一元函数微积分重点

合集下载

大学数学基础教程:一元函数微积分

大学数学基础教程:一元函数微积分

大学数学基础教程:一元函数微积分一、函数微积分的主要课题在于研究变量的变化形态。

这个说法很抽象。

说的直白一点,就是研究一个量的变化过程。

这个量可以是速度,可以是加速度,可以是生产率等等。

这些是变化的,我们称之为变量。

中学时,已经学过,描述变量的数学模型是函数。

因此从函数开始说起。

函数是中学数学的主要内容,概念这里就不重复了。

对函数概念的的理解需要重点把握定义域和对应法则,有了定义域和对应法则就确定一个函数,换句话说,确定两个函数是否相同,定义域和对应法则缺一不可。

这里有一些考题,容易因为忽视了定义域而出现错误。

函数的表示形式有多种,运用数形结合的思想,在坐标系中画函数图像,可以探索函数的性质(如单调性、周期性、奇偶性)。

研究函数的性质,有时可以在积分运算过程中简化运算。

掌握了研究方法后,复合函数、反函数和初等函数都可以自己来研究。

二、无穷小量极限方法的本质就是无穷小量的分析。

因此首先学习无穷小量。

定义设有数列{εn},如果对于任意给定的正数η>0,都能取到正整数N,使得当n>N时成立|εn|<η,则称n→∞时,{εn}是无穷小量,记作εn=ο(1),n→∞.由定义可以看出,无穷小量的本质是可以任意小的变量。

这个需要好好理解。

掌握了该定义后,无穷小量的运算和无穷大量的定义都可以自己给出。

无穷小量之间的关系有高阶、低阶、同阶、等价。

这些概念要熟记。

三、极限极限是刻画变量变化趋势的重要工具。

好多教材中数列的极限、函数的极限、单侧极限的概念是分别给出的。

对比这些概念,给出的方法都相同,即ε-δ(N)语言。

通用模型是这样的:对于任意ε,存在δ,使得当****时成立,|f(x)-A|<ε,则称f(x)在x→**时以A为极限,记作或称f(x)收敛于A。

数列是定义域为整数集的特殊函数,函数极限的概念也可以用数列极限的形式来表述。

这里有许多题型,主要题型是:证明这类题目的一般解法是解不等式,用ε表示δ。

微积分知识点总结(期末考研笔记)

微积分知识点总结(期末考研笔记)

微积分知识点总结(期末考研笔记)一、第一章:极限与连续第一节:函数1.什么是函数?未知变量x通过某种固定的对应关系确定唯一变量y,称y是x的函数2.什么是复合函数?内层变量导出中间函数的值域,中间函数的值域满足外层函数的定义域,则外层变量是内层变量的复合函数。

3.什么是反函数?能“反”的函数,正函数能由x确定唯一的y与之对应,反函数则要求由y能确定唯一的x与之对应!4.什么是基本初等函数?幂函数,指数函数,对数函数,三角函数,反三角函数通过四则运算把基本初等函数组合构成初等函数5.特殊函数特殊定义的函数:高斯函数,符号函数,狄利克雷函数第二节:极限1.极限定义是什么?●数列极限定义(ε--N),函数极限定义(ε--δ)、(ε--X)\large \epsilon:任意小的正数,可以是是函数值与极限值之差;也可以是数列项与极限值之差。

\large δ:是邻域半径。

2.极限的性质是什么?●唯一性极限存在必唯一。

从左从右逼近相同值。

●保号性极限两侧正负相同●有界性数列极限收敛,必有界,反之不成立;连续函数闭区间有界。

●列与子列同极限数列有极限,子列也存在相同极限;反之不成立。

●极限运算性质1、满足四则运算。

2、满足复合函数嵌套极限。

3、极限存在则左右极限相等。

●极限存在性质迫(夹)敛(逼)定理。

●两个重要极限x\to0 时,\frac{sinx}{x}=1;(1+x)^{1/x} 的1/x次方极限为e●几个特殊关系式●[0,\frac {\pi}{2} ] 时,sinx <x <tanx●x>0 时,\frac{x}{(x+1)} <ln(1+x) <x3.无穷小●什么是无穷小1、定义:自变量趋向某个边界时,f(x)\to 02、无穷小是函数变化极限值,而非确定具体值,即要多小,有多小,但不是0! 3、高阶、同阶、等价无穷小●常用的等价无穷小第三节:连续与间隔1.连续的定义1、该点有定义,且该点极限值等于函数值,则该处连续2、闭区间连续,左边界函数值等于右极限,区间内各点连续,右边界函数值等于左极限2.间断定义第一类间断点:可去间断点,跳跃间断点。

高等数学 一 微积分》讲义

高等数学 一 微积分》讲义

2
11/69
( 2 ) 因 为 ex2 − 1 ~ x2 ,
sin 3x
~
3x
,1−
cos 2x
~
1 2
(2
x
)2
=
2x2

ln(1 + x) ~ x
( ) 所以
e x2 − 1 sin 3 x lim x→0 (1 − cos 2 x)ln(1 +
x)
= lim x→0
x2 ⋅(3x) (2x2)⋅ x
3n+2
=
lim
1 5

1 52
( 4 )n−1 5
n→∞ 1 + 3( 3 )n+1
5
=
1− 5
1 52
lim( 4 )n−1 n→∞ 5
=
1
1 + 3lim( 3 )n+1 5
n→∞ 5
(2)
lim
x − cos x
=
lim
1−
cos x x
=1
x→+∞ x − sin x x→+∞ 1 − sin x
=

1⎜
2
lim
x→0
⎜ ⎜
sin x 2
x
⎞2 ⎟ ⎟ ⎟
=
1 2
2
⎝2⎠
π
(4)lim(nsin π ) =
n→∞
n
limπ
n→∞
sin

n
π

π
lim(nsin )
n→∞
n
n
10/69
注意:等价无穷小
x → 0时, x ~ sin x, x ~ tan x, x ~ arcsin x , 1 − cos x ~ x2 2

一元函数微积分学知识点总结

一元函数微积分学知识点总结

一元函数微积分学知识点总结
学习数学能使人们更符合逻辑、更有条理、更严密、更准确、更深入地思考和解决问题,能增强人们的好奇心、想象力和创造性。

导数
微分
不定积分
定积分
变限积分
反常积分
求导数
1.复合函数求导
2.分段函数求导
3.隐函数求导
4.高阶导数求导
求积分
1.凑积分法
2.换元法
3.分部积分法
4.有理函数积分法
5.运用牛顿-莱布尼茨公式
几何应用(数一、数二、数三)
1.导数的几何应用:“三点两性一线”(极值点、最值点、拐点、单调性、凹凸性、渐近线)
2.积分的几何应用:利用定积分计算平面图形的面积、旋转体的体积和函数的平均值
物理应用(数一、数二)
1.变化率问题
2.静水压力
3.抽水作功
4.质点引力
经济应用(数三)
1.边际
2.弹性
3.积分的简单经济应用
中值定理的证明
求方程的根
不等式的证明
等式的证明
【注】整个高数上册就是在讲一元函数微积分,复习这部分要整体把握,先把整个知识框架了熟于心,在复习过程中多总结知识点之间的联系。

由于最近五一集训营和真题大全解的事情比较忙,知识点精讲一直没有更新,真题出来之后五月份我会重点多讲解知识点,把整个一元函数部分每个知识点梳理一遍,希望同学们多多体谅!。

考研微积分学习指导-一元函数微分学

考研微积分学习指导-一元函数微分学

1.3 导数与微分一、知识要点(一) 导数概念1. 设函数()x f y =在点0x 的某邻域内有定义,当自变量x 在0x 处取得改变量x ∆(0≠∆x )时,函数相应取得增量00()()y f x x f x ∆=+∆-()()xx f x x f x ∆-∆+→∆000lim存在,则称函数()y f x =在点0x 处可导,0x 为()x f y =的可导点,并称此极限为函数()y f x =在点0x 处的导数,记为 00000()()limlimx x x x f x x f x yy x x=∆→∆→+∆-∆'==∆∆ 或0()f x ',x x dy dx=,()x x df x dx =2.如果令x x x ∆+=0,则当0→∆x 时,0x x →,于是,导数0()f x '的定义又可以表示为()()()000limx x x f x f x f x x →-='→3.若上述极限不存在,则称()x f 在0x 点处不可导或不存在导数,0x 为()x f 的不可导点.特别当上述极限为无穷大时,此时导数不存在,或称()x f 在点0x 处的导数为无穷大.4.如果函数()x f y =在开区间()b a ,内每一点处都可导,则称()x f y =在()b a ,内可导.此时,对于任意的()b a x ,∈,都存在唯一确定的导数()x f '.因此,()x f '是x 的函数,称为()x f 的导函数,简称为导数.导函数()x f '也可记为y '或dx dy 或()dxx df(二)导数的几何意义1.函数()x f y =在点0x 处可导,则其导数()0x f '为曲线()x f y =在点()()00,x f x 处的切线斜率.特别的,若()00='x f ,则曲线()x f y =在点()()00,x f x 的切线平行于OX 轴;若()∞='0x f ,则曲线()x f y =在点()()00,x f x 的切线垂直于OX 轴.2.曲线()x f y =在点()()00,x f x 处的切线方程为()()000x x x f y y -'=-当()00='x f 时,切线方程为00=-y y 当()∞='0x f 时,切线方程为00=-x x 3.曲线()x f y =在点()()00,x f x 处的法线方程为()()0001x x x f y y -'-=- ()()00≠'x f (三)函数的可导性与连续性的关系1.函数()x f y =在0x 处可导,则在0x 处连续. 因()xyx f x ∆∆='→∆00lim存在,故有()00lim lim lim lim 00000=⋅'=∆∆∆=⎪⎭⎫⎝⎛∆∆∆=∆→∆→∆→∆→∆x f x x y x x y y x x x x . 因此,()x f 在点0x 连续.2.函数()x f 在点0x 连续,()x f 在点0x 不一定可导.(四)求导法则设函数()x u 和()x v 在点x 处可导,则()()u x v x ±、()()u x v x ⋅和()()u x v x 也在该点可导(对于商的情形,要求()0v x ≠)且有。

一元函数可导、可微、连续的关系

一元函数可导、可微、连续的关系

一元函数可导、可微、连续的关系一元函数是指只有一个自变量的函数,例如f(x)。

可导性是指函数在某一点处存在导数,也就是函数的变化率。

可微性是指函数在某一点处存在微分,也就是函数的线性近似。

连续性是指函数在定义域内的每一点处都存在有限的极限,也就是函数的无间断性。

我们来讨论可导性。

函数在某一点处可导的条件是函数在该点处的导数存在且有限。

导数表示了函数在该点处的变化率,也可以理解为函数曲线在该点处的切线斜率。

例如,对于函数f(x) = x^2,它在任意一点处的导数为2x,表示了函数在该点处的变化率是2倍的x。

可导性在微积分中是非常重要的概念,它使我们能够研究函数的变化规律。

接下来,我们来讨论可微性。

函数在某一点处可微的条件是函数在该点处的微分存在且有限。

微分是函数在某一点处的线性近似,可以用来描述函数在该点附近的变化情况。

例如,对于函数f(x) = sin(x),它在任意一点处的微分为cos(x),表示了函数在该点处的变化情况可以用cos(x)来近似。

可微性在微积分中也是非常重要的概念,它使我们能够用简单的线性近似来研究函数的性质。

我们来讨论连续性。

函数在某一点处连续的条件是函数在该点处的极限存在且有限。

连续性表示了函数在定义域内的每一点处都没有突变或断裂,函数曲线是一条连续的曲线。

例如,对于函数f(x) =1/x,它在定义域内的每一点处都存在有限的极限,表示了函数曲线没有突变或断裂。

连续性在微积分中也是非常重要的概念,它使我们能够研究函数的整体性质。

通过以上的讨论,我们可以看出一元函数的可导性、可微性和连续性之间存在着紧密的关系。

可导性是可微性的充分条件,也就是说,如果函数在某一点处可导,则它在该点处可微。

可微性是连续性的充分条件,也就是说,如果函数在某一点处可微,则它在该点处连续。

但是反过来并不成立,也就是说,函数在某一点处连续并不意味着它在该点处可微,函数在某一点处可微并不意味着它在该点处可导。

一元函数微分学内容概要总结

一元函数微分学内容概要总结

一元函数微分学内容概要总结
一元函数微分学是微积分的重要内容之一,主要研究函数的变化率、斜率、极值、凹凸性等性质。

以下是一元函数微分学的内容概要总结:
1. 导数与微分,导数是函数在某一点的变化率,表示函数曲线在该点的切线斜率,常用符号表示为f'(x)或者dy/dx。

微分是函数在某一点附近的线性近似,常用符号表示为dy。

2. 函数的求导,通过求导可以得到函数在某一点的导数,可以通过极限的定义或者导数的运算法则进行求导。

3. 导数的应用,导数可以用来求函数的极值,判断函数的增减性和凹凸性,求曲线的渐近线,解决最优化问题等。

4. 微分方程,微分方程是关于未知函数及其导数的方程,是自然科学和工程技术中描述变化规律的重要数学工具。

5. 泰勒公式,泰勒公式是函数在某点附近的多项式逼近公式,可以用来近似计算函数的值。

6. 函数的高阶导数,除了一阶导数外,函数还可以有二阶导数、三阶导数等高阶导数,可以描述函数的曲率、加速度等性质。

7. 微分学与积分学的关系,微分学和积分学是微积分的两大分支,它们之间通过微积分基本定理建立了联系,即导数与原函数的
关系。

以上是一元函数微分学的内容概要总结,涵盖了导数与微分、
函数的求导、导数的应用、微分方程、泰勒公式、高阶导数以及微
分学与积分学的关系等内容。

希望能对你有所帮助。

一元函数微积分学内容提要

一元函数微积分学内容提要

第四部分 一元函数微积分第11章 函数极限与连续[内容提要]一、函数:(138-141页)1、函数的定义:对应法则、定义域的确定、函数值计算、简单函数图形描绘。

2、函数分类:基本初等函数(幂函数、指数函数、对数函数、三角函数、反三角函数的统称);复合函数([()]y f x ϕ=);初等函数(由常数和基本初等函数构成的,且只能用一个式子表达的函数);分段函数;隐函数;幂指函数(()()g x y f x =);反函数。

3、函数的特性:奇偶性;单调性;周期性;有界性.二、极限:1、极限的概念:(141-142页)定义1:(数列极限)给定数列{}n x ,如果当n 无限增大时,其通项n x 无限趋向于某一个常数a ,即a x n -无限趋近于零,则称数列{}n x 以a 的极限,或称数列{}n x 收敛于a ,记为a x n n =∞→lim ,若{}n x 没有极限,则称数列{}n x 发散。

定义2:(0x x →时函数)(x f 的极限)设函数)(x f 在点0x 的某一去心邻域0(,)U x δo内有定义,当x 无限趋向于0x (0x x ≠)时,函数)(x f 的值无限趋向于A ,则称0x x →时, )(x f 以A 为极限,记作A x f x x =→)(lim 0。

左极限:设函数)(x f 在点0x 的左邻域00(,)x x δ-内有定义,当0x x <且无限趋向于0x 时,函数)(x f 的值无限趋向于常数A ,则称0x x →时,)(x f 的左极限为A ,记作00(0)lim ()x x f x f x A -→-==。

右极限:设函数)(x f 在点0x 的右邻域00(,)x x δ+内有定义,当0x x >且无限趋向于0x 时,函数)(x f 的值无限趋向于常数A ,则称0x x →时,)(x f 的右极限为A ,记作00(0)lim ()x x f x f x A +→+==。

《数学分析》第五章 一元函数积分学

《数学分析》第五章 一元函数积分学

“求出”来的.例如
∫e
± x2
dx, ∫
dx sin x ,∫ dx,∫ 1 − k 2 sin 2 x dx(0 < k 2 < 1) ln x x
等等,虽然它们都存在,但却无法用初等函数来表示,因此可以说,初等函数的原函数 不一定是初等函数.即在初等函数的范围内,某些初等函数的原函数是不存在的,即使该函 数可积。这类非初等函数可采用定积分形式来表示。
它在[0,1]上必定不可积,这是因为对任何分割 T,在 T 所属的每个小区间都有有理数与无 理数(据实数的稠密性) ,当取 {ξ i }1 全为有理数时,得
n
∑ D(ξ )∆x = ∑ ∆x
I i i =1 i =1
n
n
i
= 1,
当取 {ξ i }1 全为无理数时,得
n
∑ D(ξ )∆x = ∑ 0 ⋅ ∆x
b
x
7. 无穷限反常积分: 设函数/定义在无穷区间[ a,+∞ )上,且在任何有限区间[ a, u ]上可 积.如果存在极限
f ( x)dx = J , u → +∞ ∫a
lim
u
(1)
则称此极限 J 为函数 f 在[ a,+∞ )上的无穷限反常积分(简称无穷积分),记作
J = ∫a f ( x)dx ,
3. 定积分: 设
f
是定义在
[a, b] 上的一个函数, J 是一个确定的实数.若对任给的正数 [a, b] 的任何分割 T ,以及在其上任意选取的点集 {ξ i } ,
≺ ε ,则称函数 f 在区间 [a , b ] 上可积或黎曼可
ε
,总存在某一正数 δ ,使得对
只要
T ≺δ

一元函数微分学知识点

一元函数微分学知识点

一元函数微分学知识点一元函数微分学是微积分中的重要内容,它主要研究函数的变化率和极值问题。

微分学中的主要概念包括导数、微分以及一些常见函数的微分法则。

下面将依次介绍这些知识点。

一、导数导数是描述函数变化率的重要工具。

给定一个函数f(x),在某一点x 处的导数表示函数在该点的变化速率。

导数可以用极限来定义,即导数等于函数在该点处的极限值。

导数的记号常用f'(x)或者dy/dx 表示。

导数有几个重要的性质,包括线性性、乘积法则、商法则和链式法则。

线性性表示导数运算具有线性性质,即对于任意常数a和b,有(a*f(x) + b*g(x))' = a*f'(x) + b*g'(x)。

乘积法则描述了两个函数相乘的导数计算方法,即(f(x)*g(x))' = f'(x)*g(x) + f(x)*g'(x)。

商法则是用来计算两个函数相除的导数,即(f(x)/g(x))' = (f'(x)*g(x) - f(x)*g'(x))/g(x)^2。

链式法则适用于复合函数,即若有一个函数h(x) = f(g(x)),则h'(x) = f'(g(x))*g'(x)。

二、微分微分是导数的一种应用,它可以用来近似计算函数在某一点的值。

微分的记号常用dx表示,它表示函数在某一点的微小变化。

微分的计算公式是dy = f'(x)*dx,其中dy表示函数在x处的微小变化,dx表示自变量的微小变化。

微分和导数之间有一个重要的关系,即导数是微分的极限形式。

当自变量的微小变化趋于0时,微分就变成了导数。

因此,导数可以用微分来近似计算。

三、常见函数的微分法则在微分学中,有一些常见函数的微分法则被广泛应用。

这些函数包括常数函数、幂函数、指数函数、对数函数和三角函数。

对于常数函数f(x) = C,其中C为常数,它的导数为f'(x) = 0。

一元微积分(第一章 函数、极限、连续)共13页文档

一元微积分(第一章 函数、极限、连续)共13页文档

第一章 函数、极限、连续重点:1、求函数的极限(最重要的方法是L ’P 法则)2、无穷小的比较3、考察分段函数在分段点的连续性4、间断点的判定及分类5、介值定理 一、函数1、函数的定义及表示法【理解函数的概念,掌握函数的表示法,会建立简单应用问题的函数关系式】 函数概念 ()y f x =函数的两要素 ⎧⎨⎩定义域对应规则函数的表示方法 ① 显函数: ()y f x =② 隐函数:由方程(,)0F x y =确定的函数()y y x =.例:1yy xe +=确定了()y y x =⇒01x y==.③ 参数方程表示的函数:由方程()()x x t y y t =⎧⎨=⎩确定的函数()y y x =.例:2ln(1)arctan x t y t ⎧=+⎨=⎩确定了()y f x =.④ 积分上限函数: ()()xax f t dt Φ=⎰.例:2311()(1)3xx t dt x Φ==-⎰⑤ 概率表示的函数:()()F x P X x =≤, 其中X 为随机变量,x 为实数.⑥ 分段函数:自变量不同范围内用不同式子表示的一个函数.【例】 ,0()sin ,0a x x f x x x x +≥⎧⎪=⎨<⎪⎩ ; 1sin ,0()0,0x x f x x x ⎧≠⎪=⎨⎪=⎩ . 如 A. 绝对值表示的函数 11111x x y x xx -≥⎧=-=⎨-<⎩ ;B. 极限表示的函数 2211()lim 0111n nn xx x f x x x x x x →∞⎧<-⎪=⋅==⎨+⎪->⎩; C. 其他形式 2022101()max{1,}12x x f x x xx ≤≤≤≤⎧==⎨<≤⎩ .10sgn()0010x y x x x >⎧⎪===⎨⎪-<⎩-------符号函数[]y x =--取整函数.2、函数的性质 【了解函数的有界性,单调性,周期性,奇偶性】①.有界性:()f x 在某区间I 内有定义,若存在0M >,对任意x I ∈,总有()f x M ≤, 则称()f x 在某区间I 内有界.否则称()f x 在某区间I 内无界.例:2111sin1,(0);arctan ,();,1,()2121xx x x x R x R xx eπ≤≠≤∈≤<∈++. ②.单调性:()f x 在某区间I 内有定义,若12,x x I ∀∈,当12x x <时12()()f x f x ≤,就称()f x 单调上升;当12x x <时,12()()f x f x ≥,就称()f x 单调下降. 不含等号时称严格单增(或单减).③.奇偶性:若()()f x f x -=, 则称()f x 为偶函数,偶函数的图形关于y 轴对称; 若()()f x f x -=-,则称()f x 为奇函数,奇函数的图形关于原点对称.④.周期性:()()(0)f x T f x T +=≠. (主要是三角函数)【例1】讨论()ln(f x x =的奇偶性. 【奇函数】 【例2】 设sin ()tan xf x x x e=⋅⋅,则()f x 是( ).A. 偶函数B. 无界函数C. 周期函数D. 单调函数. 【解】 因为 2x k ππ→+时, ()f x →∞,所以()f x 非有界即为无界函数.3、 基本初等函数 【掌握基本初等函数的性质及图形】 (反、对、幂、三、指)① 常数函数---y C =② 幂函数---y x μ= (μ为常数)例:21,y x y y x===③ 指数函数---x y a = (0,1a a >≠) ,xy e =④ 对数函数---log a y x = (0,1a a >≠) , ln y x =, lg y x = ⑤ 三角函数---sin ,cos ,tan y x y x y x===⑥ 反三角函数---arcsin ,arctan y x y x==4、 复合函数、反函数、初等函数 【了解反函数和隐函数的概念,理解复合函数及分段函数的概 念,了解初等函数的概念】① 复合函数 (),()[()y f uu x y f x ϕϕ==⇒=;f 为外层函数,ϕ称为内层函数.② 反函数 ()y y x =的反函数为1()x fy -=或1()y fx -=.【例】3y x x y =⇒=⇒3y x =的反函数.【例】 sin xy e= 看作是由 ,sin uy e u x == 复合而成的复合函数.③ 初等函数:由六类基本初等函数经过有限次四则运算及有限次复合运算而得的用一个数学式子 表示的函数. 注意:分段函数一般不是初等函数。

高等数学微积分 第五章 一元函数积分学(版本2)

高等数学微积分   第五章 一元函数积分学(版本2)






例6 求 tan x 2 xdx.



tan x 2 xdx (sec 2 x 1)dx sec 2 xdx dx tan x x c



例7 求

dx . 2 2 sin x cos x


dx sin 2 x cos 2 x dx 2 2 sin x cos x sin 2 x cos 2 x
定义1 设函数F (x)与f ( x)定义在同一区间内,并且对该区间 内任一点,都有F '(x) f (x)或dF (x) f ( x)dx.那么函数F ( x)就称 为函数f ( x)在该区间内的原函数. 定理1 (原函数族定理) 如果函数f ( x)在某区间内有一个原函 数F ( x),那么它在该区间内就有无限多个原函数,并且原函数, 并且原函数的全体由形如F (x) c的函数组成(其中c是任意常数).
2 2
一般地,若不定积分被积表达式能写成
恒等变形 g ( x)dx
f ( x) '( x)dx f ( x) d ( x) f (u )du F (u ) c g ( x)dx F ( x) c

1 dx. 2 2 a x 1 1 1 1 1 x dx 2 dx d 解 2 a a2 x2 a x2 x a 1 2 1 a a 1 x arctan c. a a 例4 求



类似地, 可以得到

x dx arcsin c. a a2 x2
(9) sin xdx cos x c;
2

在一元函数微积分中

在一元函数微积分中

在一元函数微积分中在一元函数微积分中,常见的是以下几类问题:1.第一类是已知物体移动的距离表示为时间的函数方式,求物体在任意时刻的速度和加速度。

也就是数学中的导数问题。

2.第二类问题是求曲线的切线。

3.第三类问题是求函数的最值,如大炮的最大射程等。

4.第四类问题是求曲线的长度,曲线围成的面积,曲线围成的体积。

在上面四个问题的驱使下,我们的先辈们为了解决这些问题,经过几百年的努力成功地创造了微积分学。

整个微积分的内容基本上是围绕这几个问题在展开的,当然在具体的学习过程中还有很多一些问题和内容,但在学习的主线上可以按照这个线条来把握,在学习一元微积分的过程中,应当掌握以下几个重要的概念1(函数函数是我们微积分的研究对象,也是我们利用数学这个工具去解决实际问题的基础根本,它揭示了我们要解决的问题的几个方面的数量关系,通过数学符号和式子体现出来。

2.极限极限是学习微积分碰到的第一个重要的概念,也是以后学习微积分的重要基础,因此深入理解领会极限的概念是很重要的。

判断数列{}是否有极限有很多方法,但从数列{}本身的特征直接判断是XXnn 否收敛是很有意义的,即Cauchy收敛准则。

Cauchy收敛准则:数列{}收敛的充要条件是:对任意ε>0, 存在n,m.>N Xn 有|Xn-Xm|<ε总成立.这个准则说明了收敛数列的基本特点和本质特征.对于帮助我们更好的理解极限的本质有很好的意义。

3( 导数导数概念的本质特征是函数的变化量和自变量的变化量的比的极限,也就是理解为两个微分的商,所以也称为“微商”。

深刻理解这个概念对于解决对于相关变化率的问题是十分重要的。

4(黎曼和式黎蔓和的概念是定积分概念的本质内容,也就是定积分就是黎曼和式的极限,是前面我们提到的函数的概念和极限思想的综合,深刻理解定积分的定义即黎曼和式的极限的深刻意义,是我们用数学解决很多实际问题的一个强有力的武器,具体就体现在会用元素法解决一些简单的实际问题。

一元微积分常见错误分析及典型题剖析

一元微积分常见错误分析及典型题剖析

0, 求 ddy2x2的值.
( y ), 且
错误类型 由 dx = 1, 得 dy dy dx
d2x dy2
=
d dy
1 dy =
1=
dx
1 d dy
dy dx -
பைடு நூலகம்
1 d2y
=
dy dx d2 y
2
.
dx 2
dx2
dy 2
dx
分析 该求解 关于反 函数 的一 阶导 数计 算是 正确 的,
但要理解这个公式的意义,
问题 1 函数 f ( x ) 在 x0 处连续, 在 x 0 的某个邻 域内是 否也连续?

不一定. 例如, 函数 f (x) =
0, x 是有理数, x2, x 是无理数.
在 x = 0处连续, 因为 0/ |f ( 0 + ∀x ) - f ( 0) | / |∀x |2, 因此
lim [ f( 0+ ∀x ) - f ( 0) ] = 0.
仅当 A = 0时, | f( x ) |在点 a 可导. 综上所述, 当 f ( a) = 0而 f&( a ) ∃ 0时, 函数 | f ( x ) |在点 a 不可导, 除此以外, 函数 |f ( x ) |在点 a都可导.
例 2 设 F ( x )是 f ( x )的 一个 原函数, F ( 1) = 2 , 若 4
有着至关重要的 作用, 同时 对提 高学 习者的 综合 素质 及今 后的发展都有深远的影响. 要学好微 积分课程, 除了 加强基
本知识的学习外, 离不开习题训练, 因为微 积分的基 本原理 和基本方法必须在反复的演练 及总结中 才能逐步加 深理解
直至很好的掌握, 从 而进一 步提 高该 课程在 培养 思维 能力 方面的作用, 提高分析问题和解决问题的能力.

一元函数积分学

一元函数积分学

第三章 一元函数积分学(28学时)微积分是微分学与积分学的总称。

一元函数积分学将研究两个基本问题――不定积分与定积分。

由于许多实际问题需要解决和求导问题相反的问题,即某个函数的导数已知,要求这个函数,由此引出了原函数和不定积分的概念;同时,在许多实际问题中,一些量的计算,往往可以归结为其微小量的无穷累加问题,由此引出定积分的概念。

本章先介绍不定积分的概念及计算方法,然后介绍定积分的概念、计算方法及其在几何学和物理学中的一些应用。

具体的要求如下: 1.理解不定积分和定积分的概念及性质。

2.掌握不定积分的基本公式,不定积分、定积分的换元法与分部积分法。

3.会求简单的有理函数的积分。

4.理解变上限的积分作为其上限的函数及其求导定理,掌握牛顿(Newton )-莱布尼兹(Leibniz )公式。

5.了解广义积分的概念。

6.了解定积分的近似计算法(梯形法和抛物线法)。

7.掌握用定积分表达一些几何量与物理量(如面积、体积、弧长、功、引力等)的方法。

§3-1 不定积分的概念及其计算法概述定义1:若在区间I 内,F ’(x)=f (x),或()()dF x f x dx =,则称F(x)为f (x)的原函数。

如:x x cos )'(sin =,则sin x 是cos x 的原函数34)'41(x x =,则441x 是3x 的原函数关于原函数的三个问题:1. 原函数的存在定理;2. 原函数有无限多个(某些函数原函数存在的话) 3.任意两个原函数只差一个常数定义2:函数f (x)的全体原函数,称为f (x)的不定积分,记为⎰dx x f )(。

其中,“⎰”称为积分号,f (x)称为被积函数,f (x)dx 称为被积表达式,C 称为积分常数——它是任意常数。

性质1:常量因子可以提到积分号的外面;性质2:求导运算与求不定积分运算是互逆运算。

证:设)()('x f x F =。

一元函数可导和收敛

一元函数可导和收敛

一元函数可导和收敛一元函数可导和收敛是微积分中两个重要的概念,本文将介绍这两个概念的定义和相关性质。

一、可导函数:可导函数是微积分中的一个重要概念,指的是在某一点处有导数存在的函数。

具体地说,设函数f(x)在点x=a附近有定义,如果存在一个实数A,使得当x趋近于a时,满足以下极限:lim (x→a) (f(x) - f(a))/(x - a) = A,则称函数f(x)在点x=a可导,A称为函数f(x)在点x=a的导数。

可导函数具有一些重要的性质:1. 可导函数在可导点处连续:如果函数f(x)在点x=a可导,则它在该点也连续。

2. 可导函数的导数存在:如果函数f(x)在点x=a可导,则它在该点的导数存在。

3. 可导函数的导函数满足导数的定义:如果函数f(x)在点x=a可导,则它在该点的导数等于导函数在该点的值。

4. 可导函数的导数为一元函数:如果函数f(x)在点x=a可导,则其导函数g(x)在点x=a亦可导,并且其导数等于f(x)在点x=a的导数。

5. 可导函数的导函数具有代数性质:如果函数f(x)和g(x)在点x=a可导,则它们的和、差、积、商函数在该点也可导,并且求导法则遵循相应的代数性质。

二、收敛:在数学中,收敛是指数值序列或函数在逼近某个确定值时的性质。

具体地说,设有一个序列{an},如果存在一个实数A,使得当n趋近于正无穷时,满足以下极限:lim (n→∞) an = A,则称序列{an}收敛于A,A称为序列{an}的极限。

对于函数而言,也可以类似地定义收敛的概念。

设有一个函数f(x),如果存在一个实数A,使得当x趋近于某个数a时,满足以下极限:lim (x→a) f(x) = A,则称函数f(x)收敛于A,A称为函数f(x)的极限。

收敛具有一些重要的性质:1. 收敛的序列唯一性:如果一个序列收敛,则它的极限唯一。

2. 收敛序列的有界性:如果一个序列收敛,则它是有界的。

3. 收敛函数的极限和函数值的关系:如果函数f(x)在点x=a收敛于A,则函数f(x)在点x=a处的函数值也趋近于A。

微积分讲义_第三章-一元函数的导数和微分

微积分讲义_第三章-一元函数的导数和微分

3.6 导数和微分在经济学中的简单应用,由于知识体系的关联性,我们把本节放到第四章后面讲。
例11.求
的导数
【答疑编号11030311:针对该题提问】
例12.求
的导数
【答疑编号11030312:针对该题提问】
例13.求
的导数
【答疑编号11030313:针对该题提问】
例14.求
的导数
【答疑编号11030314:针对该题提问】
例15.(教材习题3.2,8题)已知 【答疑编号11030315:针对该题提问】
切线方程为 法线方程为
例8、求双曲线
处的切线的斜率,并写出在该点处的切线方程和法线方程。
【答疑编号11030108:针对该题提问】
解 由导数的几何意义, 得切线斜率为
所求切线方程为
法线方程为
六、可导与连续的关系 1.定理 凡可导函数都是连续函数. 注意:该定理的逆定理不成立,即:连续函数不一定可导。 我们有:不连续一定不可导 极限存在、连续、可导之间的关系。
2.连续函数不存在导数举例
例9、讨论函数
在x=0处的连续性与可导性。
【答疑编号11030109:针对该题提问】
解:
例10、 P115第10题

,α在什么条件下可使f(x)在点x=0处。
(1)连续;(2)可导。 【答疑编号11030110:针对该题提问】 解:(1)
(2)
七、小结 1.导数的实质:增量比的极限; 2.导数的几何意义:切线的斜率; 3.函数可导一定连续,但连续不一定可导;
第三章 一元函数的导数和 微分
一、问题的提出 1.切线问题 割线的极限位置——切线位置
3.1 导数概念
如图,如果割线MN绕点M旋转而趋向极限位置MT,直线MT就称为曲线C在点M处的切线. 极限位置即

一元函数微积分学习辅导

一元函数微积分学习辅导

.
,
基 本概 念
,
:
函 数 的 概 念 基 本 初 等函 数 复 合 函

.
.
i仑
,
( f
) 在
x

处 有 极 限 存在 的 充要 条件 是 在 工 处 的

;

数 初 等 函数 分 段 函 数
2
.
左 右 极 限 都 存 在且 相等


基 本 性质 函 数 的 简单 性质

:
即 Iim

, f〔 )

二 竺 二
f (二 )

二 学 习 中应 注 愈 的 几 个方 面
1
.
一与 =
~
,

理 解 函数 的概 念
,
,
了 解 决定 函 数存 在的 两 个 要
2
A片 i l m 了( 二 )

A
一、
,
素是对 应关 系 和 定 义 域 掌 握 确 定 函 数 定 义 域 的 一 般规
理 解 无 穷 小量的概 念
注 意 函 数的每 一 次复 合是 一 次 基 本
, .
初 等 函数的 运 算 ; 第 二 依复合 函 数求 导 法 则 由外 向 里
=
Ii m x , i。
,
1 ( l云 m


x 一
=
一 层 层 直 至 对 自变 t 求 导 万 不 可扮 掉 某 一 中 间 变 t
I

,
.
~


.
工 1
一 或

2
.
函 数 故 而 在掌 握 求 极 限的 法则 或定 理 的 同时 还 需 要 注意 掌 握 一 些 常 见 的恒 等 变形的 方 法 和 规律

微积分——极限理论与一元函数

微积分——极限理论与一元函数

微积分——极限理论与一元函数微积分是数学的一个分支,主要研究函数的变化与其相应的导数和积分。

在微积分中,极限理论是非常重要的一部分,因为它为研究一元函数的性质提供了基础。

一、极限的定义与性质1. 定义:若对于任意给定的正数ε,都存在正数δ,使得当自变量x满足0<|x-x0|<δ时,函数f(x)与常数L的距离小于ε,则称L为函数f(x)当x趋于x0时的极限(或称f(x)以L为极限,或称x趋近于x0时f(x)以L为极限),记为:lim f(x)=L,或lim(x→x0) f(x)=Lx→x02. 物理意义:极限是一种数学概念,用来表示当自变量无限趋近于某个值时,因变量的趋势。

在实践中,极限常常用于解决复杂问题,如测量物体体积、定位精度等问题。

3. 性质:①极限是唯一的,即若存在f(x)有两个极限A≠B,则 f(x)没有极限。

②若lim f(x)=L,则f(x)在x趋近于x0时有界。

③若f(x)在x趋近于x0时有界,且当x趋近于x0时无限接近某个常数L,即lim f(x)=L,则f(x)有极限。

4. 一些重要的极限:① lim(x→0)sinx/x=1;②lim(x→0)(cosx-1)/x=0;③ lim(x→∞)(1+1/x)^x=e。

二、一元函数的极限1. 一元函数的极限类型:①有限极限:当x趋近于x0时,f(x)有且仅有一个有限极限。

②无限极限:当x趋近于x0时,f(x)的极限为无穷。

③确定极限不存在:当x趋近于x0时,f(x)的极限不存在。

2. 极限计算:①分段函数极限的计算:将函数分段,分别计算各个分段函数的极限;②分式函数极限的计算:将分式函数转化为两个分式相乘的形式,分别计算两个分式的极限;③指数函数、对数函数、三角函数等特殊函数的极限计算:利用特殊函数的性质和极限的定义,进行逐步推导。

3. 函数的连续与间断:①连续函数:若函数f(x)在点x0有定义,且lim f(x)= f(x0),则称函数f(x)在点x0连续。

一元函数的积分中值定理

一元函数的积分中值定理

一元函数的积分中值定理一元函数的积分中值定理是微积分中的重要定理之一,它是从微分学的基本性质推导出的。

它是一个非常重要的定理,它告诉我们在积分中,存在着一个数值,使得函数的平均值等于这个数值。

下面我们来详细介绍一下一元函数的积分中值定理及其证明。

一元函数的积分中值定理可以表述为:若函数f(x)在区间[a, b]上连续,则存在一个点c∈(a, b),使得∫[a, b]f(x)dx = f(c)(b - a)。

这个定理可以用图形表示为将函数f(x)在区间[a, b]上的积分值等于函数f(x)在该区间上高度为f(c)的矩形的面积。

我们先从导数的几何意义出发,来说明一元函数积分中值定理的基本思想。

在一元函数的微分学中,导数可以理解为函数的变化率,它是表示函数曲线的切线的斜率。

假设函数f(x)在区间[a,b]上是连续的,并且在(a,b)内可导。

那么根据微分学的基本定义,函数在该区间上任意一点c 的导数f'(c)表示函数在该点的瞬时变化率,即瞬时速度。

将函数f(x)在区间[a,b]内的瞬时变化率(函数的导数)f'(c)与x自变量的变化量Δx进行乘积运算后,得到的结果就是函数f(x)在该区间内的平均增量f'(c)Δx。

这个平均增量可以理解为函数在该区间内的平均速度。

根据微积分的基本思想,“微”是指变量很小而趋于零,“积”是指若干个很小的变量相加之后,可以得到整体的变化量。

由于导数表示的是函数的瞬时速度,所以将积分看作是将函数的瞬时速度进行累加得到的整体速度。

所以在积分的过程中,我们可以将函数f(x)在区间[a,b]上的微小增量f'(c)Δx进行累加,从而得到函数在该区间上的总增量f(c)。

这个总增量可以理解为函数在该区间上的整体速度。

根据一元函数的积分定义,函数f(x)在区间[a, b]上的积分可以表示为∫[a, b]f(x)dx。

将函数在该区间上的总增量f(c)进行积分运算,我们就得到了函数在该区间上的总增量的面积,即∫[a, b]f(c)dx。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微积分的基本内容可以分为三大块:一元函数微积分,多元函数微积分(主要是二元函数),无穷级数和常微分方程与差分方程。

一元函数微积分学的知识点是考研数学三微积分部分出题的重点,应引起重视。

多元函数微积分学的出题焦点是二元函数的微分及二重积分的计算。

无穷级数和常微分方程与差分方程考查主要集中在数项级数的求和、幂级数的和函数、收敛区间及收敛域、解简单的常微分方程等。

一、熟记基本内容
事实上,数学三考微积分相关内容的题目都不是太难,但是出题老师似乎对基本计算及应用情有独钟,所以对基础知识扎扎实实地复习一遍是最好的应对方法。

阅读教材虽然是奠定基础的一种良方,但参考一下一些辅导资料,如《微积分过关与提高》等,能够有效帮助同学们从不同角度理解基本概念、基本原理,加深对定理、公式的印象,增加基本方法及技巧的摄入量。

对基本内容的复习不能只注重速度而忽视质量。

在看书时带着思考,并不时提出问题,这才是好的读懂知识的方法。

二、紧抓内容重点
在看教材及辅导资料时要依三大块分清重点、次重点、非重点。

阅读数学图书与其他文艺社科类图书有个区别,就是内容没有那么强的故事性,同时所述理论有一定抽象性,所以在此再一次提醒同学们读书需要不断思考其逻辑结构。

比如在看函数极限的性质中的局部有界性时,能够联系其在几何上的表现来理解,并思考其实质含义及应用。

三大块内容中,一元函数的微积分是基础,定义一元函数微积分的极限及微积分的主要研究对象——函数及连续是基础中的基础。

这个部分也是每年必定会出题考查的,必须引起注意。

多元函数微积分,主要是二元函数微积分,这个部分大家需要记很多公式及解题捷径。

无穷级数和常微分方程与差分方程部分的重点很容易把握,考点就那几个,需要注意的是其与实际问题结合出题的情况。

三、检测学习效果
大量做题是学习数学区别与其他文科类科目的最大区别。

在大学里,我们常常会看到,平时不断辗转于各自习室占坐埋头苦干的多数是学数学的,而那些平时总抱着小说看,还时不时花前月下的同学多半是文科院系的。

并不是对两个院系的同学有什么诟病,这种状况只是所学专业特点使然。

在备考研究生考试数学的时候,如果充分了解其特点,就能对症下药。

微积分的选择及填空题考查的是基本知识的掌握程度及技巧的灵活运用,可做做《考研数学客观题1500题》,必定能达到所希望的结果。

微积分的解答题注重计算及综合应用能力,平时多做这方面的题目既可以练习做题速度及提高质量,也能检测复习效果。

高考数学中关于一元函数微积分学所考查的知识点高考数学中关于一元函数微积分学所考查的知识点:
1. 导数及其应用
(1)导数概念及其几何意义
①通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵。

②通过函数图象直观地理解导数的几何意义。

(2)导数的运算
①能根据导数定义求函数的导数。

②能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数的导数。

③会使用导数公式表。

(3)导数在研究函数中的应用
①结合实例,借助几何直观探索并了解函数的单调性与导数的关系,能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间。

②结合函数的图象,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。

(4)生活中的优化问题举例。

例如,通过使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用
(5)定积分与微积分基本定理
①通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念。

②通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基本定理的含义。

相关文档
最新文档