效使用空间大; (2)结构整体性好、刚度大;
(d)
(e)
(3)内力分布均匀,受力合理。
常见的静定刚架类型:
悬臂式
简支式
三铰式
组合式
静定刚架支座反力的计算: 刚架分析的步骤一般是先求出支座反力,再求出各杆控制 截面的内力,然后再绘制各杆的弯矩图和刚架的内力图。 在支座反力的计算过程中,应尽可能建立独立方程。
复杂程度和难度。
如右图(a)是一个多
跨刚架,具有四个支座 反力,根据几何组成分 析:C以右是基本部分、 以左是附属部分,分析 顺序应从附属部分到基 本部分。
q P
D (a)
B C YC A C
Q
q P
D
XD (b) C YC XC XC
q
Q
B YB A YA XA
(c)
刚架中各杆的杆端内力及内力图
8 KN
A B C
4 KN m
D
16 KN m
E F G
1m 1m
2m
2m
1m 1m
FRA 17kN
解:
FRG 7 kN
Step1:求支反力,由梁的整体平衡条件可求出。
M A 0 FRG 8 16 4 4 4 8 1 0 FRA 17 KN Y 0 FRA FRG 8 4 4 0 FRG 7 KN
C q (a) A l /2 l /2 B XA A l /2 YA q (b) l /2 B YB XB C
f
f
MB 0
f YA l q f 0 2 qf 2 YA 2l
qf 2 YB 2l
X 0
X A q f XB 0
(a)
(b)
(c)
刚架结构特点:
(1)内部有效使用空间大; (2)结构整体性好、刚度大;
(d)
(e)
(3)内力分布均匀,受力合理。
常见的静定刚架类型:
悬臂式
简支式
三铰式
组合式
静定刚架支座反力的计算: 刚架分析的步骤一般是先求出支座反力,再求出各杆控制 截面的内力,然后再绘制各杆的弯矩图和刚架的内力图。 在支座反力的计算过程中,应尽可能建立独立方程。
复杂程度和难度。
如右图(a)是一个多
跨刚架,具有四个支座 反力,根据几何组成分 析:C以右是基本部分、 以左是附属部分,分析 顺序应从附属部分到基 本部分。
q P
D (a)
B C YC A C
Q
q P
D
XD (b) C YC XC XC
q
Q
B YB A YA XA
(c)
刚架中各杆的杆端内力及内力图
8 KN
A B C
4 KN m
D
16 KN m
E F G
1m 1m
2m
2m
1m 1m
FRA 17kN
解:
FRG 7 kN
Step1:求支反力,由梁的整体平衡条件可求出。
M A 0 FRG 8 16 4 4 4 8 1 0 FRA 17 KN Y 0 FRA FRG 8 4 4 0 FRG 7 KN
结构力学第3章静定梁与静定刚架(f)
§3-2 多跨静定梁
例3-4 试作图a所示多跨静定梁的内力图,并求出各支座反力。
解:不算反力 先作弯矩图
1)绘AB、GH段弯矩图,与悬臂梁相同; 2)GE间无外力,弯矩图为直线,MF=0,可绘出; 同理可绘出CE段; 3)BC段弯矩图用叠加法画。
§3-2 多跨静定梁
由弯矩与剪力的微分关系画剪力图
由若干根梁用铰相联,并用若干支座与基础相联而组成的静定结构。
分析多跨静定梁的一般步骤
对如图所示的多跨静定梁,应先从附属部分CE开始分析:将 支座C 的支反力求出后,进行附属部分的内力分析、画内力图, 然后将支座 C 的反力反向加在基本部分AC 的C 端作为荷载,再 进行基本部分的内力分析和画内力图,将两部分的弯矩图和剪力 图分别相连即得整个梁的弯矩图和剪力图 。
弯矩图为直线:其斜率为剪力。图形从基线顺时针转,
剪力为正,反之为负。 弯矩图为曲线:根据杆端平衡条件求剪力,如图c。
剪力图作出后即可求支座反力 取如图e的隔离体可求支座 c— 的反力 弯矩—剪力 支座反力
§3-3 静定平面刚架
常见静定刚架的型式
悬臂刚 架
简支刚 架
三铰刚 架
§3-3 静定平面刚架
R FSR F E SD 8kN
FSR F 12kN
FSR B 0
§3-1 单跨静定梁
用截面法计算 控制截面弯矩。
MC 0
M A 20kN 1m 20kN m
M D 20kN 2m 58kN 1m 18kN m M E 20kN 3m 58kN 2m 30kN 1m 26kN m M F 12kN 2m 16kN m 10kN m 18kN m
结构力学第三章
载荷集度、剪力和弯矩关系:
d 2M (x) dx2
dFQ (x) dx
q( y)
dFQ x q y
dx
dM (x) dx
FQ
(x)
dM 2 (x) dx2
q(y)
微分关系的应用---作FQ 图和 M 图(用于定形)
1)分布力q(y)=0时
(无分布载荷)
——剪力图为一条水平线;
FQ图:
弯矩图为一条斜直线。 M图:
静定多跨梁的分析步骤
(1)结构分析和绘层次图 此梁的组成顺序为先固 定梁AB,再固定梁BD, 最后固定梁DE。由此得 到层次图。
(2)计算各单跨梁的支座反力 计算是根据层次图,将梁拆 成单跨梁(c)进行计算,以 先附属部分后基本部分,按 顺序依次进行,求得各个单 跨梁的支反力。
(3)画弯矩图和剪力图 根据各梁的荷载和支座反力, 依照弯矩图和剪力图的作图规 律,分别画出各个梁的弯矩图 及剪力图,再连成一体,即得 到相应的弯矩图和剪力图。
例:作图示多跨静定梁的内力图,并求出各支座的反力。
1m
4m
4m
4m
1m
作图示多跨静定梁的内力图。
如何 求支座 B反力?
请大家作图示
斜梁内力图。
q
l q
q
3-5b
作
3-6
业
第三章 静定结构受力分析
• §3-1 梁的内力计算回顾
• §3-2 静定多跨梁 (1)刚架的特点和分类
• §3-3 静定刚架 • §3-4 静定桁架 • §3-5 组合结构 • §3-6 三铰拱
3. 弯矩等于截面一边所有外力对截面形心力矩的 代数和。
• 以上结论是解决静定结构内力的关键和规律, 应熟练掌握和应用。
结构力学第3章
29
特殊结点 1、L型结点 2、T型结点 3、X型结点
30
判断零杆
31
32
3-4-2截面法
例3-11 试求图3-44a所示桁架中a、b和c三杆的
内力。
1、求反力
2、求内力
作截面I-I
作截面II-II
∑Fy=80kN-2×40kN+Fyc=0 FNc=Fyc=0
∑FFxNMaa==4﹣﹣= 8110220k3kN.6N×9k6Nm-(4压0k力N)×3m+Fxa×3m = 0 ∑MO=﹣80kN×6m+40kN×9m+Fyb×12m=0 Fyb=10kN FNb=16.67kN
步骤: 1、求支座反力 2、计算各链杆的轴力 3、计算受弯杆件的内力。
37
例3-13 试分析图3-53a所示组合结构的内力。
1、求支座反力:
FFFxyyAAB
= = =
04,0kN(↑), 20kN(↑)
2、内力 作截面Ⅰ-Ⅰ,取其右部为隔
离体,
Σ1mMC==020kN× 4.5m-FNDE×
得
FNDE = 90kN
2、按外形
(1)平行弦桁架
(2)折弦桁架
(3)三角形桁架
26
桁7
桁架内力计算方法 1、结点法 2、截面法 3、结点法与截面法联合使用
28
结点法
结点1 ∑Fy=0,FN13=-100 kN, ∑Fx=0,FN12=60 kN 结点2 ∑Fx=0, FN24=60 kN, ∑Fy=0, FN23=80 kN。 结点3 ∑Fy=0, FN34=0, ∑Fx=0 ,FN35=-60 kN
40
§3-7 静定结构的一般性质 (1)温度变化、支座位移和制造误差等非荷 载因素不引起静定结构的反力和内力。
特殊结点 1、L型结点 2、T型结点 3、X型结点
30
判断零杆
31
32
3-4-2截面法
例3-11 试求图3-44a所示桁架中a、b和c三杆的
内力。
1、求反力
2、求内力
作截面I-I
作截面II-II
∑Fy=80kN-2×40kN+Fyc=0 FNc=Fyc=0
∑FFxNMaa==4﹣﹣= 8110220k3kN.6N×9k6Nm-(4压0k力N)×3m+Fxa×3m = 0 ∑MO=﹣80kN×6m+40kN×9m+Fyb×12m=0 Fyb=10kN FNb=16.67kN
步骤: 1、求支座反力 2、计算各链杆的轴力 3、计算受弯杆件的内力。
37
例3-13 试分析图3-53a所示组合结构的内力。
1、求支座反力:
FFFxyyAAB
= = =
04,0kN(↑), 20kN(↑)
2、内力 作截面Ⅰ-Ⅰ,取其右部为隔
离体,
Σ1mMC==020kN× 4.5m-FNDE×
得
FNDE = 90kN
2、按外形
(1)平行弦桁架
(2)折弦桁架
(3)三角形桁架
26
桁7
桁架内力计算方法 1、结点法 2、截面法 3、结点法与截面法联合使用
28
结点法
结点1 ∑Fy=0,FN13=-100 kN, ∑Fx=0,FN12=60 kN 结点2 ∑Fx=0, FN24=60 kN, ∑Fy=0, FN23=80 kN。 结点3 ∑Fy=0, FN34=0, ∑Fx=0 ,FN35=-60 kN
40
§3-7 静定结构的一般性质 (1)温度变化、支座位移和制造误差等非荷 载因素不引起静定结构的反力和内力。
《结构力学》第三章 静定梁和静定刚架.
返19回
§3—4 少求或不求反力绘制弯矩图
弯矩图的绘制,以后应用很广,它是本课最 重要的基本功之一。
静定刚架常常可少求或不求反力绘制弯矩图。
例如:1. 悬臂部分及简支梁部分,弯矩图可先绘出。
2. 充分利用弯矩图的形状特征(直线、零值)。
3.刚结点处的力矩平衡条件。
4. 用叠加法作弯矩图。
5. 平行于杆轴的力及外力偶产生的弯矩为常数。 6. 与杆轴重合的力不产生弯矩等。
满足投影平衡条件。
0 24kN C 0
22kN
24kN 22kN (返1b8 回)
例题 3—6 作三铰刚架的内力图
→HA VA↑ 26.7 20 6.7
解(:1)求反力
←HB
↑VB
由(∑2Y由)=V刚0A求VH作得架=AA杆=弯整1=30H体端矩0Bk8平4=弯图N6衡↑矩.,66,以,7kV∑D3NMB0C(=kBN杆1=→0o↑为k可←N例得↑)
M图: 通常检查刚结点处是否满足力矩的平衡条件。
例如取结点C为隔离体(图a),有:
∑MC=48-192+144=0 满足这一平衡条件。
48kN·m
C
192kN·m
Q(N)图:可取刚架任何一部分为隔
离体,检查∑X=0 和 ∑Y=0 是否满足。 144kN·m (a)
例如取结点C为隔离体(图b), 有: ∑X=24-24=0 ∑Y=22-22=0
dQ q(x) dx
dM Q dx
d2M dx2
q(x)
据此,得直梁内力图的形状特征
梁上情况 q=0
q=常数
q↓ q↑
P 作用处
m 铰或
作用处 自由端 (无m)
水平线
结构力学 第三章 单跨静定梁静
解 1 求支座反力
2 分段、确定控制截面 3 计算控制截面内力
FyG=7kN
A、B、C、E、F、G
FQA 17kN MA 0
FQLB17kN MB 17117kN.m
A 17kN
B
MB
F
L QB
例3-1作图示简支梁的内力图
8kN 4kN/m
16kN.m
A
B C D EF
G
1m 1m
4m
1m 1m
结构力学 第三章 单跨静定梁 静
3.1 单跨静定梁
一 梁截面内力计算
1 截面内力分量:轴力FN、剪力FQ、弯矩Μ
FNAB A
B FNBA
A
FQAB
B FQBA
M AB
M BA
①轴力:以拉力为正、压力为负
②剪力:使截面所在的隔离体绕另一端顺时针旋转为正、 反之为负
③弯矩:使水平杆件下部受拉为正、反之为负
dM dx FQ
d 2M dx2
qy
FQ
FQ dFQ
dx
dFQ dx
qy
dM dx
FQ
+
d 2M dx2
qy
+ -
① 无荷载区段,FQ图为水平直线;M图为倾斜直线 (当FQ=0时,Μ图为水平直线)
② 均布荷载作用区段,FQ图为倾斜直线;M图为抛物线, 且凸向与均布荷载作用方向一致
+
+
-
8kN.m 23kN.m 30 8kN.m
4kN.m
8kN.m
③ 荷载的不连续点内力图一般出现不连续的变化 a 竖向集中力作用点,FQ图有突变,突变值等于FP ; M图为折线,且凸向与集中力方向一致
b 集中力偶m作用点,Μ图有突变,突变值等于m,
2 分段、确定控制截面 3 计算控制截面内力
FyG=7kN
A、B、C、E、F、G
FQA 17kN MA 0
FQLB17kN MB 17117kN.m
A 17kN
B
MB
F
L QB
例3-1作图示简支梁的内力图
8kN 4kN/m
16kN.m
A
B C D EF
G
1m 1m
4m
1m 1m
结构力学 第三章 单跨静定梁 静
3.1 单跨静定梁
一 梁截面内力计算
1 截面内力分量:轴力FN、剪力FQ、弯矩Μ
FNAB A
B FNBA
A
FQAB
B FQBA
M AB
M BA
①轴力:以拉力为正、压力为负
②剪力:使截面所在的隔离体绕另一端顺时针旋转为正、 反之为负
③弯矩:使水平杆件下部受拉为正、反之为负
dM dx FQ
d 2M dx2
qy
FQ
FQ dFQ
dx
dFQ dx
qy
dM dx
FQ
+
d 2M dx2
qy
+ -
① 无荷载区段,FQ图为水平直线;M图为倾斜直线 (当FQ=0时,Μ图为水平直线)
② 均布荷载作用区段,FQ图为倾斜直线;M图为抛物线, 且凸向与均布荷载作用方向一致
+
+
-
8kN.m 23kN.m 30 8kN.m
4kN.m
8kN.m
③ 荷载的不连续点内力图一般出现不连续的变化 a 竖向集中力作用点,FQ图有突变,突变值等于FP ; M图为折线,且凸向与集中力方向一致
b 集中力偶m作用点,Μ图有突变,突变值等于m,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 3章
静定梁和静定刚架的受力分析
本章教学基本要求:灵活运用隔离体平衡法(截面 法)计算指定截面的内力;熟练掌握静定梁和静定平 面刚架内力图的作法;了解空间刚架内力图绘制的方 法。
●
本章教学内容的重点:绘制静定梁和静定平面刚架 的内力图,这是本课程最重要的基本功之一。
●
本章教学内容的难点:用隔离体平衡法计算任一指 定截面的内力;用区段叠加法绘弯矩图;根据弯矩图 和所受荷载绘出剪力图和轴力图。
N dN
x
l
微分关系: dQ( x) / dx q( x)
dM ( x) / dx Q( x) d 2 M ( x) / dx2 q( x) Pl 1.无荷载分布段(q=0),Q图 为水平线,M图为斜直线. M图
自由端无外力偶 则无弯矩. Q图
dx 截面弯矩等于该截面一 侧的所有外力对该截面 的力矩之和
Q( x)
Q dQ
例3-2: 作内力图
M图
Q图
铰支端无外力偶 则该截面无弯矩.
1.无荷载分布段(q=0),Q图为水平线,M图为斜直线. 2.均布荷载段(q=常数),Q图为斜直线,M图为抛物线, 且凸向与荷载指向相同.
ql2 / 2
Q=0的截面为抛 物线的顶点.
ql / 2
ql
2
M图
Q图
例3-3: 作内力图
0
20kN/m
10kN 10
10
10kN
10
10
10kN
10 A F B 10
10 G 10
10 C D 10 10 H E
M图(kN· m)
30 H D 10 20kN/m E
20
A F B 10 Q图(kN) 10kN· m D 2m 30kN 10kN C
H
10kN· m
【例3-10】试求作图示多跨静定梁铰E和铰F的位置,使中间 跨的支座负弯矩MB和MC与跨中正弯矩M2的绝对值相等。
2 2
ql
ql
5ql / 4
11ql / 4
ql / 2
3.2多跨静定梁
1.多跨静定梁的组成 为何采用 2.多跨静定梁的内力计算 多跨静定梁这 3.多跨静定梁的受力特点
种结构型式?
简支梁(两个并列)
多跨静定梁
连续梁
例3-7.对图示静定梁,欲使AB跨的最大正弯矩与支座B 截面的负弯矩的绝对值相等,确定铰D的位置.
q
1 2 ql 16
q
l
ql 2
1 2 ql 16
ql 2
l
6.分段叠加法作弯矩图
q
A
1 2 ql 16
B
l/2
q
C
q
l/2
1 2 ql 16
1 ql 8
1 2 ql 16
l/2
q
q
1 2 ql 16
1 2 ql 16
l/2
练习: 分段叠加法作弯矩图
q
A B
C
1 2 ql 4
l
q
1 ql 2
ql
ql2 / 2
M图 Q图
1.无荷载分布段(q=0),Q图为水平线,M图为斜直线. 2.均布荷载段(q=常数),Q图为斜直线,M图为抛物线, 且凸向与荷载指向相同. 3.集中力作用处,Q图有突变,且突变量等于力值; M 图有尖点,且指向与荷载相同.
M图 Q图
ql2 / 2
M图
A支座的反力 大小为多少, 方向怎样?
MC C HAcosα HA VAsinα VAcosα VA HAcosα HA HAsinα NC QC
(3)AD段受力图:
α
ql2/3
ql2sinα/3 C HAsinα
ql2cosα/3 NC D QC MC
α
VAsinα
VAcosα
VA
第 3章
(4)绘制斜梁内力图如下:
§ 3.2 多跨静定梁
基本部分--能独立 1.多跨静定梁的组成 承载的部分。
附属部分--不能独 立承载的部分。
基、附关系层叠图
三种组成形式
A B C D E
层次图
(次 ) (主 ) A C
(最次) E (再次) D
B C D E F A B C D E
A
B
层次图
(主 ) A (次 ) B C (主 ) (次 ) D E F A (主 ) (主 ) (次 ) B C (主 ) (次 ) D E
E
F
FP3/2
A
Fp/2
E
F
A
B
Q图
【例3-9】试求图示多跨静定梁的内力图。
30kN A 1m 20kN· m G 1m 1m 20kN/m E
F
1m
B
C
1m
D 2m
H 1m
30kN A F B
20kN· m G C 10 10kN 10 0 20kN· m
20kN/m
D H
E
0
10 10kN· m 20kN 30kN
q A l- x q A E F E x B l C x F l- x q D D
q l x 2
E B
MB E B M2
q l x 2
C
MC C F
F
q A l- x q A E F E x B l C x F l- x q D
D
因为
ql x qx2 M B MC x 2 2
●
静定结构受力分析
几何特性:无多余联系的几何不变体系 静力特征:仅由静力平衡条件可求全部反力内力 求解一般原则:从几何组成入手,按组成的相反 顺序进行逐步分析即可 本章内容: 静定梁; 静定刚架; 学习中应注意的问题: 多思考,勤动手。本章是后面学习的基础,十分 重要,要熟练掌握!
●
本章内容简介:
4
l/2
q
l/2
l/2
1 2 ql 4
l/2
l/2
ql 1 ql 2 4
l/2
l/2
l/2
l/2
l/2
【例3-5】试求作图示多跨静定梁的内力图
FP FPa FPa
A
2a
B
a
C
a
D
2a
E
a E
F A FP
C D
B Fpa/2 M图
E
F
A B
C
D FP/2 FP/2 C D FP/2 FP
F
FP Fp Fp/2 + B C D +
2ql2
q
ql 2
A B QAB QBA M A 0 QBA 11ql / 4
F
Y
0 QAB 5ql / 4
例3-6: 作内力图
ql
q
ql
l l ql
2l q
4l
1 ql 2
2l
l
l ql
内力计算的关键在于 : 1 ql ql 2 正确区分基本部分和附 ql ql 属部分. 熟练掌握单跨梁的计算 . ql / 2 ql
x 0.172 l
0.086ql 2
l
x
q
0.086ql 2
l
1 2 ql 8
1 2 ql 0.125 ql 2 8
与简支梁相比:弯矩较小而且均匀.
从分析过程看:附属部分上若无外力,其上也无内力.
练习: 利用微分关系等作弯矩图
P
l
l/2
l/2
l
M
M
l
练习: 利用微分关系等作弯矩图 M 1 1
K
内力符号规定: 弯矩 以使下侧受拉为正 剪力 绕作用截面顺时针转为正 轴力 拉力为正
例:求跨中截面内力
q
A
解: FAx 0, FAy ql / 2(),
B
FBy ql / 2()
F Ax
C
l
FAy
FBy
F 0, N 0 F 0, Q 0 M 0, M ql
2 ql 2 4
l
ql
2
P
M M
l/2
M
l/2
l
l
2M
M
l
M M M
l
M
M
l
l
练习: 利用微分关系等作弯矩图
1 2 ql 2
l
1 2 ql 4
P
l/2
q
l/2
M
1 2 ql 2
l
l
2M
M
M
M
M
M M M
M M
l l
M M
M
练习: 利用微分关系,叠加法等作弯矩图
P
1 Pl 4 1 Pl 4
P 1 Pl
练习:区分基本部分和附属部分并画出关系图
1.多跨静定梁的组成 2.多跨静定梁的内力计算
拆成单个杆计算,先算附属部分,后算基本部分.
(1)力的传递
由附属部分向基本部分传递,且当基本部分受荷载时, 附属部分无内力产生;当附属部分受荷载时,基本部分 有内力产生。
FP (主 ) (次 ) (主 )
FP (次 ) (主 ) (主 )
x C y C c C
/8 (下侧受拉)
2
3.作内力图的基本方法 内力方程式: M M ( x) 弯矩方程式 Q Q( x) 剪力方程式 例3-1:作图示粱内力图 N N ( x) 轴力方程式
q
A B
解: FAx 0, FAy ql / 2(),
F Ax
l
FAy
FBy
F
FBy ql / 2()
x
0, N ( x) 0
静定梁和静定刚架的受力分析
本章教学基本要求:灵活运用隔离体平衡法(截面 法)计算指定截面的内力;熟练掌握静定梁和静定平 面刚架内力图的作法;了解空间刚架内力图绘制的方 法。
●
本章教学内容的重点:绘制静定梁和静定平面刚架 的内力图,这是本课程最重要的基本功之一。
●
本章教学内容的难点:用隔离体平衡法计算任一指 定截面的内力;用区段叠加法绘弯矩图;根据弯矩图 和所受荷载绘出剪力图和轴力图。
N dN
x
l
微分关系: dQ( x) / dx q( x)
dM ( x) / dx Q( x) d 2 M ( x) / dx2 q( x) Pl 1.无荷载分布段(q=0),Q图 为水平线,M图为斜直线. M图
自由端无外力偶 则无弯矩. Q图
dx 截面弯矩等于该截面一 侧的所有外力对该截面 的力矩之和
Q( x)
Q dQ
例3-2: 作内力图
M图
Q图
铰支端无外力偶 则该截面无弯矩.
1.无荷载分布段(q=0),Q图为水平线,M图为斜直线. 2.均布荷载段(q=常数),Q图为斜直线,M图为抛物线, 且凸向与荷载指向相同.
ql2 / 2
Q=0的截面为抛 物线的顶点.
ql / 2
ql
2
M图
Q图
例3-3: 作内力图
0
20kN/m
10kN 10
10
10kN
10
10
10kN
10 A F B 10
10 G 10
10 C D 10 10 H E
M图(kN· m)
30 H D 10 20kN/m E
20
A F B 10 Q图(kN) 10kN· m D 2m 30kN 10kN C
H
10kN· m
【例3-10】试求作图示多跨静定梁铰E和铰F的位置,使中间 跨的支座负弯矩MB和MC与跨中正弯矩M2的绝对值相等。
2 2
ql
ql
5ql / 4
11ql / 4
ql / 2
3.2多跨静定梁
1.多跨静定梁的组成 为何采用 2.多跨静定梁的内力计算 多跨静定梁这 3.多跨静定梁的受力特点
种结构型式?
简支梁(两个并列)
多跨静定梁
连续梁
例3-7.对图示静定梁,欲使AB跨的最大正弯矩与支座B 截面的负弯矩的绝对值相等,确定铰D的位置.
q
1 2 ql 16
q
l
ql 2
1 2 ql 16
ql 2
l
6.分段叠加法作弯矩图
q
A
1 2 ql 16
B
l/2
q
C
q
l/2
1 2 ql 16
1 ql 8
1 2 ql 16
l/2
q
q
1 2 ql 16
1 2 ql 16
l/2
练习: 分段叠加法作弯矩图
q
A B
C
1 2 ql 4
l
q
1 ql 2
ql
ql2 / 2
M图 Q图
1.无荷载分布段(q=0),Q图为水平线,M图为斜直线. 2.均布荷载段(q=常数),Q图为斜直线,M图为抛物线, 且凸向与荷载指向相同. 3.集中力作用处,Q图有突变,且突变量等于力值; M 图有尖点,且指向与荷载相同.
M图 Q图
ql2 / 2
M图
A支座的反力 大小为多少, 方向怎样?
MC C HAcosα HA VAsinα VAcosα VA HAcosα HA HAsinα NC QC
(3)AD段受力图:
α
ql2/3
ql2sinα/3 C HAsinα
ql2cosα/3 NC D QC MC
α
VAsinα
VAcosα
VA
第 3章
(4)绘制斜梁内力图如下:
§ 3.2 多跨静定梁
基本部分--能独立 1.多跨静定梁的组成 承载的部分。
附属部分--不能独 立承载的部分。
基、附关系层叠图
三种组成形式
A B C D E
层次图
(次 ) (主 ) A C
(最次) E (再次) D
B C D E F A B C D E
A
B
层次图
(主 ) A (次 ) B C (主 ) (次 ) D E F A (主 ) (主 ) (次 ) B C (主 ) (次 ) D E
E
F
FP3/2
A
Fp/2
E
F
A
B
Q图
【例3-9】试求图示多跨静定梁的内力图。
30kN A 1m 20kN· m G 1m 1m 20kN/m E
F
1m
B
C
1m
D 2m
H 1m
30kN A F B
20kN· m G C 10 10kN 10 0 20kN· m
20kN/m
D H
E
0
10 10kN· m 20kN 30kN
q A l- x q A E F E x B l C x F l- x q D D
q l x 2
E B
MB E B M2
q l x 2
C
MC C F
F
q A l- x q A E F E x B l C x F l- x q D
D
因为
ql x qx2 M B MC x 2 2
●
静定结构受力分析
几何特性:无多余联系的几何不变体系 静力特征:仅由静力平衡条件可求全部反力内力 求解一般原则:从几何组成入手,按组成的相反 顺序进行逐步分析即可 本章内容: 静定梁; 静定刚架; 学习中应注意的问题: 多思考,勤动手。本章是后面学习的基础,十分 重要,要熟练掌握!
●
本章内容简介:
4
l/2
q
l/2
l/2
1 2 ql 4
l/2
l/2
ql 1 ql 2 4
l/2
l/2
l/2
l/2
l/2
【例3-5】试求作图示多跨静定梁的内力图
FP FPa FPa
A
2a
B
a
C
a
D
2a
E
a E
F A FP
C D
B Fpa/2 M图
E
F
A B
C
D FP/2 FP/2 C D FP/2 FP
F
FP Fp Fp/2 + B C D +
2ql2
q
ql 2
A B QAB QBA M A 0 QBA 11ql / 4
F
Y
0 QAB 5ql / 4
例3-6: 作内力图
ql
q
ql
l l ql
2l q
4l
1 ql 2
2l
l
l ql
内力计算的关键在于 : 1 ql ql 2 正确区分基本部分和附 ql ql 属部分. 熟练掌握单跨梁的计算 . ql / 2 ql
x 0.172 l
0.086ql 2
l
x
q
0.086ql 2
l
1 2 ql 8
1 2 ql 0.125 ql 2 8
与简支梁相比:弯矩较小而且均匀.
从分析过程看:附属部分上若无外力,其上也无内力.
练习: 利用微分关系等作弯矩图
P
l
l/2
l/2
l
M
M
l
练习: 利用微分关系等作弯矩图 M 1 1
K
内力符号规定: 弯矩 以使下侧受拉为正 剪力 绕作用截面顺时针转为正 轴力 拉力为正
例:求跨中截面内力
q
A
解: FAx 0, FAy ql / 2(),
B
FBy ql / 2()
F Ax
C
l
FAy
FBy
F 0, N 0 F 0, Q 0 M 0, M ql
2 ql 2 4
l
ql
2
P
M M
l/2
M
l/2
l
l
2M
M
l
M M M
l
M
M
l
l
练习: 利用微分关系等作弯矩图
1 2 ql 2
l
1 2 ql 4
P
l/2
q
l/2
M
1 2 ql 2
l
l
2M
M
M
M
M
M M M
M M
l l
M M
M
练习: 利用微分关系,叠加法等作弯矩图
P
1 Pl 4 1 Pl 4
P 1 Pl
练习:区分基本部分和附属部分并画出关系图
1.多跨静定梁的组成 2.多跨静定梁的内力计算
拆成单个杆计算,先算附属部分,后算基本部分.
(1)力的传递
由附属部分向基本部分传递,且当基本部分受荷载时, 附属部分无内力产生;当附属部分受荷载时,基本部分 有内力产生。
FP (主 ) (次 ) (主 )
FP (次 ) (主 ) (主 )
x C y C c C
/8 (下侧受拉)
2
3.作内力图的基本方法 内力方程式: M M ( x) 弯矩方程式 Q Q( x) 剪力方程式 例3-1:作图示粱内力图 N N ( x) 轴力方程式
q
A B
解: FAx 0, FAy ql / 2(),
F Ax
l
FAy
FBy
F
FBy ql / 2()
x
0, N ( x) 0