高中数学经典高考难题集锦(解析版)1
高中数学经典高考难题集锦(解析版)

2021年10月18日姚杰的高中数学组卷一.解答题〔共10小题〕1.〔2021•宣威市校级模拟〕设点C为曲线〔x>0〕上任一点,以点C为圆心的圆与x轴交于点E、A,与y轴交于点E、B.〔1〕证明多边形EACB的面积是定值,并求这个定值;〔2〕设直线y=﹣2x+4与圆C交于点M,N,假设|EM|=|EN|,求圆C的方程.2.〔2021•江苏模拟〕直线l:y=k〔x+2〕与圆O:x2+y2=4相交于A、B两点,O是坐标原点,三角形ABO的面积为S.〔Ⅰ〕试将S表示成的函数S〔k〕,并求出它的定义域;〔Ⅱ〕求S的最大值,并求取得最大值时k的值.3.〔2021•越秀区校级模拟〕圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3:1;③圆心到直线l:x﹣2y=0的距离为.求该圆的方程.4.〔2021•柯城区校级三模〕抛物线的顶点在坐标原点,焦点在y轴上,且过点〔2,1〕.〔Ⅰ〕求抛物线的标准方程;〔Ⅱ〕是否存在直线l:y=kx+t,与圆x2+〔y+1〕2=1相切且与抛物线交于不同的两点M,N,当∠MON为钝角时,有S△MON=48成立?假设存在,求出直线的方程,假设不存在,说明理由.5.〔2021•福建〕〔1〕矩阵M所对应的线性变换把点A〔x,y〕变成点A′〔13,5〕,试求M的逆矩阵及点A的坐标.〔2〕直线l:3x+4y﹣12=0与圆C:〔θ为参数〕试判断他们的公共点个数;〔3〕解不等式|2x﹣1|<|x|+1.6.〔2021•东城区一模〕如图,定圆C:x2+〔y﹣3〕2=4,定直线m:x+3y+6=0,过A〔﹣1,0〕的一条动直线l与直线相交于N,与圆C相交于P,Q两点,M是PQ中点.〔Ⅰ〕当l与m垂直时,求证:l过圆心C;〔Ⅱ〕当时,求直线l的方程;〔Ⅲ〕设t=,试问t是否为定值,假设为定值,请求出t的值;假设不为定值,请说明理由.7.〔2021•天河区校级模拟〕圆C:〔x+4〕2+y2=4,圆D的圆心D在y 轴上且与圆C外切,圆D与y 轴交于A、B两点,定点P的坐标为〔﹣3,0〕.〔1〕假设点D〔0,3〕,求∠APB的正切值;〔2〕当点D在y轴上运动时,求∠APB的最大值;〔3〕在x轴上是否存在定点Q,当圆D在y轴上运动时,∠AQB是定值?如果存在,求出Q点坐标;如果不存在,说明理由.8.〔2007•海南〕在平面直角坐标系xOy中,圆x2+y2﹣12x+32=0的圆心为Q,过点P〔0,2〕且斜率为k的直线与圆Q相交于不同的两点A,B.〔Ⅰ〕求k的取值范围;〔Ⅱ〕是否存在常数k,使得向量与共线?如果存在,求k值;如果不存在,请说明理由.9.如图,圆心为O,半径为1的圆与直线l相切于点A,一动点P自切点A沿直线l向右移动时,取弧AC的长为,直线PC与直线AO交于点M.又知当AP=时,点P的速度为v,求这时点M的速度.10.过原点O作圆x2+y2﹣2x﹣4y+4=0的任意割线交圆于P1,P2两点,求P1P2的中点P的轨迹.2021年10月18日姚杰的高中数学组卷参考答案与试题解析一.解答题〔共10小题〕1.〔2021•宣威市校级模拟〕设点C为曲线〔x>0〕上任一点,以点C为圆心的圆与x轴交于点E、A,与y轴交于点E、B.〔1〕证明多边形EACB的面积是定值,并求这个定值;〔2〕设直线y=﹣2x+4与圆C交于点M,N,假设|EM|=|EN|,求圆C的方程.考点:直线和圆的方程的应用.专题:计算题;压轴题.分析:〔1〕由题意,由于以点C为圆心的圆与x轴交于点E、A,与y轴交于点E、B,所以先得到点E为原点,利用方程的思想设出圆心C的坐标,进而利用面积公式求解;〔2〕由于|EM|=|EN|此可以转化为点E应在线段MN的垂直平分线上,利用圆的性质可得EC与MN垂直建立t的方程求解即可.解答:解:〔1〕证明:点〔t>0〕,因为以点C为圆心的圆与x轴交于点E、A,与y轴交于点E、B.所以点E是直角坐标系原点,即E〔0,0〕.于是圆C的方程是.那么.由|CE|=|CA|=|CB|知,圆心C在Rt△AEB斜边AB上,于是多边形EACB为Rt△AEB,其面积.所以多边形EACB的面积是定值,这个定值是4.〔2〕假设|EM|=|EN|,那么E在MN的垂直平分线上,即EC是MN的垂直平分线,,k MN=﹣2.所以由k EC•k MN=﹣1,得t=2,所以圆C的方程是〔x﹣2〕2+〔y﹣1〕2=5.点评:〔1〕重点考查了利用方程的思想用以变量t写出圆的方程,判断出圆心O在AB上,故四边形为直角三角形,还考查了三角形的面积公式;〔2〕重点考查了垂直平分线的等价式子,还考查了方程的求解思想,及两直线垂直的实质解直线的斜率互为负倒数.2.〔2021•江苏模拟〕直线l :y=k 〔x+2〕与圆O :x 2+y 2=4相交于A 、B 两点,O 是坐标原点,三角形ABO 的面积为S . 〔Ⅰ〕试将S 表示成的函数S 〔k 〕,并求出它的定义域; 〔Ⅱ〕求S 的最大值,并求取得最大值时k 的值.考点:直线与圆的位置关系;二次函数的性质. 专题:计算题;压轴题. 分析: 〔Ⅰ〕先求出原点到直线的距离,并利用弦长公式求出弦长,代入三角形的面积公式进行化简.〔Ⅱ〕换元后把函数S 的解析式利用二次函数的性质进行配方,求出函数的最值,注意换元后变量范围的改变. 解答:解:〔Ⅰ〕直线l 方程, 原点O 到l 的距离为〔3分〕弦长〔5分〕•ABO 面积•∵|AB|>0,∴﹣1<K <1〔K ≠0〕,• ∴〔﹣1<k <1且K ≠0〕〔8分〕, 〔Ⅱ〕 令 ,∴.∴当t=时,时,S max =2〔12分〕点评: 此题考查点到直线的距离公式、弦长公式的应用,以及利用二次函数的性质求函数的最大值,注意换元中变量范围的改变. 3.〔2021•越秀区校级模拟〕圆满足:①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长的比为3:1;③圆心到直线l :x ﹣2y=0的距离为.求该圆的方程.考点:直线与圆的位置关系.专题:综合题;压轴题.分析:设出圆P的圆心坐标,由圆被x轴分成两段圆弧,其弧长的比为3:1,得到圆P截x 轴所得劣弧对的圆心角为90°,根据垂径定理得到圆截x轴的弦长,找出r与b的关系式,又根据圆与y轴的弦长为2,利用垂径定理得到r与a的关系式,两个关系式联立得到a与b的关系式;然后利用点到直线的距离公式求出P到直线x﹣2y=0的距离,让其等于,得到a与b的关系式,将两个a与b的关系式联立即可求出a与b的值,得到圆心P的坐标,然后利用a与b的值求出圆的半径r,根据圆心和半径写出圆的方程即可.解答:解:设圆P的圆心为P〔a,b〕,半径为r,那么点P到x轴,y轴的距离分别为|b|,|a|.由题设知圆P截x轴所得劣弧对的圆心角为90°,知圆P截x轴所得的弦长为.故r2=2b2又圆P被y轴所截得的弦长为2,所以有r2=a2+1.从而得2b2﹣a2=1;又因为P〔a,b〕到直线x﹣2y=0的距离为,所以=,即有a﹣2b=±1,由此有或解方程组得或,于是r2=2b2=2,所求圆的方程是:〔x+1〕2+〔y+1〕2=2,或〔x﹣1〕2+〔y﹣1〕2=2.点评:本小题主要考查轨迹的思想,考查综合运用知识建立曲线方程的能力,是一道中档题.4.〔2021•柯城区校级三模〕抛物线的顶点在坐标原点,焦点在y轴上,且过点〔2,1〕.〔Ⅰ〕求抛物线的标准方程;〔Ⅱ〕是否存在直线l:y=kx+t,与圆x2+〔y+1〕2=1相切且与抛物线交于不同的两点M,N,当∠MON为钝角时,有S△MON=48成立?假设存在,求出直线的方程,假设不存在,说明理由.考点:直线与圆的位置关系;平面向量数量积的运算;抛物线的标准方程.专题:压轴题;圆锥曲线的定义、性质与方程.分析:〔Ⅰ〕设抛物线方程为x2=2py,把点〔2,1〕代入运算求得p的值,即可求得抛物线的标准方程.〔Ⅱ〕由直线与圆相切可得.把直线方程代入抛物线方程并整理,由△>0求得t的范围.利用根与系数的关系及,求得,求得点O到直线的距离,从而求得,由此函数在〔0,4〕单调递增,故有,从而得出结论.解答:解:〔Ⅰ〕设抛物线方程为x2=2py,由得:22=2p,所以p=2,所以抛物线的标准方程为x2=4y.〔Ⅱ〕不存在.因为直线与圆相切,所以.把直线方程代入抛物线方程并整理得:x2﹣4kx﹣4t=0.由△=16k2+16t=16〔t2+2t〕+16t>0,得t>0或t<﹣3.设M〔x1,y1〕,N〔x2,y2〕,那么x1+x2=4k且x1•x2=﹣4t,∴.∵∠MON为钝角,∴,解得0<t<4,∵,点O到直线的距离为,∴,易证在〔0,4〕单调递增,∴,故不存在直线,当∠MON为钝角时,S△MON=48成立.点评:此题主要考查直线和圆的位置关系,两个向量的数量积公式的应用,点到直线的距离公式,利用函数的单调性求函数的值域,属于中档题.5.〔2021•福建〕〔1〕矩阵M所对应的线性变换把点A〔x,y〕变成点A′〔13,5〕,试求M的逆矩阵及点A的坐标.〔2〕直线l:3x+4y﹣12=0与圆C:〔θ为参数〕试判断他们的公共点个数;〔3〕解不等式|2x﹣1|<|x|+1.考点:直线与圆的位置关系;二阶矩阵;绝对值不等式的解法.专题:计算题;压轴题;转化思想.分析:〔1〕由矩阵的线性变换列出关于x和y的一元二次方程组,求出方程组的解集即可得到点A的坐标;可设出矩阵M的逆矩阵,根据逆矩阵的定义得到逆矩阵与矩阵M 的乘积等于单位矩阵,得到一个一元二次方程组,求出方程组的解集即可得到M的逆矩阵;〔2〕把圆的参数方程化为普通方程后,找出圆心坐标与半径,然后利用点到直线的距离公式求出圆心到直线的距离d与半径r比拟大小得到直线与圆的位置关系,即可得到交点的个数;〔3〕分三种情况x大于等于,x大于等于0小于和x小于0,分别化简绝对值后,求出解集,即可得到原不等式的解集.三个题中任选两个作答即可.解答:解:〔1〕由题意可知〔x,y〕=〔13,5〕,即,解得,所以A〔2,﹣3〕;设矩阵M的逆矩阵为,那么•=,即,且,解得a=﹣1,b=3,c=﹣1,d=2所以矩阵M的逆矩阵为;〔2〕把圆的参数方程化为普通方程得〔x+1〕2+〔y﹣2〕2=4,圆心〔﹣1,2〕,半径r=2那么圆心到直线的距离d==<2=r,得到直线与圆的位置关系是相交,所以直线与圆的公共点有两个;〔3〕当x≥时,原不等式变为:2x﹣1<x+1,解得x<2,所以原不等式的解集为[,2〕;当0≤x <时,原不等式变为:1﹣2x <x+1,解得x >0,所以原不等式的解集为〔0,〕;当x <0时,原不等式变为:1﹣2x <﹣x+1,解得x >0,所以原不等式无解. 综上,原不等式的解集为[0,2〕. 点评: 此题考查学生会求矩阵的逆矩阵及掌握矩阵的线性变换,灵活运用点到直线的距离公式化简求值,掌握直线与圆的位置关系的判断方法,会利用讨论的方法求绝对值不等式的解集,是一道综合题.6.〔2021•东城区一模〕如图,定圆C :x 2+〔y ﹣3〕2=4,定直线m :x+3y+6=0,过A 〔﹣1,0〕的一条动直线l 与直线相交于N ,与圆C 相交于P ,Q 两点,M 是PQ 中点. 〔Ⅰ〕当l 与m 垂直时,求证:l 过圆心C ; 〔Ⅱ〕当时,求直线l 的方程; 〔Ⅲ〕设t=,试问t 是否为定值,假设为定值,请求出t 的值;假设不为定值,请说明理由.考点:直线与圆的位置关系;平面向量数量积的运算;直线的一般式方程. 专题:压轴题. 分析: 〔Ⅰ〕根据,容易写出直线l 的方程为y=3〔x+1〕.将圆心C 〔0,3〕代入方程易知l 过圆心C .〔Ⅱ〕过A 〔﹣1,0〕的一条动直线l .应当分为斜率存在和不存在两种情况;当直线l 与x 轴垂直时,进行验证.当直线与x 轴不垂直时,设直线l 的方程为y=k 〔x+1〕,由于弦长,利用垂径定理,那么圆心C 到弦的距离|CM|=1.从而解得斜率K 来得出直线l 的方程为.〔Ⅲ〕同样,当l 与x 轴垂直时,要对设t=,进行验证.当l 的斜率存在时,设直线l的方程为y=k〔x+1〕,代入圆的方程得到一个二次方程.充分利用“两根之和〞和“两根之积〞去找.再用两根直线方程联立,去找.从而确定t=的代数表达式,再讨论t是否为定值.解解:〔Ⅰ〕由,故k l=3,答:所以直线l的方程为y=3〔x+1〕.将圆心C〔0,3〕代入方程易知l过圆心C.〔3分〕〔Ⅱ〕当直线l与x轴垂直时,易知x=﹣1符合题意;〔4分〕当直线与x轴不垂直时,设直线l的方程为y=k〔x+1〕,由于,所以|CM|=1.由,解得.故直线l的方程为x=﹣1或4x﹣3y+4=0.〔8分〕〔Ⅲ〕当l与x轴垂直时,易得M〔﹣1,3〕,,又A〔﹣1,0〕那么,,故.即t=﹣5.〔10分〕当l的斜率存在时,设直线l的方程为y=k〔x+1〕,代入圆的方程得〔1+k2〕x2+〔2k2﹣6k〕x+k2﹣6k+5=0.那么,,即,=.又由得,那么.故t=.综上,t的值为定值,且t=﹣5.〔14分〕另解一:连接CA,延长交m于点R,由〔Ⅰ〕知AR⊥m.又CM⊥l于M,故△ANR∽△AMC.于是有|AM|•|AN|=|AC|•|AR|.由,得|AM|•|AN|=5.故〔14分〕另解二:连接CA 并延长交直线m 于点B ,连接CM ,CN ,由〔Ⅰ〕知AC ⊥m ,又CM ⊥l , 所以四点M ,C ,N ,B 都在以CN 为直径的圆上, 由相交弦定理得.〔14分〕点评: 〔1〕用直线方程时,一定要注意分为斜率存在和不存在两种情况.一般是验证特殊,求解一般.〔2〕解决直线与圆相交弦相关计算时一般采用垂径定理求解.〔3〕涉及到直线和圆、圆锥曲线问题时,常常将直线代入曲线方程得到一个一元二次方程,再充分利用“两根之和〞和“两根之积〞整体求解.这种方法通常叫做“设而不求〞. 7.〔2021•天河区校级模拟〕圆C :〔x+4〕2+y 2=4,圆D 的圆心D 在y 轴上且与圆C 外切,圆D 与y 轴交于A 、B 两点,定点P 的坐标为〔﹣3,0〕. 〔1〕假设点D 〔0,3〕,求∠APB 的正切值;〔2〕当点D 在y 轴上运动时,求∠APB 的最大值;〔3〕在x 轴上是否存在定点Q ,当圆D 在y 轴上运动时,∠AQB 是定值?如果存在,求出Q 点坐标;如果不存在,说明理由.考点:直线和圆的方程的应用. 专题:计算题;证明题;压轴题. 分析: 〔1〕由中圆C :〔x+4〕2+y 2=4,点D 〔0,3〕,我们易求出CD 的长,进而求出圆D 的半径,求出A ,B 两点坐标后,可由tan ∠APB=k BP 得到结果.〔2〕设D 点坐标为〔0,a 〕,圆D 半径为r ,我们可以求出对应的圆D 的方程和A ,B 两点的坐标,进而求出∠APB 正切的表达式〔含参数r 〕,求出其最值后,即可根据正切函数的单调性,求出∠APB 的最大值; 〔3〕假设存在点Q 〔b ,0〕,根据∠AQB 是定值,我们构造关于b 的方程,假设方程有解,那么存在这样的点,假设方程无实根,那么不存在这样的点. 解答: 解:〔1〕∵|CD|=5, ∴圆D 的半径r=5﹣2=3,此时A 、B 坐标分别为A 〔0,0〕、B 〔0,6〕∴tan ∠APB=k BP =2〔3分〕 〔2〕设D 点坐标为〔0,a 〕,圆D 半径为r ,那么〔r+2〕2=16+a 2,A 、B 的坐标分别为〔0,a ﹣r 〕,〔0,a+r 〕∴,∴==∵|r+2|2≥16, ∴r ≥2,∴8r ﹣6≥10, ∴∴.〔8分〕〔3〕假设存在点Q 〔b ,0〕,由,,得∵a 2=〔r+2〕2﹣16, ∴欲使∠AQB 的大小与r 无关,那么当且仅当b 2=12,即,此时有,即得∠AQB=60°为定值,故存在或,使∠AQB 为定值60°.〔13分〕 点评: 此题考查的知识点是直线和圆的方程的应用,其中根据中圆C :〔x+4〕2+y 2=4,圆D 的圆心D 在y 轴上且与圆C 外切,圆D 与y 轴交于A 、B 两点,确定圆D 的方程,进而求出A ,B 的方程是解答此题的关键.8.〔2007•海南〕在平面直角坐标系xOy 中,圆x 2+y 2﹣12x+32=0的圆心为Q ,过点P 〔0,2〕且斜率为k 的直线与圆Q 相交于不同的两点A ,B . 〔Ⅰ〕求k 的取值范围; 〔Ⅱ〕是否存在常数k ,使得向量与共线?如果存在,求k 值;如果不存在,请说明理由.考点: 直线和圆的方程的应用;向量的共线定理. 专题: 计算题;压轴题. 分析:〔Ⅰ〕先把圆的方程整理成标准方程,进而求得圆心,设出直线方程代入圆方程整理后,根据判别式大于0求得k 的范围,〔Ⅱ〕A 〔x 1,y 1〕,B 〔x 2,y 2〕,根据〔1〕中的方程和韦达定理可求得x 1+x 2的表达式,根据直线方程可求得y 1+y 2的表达式,进而根据以与共线可推知〔x 1+x 2〕=﹣3〔y 1+y 2〕,进而求得k ,根据〔1〕k 的范围可知,k 不符合题意. 解答: 解:〔Ⅰ〕圆的方程可写成〔x ﹣6〕2+y 2=4,所以圆心为Q 〔6,0〕,过P 〔0,2〕且斜率为k 的直线方程为y=kx+2.代入圆方程得x 2+〔kx+2〕2﹣12x+32=0, 整理得〔1+k 2〕x 2+4〔k ﹣3〕x+36=0. ①直线与圆交于两个不同的点A ,B 等价于△=[4〔k ﹣3〕2]﹣4×36〔1+k 2〕=42〔﹣8k 2﹣6k 〕>0, 解得,即k 的取值范围为.〔Ⅱ〕设A 〔x 1,y 1〕,B 〔x 2,y 2〕,那么,由方程①,②又y 1+y 2=k 〔x 1+x 2〕+4. ③ 而.所以与共线等价于〔x 1+x 2〕=﹣3〔y 1+y 2〕,将②③代入上式,解得.由〔Ⅰ〕知,故没有符合题意的常数k .点评:此题主要考查了直线与圆的方程的综合运用.常需要把直线方程与圆的方程联立,利用韦达定理和判别式求得问题的解.9.如图,圆心为O ,半径为1的圆与直线l 相切于点A ,一动点P 自切点A 沿直线l 向右移动时,取弧AC 的长为,直线PC 与直线AO 交于点M .又知当AP=时,点P 的速度为v ,求这时点M 的速度.考点:直线与圆的位置关系. 专题:压轴题. 分析: 设AP 的长为x ,AM 的长为y ,用x 表示y ,并用复合函数求导法那么对时间t 进行求导.解答:解:如图,作CD ⊥AM ,并设AP=x ,AM=y ,∠COA=θ, 由题意弧AC 的长为,半径OC=1,可知θ=,考虑θ∈〔0,π〕.∵△APM ∽△DCM ,∴.∵DM=y ﹣〔1﹣cos 〕,DC=sin ,∴∴.上式两边对时间t 进行求导,那么y ′t =y ′x •x ′t .∴y ′t =当时,x ′t =v ,代入上式得点M 的速度.点评: 此题是难度较大题目,考查了弦长、弧度、相似、特别是复合函数的导数,以及导数的几何意义;同时也考查了逻辑思维能力和计算能力.10.过原点O 作圆x 2+y 2﹣2x ﹣4y+4=0的任意割线交圆于P 1,P 2两点,求P 1P 2的中点P 的轨迹.考点: 直线与圆的位置关系;轨迹方程. 专题: 计算题;压轴题;数形结合. 分析: 设割线OP 1P 2的直线方程为y=kx 与圆的方程联立得〔1+k 2〕x 2﹣2〔1+2k 〕x+4=0,再由韦达定理得:,因为P 是P 1P 2的中点,所以,再由P点在直线y=kx上,得到,代入上式得整理即可.要注意范围.解答:解:设割线OP1P2的直线方程为y=kx代入圆的方程,得:x2+k2x2﹣2x﹣4kx+4=0即〔1+k2〕x2﹣2〔1+2k〕x+4=0设两根为x1,x2即直线与圆的两交点的横坐标;由韦达定理得:又设P点的坐标是〔x,y〕P是P1P2的中点,所以又P点在直线y=kx上,∴,代入上式得两端乘以,得即x2+y2=x+2y〔0<x<〕这是一个一点为中心,以为半径的圆弧,所求轨迹是这个圆在所给圆内的一段弧.点评:此题主要考查直线与圆的位置关系,韦达定理,中点坐标公式及点的轨迹方程.考点卡片1.二次函数的性质【知识点的认识】其性质主要有初中学的开口方向、对称性、最值、几个根的判定、韦达定理以及高中学的抛物线的焦点、准线和曲线的平移.【解题方法点拨】以y=ax2+bx+c为例:①开口、对称轴、最值与x轴交点个数,当a>0〔<0〕时,图象开口向上〔向下〕;对称轴x=﹣;最值为:f〔﹣〕;判别式△=b2﹣4ac,当△=0时,函数与x轴只有一个交点;△>0时,与x轴有两个交点;当△<0时无交点.②根与系数的关系.假设△≥0,且x1、x2为方程y=ax2+bx+c的两根,那么有x1+x2=﹣,x1•x2=;③二次函数其实也就是抛物线,所以x2=2py的焦点为〔0,〕,准线方程为y=﹣,含义为抛物线上的点到到焦点的距离等于到准线的距离.④平移:当y=a〔x+b〕2+c向右平移一个单位时,函数变成y=a〔x﹣1+b〕2+c;例题:y=2x2+x﹣3那么由2>0,可知抛物线开口向上,对称轴为x=﹣,最小值为f〔﹣〕=﹣,;△=1+24=25>0,故方程2x2+x﹣3=0有两个根,其满足x1+x2=﹣;x1•x2=﹣;另外,方程可以写成〔y+〕=2〔x+〕2,当沿x轴向右,在向下平移时,就变成y=2x2;【命题方向】重点关注高中所学的抛物线的焦点、准线和曲线的平移.另外在解析几何当做要灵活运用韦达定理.2.向量的共线定理【概念】共线向量又叫平行向量,指的是方向相同或方向相反的向量.【定理】假设向量=〔1,2〕,向量=〔2,4〕,那么=2,那么向量与向量平行,且有1×4﹣2×2=0,即当向量=〔x1,y1〕与向量=〔x2,y2〕平行时,有x1•y2﹣x2•y1=0,这也是两向量平行的充要条件.【例题解析】例:设与是两个不共线的向量,且向量与共线,那么λ=﹣0.5.解;∵向量与共线,∴存在常数k,使得=k〔〕∴2=k.﹣1=λk解得,λ=﹣0.5故答案为﹣0.5.根据向量共线的充要条件,假设向量与共线,就能得到含λ的等式,解出λ即可.【考点分析】向量共线定理和向量垂直定理是向量里面最重要的两个定理,要学会应用这两个定理去判别向量之间的关系.3.平面向量数量积的运算【平面向量数量积的运算】平面向量数量积运算的一般定理为①〔±〕2=2±2•+2.②〔﹣〕〔+〕=2﹣2.③•〔•〕≠〔•〕•,从这里可以看出它的运算法那么和数的运算法那么有些是相同的,有些不一样.【例题解析】例:由代数式的乘法法那么类比推导向量的数量积的运算法那么:①“mn=nm〞类比得到“〞②“〔m+n〕t=mt+nt〞类比得到“〔〕•=〞;③“t≠0,mt=nt⇒m=n〞类比得到“⇒〞;④“|m•n|=|m|•|n|〞类比得到“||=||•||〞;⑤“〔m•n〕t=m〔n•t〕〞类比得到“〔〕•=〞;⑥“〞类比得到.以上的式子中,类比得到的结论正确的选项是①②.解:∵向量的数量积满足交换律,∴“mn=nm〞类比得到“〞,即①正确;∵向量的数量积满足分配律,∴“〔m+n〕t=mt+nt〞类比得到“〔〕•=〞,即②正确;∵向量的数量积不满足消元律,∴“t≠0,mt=nt⇒m=n〞不能类比得到“⇒〞,即③错误;∵||≠||•||,∴“|m•n|=|m|•|n|〞不能类比得到“||=||•||〞;即④错误;∵向量的数量积不满足结合律,∴“〔m•n〕t=m〔n•t〕〞不能类比得到“〔〕•=〞,即⑤错误;∵向量的数量积不满足消元律,∴〞不能类比得到,即⑥错误.故答案为:①②.向量的数量积满足交换律,由“mn=nm〞类比得到“〞;向量的数量积满足分配律,故“〔m+n〕t=mt+nt〞类比得到“〔〕•=〞;向量的数量积不满足消元律,故“t≠0,mt=nt⇒m=n〞不能类比得到“⇒〞;||≠||•||,故“|m•n|=|m|•|n|〞不能类比得到“||=||•||〞;向量的数量积不满足结合律,故“〔m•n〕t=m〔n•t〕〞不能类比得到“〔〕•=〞;向量的数量积不满足消元律,故〞不能类比得到.【考点分析】本知识点应该所有考生都要掌握,这个知识点和三角函数联系比拟多,也是一个常考点,题目相对来说也不难,所以是拿分的考点,希望大家都掌握.4.直线的一般式方程【直线的一般式方程】直线方程表示的是只有一个自变量,自变量的次数为一次,且因变量随着自变量的变化而变化.直线的一般方程的表达式是ay+bx+c=0.5.轨迹方程【知识点的认识】1.曲线的方程和方程的曲线在平面内建立直角坐标系以后,坐标平面内的动点都可以用有序实数对〔x,y〕表示,这就是动点的坐标.当点按某种规律运动形成曲线时,动点坐标〔x,y〕中的变量x、y存在着某种制约关系,这种制约关系反映到代数中,就是含有变量x、y的方程.一般地,在直角坐标系中,如果某曲线C〔看做适合某种条件的点的集合或轨迹〕上的点与一个二元方程f〔x,y〕=0的实数解建立了如下的关系:〔1〕曲线上点的坐标都是这个方程的解;〔2〕以这个方程的解为坐标的点都是曲线上的点.那么这个方程就叫做曲线的方程,这条曲线就叫做方程的曲线.2.求曲线方程的一般步骤〔直接法〕〔1〕建系设点:建立适当的直角坐标系,用〔x,y〕表示曲线上任一点M的坐标;〔2〕列式:写出适合条件p的点M的集合{M|p〔M〕};〔3〕代入:用坐标表示出条件p〔M〕,列出方程f〔x,y〕=0;〔4〕化简:化方程f〔x,y〕=0为最简形式;〔5〕证明:证明以化简后的方程的解为坐标的点都是在曲线上的点【常用解法】〔1〕直接法:根据题目条件,直译为关于动点的几何关系,再利用解析几何有关公式〔如两点间的距离公式、点到直线的距离公式、夹角公式等〕进行整理、化简.这种求轨迹方程的过程不需要特殊的技巧.〔2〕定义法:假设动点轨迹的条件符合某一根本轨迹的定义〔如椭圆、双曲线、抛物线、圆等〕,可用定义直接探求.关键是条件的转化,即转化为某一根本轨迹的定义条件.〔3〕相关点法:用所求动点P的坐标〔x,y〕表示动点M的坐标〔x0,y0〕,即得到x0=f 〔x,y〕,y0=g〔x,y〕,再将x0,y0代入M满足的条件F〔x0,y0〕=0中,即得所求.一般地,定比分点问题、对称问题可用相关点法求解,相关点法的一般步骤是:设点→转换→代入→化简.〔4〕待定系数法〔5〕参数法〔6〕交轨法.6.直线与圆的位置关系【知识点的认识】1.直线与圆的位置关系2.判断直线与圆的位置关系的方法直线Ax+By+C=0与圆〔x﹣a〕2+〔y﹣b〕2=r2〔r>0〕的位置关系的判断方法:〔1〕几何方法:利用圆心到直线的d和半径r的关系判断.圆心到直线的距离d=①相交:d<r②相切:d=r③相离:d>r〔2〕代数方法:联立直线与圆的方程,转化为一元二次方程,用判别式△判断.由消元,得到一元二次方程的判别式△①相交:△>0②相切:△=0③相离:△<0.7.直线和圆的方程的应用【知识点的知识】1、直线方程的形式:2、圆的方程:〔1〕圆的标准方程:〔x﹣a〕2+〔y﹣b〕2=r2〔r>0〕,其中圆心C〔a,b〕,半径为r.特别地,当圆心为坐标原点时,半径为r的圆的方程为:x2+y2=r2.其中,圆心〔a,b〕是圆的定位条件,半径r是圆的定形条件.〔2〕圆的一般方程:x2+y2+Dx+Ey+F=0〔D2+E2﹣4F>0〕其中圆心〔﹣,﹣〕,半径r=.8.抛物线的标准方程【知识点的认识】抛物线的标准方程的四种种形式:〔1〕y2=2px,焦点在x轴上,焦点坐标为F〔,0〕,〔p可为正负〕〔2〕x2=2py,焦点在y轴上,焦点坐标为F〔0,〕,〔p可为正负〕四种形式相同点:形状、大小相同;四种形式不同点:位置不同;焦点坐标不同.下面以两种形式做简单的介绍:标准方程y2=2px〔p>0〕,焦点在x轴上x2=2py〔p>0〕,焦点在y轴上图形顶点〔0,0〕〔0,0〕对称轴x轴焦点在x轴长上y轴焦点在y轴长上焦点〔,0〕〔0,〕焦距无无离心率e=1 e=1准线x=﹣y=﹣9.二阶矩阵【知识点的知识】1、矩阵由m×n个数a ij〔i=1,2,…,m;j=1,2,…,n〕排成的m行n列的数表称为m行n列矩阵,简称m×n矩阵.为表示这个数是一个整体,总是加一个括弧,并用大写黑体字母表示它,记作这m×n个数称为矩阵A的元素,简称为元,数a ij位于矩阵的第i行第j列,称为矩阵的〔i,j〕元.以数a ij为〔i,j〕元的矩阵可简记作〔a ij〕或〔a ij〕m×n.矩阵A也记作A m×n.注意:①矩阵的记号是在数表外加上括弧,与行列式的记号〔在数表外加上双竖线〕是不同的,这是两个不同的概念.②矩阵的行数和列数不一定相等.2.二阶矩阵由四个数a,b,c,d排成的正方形数表称为二阶矩阵,其中称为矩阵的元素,矩阵通常用大写字母A,B,C,…或〔aij〕表示〔其中i,j分别为元素aij所在的行和列〕.2.矩阵的乘法行矩阵[a11 a12]与列矩阵的乘法规那么为,二阶矩阵与列矩阵的乘法规那么为=.矩阵乘法满足结合律,不满足交换律和消去律.10.绝对值不等式的解法【知识点的认识】绝对值不等式的解法1、绝对值不等式|x|>a与|x|<a的解集不等式a>0 a=0 a<0|x|<a {x|﹣a<x<a} ∅∅|x|>a {x|x>a,或x<﹣a} {x|x≠0} R2、|ax+b|≤c〔c>0〕和|ax+b|≥c〔c>0〕型不等式的解法:〔1〕|ax+b|≤c⇔﹣c≤ax+b≤c;〔2〕|ax+b|≥c⇔ax+b≥c或ax+b≤﹣c;〔3〕|x﹣a|+|x﹣b|≥c〔c>0〕和|x﹣a|+|x﹣b|≤c〔c>0〕型不等式的解法:方法一:利用绝对值不等式的几何意义求解,表达了数形结合的思想.方法二:利用“零点分段法〞求解,表达了分类讨论的思想;方法三:通过构造函数,利用函数的图象求解,表达了函数与方程的思想.【解题方法点拨】1、解绝对值不等式的根本方法:〔1〕利用绝对值的定义,通过分类讨论转化为解不含绝对值符号的普通不等式;〔2〕当不等式两端均为正号时,可通过两边平方的方法,转化为解不含绝对值符号的普通不等式;〔3〕利用绝对值的几何意义,数形结合求解.2.解绝对值不等式主要是通过同解变形去掉绝对值符号转化为一元一次和一元二次不等式〔组〕进行求解.含有多个绝对值符号的不等式,一般可用零点分段法求解,对于形如|x﹣a|+|x﹣b|>m或|x﹣a|+|x﹣b|<m 〔m为正常数〕,利用实数绝对值的几何意义求解较简便.3.不等式|x﹣a|+|x﹣b|≥c的解就是数轴上到A〔a〕,B〔b〕两点的距离之和不小于c的点所对应的实数,只要在数轴上确定出具有上述特点的点的位置,就可以得出不等式的解.4.不等式|a|﹣|b|≤|a+b|≤|a|+|b|,右侧“=〞成立的条件是ab≥0,左侧“=〞成立的条件是ab≤0且|a|≥|b|;不等式|a|﹣|b|≤|a﹣b|≤|a|+|b|,右侧“=〞成立的条件是ab≤0,左侧“=〞成立的条件是ab≥0且|a|≥|b|.。
高中数学经典高考难题集锦(解析版)

考点 :直 线与圆的位置关系;二阶矩阵;绝对值不等式的解法.
专题 :计 算题;压轴题;转化思想.
分析: ( 1)由矩阵的线性变换列出关于 x 和 y 的一元二次方程组,求出方程组的解集即可
得到点 A 的坐标;可设出矩阵 M 的逆矩阵,根据逆矩阵的定义得到逆矩阵与矩阵
M
的乘积等于单位矩阵,得到一个一元二次方程组,求出方程组的解集即可得到
或
,于是 r2=2b2=2,
所求圆的方程是:
(
x+1
)
2
+
(
y+1
)
2=2,或(
x﹣
1)
2+(
y﹣
1)
2
=2
.
点评: 本 小题主要考查轨迹的思想, 考查综合运用知识建立曲线方程的能力, 是一道中档题.
4.( 2013?柯城区校级三模) 已知抛物线的顶点在坐标原点, 焦点在 y 轴上, 且过点 ( 2,1).
专题 :压 轴题;圆锥曲线的定义、性质与方程. 分析: ( Ⅰ) 设抛物线方程为 x 2=2py ,把点( 2, 1)代入运算求得
线的标准方程.
p 的值,即可求得抛物
6 / 22
( Ⅱ) 由直线与圆相切可得
.把直线方程代入抛物线方程
并整理,由 △ >0 求得 t 的范围.利用根与系数的关系及
,求得
M的
逆矩阵;
( 2)把圆的参数方程化为普通方程后,找出圆心坐标与半径,然后利用点到直线的
距离公式求出圆心到直线的距离 d 与半径 r 比较大小得到直线与圆的位置关系,即可
得到交点的个数;
( 3)分三种情况 x 大于等于 ,x 大于等于 0 小于 和 x 小于 0,分别化简绝对值后,
高中数学经典高考难题集锦

《高中数学经典高考难题集锦》一、集合问题1. 已知集合A={x|x^25x+6=0},求集合A的元素。
解答思路:我们需要解方程x^25x+6=0,找出满足条件的x的值。
然后,将这些值组成集合A。
2. 已知集合A={x|x^25x+6=0},集合B={x|x^24x+3=0},求集合A∩B。
解答思路:我们需要解方程x^25x+6=0和x^24x+3=0,找出满足条件的x的值。
然后,找出同时属于集合A和集合B的元素,即求出集合A∩B。
3. 已知集合A={x|x^25x+6=0},集合B={x|x^24x+3=0},求集合A∪B。
解答思路:我们需要解方程x^25x+6=0和x^24x+3=0,找出满足条件的x的值。
然后,找出属于集合A或集合B的元素,即求出集合A∪B。
二、函数问题1. 已知函数f(x)=x^25x+6,求函数f(x)的零点。
解答思路:函数的零点即函数图像与x轴的交点,也就是使函数值为0的x的值。
因此,我们需要解方程x^25x+6=0,找出满足条件的x的值,这些值即为函数f(x)的零点。
2. 已知函数f(x)=x^25x+6,求函数f(x)的单调区间。
解答思路:函数的单调性是指函数在其定义域内是否单调递增或单调递减。
我们可以通过求函数的一阶导数f'(x),然后判断f'(x)的符号来确定函数的单调性。
当f'(x)>0时,函数单调递增;当f'(x)<0时,函数单调递减。
3. 已知函数f(x)=x^25x+6,求函数f(x)的极值。
解答思路:函数的极值是指函数在其定义域内的最大值或最小值。
我们可以通过求函数的一阶导数f'(x)和二阶导数f''(x),然后判断f'(x)和f''(x)的符号来确定函数的极值。
当f'(x)=0且f''(x)>0时,函数在该点取得极小值;当f'(x)=0且f''(x)<0时,函数在该点取得极大值。
高考数学:20道压轴题全汇总(附解析),拿下它,高考冲刺150!

高考数学:20道压轴题全汇总(附解析),拿下它,高考冲刺150!数学学科是高考最拉分的学科,所以如何在这门学科上取得高分,是很多同学都非常关心的问题。
其实数学想拿高分,就在于压轴大题的突破,高中数学难度虽然较大,但是在高考考试中基础部分题型任然占据了70%左右的分值,因此压轴题成了关键,只要能够把数学压轴题型拿下,那么数学高分肯定不成问题。
可是很多同学对于数学压轴题的第一反应就是,太难了,完全没有解题的思路,如何做拿下呢?其实数学压轴题也没有想象中的那么难了,关键是你要有解决问题的思路。
压轴大题考查的是考生的综合能力,涉及很多知识点,但是中高考都有一定的考查知识点标准。
答题时只有约接近知识点或“踩到”的知识点越多,得分就越多,想要数学大题不丢分,就先要了解阅卷评分准则。
比如:应用题满分套路,应用题一直以来都是难点,很多学生听到应用题估计都会头疼,不知道从何下手,但是做应用题也有一定的方法技巧,只要掌握了这些套路,让你做应用题,也得心应手!推断证明题满分套路,数学推断证明题的考查也是令不少考生头疼,总说掌握不了,看到题目就觉得很难,同学们千万不要被表面吓到!其实大家掌握了技巧,总结证明题的解题经验,你会发现,推断证明一点都不难,完全可以拿满分!所以这一次为了帮助同学们拿下高中数学压轴题难关,老师这次就总结整了了高考数学20道压轴题全汇总(附解析),这20道题是高考数学的高频考点,如果同学们能够拿下它,认真吃透,那么高考数学必定能够取得不错的成绩。
篇幅关系,这里就先整理了高考数学典型题例的部分,有关于2018年各省份的高考数学压轴题,物理压轴大题,各科的真题试卷老师都在整理中,如果家长朋友们觉得有帮助或是需要了解更多,都可以找老师交流,点击下方蓝色字体,查看获取更多优质精彩内容。
暑期将至,近期老师整理不少暑期提升资料,希望可以帮助到大家,篇幅关系资料未能全部呈现,如需完整版本,点击下方蓝色字体找我分享!初中、高中3年各年级各科的学习资料和暑期提升试卷正在整理编辑中,如需其他学科的学习资料都可找我分享。
高三超难数学试题及答案

高三超难数学试题及答案一、选择题(每题5分,共20分)1. 若函数f(x)=x^2-4x+3,则f(x)的最小值是:A. 0B. 1C. 3D. 4答案:B2. 若复数z满足|z-1|=2,则z在复平面上对应的点位于:A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:A3. 若函数f(x)=2sin(2x+π/4)的图像向右平移π/8个单位,所得图像对应的函数解析式为:A. f(x)=2sin(2x+3π/4)B. f(x)=2sin(2x-π/4)C. f(x)=2sin(2x+π/8)D. f(x)=2sin(2x-3π/8)答案:B4. 对于双曲线C:x^2/a^2 - y^2/b^2 = 1,若其焦点在x轴上,且离心率为2,则a与b的关系为:A. b=aB. b=2aC. b=√3aD. b=√2a答案:C二、填空题(每题5分,共20分)5. 设等比数列{an}的首项为1,公比为2,则该数列的前5项和S5为:______。
答案:316. 若直线l的方程为x-y+1=0,且直线l与圆x^2+y^2=1相切,则直线l与圆的切点坐标为:(______,______)。
答案:(0,1)或(-2,-1)7. 设函数f(x)=x^3-3x,若f'(x)=0的根为x1,x2,x3,则x1+x2+x3的值为:______。
答案:08. 若椭圆E的方程为x^2/a^2 + y^2/b^2 = 1,其中a>b>0,且椭圆E 与直线y=x相切于点(1,1),则a^2+b^2的值为:______。
答案:5三、解答题(每题15分,共40分)9. 已知函数f(x)=x^3-3x^2+2,求证:对于任意x∈R,都有f(x)≥-1。
证明:首先求导f'(x)=3x^2-6x=3x(x-2)。
令f'(x)=0,得到x=0或x=2。
当x<0或x>2时,f'(x)>0,函数单调递增;当0<x<2时,f'(x)<0,函数单调递减。
高考数学压轴专题最新备战高考《不等式》真题汇编及答案解析

【最新】数学高考《不等式》专题解析(1)一、选择题1.过抛物线24x y =的焦点F 作倾斜角为锐角的直线l ,与抛物线相交于A ,B 两点,M 为线段AB 的中点,O 为坐标原点,则直线OM 的斜率的取值范围是( )A.⎫+∞⎪⎪⎣⎭B .[)1,+∞ C.)+∞D .[)2,+∞【答案】C 【解析】 【分析】假设直线l 方程,代入抛物线方程,利用韦达定理和直线方程求得M 点坐标,利用两点连线斜率公式和基本不等式可求得结果. 【详解】由抛物线方程知:()0,1F ,设直线l 的方程为()10y kx k =+>,代入抛物线方程得:2440x kx --=, 设点()11,A x y ,()22,B x y ,()00,M x y ,则124x x k +=,M Q 为线段AB 的中点,12022x x x k +∴==, M Q 在直线l 上,200121y kx k ∴=+=+,20021122OMy k k k x k k +∴===+≥=2k =时取等号), 即直线OM斜率的取值范围为)+∞. 故选:C . 【点睛】本题考查直线与抛物线综合应用问题,涉及到利用基本不等式求解最值的问题;关键是能够结合韦达定理,利用一个变量表示出所求的斜率,进而利用基本不等式求得最值.2.已知,x y 满足约束条件23023400x y x y y -+≥⎧⎪-+≤⎨⎪≥⎩,若目标函数2z mx ny =+-的最大值为1(其中0,0m n >>),则112m n+的最小值为( ) A .3 B .1C .2D .32【答案】D 【解析】画出可行域,根据目标函数z 的最大值求得,m n 的关系式23m n +=,再利用基本不等式求得112m n +的最小值. 【详解】画出可行域如下图所示,由于0,0m n >>,所以基准直线0mx ny +=的斜率为负数,故目标函数在点()1,2A 处取得最大值,即221m n +-=,所以23m n +=.()111111515193222323232322n m n m m n m n m n m n m n ⎛⎫⎛⎫⎛⎫+=⨯+⨯+=⨯++≥⨯+⋅=⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当且仅当,1n m m n m n ===时等号成立,所以112m n +的最小值为32. 故选:D【点睛】本小题主要考查根据目标函数的最值求参数,考查基本不等式求最值,考查数形结合的数学思想方法,属于中档题.3.给出下列五个命题,其中正确命题的个数为( )①命题“0x R ∃∈,使得20010x x ++<”的否定是“x R ∀∈,均有210x x ++<”;②若正整数m 和n 满足m n ≤()2n m n m -; ③在ABC ∆中 ,A B >是sin sin A B >的充要条件;④一条光线经过点()1,3P ,射在直线:10l x y ++=上,反射后穿过点()1,1Q ,则入射光线所在直线的方程为5340x y -+=;⑤已知32()f x x mx nx k =+++的三个零点分别为一椭圆、一双曲线、一抛物线的离心率,则m n k ++为定值. A .2 B .3C .4D .5【答案】C【分析】①根据特称命题的否定的知识来判断;②根据基本不等式的知识来判断;③根据充要条件的知识来判断;④求得入射光线来判断;⑤利用抛物线的离心率判断. 【详解】①,命题“0x R ∃∈,使得20010x x ++<”的否定是“x R ∀∈,均有210x x ++≥”,故①错误.②,由于正整数m 和n 满足m n ≤,0n m -≥,由基本不等式得()22m n m nm n m +--≤=,当m n m =-即2n m =时等号成立,故②正确. ③,在ABC ∆中,由正弦定理得sin sin A B a b A B >⇔>⇔>,即sin sin A B A B >⇔>,所以A B >是sin sin A B >的充要条件,故③正确.④,设()1,1Q 关于直线10x y ++=的对称点为(),A a b ,则线段AQ 中点为11,22a b ++⎛⎫ ⎪⎝⎭,则1110221121112AQ a b b k a ++⎧++=⎪⎪⎪+⎨-⎪==+⎪-⎪⎩,解得2a b ==-,所以()2,2A --.所以入射光线为直线AP ,即312321y x --=----,化简得5340x y -+=.故④正确. ⑤,由于抛物线的离心率是1,所以(1)0f =,即10m n k +++=,所以1m n k ++=-为定值,所以⑤正确. 故选:C 【点睛】本小题主要考查特称命题的否定,考查基本不等式,考查充要条件,考查直线方程,考查椭圆、双曲线、抛物线的离心率,属于中档题.4.设实数满足条件则的最大值为( ) A .1 B .2C .3D .4【答案】C 【解析】 【分析】画出可行域和目标函数,根据目标函数的几何意义平移得到答案. 【详解】如图所示:画出可行域和目标函数,,即,表示直线在轴的截距加上1,根据图像知,当时,且时,有最大值为.故选:.【点睛】本题考查了线性规划问题,画出图像是解题的关键.5.若实数,,a b c ,满足222a b a b ++=,2222a b c a b c ++++=,,则c 的最大值是( ) A .43B .2log 3C .25D .24log 3【答案】D 【解析】 【分析】利用基本不等式求出2a b+的最小值后可得221a ba b ++-的最大值,从而可得2c 的最大值,故可得c 的最大值. 【详解】因为222a b a b ++=,故222222a b a b a b a b +++=≥⨯= 整理得到24a b +≥,当且仅当1a b ==时等号成立. 又因为2222abca b c++++=,故2114211212133a b ca b a b +++==+≤+=--,当且仅当1a b ==时等号成立,故max 24log 3c =.故选:D. 【点睛】本题考查基本不等式的应用以及指数不等式的解,应用基本不等式求最值时,需遵循“一正二定三相等”,如果多变量等式中有和式和积式的关系,则可利用基本不等式构造关于和式或积式的不等式,通过解不等式来求最值,求最值时要关注取等条件的验证.6.已知α,β均为锐角,且满足()sin 2cos sin αβαβ-=,则αβ-的最大值为( )A .12πB .6π C .4π D .3π 【答案】B 【解析】 【分析】利用两角差的正弦公式,将已知等式化简得到tan 3tan αβ=,由α,β均为锐角,则,22ππαβ⎛⎫-∈- ⎪⎝⎭,要求出αβ-的最大值,只需求出tan()αβ-的最大值,利用两角差的正切公式,将tan()αβ-表示为tan β的关系式,结合基本不等式,即可求解. 【详解】由()sin 2cos sin αβαβ-=整理得()sin 2cos sin αβαβ-=, 即sin cos cos sin 2cos sin αβαβαβ-=,化简得sin cos 3cos sin αβαβ=,则tan 3tan αβ=, 所以()2tan tan 2tan 2tan 11tan tan 13tan 3tan tan αββαβαββββ--===+++,又因为β为锐角,所以tan 0β>,根据基本不等式2133tan tan ββ≤=+,当且仅当tan 3β=时等号成立, 因为,22ππαβ⎛⎫-∈- ⎪⎝⎭,且函数tan y x =在区间,22ππ⎛⎫-⎪⎝⎭上单调递增, 则αβ-的最大值为6π. 故选:B . 【点睛】本题考查两角差最值,转化为求三角函数最值是解题的关键,注意应用三角恒等变换、基本不等式求最值,考查计算求解能力,属于中档题.7.已知变量,x y 满足2402400x y x y x +-≥⎧⎪+-≤⎨⎪≥⎩,则24x y --的最小值为( )A.855B .8C .16515D .163【答案】D 【解析】 【分析】222424512x y x y ----=⨯+,而222412x y --+表示点(,)x y 到直线240x y --=的距离,作出可行域,数形结合即可得到答案. 【详解】因为222424512x y x y ----=⨯+,所以24x y --可看作为可行域内的动点到直线240x y --=的距离的5倍,如图所示,点44(,)33A 到直线240x y --=的距离d 最小,此时224424333512d -⨯-==+ 所以24x y --1653d =. 故选:D. 【点睛】本题考查目标函数的含绝对值的线性规划问题,考查学生数形结合与转化与化归的思想,是一道中档题.8.已知,x y 满足约束条件24030220x y x y x y -+≥⎧⎪+-≤⎨⎪+-≥⎩则目标函数22x y z -=的最大值为( ).A .128B .64C .164D .1128【答案】B 【解析】 【分析】画出可行域,再求解2x y -的最大值即可. 【详解】不等式组表示的平面区域如下图阴影部分所示.设2x y μ=-,因为函数2xy =是增函数,所以μ取最大值时,z 取最大值.易知2x y μ=-在A 点处取得最大值.联立220,30x y x y +-=⎧⎨+-=⎩解得4,1.x y =⎧⎨=-⎩即(4,1)A -.所以max 42(1)6μ=-⨯-=,所以6max 264z ==.故选:B 【点睛】本题考查线性规划,考查化归与转化思想以及数形结合思想.9.若,x y 满足约束条件360601x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则122y x ⎛⎫⋅ ⎪⎝⎭的最小值为( )A .116B .18C .1D .2【答案】A 【解析】 【分析】画出约束条件所表示的可行域,结合指数幂的运算和图象确定出目标函数的最优解,代入即可求解. 【详解】由题意,画出约束条件360601x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩所表示的可行域,如图所示,其中可得(3,1)A -,(5,1)B ,(3,3)C ,因为1222yx x y -⎛⎫⋅= ⎪⎝⎭,令z x y =-,当直线y x z =-经过A 时,z 取得最小值, 所以z 的最小值为min 314z =--=-,则1222yxx y -⎛⎫⋅= ⎪⎝⎭的最小值为41216-=. 故选:A .【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力.10.定义在R 上的函数()f x 对任意()1212,x x x x ≠都有()()12120f x f x x x -<-,且函数(1)=-y f x 的图象关于(1,0)成中心对称,若s 满足不等式()()222323f s s f s s -+--+…,则s 的取值范围是( )A .13,2⎡⎫--⎪⎢⎣⎭B .[3,2]--C .[2,3)-D .[3,2]-【答案】D 【解析】 【分析】由已知可分析出()f x 在R 上为减函数且()y f x =关于原点对称,所以不等式等价于()()222323f s s f s s -+-+-…,结合单调性可得222323s s s s -+≥-+-,从而可求出s 的取值范围. 【详解】解:因为对任意()1212,x x x x ≠都有()()12120f x f x x x -<-,所以()f x 在R 上为减函数;又(1)=-y f x 的图象关于(1,0)成中心对称,所以()y f x =关于原点对称, 则()()()222232323f s s f s s f s s -+--+=-+-…,所以222323s s s s -+≥-+-,整理得260s s +-≤,解得32s -≤≤. 故选:D. 【点睛】本题考查了函数的单调性,考查了函数的对称性,考查了一元二次不等式的求解.本题的关键是由已知得到函数的单调性和对称性,从而将不等式化简.11.函数log (3)1a y x =-+(0a >且1a ≠)的图像恒过定点A ,若点A 在直线10mx ny +-=上,其中·0m n >,则41m n+的最小值为() A .16 B .24C .50D .25【答案】D 【解析】 【分析】由题A (4,1),点A 在直线上得4m+n =1,用1的变换构造出可以用基本不等式求最值的形式求最值. 【详解】令x ﹣3=1,解得x =4,y =1,则函数y =log a (x ﹣3)+1(a >0且a≠1)的图象恒过定点A (4,1), ∴4m+n =1, ∴41m n +=(41m n +)(4m+n )=16+14n 4m m n++=17+8=25,当且仅当m =n 15=时取等号,故则41m n +的最小值为25, 故选D . 【点睛】本题考查均值不等式,在应用过程中,学生常忽视“等号成立条件”,特别是对“一正、二定、三相等”这一原则应有很好的掌握.12.已知在锐角ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,若2cos cos b C c B =,则111tan tan tan A B C++的最小值为( )A .3B C D .【答案】A 【解析】 【分析】先根据已知条件,把边化成角得到B,C 关系式,结合均值定理可求. 【详解】∵2cos cos b C c B =,∴2sin cos sinCcos B C B =, ∴tan 2tan C B =.又A B C π++=, ∴()()tan tan tan A B C B C π=-+=-+⎡⎤⎣⎦22tan tan 3tan 3tan 1tan tan 12tan 2tan 1B C B BB C B B +=-=-=---, ∴21112tan 111tan tan tan 3tan tan 2tan B A B C B B B-++=++27tan 36tan B B =+. 又∵在锐角ABC ∆中, tan 0B >,∴27tan 36tan 3B B +≥=,当且仅当tan B =时取等号,∴min111tan tan tan 3A B C ⎛⎫++=⎪⎝⎭,故选A. 【点睛】本题主要考查正弦定理和均值定理,解三角形时边角互化是求解的主要策略,侧重考查数学运算的核心素养.13.已知2(0,0)x y xy x y +=>>,则2x y +的最小值为( ) A .10 B .9C .8D .7【答案】B 【解析】 【分析】 由已知等式得到211x y +=,利用()2122x y x y x y ⎛⎫+=++ ⎪⎝⎭可配凑出符合基本不等式的形式,利用基本不等式求得最小值. 【详解】 由2x y xy +=得:211x y+= ()212222559x y x y x y x y y x ⎛⎫∴+=++=++≥+= ⎪⎝⎭(当且仅当22x y y x =,即x y =时取等号)2x y ∴+的最小值为9故选:B【点睛】本题考查利用基本不等式求解和的最小值的问题,关键是能够灵活对等于1的式子进行应用,配凑成符合基本不等式的形式.14.若函数()sin 2x x f x e e x -=-+,则满足2(21)()0f x f x -+>的x 的取值范围为( )A .1(1,)2- B .1(,1)(,)2-∞-+∞UC .1(,1)2- D .1(,)(1,)2-∞-⋃+∞ 【答案】B【解析】【分析】 判断函数()f x 为定义域R 上的奇函数,且为增函数,再把()()2210f x f x -+>化为221x x ->-,求出解集即可.【详解】解:函数()sin2x x f x e e x -=-+,定义域为R ,且满足()()sin 2x x f x e e x --=-+- ()()sin2x x e e x f x -=--+=-,∴()f x 为R 上的奇函数;又()'2cos222cos20x x f x e e x x x -=++≥+≥恒成立,∴()f x 为R 上的单调增函数;又()()2210f x f x -+>, 得()()()221f x f x f x ->-=-,∴221x x ->-,即2210x x +->,解得1x <-或12x >, 所以x 的取值范围是()1,1,2⎛⎫-∞-⋃+∞ ⎪⎝⎭. 故选B .【点睛】本题考查了利用定义判断函数的奇偶性和利用导数判断函数的单调性问题,考查了基本不等式,是中档题.15.已知等差数列{}n a 的公差0d ≠,且1313,,a a a 成等比数列,若11a =,n S 为数列{}n a 的前n 项和,则263n n S a ++的最小值为( ) A .4B .3 C.2 D .2【答案】D【解析】【分析】由题意得2(12)112d d +=+,求出公差d 的值,得到数列{}n a 的通项公式,前n 项和,从而可得263n n S a ++,换元,利用基本不等式,即可求出函数的最小值. 【详解】 解:11a =Q ,1a 、3a 、13a 成等比数列,2(12)112d d ∴+=+.得2d =或0d =(舍去),21n a n ∴=-,2(121)2n n n S n +-∴==, ∴()()22211426263322112n n n n S n n a n n n ++++++===+-+++. 令1t n =+,则2642223n n S t a t +=+-≥=+ 当且仅当2t =,即1n =时,∴263n n S a ++的最小值为2. 故选:D .【点睛】 本题主要考查等比数列的定义和性质,等比数列的通项公式,考查基本不等式,属于中档题.16.若x 、y 满足约束条件4200x y x y y +≤⎧⎪-+≥⎨⎪≥⎩,目标函数z ax y =+取得最大值时的最优解仅为(1,3),则a 的取值范围为( )A .(1,1)-B .(0,1)C .(,1)(1,)-∞⋃+∞D .(1,0]-【答案】A【解析】【分析】结合不等式组,绘制可行域,判定目标函数可能的位置,计算参数范围,即可.【详解】结合不等式组,绘制可行域,得到:目标函数转化为y ax z =-+,当0a -≥时,则<1a -,此时a 的范围为(]1,0-当0a -<时,则1a ->-,此时a 的范围为()0,1,综上所述,a 的范围为()1,1-,故选A .【点睛】本道题考查了线性规划问题,根据最值计算参数,关键明白目标函数在坐标轴上可能的位置,难度偏难.17.设m ,n 为正数,且2m n +=,则1312n m n ++++的最小值为( ) A .32 B .53 C .74 D .95【答案】D【解析】【分析】根据2m n +=,化简135112(1)(2)n m n m n ++=++++⋅+,根据均值不等式,即可求得答案;【详解】当2m n +=时, Q 131111212n m n m n ++=++++++ 3511(1)(2)(1)(2)m n m n m n ++=+=++⋅++⋅+Q 21225(1)(2)24m n m n +++⎛⎫+⋅+≤= ⎪⎝⎭, 当且仅当12m n +=+时,即3122m n ==,取等号, ∴139125n m n ++≥++. 故选:D【点睛】本题主要考查了根据均值不等式求最值,解题关键是灵活使用均值不等式,注意要验证等号的是否成立,考查了分析能力和计算能力,属于中档题.18.若圆1C :2224100x y mx ny +---=(m ,0n >)始终平分圆2C :()()22112x y +++=的周长,则12m n +的最小值为( ) A .92B .9C .6D .3 【答案】D【解析】【分析】把两圆的方程相减,得到两圆的公共弦所在的直线l 的方程,由题意知圆2C 的圆心在直线l 上,可得()123,213m n m n +=∴+=,再利用基本不等式可求最小值. 【详解】 把圆2C :()()22112x y +++=化为一般式,得22220x y x y +++=, 又圆1C :2224100x y mx ny +---=(m ,0n >),两圆的方程相减,可得两圆的公共弦所在的直线l 的方程:()()12150m x n y ++++=. Q 圆1C 始终平分圆2C 的周长,∴圆心()21,1C --在直线l 上,()()12150m n ∴-+-++=,即()123,213m n m n +=∴+=. ()112225331212121n m m n m n m n m n m n ⎛⎫⎛⎫∴+=+⨯=+⨯ ⎪ ⎪⎝⎭⎛⎫+=++ ⎪⎝⎝⎭⎭()115522333⎛≥+=+⨯= ⎝. 当且仅当2322m n n m mn +=⎧⎪⎨=⎪⎩即1m n ==时,等号成立.12m n∴+的最小值为3. 故选:D .【点睛】本题考查两圆的位置关系,考查基本不等式,属于中档题.19.已知,a b 都是正实数,则222a b a b a b +++的最大值是( )A .2B .3-C .1D .43【答案】A【解析】【分析】设2,2m a b n a b =+=+,将222a b a b a b +++,转化为2222233a b n m a b a b m n +=--++,利用基本不等式求解.【详解】设2,2m a b n a b =+=+, 所以22,33m n n m a b --==,所以2222222333a b n m a b a b m n +=--≤-=-++, 当且仅当233n m m n =时取等号.所以222a b a b a b +++的最大值是23-. 故选:A【点睛】本题主要考查基本不等式的应用,还考查了转化化归的思想和运算求解的能力,属于中档题.20.在锐角ABC V 中,内角,,A B C 所对的边分别为,,a b c ,若222cos 3a ab C b +=,则tan 6tan tan tan A B C A+⋅的最小值为( )A .3B .2C .2D .32【答案】B【解析】【分析】根据余弦定理得到4cos c b A =,再根据正弦定理得到sin cos 3sin cos A B B A =,故tan 3tan A B =,3t 53tan 4an 6ta 3ta tan tan n n B A B C A B ⎛⎫=+ ⎪⎝+⎭⋅,计算得到答案. 【详解】由余弦定理及222cos 3a ab C b +=可得222223a a b c b ++-=,即22222a b b c -=+,得22222cos a b a bc A -=+,整理得22 2cos a b bc A =+.2222cos a b c bc A =+-Q ,2222cos 2cos b bc A b c bc A ∴+=+-,得4cos c b A =.由正弦定理得sin 4sin cos C B A =,又()sin sin C A B =+,()sin 4sin cos A B B A ∴+=, 整理得sin cos 3sin cos A B B A =.易知在锐角三角形ABC 中cos 0A ≠, cos 0B ≠,tan 3tan A B ∴=, 且tan 0B >.πA B C ++=Q , ()tan tan C A B =-+tan tan 1tan tan A B A B +=--⋅24tan 3tan 1B B =-,tan 6tan tan tan A B C A ∴+⋅()233tan 124tan tan B B B -=+353tan 43tan B B ⎛⎫=+ ⎪⎝⎭34≥⨯当且仅当tan B 时等号成立. 故选:B .【点睛】本题考查了正余弦定理,三角恒等变换,均值不等式,意在考查学生的计算能力和综合应用能力.。
高中数学难题(含答案)

东莞龙文教育高中数学试卷(24)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一个项是符合题目要求的。
1.若集合M={-1,0,1},N={0,1,2},则M ∩N 等于 A .{0,1} B .{-1,0,1} C .{0,1,2} D .{-1,0,1,2} 2.i 是虚数单位1+i 3等于 A .i B .-i C .1+i D .1-i 3.若a ∈R ,则“a=1”是“|a|=1”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分又不必要条件4.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名。
现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为 A .6 B .8 C .10D .125.阅读右图所示的程序框图,运行相应的程序,输出的结果是 A .3 B .11 C .38 D .1236.若关于x 的方程x 2+mx+1=0有两个不相等的实数根,则实数m 的 取值范围是 A .(-1,1) B .(-2,2) C .(-∞,-2)∪(2,+∞) D .(-∞,-1)∪(1,+∞)7.如图,矩形ABCD 中,点E 为边CD 的重点,若在矩形ABCD 内部随 机取一个点Q ,则点Q 取自△ABE 内部的概率等于 A .14 B .13C . 12D . 238.已知函数f (x )=。
若f (a )+f (1)=0,则实数a 的值等于A .-3B .-1C .1D .39.若a ∈(0,2),且sin 2a+cos2a=14,则tana 的值等于A .22 B .33C .2D .310.若a>0,b>0,且函数f (x )=3242x ax bx --在x=1处有极值,则ab 的最大值等于A .2B .3C .6D .911.设圆锥曲线I 的两个焦点分别为F 1,F 2,若曲线I 上存在点P 满足1PF :12F F :2PF =4:3:2,则曲线I 的离心率等于 A .1322或B .223或C .122或D .2332或12.在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k],即[k]={5n+k 丨n∈Z},k=0,1,2,3,4。
高中数学难题汇编带解析

(1) //
又 平面 , 平面 ,∴ // 平面
(2)易证:平面 底面
所以截面 与面 所成的二面角即为面 与面 所成的二面角,
ห้องสมุดไป่ตู้因为 平面 所以 平面
,
由(1)可知 四点共面
所以 为截面 与平面 所成的二面角的平面角.
所以 ,
所以
考点:线面平行,二面角.
7.如图,在四棱锥 中, , 平面 , 平面 , , , .
试题解析:(1)∵点 到 和 的距离之和等于 且 ,∴ 是以 和 为焦点的椭圆,设椭圆方程为 ,则 ,故 ,∴曲线 的方程为 .
(2)设 , ,则联立方程 ,得 ,此时 恒成立,又由韦达定理可得 , ………………①
由点 在直线 上,可得 , 又∵ , ∴ 即
即 ,整理得 ,将①式代入得 ,故 .
当 时, ,当 时, ,综上所述, .
(2)若分数在(含60分)的人对“高速公路免费政策”表示满意,现从全市参加了这次满意度测评的人中随机抽取一人,求此人满意的概率;
(3)请你估计全市的平均分数.
【答案】(1) ;(2) ;(3) .
【解析】
试题分析:(1)利用频率分布表以及 进行求解;(2)利用互斥事件的概率公式进行求解;(3)利用平均数的计算公式进行求解.
(Ⅰ)求棱锥 的体积;
(Ⅱ)求证:平面 平面 ;
(Ⅲ)在线段 上是否存在一点 ,使 平面 ?若存在,求出 的值;若不存在,说明理由.
【答案】(I) ;(II)证明见解析;(III)存在, .
【解析】
试题分析:(I)在在 中, ,可得 ,由于 平面 ,可的棱锥的高,利用体积公式求解几何体的体积;(II)由 平面 ,可得 ,进而得到 平面 ,即可证明平面 平面 ;(III)在线段 上存在一点 ,使得 平面 , ,设F为线段DE上的一点,且 ,过F作 ,由线面垂直的性质可得 ,可得四边形ABMF是平行四边形,于是 ,即可证明 平面 .
高中数学经典高考难题集锦(解析版)(1)

2015年10月18日姚杰的高中数学组卷一.选择题(共11小题)1.(2014•湖南)若0<x1<x2<1,则()A.﹣>lnx2﹣lnx1 B.﹣<lnx2﹣lnx1C.x2>x1D.x2<x12.(2005•天津)若函数f(x)=log a(x3﹣ax)(a>0,a≠1)在区间内单调递增,则a的取值范围是()A.B.C. D.3.(2009•上海)函数的反函数图象是()A.B.C.D.4.(2008•天津)设a>1,若对于任意的x∈[a,2a],都有y∈[a,a2]满足方程log a x+log a y=3,这时a的取值集合为()A.{a|1<a≤2} B.{a|a≥2} C.{a|2≤a≤3} D.{2,3}5.(2005•山东)0<a<1,下列不等式一定成立的是()A.|log(1+a)(1﹣a)|+|log(1﹣a)(1+a)|>2;B.|log(1+a)(1﹣a)|<|log(1﹣a)(1+a)|;C.|log(1+a)(1﹣a)+log(1﹣a)(1+a)|<|log(1+a)(1﹣a)|+|log(1﹣a)(1+a)|;D.|log(1+a)(1﹣a)﹣log(1﹣a)(1+a)|>|log(1+a)(1﹣a)|﹣|log(1﹣a)(1+a)|6.(2005•天津)设f﹣1(x)是函数f(x)=(a x﹣a﹣x)(a>1)的反函数,则使f﹣1(x)>1成立的x的取值范围为()A.(,+∞)B.(﹣∞,)C.(,a) D.[a,+∞)7.(2004•天津)函数(﹣1≤x<0)的反函数是()A.B.C.D.8.(2004•江苏)设k>1,f(x)=k(x﹣1)(x∈R).在平面直角坐标系xOy中,函数y=f (x)的图象与x轴交于A点,它的反函数y=f﹣1(x)的图象与y轴交于B点,并且这两个函数的图象交于P点.已知四边形OAPB的面积是3,则k等于()A.3 B.C.D.9.(2006•天津)已知函数y=f(x)的图象与函数y=a x(a>0且a≠1)的图象关于直线y=x 对称,记g(x)=f(x)[f(x)+f(2)﹣1].若y=g(x)在区间上是增函数,则实数a的取值范围是()A.[2,+∞)B.(0,1)∪(1,2)C.D.10.(2011•湖北)放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M(单位:太贝克)与时间t(单位:年)满足函数关系:M(t)=M0,其中M0为t=0时铯137的含量.已知t=30时,铯137含量的变化率是﹣10In2(太贝克/年),则M(60)=()A.5太贝克B.75In2太贝克C.150In2太贝克 D.150太贝克11.(2014•湖南)某市生产总值连续两年持续增加,第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为()A.B.C. D.﹣1二.填空题(共12小题)12.(2013•北京)函数的值域为.13.(2011•湖北)里氏震级M的计算公式为:M=lgA﹣lgA0,其中A是测震仪记录的地震曲线的最大振幅,A0是相应的标准地震的振幅,假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅A0为0.001,则此次地震的震级为级;9级地震的最大的振幅是5级地震最大振幅的倍.14.(2007•上海)函数的反函数是.15.(2006•江苏)不等式的解集为.16.(2005•北京)设函数f(x)=2x,对于任意的x1,x2(x1≠x2),有下列命题①f(x1+x2)=f(x1)•f(x2);②f(x1•x2)=f(x1)+f(x2);③;④.其中正确的命题序号是.17.(2004•广东)函数的反函数f﹣1(x)=.18.(2011秋•岳阳楼区校级期末)已知0<a<1,0<b<1,如果<1,那么x的取值范围为.19.(2005•天津)设,则的定义域为.20.(2008•天津)设a>1,若仅有一个常数c使得对于任意的x∈[a,2a],都有y∈[a,a2]满足方程log a x+log a y=c,这时a的取值的集合为.21.(2002•上海)已知函数y=f(x)(定义域为D,值域为A)有反函数y=f﹣1(x),则方程f(x)=0有解x=a,且f(x)>x(x∈D)的充要条件是y=f﹣1(x)满足.22.(2013•上海)对区间I上有定义的函数g(x),记g(I)={y|y=g(x),x∈I}.已知定义域为[0,3]的函数y=f(x)有反函数y=f﹣1(x),且f﹣1([0,1))=[1,2),f﹣1((2,4])=[0,1).若方程f(x)﹣x=0有解x0,则x0=.23.(2004•湖南)若直线y=2a与函数y=|a x﹣1|(a>0且a≠1)的图象有两个公共点,则a 的取值范围是.三.解答题(共7小题)24.(2014秋•沙河口区校级期中)21、设的大小,并证明你的结论.25.解不等式26.(2006•重庆)已知定义域为R的函数是奇函数.(Ⅰ)求a,b的值;(Ⅱ)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.27.如果正实数a,b满足a b=b a.且a<1,证明a=b.28.(2011•上海模拟)已知n为自然数,实数a>1,解关于x的不等式.29.(2010•荔湾区校级模拟)f(x)=lg,其中a是实数,n是任意自然数且n≥2.(Ⅰ)如果f(x)当x∈(﹣∞,1]时有意义,求a的取值范围;(Ⅱ)如果a∈(0,1],证明2f(x)<f(2x)当x≠0时成立.30.(2010•四川)设,a>0且a≠1),g(x)是f(x)的反函数.(Ⅰ)设关于x的方程求在区间[2,6]上有实数解,求t的取值范围;(Ⅱ)当a=e,e为自然对数的底数)时,证明:;(Ⅲ)当0<a≤时,试比较||与4的大小,并说明理由.2015年10月18日姚杰的高中数学组卷参考答案与试题解析一.选择题(共11小题)1.(2014•湖南)若0<x1<x2<1,则()A.﹣>lnx2﹣lnx1 B.﹣<lnx2﹣lnx1C.x2>x1D.x2<x1,=2.(2005•天津)若函数f(x)=log a(x3﹣ax)(a>0,a≠1)在区间内单调递增,则a的取值范围是()A.B.C. D.,((﹣∪(,,﹣(,,∴﹣≥.[3.(2009•上海)函数的反函数图象是()A.B.C.D.4.(2008•天津)设a>1,若对于任意的x∈[a,2a],都有y∈[a,a2]满足方程log a x+log a y=3,这时a的取值集合为()C.{a|2≤a≤3} D.{2,3},在⇒5.(2005•山东)0<a<1,下列不等式一定成立的是()A.|log(1+a)(1﹣a)|+|log(1﹣a)(1+a)|>2;B.|log(1+a)(1﹣a)|<|log(1﹣a)(1+a)|;C.|log(1+a)(1﹣a)+log(1﹣a)(1+a)|<|log(1+a)(1﹣a)|+|log(1﹣a)(1+a)|;1+a)|>|log(1+a)(1﹣a)|﹣|log(1﹣a)(1+a)|,<==>2=6.(2005•天津)设f﹣1(x)是函数f(x)=(a x﹣a﹣x)(a>1)的反函数,则使f﹣1(x)>1成立的x的取值范围为()A.(,+∞)B.(﹣∞,)C.(,a) D.[a,+∞)(y=7.(2004•天津)函数(﹣1≤x<0)的反函数是()A.B.C.D.,,8.(2004•江苏)设k>1,f(x)=k(x﹣1)(x∈R).在平面直角坐标系xOy中,函数y=f (x)的图象与x轴交于A点,它的反函数y=f﹣1(x)的图象与y轴交于B点,并且这两个函数的图象交于P点.已知四边形OAPB的面积是3,则k等于()A.3 B.C.D.==OP=×OP=3k=9.(2006•天津)已知函数y=f(x)的图象与函数y=a x(a>0且a≠1)的图象关于直线y=x 对称,记g(x)=f(x)[f(x)+f(2)﹣1].若y=g(x)在区间上是增函数,则实数a的取值范围是()A.[2,+∞)B.(0,1)∪(1,2)C.D.上[上解得,10.(2011•湖北)放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M(单位:太贝克)与时间t(单位:年)满足函数关系:M(t)=M0,其中M0为t=0时铯137的含量.已知t=30时,铯137含量的变化率是﹣10In2(太贝克/年),则M(60)=()C.150In2太贝克 D.150太贝克11.(2014•湖南)某市生产总值连续两年持续增加,第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为()A.B.C. D.﹣1二.填空题(共12小题)12.(2013•北京)函数的值域为(﹣∞,2).13.(2011•湖北)里氏震级M的计算公式为:M=lgA﹣lgA0,其中A是测震仪记录的地震曲线的最大振幅,A0是相应的标准地震的振幅,假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅A0为0.001,则此次地震的震级为6级;9级地震的最大的振幅是5级地震最大振幅的10000倍.14.(2007•上海)函数的反函数是.y=y=y=15.(2006•江苏)不等式的解集为.16.(2005•北京)设函数f(x)=2x,对于任意的x1,x2(x1≠x2),有下列命题①f(x1+x2)=f(x1)•f(x2);②f(x1•x2)=f(x1)+f(x2);③;④.其中正确的命题序号是①③④.=,所+≠,所17.(2004•广东)函数的反函数f﹣1(x)=e2x+2e x (x∈R).18.(2011秋•岳阳楼区校级期末)已知0<a<1,0<b<1,如果<1,那么x的取值范围为(3,4).19.(2005•天津)设,则的定义域为(﹣4,﹣1)∪(1,4).解20.(2008•天津)设a>1,若仅有一个常数c使得对于任意的x∈[a,2a],都有y∈[a,a2]满足方程log a x+log a y=c,这时a的取值的集合为{2}.∴得21.(2002•上海)已知函数y=f(x)(定义域为D,值域为A)有反函数y=f﹣1(x),则方程f(x)=0有解x=a,且f(x)>x(x∈D)的充要条件是y=f﹣1(x)满足f﹣﹣1(0)=a,且f﹣﹣1(x)<x(x∈A)/y=f﹣﹣1(x)的图象在直线y=x的下方,且与y轴的交点为(0,a)….22.(2013•上海)对区间I上有定义的函数g(x),记g(I)={y|y=g(x),x∈I}.已知定义域为[0,3]的函数y=f(x)有反函数y=f﹣1(x),且f﹣1([0,1))=[1,2),f﹣1((2,4])=[0,1).若方程f(x)﹣x=0有解x0,则x0=2.23.(2004•湖南)若直线y=2a与函数y=|a x﹣1|(a>0且a≠1)的图象有两个公共点,则a 的取值范围是0<a<..<三.解答题(共7小题)24.(2014秋•沙河口区校级期中)21、设的大小,并证明你的结论.先判断与∴>即>25.解不等式26.(2006•重庆)已知定义域为R的函数是奇函数.(Ⅰ)求a,b的值;(Ⅱ)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围..27.如果正实数a,b满足a b=b a.且a<1,证明a=b.,.而,,而矛28.(2011•上海模拟)已知n为自然数,实数a>1,解关于x的不等式.••>=,{x|}}29.(2010•荔湾区校级模拟)f(x)=lg,其中a是实数,n是任意自然数且n≥2.(Ⅰ)如果f(x)当x∈(﹣∞,1]时有意义,求a的取值范围;(Ⅱ)如果a∈(0,1],证明2f(x)<f(2x)当x≠0时成立.。
高考数学难题书

高考数学难题书篇一:高考数学综合训练(难题)综合训练(1)篇二:高中数学经典高考难题集锦(解析版) (5)2015年10月18日姚杰的高中数学组卷一.选择题(共11小题)1.(2014?江北区校级模拟)等腰三角形两腰所在直线的方程分别为x+y﹣2=0与x﹣7y﹣4=0,原点在等腰三角形的底边上,则底边所在直线的斜率为()A.3 B.2 C. D.2.(2004?广东)如图,定圆半径为a,圆心坐标为(b,c),则直线ax+by+c=0,与直线x+y﹣1=0的交点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.(2003?天津)已知长方形的四个顶点A(0,0),B(2,0),C(2,1)和D(0,1),一质点从AB的中点P0沿与AB 夹角为θ的方向射到BC上的点P1后,依次反射到CD、DA和AB上的点P2、P3和P4(入射角等于反射角)若P4与P0重合,则tgθ=()A.4.(2009?北京)点P在直线l:y=x﹣1上,若存在过P的直线交抛物线y=x于A,B两点,且|PA|=|AB|,则称点P为“A.直线l上的所有点都是“B.直线l上仅有有限个点是“C.直线l上的所有点都不是“点”,那么下列结论中正确的是()点” 点” 点”点” 2B. C. D.1 D.直线l上有无穷多个点(点不是所有的点)是“5.(2014?崇明县一模)已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为两切点,那么A.的最小值为() B. C. D.6.(2013?上海)已知A,B为平面内两定点,过该平面内动点M作直线AB的垂线,垂足为N.若A.圆,其中λ为常数,则动点M的轨迹不可能是() B.椭圆C.抛物线 D.双曲线227.(2008?山东)已知圆的方程为x+y﹣6x﹣8y=0,设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为()A.10 B.20 C.30 D.408.(2009?浙江)已知三角形的三边长分别为3,4,5,则它的边与半径为1的圆的公共点的个数最多为()A.3 B.4 C.5 D.69.(2004?重庆)若三棱锥A﹣BCD的侧面ABC内一动点P到底面BCD的面积与到棱AB的距离相等,则动点P的轨迹与△ABC组成图形可能是:()A. B. C.D.2210.(2008?湖北)过点A(11,2)作圆x+y+2x﹣4y﹣164=0的弦,其中弦长为整数的共有()A.16条 B.17条 C.32条 D.34条11.(2012?天津)设m,n∈R,若直线(m+1)x+(n+1)y﹣2=0与圆(x﹣1)+(y﹣1)2=1相切,则m+n的取值范围是()A.[1﹣,1+] B.(﹣∞,1﹣]∪[1+,+∞)C.[2﹣2,2+2] D.(﹣∞,2﹣2]∪[2+2,+∞)二.填空题(共13小题)12.(2006?上海)已知直线l过点P(2,1)且与x轴、y轴的正半轴分别交于A、B两点,O为坐标原点,则三角形OAB 面积的最小值为213.(2008?重庆)直线l与圆x+y+2x﹣4y+a=0(a<3)相交于两点A,B,弦AB的中点为(0,1),则直线l的方程为.14.(2006?福建)如图,连接△ABC的各边中点得到一个新的△A1B1C1,又连接△A1B1C1的各边中点得到△A2B2C2,如此无限继续下去,得到一系列三角形:△ABC,△A1B1C1,△A2B2C2,…,这一系列三角形趋向于一个点M.已知A(0,0),B(3,0),C(2,2),则点M的坐标是.2215.(2011?北京)曲线C是平面内与两个定点F1(﹣1,0)和F2(1,0)的距离的积等于2常数a(a>1)的点的轨迹.给出下列三个结论:①曲线C过坐标原点;②曲线C关于坐标原点对称;③若点P在曲线C上,则△F1PF2的面积不大于a.其中,所有正确结论的序号是.16.(2011?湖南)已知圆C:x+y=12,直线l:4x+3y=25.(1)圆C的圆心到直线l的距离为;(2)圆C上任意一点A到直线l的距离小于2的概率为.17.(2007?上海)已知圆的方程x+(y﹣1)=1,P为圆上任意一点(不包括原点).直线OP的倾斜角为θ弧度,|OP|=d,则d=f(θ)的图象大致为.2222218.(2005?江西)以下四个关于圆锥曲线的命题中①设A、B为两个定点,k为非零常数,||﹣||=k,则动点P 的轨迹为双曲线;=(+),则动点P②设定圆C上一定点A作圆的动点弦AB,O 为坐标原点,若的轨迹为椭圆;③方程2x﹣5x+2=0的两根可分别作为椭圆和双曲线的离心率;④双曲线﹣=1与椭圆+y=1有相同的焦点. 22其中真命题的序号为(写出所有真命题的序号)19.(2007?上海)如图,A,B是直线l上的两点,且AB=2.两个半径相等的动圆分别与l相切于A,B点,C是这两个圆的公共点,则圆弧AC,CB与线段AB围成图形面积S的取值范围是.20.(2006?江西)已知圆M:(x+cosq)+(y﹣sinq)=1,直线l:y=kx,下面四个命题:(A)对任意实数k与q,直线l和圆M相切;(B)对任意实数k与q,直线l和圆M有公共点;(C)对任意实数q,必存在实数k,使得直线l与和圆M相切(D)对任意实数k,必存在实数q,使得直线l与和圆M相切其中真命题的代号是.(写出所有真命题的代号)21.(2010?北京)(北京卷理14)如图放置的边长为1的正方形PABC沿x轴滚动.设顶点P(x,y)的轨迹方程是y=f (x),则f(x)的最小正周期为y=f(x)在其两个相邻零点间的图象与x轴所围区域的面积为说明:“正方形PABC沿X轴滚动”包括沿x轴正方向和沿x 轴负方向滚动.沿x轴正方向滚动指的是先以顶点A为中心顺时针旋转,当顶点B落在x轴上时,再以顶点B为中心顺时针旋转,如此继续.类似地,正方形PABC可以沿x轴负方向滚动.2222.(2004?北京)若直线mx+ny﹣3=0与圆x+y=3没有公共点,则m、n满足的关系式为;以(m,n)为点P的坐标,过点P的一条直线与椭圆有个.23.(2011?江苏)设集合,B={(x,+=1的公共点22y)|2m≤x+y≤2m+1,x,y∈R},若A∩B≠?,则实数m的取值范围是24.(2012?陆丰市校级模拟)如图,⊙O1与⊙O2交于M、N 两点,直线AE与这两个圆及MN依次交于A、B、C、D、E;且AD=19,BE=16,BC=4,则AE=.三.解答题(共6小题)25.(2005?江西)如图,M是抛物线上y=x上的一点,动弦ME、MF分别交x轴于A、B两点,且MA=MB.(1)若M为定点,证明:直线EF的斜率为定值;(2)若M为动点,且∠EMF=90°,求△EMF的重心G的轨迹方程.226.(2005?广东)在平面直角坐标系中,已知矩形ABCD的长为2,宽为1,AB、AD边分别在x轴、y轴的正半轴上,A点与坐标原点重合(如图所示).将矩形折叠,使A点落在线段DC上.(Ⅰ)若折痕所在直线的斜率为k,试写出折痕所在直线的方程;(Ⅱ)求折痕的长的最大值.27.(2004?福建)如图,P是抛物线C:y=x上一点,直线l 过点P并与抛物线C在点P的切线垂直,l与抛物线C相交于另一点Q.(Ⅰ)当点P的横坐标为2时,求直线l的方程;(Ⅱ)当点P在抛物线C上移动时,求线段PQ中点M的轨迹方程,并求点M到x轴的最短距离.2篇三:题目818b998fcc220e52一、整体解读试卷紧扣教材和考试说明,从考生熟悉的基础知识入手,多角度、多层次地考查了学生的数学理性思维能力及对数学本质的理解能力,立足基础,先易后难,难易适中,强调应用,不偏不怪,达到了“考基础、考能力、考素质”的目标。
高三数学难题及答案

1.在平面上向量AB1垂直向量AB2,向量OB1的模等于向量OB2的模=1,向量AP等于向量AB1+向量AB2,若向量OP的模<1/2,则向量OA的模的取值范围是解:以点O为圆心,分别以1为半径作单位圆大⊙O、以1/2为半径作小⊙O,线段B1B2是大⊙O的一条弦,以B1B2为直径的圆是⊙C,由向量AB1⊥向量AB2知点A在⊙C上,由向量AP等于向量AB1+向量AB2知点P也在⊙C上,且点P和点A关于点C对称(即PA是⊙C的直径)。
设⊙C与小⊙O的公共点为D.令⊙C半径为r=|B1B2|/2(即半弦长),|OC|=d(即弦心距),则考虑到|OP|<1/2,于是⊙C的圆周上必须有点落在小⊙O内部,由图1可知,当⊙C和小⊙O外切时,r最小(即图1中⊙C);当⊙C和小⊙O内切时,r最大(即图1中⊙C‘)。
(取开值)下面先求出最值,由图1——r²+d²=1d=r±1/2(外切时,d=|OC|=|CD|+|OD|=r+1/2;内切时,d=|OC’|=|C‘D|-|OD|=r-1/2.)于是r²+(r±1/2)²=1整理得8r²±4r-3=0解得r=(√7±1)/4(负根已舍去)于是(√7-1)/4<r <(√7+1)/4,以此为前提(重点),我们来研究|OA|的取值——【易得此前提即(√7-1)/4<d<(√7+1)/4)】先研究最大值,由图1,直线OC与⊙C有两个交点,取近O的一个为P,P必在小⊙O内部满足题设要求,这时远O的一个为A,最大值必在此时取得,此时|OA|=d+r.(参见图1和图2)由r²+d²=1,令r=sina,d=cosa,a为锐角,于是|OA|=d+r=sina+cosa=√2sin(a+b)=√2sin(a+45°),tanb=1可取b=45°.(辅助角公式)a+45°=90°时取最大值,即a=45°,此时r=sina=√2/2,d=cosa=√2/2.r=√2/2满足(√7-1)/4<r <(√7+1)/4,此时|OA|=d+r=√2取最大值,即|OA|≤√2.再研究最小值,如图2,P的范围是图2中弧D1D2,于是A的范围是图2中弧AA',过A 作OA垂线,垂线在⊙C内部,以OA为半径O为圆心的圆还在垂线内部,故|OA|最小值必在图2中A(或A')处,通过计算得知此时|OA|是定值√7/2(与图2中d或r的取值无关).在△OCD2中,|OC|=d,|OD2|=1/2,|CD2|=r,于是cos∠OCD2=(d²+r²-1/4)/(2dr)=(1-1/4)/(2dr)=3/(8dr)|EC|=|CD2|·cos∠OCD2=r·3/(8dr)=3/(8d)|AF|²=|ED2|²=|CD2|²-|EC|²=r²-9/(64d²)|OF|=|OC|+|CF|=|OC|+|EC|=d+3/(8d)|OA|²=|AF|²+|OF|²=r²-9/(64d²)+[d+3/(8d)]²=r²-9/(64d²)+d²+3/4+9/(64d²)=r²+d²+3/4=1+3/4= 7/4|OA|=√7/2段首已证无论d或r如何取值,A点在图2中的A点位置时,|OA|最小(取开值),于是|OA|>√7/2.综合上述,由连续性可知|OA|属于(√7/2,√2].。
判断元素能否构成集合(高中数学习题,解析版1)

判断元素能否构成集合1.下列判断正确的个数为()(1)所有的等腰三角形构成一个集合;(2)倒数等于它自身的实数构成一个集合;(3)质数的全体构成一个集合;(4)由2,3,4,3,6,2构成含有6个元素的集合.A.1B.2C.3D.4所有偶数;④全体著名的数学家.其中能构成集合的有()A.1组B.2组C.3组D.4组答案:A解析:①因为个子高没有明确的定义,故“高一个子高的学生”不能构成集合;②因为难题没有明确的定义,故“《高中数学》(必修)中的所有难题”不能构成集合;③所有的偶数是确定的,且都不一样,故“所有偶数”可构成集合;④著名的数学家没有明确的定义,故“全体著名的数学家”不能构成集合.即能构成集合的只有③.故选:A.3.下列各组对象不能构成集合的是()A.北京大学2020级大学一年级新生B.2020年高考数学容易题C.大于3的整数D.海拔在4000米以上的山峰答案:B解析:由于集合中的元素满足确定性,ACD选项中的对象均满足确定性,而B选项中的对象不满足确定性,故B 选项中的对象不能构成集合.故选:B.4.下列各选项中的对象不能构成集合的是( )A .小于5的自然数B .著名的艺术家C .曲线2y x 上的点D .不等式217x +>的整数解答案:B解析:依题意,A 、C 、D 三个选项中的对象有明确的标准,满足集合中元素的特性, 而选项B 中的对象没有明确的标准,不满足确定性,故不能构成一个集合.故选:B .5.下列条件所指对象能构成集合的是( )A .与0非常接近的数B .我班喜欢跳舞的同学C .我校学生中的团员D .我班的高个子学生 答案:C解析:A. 与0非常接近的数不能构成集合,因为与0非常接近的数不具备确定性;B. 我班喜欢跳舞的同学不能构成集合,因为我班喜欢跳舞的同学不具备确定性;C. 我校学生中的团员能构成集合,因为我校学生中的团员具备确定性;D. 我班的高个子学生不能构成集合,因为我班的高个子学生不具备确定性.故选:C6.下列各组对象不能构成集合的是( )A .拥有手机的人B .2021年高考数学难题C .所有有理数D .小于π的正整数答案:B解析:B 选项中“难题”的标准不明确,不符合确定性,其他选项均满足确定性.故选:B.7.下列能构成集合的是( )A .中央电视台著名节目主持人B .我市跑得快的汽车C .上海市所有的中学生D .sin 30,tan 45,cos 60︒︒︒答案:C解析:根据集合中元素的定义,可得:对于A 中,中央电视台著名节目主持人是不确定的对象,所以不能构成集合;对于B 中,我市跑得快的汽车是不确定的对象,所以不能构成集合;对于C 中,上海市所有的中学生是确定的不同的对象,所以可以构成集合;对于D 中,sin 30,tan 45,cos 60︒︒︒,其中sin30cos60︒︒=,所以不能构成集合.故选:C.8.下列对象能组成集合的是( )A 的所有近似值B .某个班级中学习好的所有同学C .2020年全国高考数学试卷中所有难题D .屠呦呦实验室的全体工作人员答案:D解析:D 中的对象都是确定的,而且是不同的.A 中的“近似值”,B 中的“学习好”,C 中的“难题”标准不明确,不满足确定性,因此A ,B ,C 都不能构成集合.故选:D.9.下列说法正确的是( ).A .2021年上半年发生的大事能构成一个集合B .小于100的整数构成的集合是无限集C .空集中含有元素0D .自然数集中不含有元素0答案:B解析:对A ,“大事”是不确定的对象,故A 错,对B ,小于100的整数包括无穷个负数,故B 对,对C ,空集中不含有任何一个元素,故C 错,对D ,自然数集中含有元素0,故D 错,故选:B .10.下面有四个语句:①集合N *中最小的数是0;②-a ∉N ,则a ∴N ;③a ∴N ,b ∴N ,则a +b 的最小值是2;④x 2+1=2x 的解集中含有两个元素.其中说法正确的个数是( )A .0B .1C .2D .3故选:A11.下列四组对象能构成集合的是( )A .某班所有高个子学生B .某校足球队的同学C .一切很大的书D .著名的艺术家 答案:B解析:根据集合的定义,可得:对于A 中,某班所有高个子学生,其中元素不确定,不能构成集合;对于B 中,某校足球队的同学,满足集合的定义,能构成集合;对于C 中,一切很大的书,其中元素不确定,不能构成集合;对于D 中,著名的艺术家,其中元素不确定,不能构成集合.故选:B.12.下列命题正确的有( )(1)很小的实数可以构成集合;(2)集合{}2|1,y y x x R =-∈与集合{}2(,)|1,x y y x x =-∈R 是同一个集合; (3)12,76,12-,0.5,132这些数组成的集合有5个元素; (4)集合{(),0,|},x y xy x y ≤∈R 是指第二和第四象限内的点集.A .0个B .1个C .2个D .3个13.下列各对象可以组成集合的是( )A .与1非常接近的全体实数B .某校2015-2016学年度第一学期全体高一学生C .高一年级视力比较好的同学D .与无理数π相差很小的全体实数答案:B解析:A 中对象不确定,故错;B 中对象可以组成集合;C 中视力比较好的对象不确定,故错;D中相差很小的对象不确定,故错.故选:B14.下列各个全体中,能表示为集合的是()A.某届某校较优秀的毕业生;B的所有实数;C.某班身高较高的男生;D.数轴上所有的有理数点.的距离等于1的点的全体;④正三角形的全体;的近似值的全体.其中能构成集合的组数有()A.2组B.3组C.4组D.5组16.能够组成集合的是()A.与2非常数接近的全体实数B.很著名的科学家的全体C.某教室内的全体桌子D.与无理数π相差很小的数答案:C解析:解:A.与2非常接近的数不确定,∴不能构成集合;B.“很著名”,怎么算很著名,不确定,∴不能构成集合;C.某教室内的桌子是确定的,∴可构成集合;D.“相差很小”,怎么算相差很小是不确定的,∴不能构成集合.故选:C.17.下面四个命题正确的是()A .10以内的质数集合是0,3,5,7}B .“个子较高的人”不能构成集合C .方程x 2﹣2x+1=0的解集是1,1}D .偶数集为x|x=2k ,x∴N}答案:B解析:解:10以内的质数集合是2,3,5,7},故选项A 不正确;“个子较高的人”不能构成集合,“个子较高的人”不满足集合的确定性,故选项B 正确; 方程x 2﹣2x+1=0的解集是1,1},不满足集合的互异性,故选项C 不正确;偶数集为x|x=2k ,k∴Z},故选项D 不正确.故选:B.18.下列对象中,能组成集合的是( )A .所有接近1的数的全体B .某班高个子男生的全体C .某校考试比较靠前的学生的全体D .大于2小于7的实数的全体答案:D解析:由集合元素的特性:ABC 不符合确定性原则,D 可表示为{|27}<<x x , 故选:D19.下列各组对象不能构成集合的是( )A .所有的正方形B .方程210x -=的整数解C .我国较长的河流D .出席十九届四中全会的全体中央委员答案:C解析:对于A 选项,“所有的正方形”对象是明确的,故能构成集合;对于B 选项,“方程210x -=的整数解”的对象是明确的,故能构成集合;对于C 选项,“较长”不是一个确定的范围,“我国较长的河流”的对象不明确,故不能构成集合;对于D 选项,“出席十九届四中全会的全体中央委员”的对象是明确的,故能构成集合. 故选:C.20.下列各组对象不能构成集合的是( )A .大于1且小于10的实数B .欧洲的所有国家C .广东省的省会城市D .早起的人答案:D解析:A :可表示为{|110}x x <<;B :所有欧洲国家};C :广州}都满足确定性;而D :早起的人不符合元素的确定性,不能构成集合.故选:D21.下列给出的对象中,能组成集合的是( )A .一切很大数B .方程210x 的实数根C .漂亮的小女孩D .好心人答案:B 解析:A 选项,很大数没有明确的定义,即元素不确定,不能构成集合;排除A ; B 选项,方程210x 的实数根为1±,能构成集合;B 正确;C 选项,漂亮没有明确的定义,即元素不确定,不能构成集合,排除C ;D 选项,好心人没有明确的定义,即元素不确定,不能构成集合,排除D.故选:B.22.下列所给对象能构成集合的是( ) A .2020年全国I 卷数学试题的所有难题B .比较接近2的全体正数C .未来世界的高科技产品D .所有整数答案:D解析:选项,,A B C 的对象都具有不确定性,所以它们的对象不能构成集合;而选项D 的对象具有确定性,能构成集合.故选:D23.下列对象不能组成集合的是( )A .不超过20的质数B .π的近似值C .方程21x =的实数根D .函数2,R y x x =∈的最小值 答案:B解析:不超过20的质数构成集合{2,3,5,7,11,13,17,19};方程21x =的实数根构成集合{1,1}-;函数2,R y x x =∈的最小值构成集合{0}.而π的近似值标准不明确,不能组成集合. 故选:B24.以下各组对象,不能构成集合的是( ).A .不小于3的自然数B .地球上的小河流C .周长为10cm 的三角形D .截止到2020年1月1日,参加“一带一路”的国家答案:B解析:对于B ,地球上的小河流,集合中的元素不确定,故不能构成集合.对于A 、C 、D ,集合中的元素确定.故选:B25.下列四个命题中,其中正确命题的个数为( )①与1非常接近的全体实数能构成集合;②{}21,(1)--表示一个集合;③空集是任何一个集合的真子集;④任何一个非空集合必有两个以上的子集.A.0个B.1个C.2个D.3个答案:C解析:①不确定,所以不能构成集合;②可以构成集合;③空集是任何非空集合的真子集;④对于非空集合,至少有一个元素,所以子集的个数为22n .②、④正确故选:C26.判断下列元素的全体可以组成集合的是()①湖北省所有的好学校;②直角坐标系中横坐标与纵坐标互为相反数的点;③n的近似值;④不大于5的自然数.A.①②B.②③C.②④D.③④答案:C解析:①“好学校”不具有确定性,因此①不能组成集合;②直角坐标系中横坐标与纵坐标互为相反数的点,满足集合的元素的特征,因此能组成集合;③n的近似值不具有确定性,因此③不能组成集合;④不大于5的自然数,满足集合的元素的特征,因此④能组成集合.故选:C.27.下列语言叙述中,能表示集合的是()A.数轴上离原点距离很近的所有点B.德育中学的全体高一学生C.某高一年级全体视力差的学生D.与ABC大小相仿的所有三角形答案:B解析:对A,数轴上离原点距离很近的所有点不满足集合中元素的确定性,故A错误;对B,德育中学的全体高一学生满足集合中元素的确定性,故B正确;对C,某高一年级全体视力差的学生不满足集合中元素的确定性,故C错误;对D,与ABC大小相仿的所有三角形不满足集合中元素的确定性,故D错误故选:B28.考察下列每组对象,能构成集合的是()①中国各地的美丽乡村;②直角坐标系中横、纵坐标相等的点;③不小于3的自然数;④截止到2022年1月1日,参与“一带一路”的国家.A.③④B.②③④C.②③D.②④答案:B解析:对于①,“美丽”标准不明确,不符合集合中元素的确定性,∴①中对象不能构成集合; 对于②③④,每组对象的标准明确,都符合集合中元素的确定性,∴②③④中对象可以构成集合.故选:B.29.下列各组对象不能构成集合的是( )A .参加运动会的学生B C .2022年高考数学试卷上的难题D .所有有理数30.下列说法正确的是( )A .高一年级全体高个子同学可以组成一个集合B .*0N ∈C .集合{}1,1,2含有三个元素D .{}0∅⊆答案:D解析:对于A ,高个子同学具有不确定性,故不能组成一个集合,故错误;对于B ,*N 是正整数集,所以*0N ∉,故错误;对于C ,{}1,1,2中含有两个1,由于集合具有互异性,所以{}1,1,2不是集合,故错误; 对于D ,∅是任何集合的子集,故正确;故选:D31.下列各选项中能构成集合的是( )A .学生中的跑步能手B .中国科技创新人才C .地球周围的行星D .唐宋散文八大家答案:D解析:对于A ,学生中的跑步能手不具有确定性,所以不能构成集合,所以A 错误, 对于B ,中国科技创新人才不具有确定性,所以不能构成集合,所以B 错误,对于C ,地球周围的行星不具有确定性,所以不能构成集合,所以C 错误,对于D ,唐宋散文八大家分别为唐代柳宗元、韩愈和宋代欧阳修、苏洵、苏轼、苏辙、王安石、曾巩八位,研究的对象是确定的,可能构成集合,所以D 正确,故选:D32.下列判断正确的是( )A .个子高的人可以组成集合B .0∅=C .{|2}{|2}x x m m ≥=≥D .空集是任何集合的真子集答案:C解析:对于A ,个子高没有界定的标准,个子高的人对象不确定,个子高的人不能形成集合,A 不正确;对于B ,∅是集合,且空集不含任何元素,而0是一个数,两者不可能相等,B 不正确; 对于C ,描述法表示集合时,可用不同字母作同一集合的代表元,集合{|2}x x ≥与{|2}m m ≥都表示不小于2的实数形成的集合, 因此{|2}{|2}x x m m ≥=≥,C 正确;对于D ,空集是空集的子集,空集没有真子集,D 不正确.故选:C33.下列说法正确的是( )A .0与{0}的意义相同B .高一(1)班个子比较高的同学可以形成一个集合C .若集合{}A a =,则a A ⊆D .集合{N41}x x ∈-<∣用列举法表示为{0,1,2,3,4} 答案:D解析:对于A ,0为一个元素,{0}为0为其元素的集合,故0与{0}的意义不相同,故A 错误;对于B ,“高一(1)班个子比较高的同学”不能构成集合,因为组成它的元素是不确定的,故B 错误;对于C ,若集合{}A a =,则a A ∈,故C 错误;对于D ,集合{N41}x x ∈-<∣用列举法表示为{0,1,2,3,4},故D 正确. 故选:D.34.下列各组对象不能构成集合的是( )A .上课迟到的学生B .小于π的正整数C .2022年高考数学试卷上的难题D .所有有理数答案:C解析:上课迟到的学生属于确定的互异的对象,所以能构成集合;小于π的正整数分别为1,2,3,所以能够组成集合;2022年高考数学试卷上的难题界定不明确,所以不能构成集合;任意给一个数都能判断是否为有理数,所以能构成集合.故选:C.35.下面给出的四类对象中,能构成集合的是()A.郑州回高2022年入学的高一年级新生中身高较高的全体学生B.郑州市很受欢迎的主题游乐园C.河南省所有的5A级风景区D.中国全域内较大的湖泊答案:C解析:对于A,高一年级新生中身高较高的学生,对象不能确定,没有衡量较高的标准,A 不是;对于B,很受欢迎的主题游乐园,对象不能确定,无法界定很受欢迎的标准,B不是;对于C,河南省所有的5A级风景区,对象明确可知,能判断一个风景区是与不是河南省所有的5A级风景区中的元素,C是;对于D,中国全域内较大的湖泊,对象不能确定,没有衡量较大的标准,D不是.故选:C36.下列给出的对象能构成集合并且为无限集(含有无限个元素的集合)的是()A.所有很大的实数组成的集合B2的所有整数解组成的集合C.所有大于4-的偶数组成的集合D.所有到,x y轴距离均为1的点组成的集合1,0,1,2,错误;>-∈2,Z}n的点组成的集合中只有4个元素,错误37.下列对象能构成集合的是()A.某中学所有聪明的学生B.不小于5的所有自然数C.中国各地的美丽乡村D.NBA联盟中所有优秀的球员答案:B解析:根据集合中的元素具有确定性知,某中学所有聪明的学生,中国各地的美丽乡村,NBA联盟中所有优秀的球员,都不能构成集合,不小于5的所有自然数具有确定性,可以构成集合.故选:B38.下列各组对象中不能形成集合的是( )A .高一数学课本中较难的题B .高二(2)班全体学生家长C .高三年级开设的所有课程D .高一(12)班个子高于1.7m 的学生 答案:A解析:对A ,高一数学课本中较难的题不具有确定性,不能形成集合;对BCD ,各组对象均满足确定性,互异性和无序性,能形成集合故选:A39.下列判断正确的是( )A .个子高的人可以组成集合B .22{|1}{|1}x y x y y x =+==+C .{|2}{|2}x x m m ≥=≥D .空集是任何集合的真子集答案:C解析:对于A ,个子高没有一定的标准,不符合集合的确定性,故A 错误;对于B ,2{|1}R x y x =+=,2{|1}{|1}y y x y y =+=≥,所以22{|1}{|1}x y x y y x =+≠=+,故B 错误;对于C ,集合{|2}x x ≥表示大于或等于2的实数组成的集合,集合{|2}m m ≥表示大于或等于2的实数组成的集合,所以{|2}{|2}x x m m ≥=≥,故C 正确;对于D ,空集是任何非空集合的真子集,故D 错误.故选:C.40.下列各组对象能构成集合的是( )A .充分接近的所有实数B .所有的正方形C .著名的数学家D .1,2,3,3,4,4,4,4答案:B解析:选项A ,C 不满足集合的确定性;集合B 正方形是确定的,故能构成集合;选项D 不满足集合的互异性.故选:B .41.下列选项能组成集合的是( )A .著名的运动健儿B .英文26个字母C .非常接近0的数D .勇敢的人答案:B解析:解:著名的运动健儿,元素不确定,不能组成集合;英文26个字母,满足集合元素的特征,所以能组成集合;非常接近0的数,元素不确定,不能组成集合;勇敢的人,元素不确定,不能组成集合. 故选:B .42.下列所给的对象能组成集合的是( )A .“金砖国家”成员国B .接近1的数C .著名的科学家D .漂亮的鲜花答案:A 解析:对于A ,“金砖国家”成员国即巴西,俄罗斯,印度,中国,南非,能组成集合,故A 正确;对于B ,C ,D 三个选项来说,研究对象无法确定,所以不能组成集合.故选:A.43.下列说法:①地球周围的行星能构成一个集合;②实数中不是有理数的所有数能构成一个集合;③1,2,3}与1,3,2}是不同的集合.其中正确的个数是( ) A .0B .1C .2D .3答案:B解析:“周围”是一个模糊的概念,不满足确定性,所以①错误.实数中不是有理数的所有数,元素是确定的,所以能构成一个集合,②正确.1,2,3}与1,3,2}两个集合中的元素是一样的,所以是相同的集合,故③错误.故选:B44.下列各对象可以组成集合的是( )A .与1非常接近的全体实数B .北大附中云南实验学校20202021-学年度第二学期全体高一学生C .高一年级视力比较好的同学D .高一年级很有才华的老师答案:B解析:对于ACD ,集合中的元素具有确定性,但ACD 中的元素不确定,故不能构成集合,ACD 错误;B 中的元素满足集合中元素的特点,可以构成集合,B 正确.故选:B.45.下面各组对象中不能形成集合的是( )A .所有的直角三角形B .一次函数1y x =+C .高一年级中家离学校很远的学生D .大于2的所有实数210x x +-=的实数根④全国著名的高等院校.以上能构成集合的是( )A .①③B .①②C .①②③D .①②③④答案:A解析:解:① 联合国的常任理事国有:中国、法国、美国、俄罗斯、英国.所以可以构成集合. ② 中的元素是不确定的,不满足集合确定性的条件,不能构成集合.③ 方程210x x +-=的实数根是确定,所以能构成集合.④ 全国著名的高等院校.不满足集合确定性的条件,不构成集合.故选:A47.下列四个命题中,其中真命题的个数为( )①与0非常接近的全体实数能构成集合;②{}21,(1)--表示一个集合; ③空集是任何一个集合的真子集;④任何一个非空集合至少有两个子集.A .0个B .1个C .2个D .3个答案:C解析:①与0非常接近的全体实数不确定,所以不能构成集合,错误;②{}{}21,(1)1,1--=-,正确; ③空集是任何非空集合的真子集,错误;④对于非空集合,至少有一个元素,所以子集的个数为22n ≥,正确.故选:C48.下列给出的对象能构成集合的是( )A .平面直角坐标系内y 轴附近的点B .26个英文字母C .新华书店中有意义的小说D .π的近似值答案:B解析:选项A ,C ,D 中的对象不具有确定性,故不能构成集合;选项B 中的26个英文字母能构成集合,故选:B.49.下列说法中正确的是( )A .与定点A ,B 等距离的点不能构成集合B .由“title”中的字母构成的集合中元素的个数为5C .一个集合中有三个元素a ,b ,c ,其中a ,b ,c 是ABC 的三边长,则ABC 不可能是等边三角形D.高中学生中的游泳能手能构成集合互不相等,故ABC不可能是等边三角的所有实数;③方程2220x x++=的实数解;④中国著名的高等院校.以上对象能构成集合的是()A.①②B.①③C.②③D.①②③④。
高中数学经典高考难题集锦

2015年10月18日姚杰的高中数学组卷一.选择题(共5小题)1.(2013•黑龙江)若存在正数x使2x(x﹣a)<1成立,则a的取值范围是()A.(﹣∞,+∞) B.(﹣2,+∞)C.(0,+∞)D.(﹣1,+∞)2.(2012•陕西)小王从甲地到乙地的往返时速分别为a和b(a<b),其全程的平均时速为v,则()A.a<v<B.v= C.<v<D.v=3.(2008•江西)已知函数f(x)=2x2+(4﹣m)x+4﹣m,g(x)=mx,若对于任一实数x,f (x)与g(x)的值至少有一个为正数,则实数m的取值范围是()A.[﹣4,4] B.(﹣4,4)C.(﹣∞,4)D.(﹣∞,﹣4)4.(2006•重庆)若a,b,c>0且,则2a+b+c的最小值为()A. B. C. D.5.(2004•山东)a2+b2=1,b2+c2=2,c2+a2=2,则ab+bc+ca的最小值为()A.﹣B.﹣C.﹣﹣ D.+二.解答题(共25小题)6.(2007•重庆)已知各项均为正数的数列{a n}的前n项和满足S1>1,且6S n=(a n+1)(a n+2),n∈N*.(1)求{a n}的通项公式;(2)设数列{b n}满足,并记T n为{b n}的前n项和,求证:3T n+1>log2(a n+3),n∈N*.7.(2007•上海)如果有穷数列a1,a2,a3,…,a m(m为正整数)满足条件a1=a m,a2=a m﹣1,…,a m=a1,即a i=a m﹣i+1(i=1,2,…,m),我们称其为“对称数列”.例如,数列1,2,5,2,1与数列8,4,2,2,4,8都是“对称数列”.(1)设{b n}是7项的“对称数列”,其中b1,b2,b3,b4是等差数列,且b1=2,b4=11.依次写出{b n}的每一项;(2)设{c n}是49项的“对称数列”,其中c25,c26,…,c49是首项为1,公比为2的等比数列,求{c n}各项的和S;(3)设{d n}是100项的“对称数列”,其中d51,d52,…,d100是首项为2,公差为3的等差数列.求{d n}前n项的和S n(n=1,2,…,100).8.(2007•福建)数列{a n}的前N项和为S n,a1=1,a n+1=2S n(n∈N*).(Ⅰ)求数列{a n}的通项a n;(Ⅱ)求数列{na n}的前n项和T n.9.(2007•上海)若有穷数列a1,a2…a n(n是正整数),满足a1=a n,a2=a n﹣1…a n=a1即a i=a n (i是正整数,且1≤i≤n),就称该数列为“对称数列”.﹣i+1(1)已知数列{b n}是项数为7的对称数列,且b1,b2,b3,b4成等差数列,b1=2,b4=11,试写出{b n}的每一项(2)已知{c n}是项数为2k﹣1(k≥1)的对称数列,且c k,c k+1…c2k﹣1构成首项为50,公差为﹣4的等差数列,数列{c n}的前2k﹣1项和为S2k﹣1,则当k为何值时,S2k﹣1取到最大值?最大值为多少?(3)对于给定的正整数m>1,试写出所有项数不超过2m的对称数列,使得1,2,22…2m﹣1成为数列中的连续项;当m>1500时,试求其中一个数列的前2008项和S.200810.(2006•北京)设等差数列{a n}的首项a1及公差d都为整数,前n项和为S n.(Ⅰ)若a11=0,S14=98,求数列{a n}的通项公式;(Ⅱ)若a1≥6,a11>0,S14≤77,求所有可能的数列{a n}的通项公式.11.(2006•山东)已知数列{a n}中,,点(n,2a n+1﹣a n)在直线y=x上,其中n=1,2,3….(Ⅰ)令b n=a n+1﹣a n﹣1,求证数列{b n}是等比数列;(Ⅱ)求数列{a n}的通项;(Ⅲ)设S n、T n分别为数列{a n}、{b n}的前n项和,是否存在实数λ,使得数列为等差数列?若存在,试求出λ.若不存在,则说明理由.12.(2006•山东)已知a1=2,点(a n,a n+1)在函数f(x)=x2+2x的图象上,其中n=1,2,3,…(1)证明数列{lg(1+a n)}是等比数列;(2)设T n=(1+a1)(1+a2)…(1+a n),求T n及数列{a n}的通项;(3)记,求数列{b n}的前n项S n,并证明.13.(2006•天津)已知数列{x n},{y n}满足x1=x2=1,y1=y2=2,并且(λ为非零参数,n=2,3,4,…).(1)若x1,x3,x5成等比数列,求参数λ的值;(2)当λ>0时,证明;当λ>1时,证明:.14.(2006•天津)已知数列{x n}满足x1=x2=1并且为非零参数,n=2,3,4,…).(1)若x1、x3、x5成等比数列,求参数λ的值;(2)设0<λ<1,常数k∈N*且k≥3,证明.15.(2005•山东)已知数列{a n}的首项a1=5,前n项和为S n,且S n+1=2S n+n+5(n∈N*)(I)证明数列{a n+1}是等比数列;(II)令f(x)=a1x+a2x2+…+a n x n,求函数f(x)在点x=1处的导数f'(1)并比较2f'(1)与23n2﹣13n的大小.16.(2005•重庆)数列{a n}满足a1=1且8a n+1a n﹣16a n+1+2a n+5=0(n≥1).记.(Ⅰ)求b1、b2、b3、b4的值;(Ⅱ)求数列{b n}的通项公式及数列{a n b n}的前n项和S n.17.(2004•上海)设P1(x1,y1),P1(x2,y2),…,P n(x n,y n)(n≥3,n∈N)是二次曲线C上的点,且a1=|OP1|2,a2=|OP2|2,…,a n=|OP n|2构成了一个公差为d(d≠0)的等差数列,其中O是坐标原点.记S n=a1+a2+…+a n.(1)若C的方程为=1,n=3.点P1(10,0)及S3=255,求点P3的坐标;(只需写出一个)(2)若C的方程为(a>b>0).点P1(a,0),对于给定的自然数n,当公差d变化时,求S n的最小值;(3)请选定一条除椭圆外的二次曲线C及C上的一点P1,对于给定的自然数n,写出符合条件的点P1,P2,…P n存在的充要条件,并说明理由.18.(2003•上海)已知数列{a n}(n为正整数)是首项是a1,公比为q的等比数列.(1)求和:a1C20﹣a2C21+a3C22,a1C30﹣a2C31+a3C32﹣a4C33;(2)由(1)的结果归纳概括出关于正整数n的一个结论,并加以证明.(3)设q≠1,S n是等比数列{a n}的前n项和,求:S1C n0﹣S2C n1+S3C n2﹣S4C n3+…+(﹣1)n S n+1C n n.19.(2014秋•周村区校级月考)已知数列{b n}是等差数列,b1=1,b1+b2+…+b10=145.(1)求数列{b n}的通项b n;(2)设数列{a n}的通项a n=log a(1+)(其中a>0,且a≠1),记S n是数列{a n}的前n项和.试比较S n与log a b n+1的大小,并证明你的结论.20.(2010•重庆)在数列{a n}中,a1=1,a n+1=ca n+c n+1(2n+1)(n∈N*),其中实数c≠0.(1)求{a n}的通项公式;(2)若对一切k∈N*有a2k>a zk﹣1,求c的取值范围.21.(2010•安徽模拟)已知函数y=f(x)的图象是自原点出发的一条折线,当n≤y≤n+1(n=0,1,2,…)时,该图象是斜率为b n的线段(其中正常数b≠1),设数列|x n|由f(x n)=n(n=1,2,…)定义.(1)求x1、x2和x n的表达式;(2)求f(x)的表达式,并写出其定义域;(3)证明:y=f(x)的图象与y=x的图象没有横坐标大于1的交点.22.(2009•陕西)已知数列{x n}满足x1=,x n+1=,n∈N*;(1)猜想数列{x2n}的单调性,并证明你的结论;(Ⅱ)证明:.23.(2009•上海)已知{a n}是公差为d的等差数列,{b n}是公比为q的等比数列(1)若a n=3n+1,是否存在m,n∈N*,有a m+a m+1=a k?请说明理由;(2)若b n=aq n(a、q为常数,且aq≠0)对任意m存在k,有b m•b m+1=b k,试求a、q满足的充要条件;(3)若a n=2n+1,b n=3n试确定所有的p,使数列{b n}中存在某个连续p项的和式数列中{a n}的一项,请证明.24.(2008•北京)对于每项均是正整数的数列A:a1,a2,…,a n,定义变换T1,T1将数列A 变换成数列T1(A):n,a1﹣1,a2﹣1,…,a n﹣1;对于每项均是非负整数的数列B:b1,b2,…,b m,定义变换T2,T2将数列B各项从大到小排列,然后去掉所有为零的项,得到数列T2(B);又定义S(B)=2(b1+2b2+…+mb m)+b12+b22+…+b m2.设A0是每项均为正整数的有穷数列,令A k+1=T2(T1(A k))(k=0,1,2,…).(Ⅰ)如果数列A0为5,3,2,写出数列A1,A2;(Ⅱ)对于每项均是正整数的有穷数列A,证明S(T1(A))=S(A);(Ⅲ)证明:对于任意给定的每项均为正整数的有穷数列A0,存在正整数K,当k≥K时,S (A k+1)=S(A k).25.(2007•四川)已知函数f(x)=x2﹣4,设曲线y=f(x)在点(x n,f(x n))处的切线与x轴的交点为(x n+1,0)(n∈N*),其中x1为正实数.(Ⅰ)用x n表示x n+1;(Ⅱ)证明:对一切正整数n,x n+1≤x n的充要条件是x1≥2(Ⅲ)若x1=4,记,证明数列{a n}成等比数列,并求数列{x n}的通项公式.26.(2006•江苏)设数列{a n}、{b n}、{c n}满足:b n=a n﹣a n+2,c n=a n+2a n+1+3a n+2(n=1,2,3,…),证明:{a n}为等差数列的充分必要条件是{c n}为等差数列且b n≤b n+1(n=1,2,3,…)27.(2006•辽宁)已知函数f(x)=,其中a,b,c是以d为公差的等差数列,且a>0,d >0.设x0为f(x)的极小值点,在[1﹣]上,f′(x)在x1处取得最大值,在x2处取得最小值,将点(x0,f(x0)),(x1,f′(x1)),(x2,f′(x2,f(x2))依次记为A,B,C.(Ⅰ)求x0的值;(Ⅱ)若△ABC有一边平行于x轴,且面积为2+,求a,d的值.28.(2005•江西)已知数列{a n}的各项都是正数,且满足:a0=1,a n+1=(4﹣a n),n∈N.(1)证明a n<a n+1<2,n∈N;(2)求数列{a n}的通项公式a n.29.(2003•江苏)设a>0,如图,已知直线l:y=ax及曲线C:y=x2,C上的点Q1的横坐标为a1(0<a1<a).从C上的点Q n(n≥1)作直线平行于x轴,交直线l于点P n+1,再从点P n+1作直线平行于y轴,交曲线C于点Q n+1.Q n(n=1,2,3,…)的横坐标构成数列{a n}.(Ⅰ)试求a n+1与a n的关系,并求{a n}的通项公式;(Ⅱ)当时,证明;(Ⅲ)当a=1时,证明.30.(1977•北京)在2和30中间插入两个正数,这两个正数插入后使前三个数成等比数列,后三个数成等差数列,求插入的两个正数?2015年10月18日姚杰的高中数学组卷参考答案与试题解析一.选择题(共5小题)1.(2013•黑龙江)若存在正数x使2x(x﹣a)<1成立,则a的取值范围是()A.(﹣∞,+∞) B.(﹣2,+∞)C.(0,+∞)D.(﹣1,+∞)考点:其他不等式的解法;函数单调性的性质.专题:不等式的解法及应用.分析:转化不等式为,利用x是正数,通过函数的单调性,求出a的范围即可.解答:解:因为2x(x﹣a)<1,所以,函数y=是增函数,x>0,所以y>﹣1,即a>﹣1,所以a的取值范围是(﹣1,+∞).故选:D.点评:本题考查不等式的解法,函数单调性的应用,考查分析问题解决问题的能力.2.(2012•陕西)小王从甲地到乙地的往返时速分别为a和b(a<b),其全程的平均时速为v,则()A.a<v<B.v= C.<v<D.v=考点:基本不等式.专题:计算题;压轴题.分析:设小王从甲地到乙地按时速分别为a和b,行驶的路程S,则v==及0<a<b,利用基本不等式及作差法可比较大小解答:解:设小王从甲地到乙地按时速分别为a和b,行驶的路程S则v==∵0<a<b∴a+b>0∴∵v﹣a===∴v>a综上可得,故选A点评:本题主要考查了基本不等式在实际问题中的应用,比较法中的比差法在比较大小中的应用.3.(2008•江西)已知函数f(x)=2x2+(4﹣m)x+4﹣m,g(x)=mx,若对于任一实数x,f (x)与g(x)的值至少有一个为正数,则实数m的取值范围是()A.[﹣4,4] B.(﹣4,4)C.(﹣∞,4)D.(﹣∞,﹣4)考点:一元二次不等式的应用.专题:压轴题.分析:对函数f(x)判断△=m2﹣16<0时一定成立,可排除D,再对特殊值m=4和﹣4进行讨论可得答案.解答:解:当△=m2﹣16<0时,即﹣4<m<4,显然成立,排除D当m=4,f(0)=g(0)=0时,显然不成立,排除A;当m=﹣4,f(x)=2(x+2)2,g(x)=﹣4x显然成立,排除B;故选C.点评:本题主要考查对一元二次函数图象的理解.对于一元二次不等式,一定要注意其开口方向、对称轴和判别式.4.(2006•重庆)若a,b,c>0且,则2a+b+c的最小值为()A. B. C. D.考点:基本不等式在最值问题中的应用.专题:压轴题.分析:已知条件中出现bc,待求式子中有b+c,引导找b,c的不等式解答:解:若a,b,c>0且,所以,∴,则(2a+b+c)≥,故选项为D.点评:本题考查由已知与待求的式子凑出和的形式.5.(2004•山东)a2+b2=1,b2+c2=2,c2+a2=2,则ab+bc+ca的最小值为()A.﹣B.﹣C.﹣﹣ D.+考点:基本不等式.专题:计算题;压轴题.分析:先把题设中的三个等式联立可求得a,b和c,再把它们的值代入所求代数式,即可得解.解答:解:∵b2+c2=2,c2+a2=2,∴b2+c2=c2+a2∴b2=a2又a2+b2=1,所以当a=b=,c=﹣时ab+bc+ca有最小值为:×+×(﹣)+×(﹣)=﹣,ab+bc+ca的最小值为﹣,故选B.点评:本题解题的关键是通过已知条件求得a,b和c值,然后代入即可.二.解答题(共25小题)6.(2007•重庆)已知各项均为正数的数列{a n}的前n项和满足S1>1,且6S n=(a n+1)(a n+2),n∈N*.(1)求{a n}的通项公式;(2)设数列{b n}满足,并记T n为{b n}的前n项和,求证:3T n+1>log2(a n+3),n∈N*.考点:数列的求和;等差数列的通项公式;不等式的证明.专题:计算题;证明题;压轴题.分析:(1)先根据题设求得a,进而根据a n+1=S n+1﹣S n整理得(a n+1+a n)(a n+1﹣a n﹣3)=0求1得a n+1﹣a n=3,判断出{a n}是公差为3,首项为2的等差数列,则数列的通项公式可得.(2)把(1)中的a n代入可求得b n,进而求得前n项的和T n,代入到3T n+1﹣log2(a n+3)中,令,进而判断出f(n+1)>f(n),从而推断出3T n+1﹣log2(a n+3)=log2f(n)>0,原式得证.解答:解:(1)由,解得a=1或a1=2,由假设a1=S1>1,因此a1=2,1又由,得(a n+1+a n)(a n+1﹣a n﹣3)=0,即a n+1﹣a n﹣3=0或a n+1=﹣a n,因a n>0,故a n+1=﹣a n不成立,舍去因此a n+1﹣a n=3,从而{a n}是公差为3,首项为2的等差数列,故{a n}的通项为a n=3n﹣1(2)证明:由可解得;从而因此令,则因(3n+3)3﹣(3n+5)(3n+2)2=9n+7>0,故f(n+1)>f(n)特别地,从而3T n+1﹣log2(a n+3)=log2f(n)>0即3T n+1>log2(a n+3)点评:本题主要考查了等差数列的通项公式.涉及了不等式的证明,综合考查了学生对数列知识的灵活运用.7.(2007•上海)如果有穷数列a1,a2,a3,…,a m(m为正整数)满足条件a1=a m,a2=a m﹣1,…,a m=a1,即a i=a m﹣i+1(i=1,2,…,m),我们称其为“对称数列”.例如,数列1,2,5,2,1与数列8,4,2,2,4,8都是“对称数列”.(1)设{b n}是7项的“对称数列”,其中b1,b2,b3,b4是等差数列,且b1=2,b4=11.依次写出{b n}的每一项;(2)设{c n}是49项的“对称数列”,其中c25,c26,…,c49是首项为1,公比为2的等比数列,求{c n}各项的和S;(3)设{d n}是100项的“对称数列”,其中d51,d52,…,d100是首项为2,公差为3的等差数列.求{d n}前n项的和S n(n=1,2,…,100).考点:数列的求和;数列的概念及简单表示法.专题:计算题;压轴题;新定义.分析:(1)由b,b2,b3,b4为等差数列,且b1=2,b4=11,先求b1,b2,b3,b4,然后由对1称数列的特点可写出数列的各项.(2)由c25,c26,…,c49是首项为1,公比为2的等比数列,先求出c25,c26,…,c49通项,结合对称数列的对应项相等的特点,可知前面的各项,结合等比数列的求和公式可求出数列的和(3)由d51,d52,…,d100是首项为2,公差为3的等差数列,可求该数列d51,d52,…,d100的通项,由对称数列的特点,结合等差数列的特点,求数列的和解答:解:(1)设数列{b}的公差为d,则b4=b1+3d=2+3d=11,解得d=3,n∴数列{b n}为2,5,8,11,8,5,2.(2)S=c1+c2+…+c49=2(c25+c26+…+c49)﹣c25=2(1+2+22+…+224)﹣1=2(225﹣1)﹣1=226﹣3=.(3)d51=2,d100=2+3×(50﹣1)=149.由题意得d1,d2,,d50是首项为149,公差为﹣3的等差数列.当n≤50时,S n=d1+d2+…+d n=.当51≤n≤100时,S n=d1+d2+…+d n=S50+(d51+d52+…+d n)==综上所述,点评:本题以新定义对称数列为切入点,运用的知识都是数列的基本知识:等差数列的通项及求和公式,等比数列的通项及求和公式,还体现了分类讨论在解题中的应用.8.(2007•福建)数列{a n}的前N项和为S n,a1=1,a n+1=2S n(n∈N*).(Ⅰ)求数列{a n}的通项a n;(Ⅱ)求数列{na n}的前n项和T n.考点:数列的求和;数列递推式.专题:计算题;压轴题.分析:(I)利用递推公式a=2S n把已知转化为S n+1与S n之间的关系,从而确定数列a n的通n+1项;(II)由(I)可知数列a n从第二项开始的等比数列,设b n=n则数列b n为等差数列,所以对数列n•a n的求和应用乘“公比”错位相减.解答:解:(I)∵a=2S n,n+1∴S n+1﹣S n=2S n,∴=3.又∵S1=a1=1,∴数列{S n}是首项为1、公比为3的等比数列,S n=3n﹣1(n∈N*).∴当n≥2时,a n﹣2S n﹣1=2•3n﹣2(n≥2),∴a n=(II)T n=a1+2a2+3a3+…+na n,当n=1时,T1=1;当n≥2时,Tn=1+4•30+6•31+…+2n•3n﹣2,①3T n=3+4•31+6•32+…+2n•3n﹣1,②①﹣②得:﹣2Tn=﹣2+4+2(31+32+…+3n﹣2)﹣2n•3n﹣1=2+2•=﹣1+(1﹣2n)•3n﹣1∴Tn=+(n﹣)3n﹣1(n≥2).又∵Tn=a1=1也满足上式,∴Tn=+(n﹣)3n﹣1(n∈N*)点评:本小题考查数列的基本知识,考查等比数列的概念、通项公式及数列的求和,考查分类讨论及化归的数学思想方法,以及推理和运算能力.9.(2007•上海)若有穷数列a1,a2…a n(n是正整数),满足a1=a n,a2=a n﹣1…a n=a1即a i=a n(i是正整数,且1≤i≤n),就称该数列为“对称数列”.﹣i+1(1)已知数列{b n}是项数为7的对称数列,且b1,b2,b3,b4成等差数列,b1=2,b4=11,试写出{b n}的每一项(2)已知{c n}是项数为2k﹣1(k≥1)的对称数列,且c k,c k+1…c2k﹣1构成首项为50,公差为﹣4的等差数列,数列{c n}的前2k﹣1项和为S2k﹣1,则当k为何值时,S2k﹣1取到最大值?最大值为多少?(3)对于给定的正整数m>1,试写出所有项数不超过2m的对称数列,使得1,2,22…2m﹣1成为数列中的连续项;当m>1500时,试求其中一个数列的前2008项和S.2008考点:数列与函数的综合.专题:计算题;压轴题;新定义.分析:(1)设{b}的公差为d,由b1,b2,b3,b4成等差数列求解d从而求得数列{b n},n(2)先得到S2k﹣1=﹣4(k﹣13)2+4×132﹣50,用二次函数求解,(3)按照1,2,22…2m﹣1是数列中的连续项按照定义,用组合的方式写出来所有可能的数列,再按其数列的规律求前n项和取符合条件的一组即可.解答:解:(1)设{b}的公差为d,则b4=b1+3d=2+3d=11,解得d=3,∴数列{b n}为2,5,8,n11,8,5,2.(2)S2k﹣1=c1+c2+…+c k﹣1+c k+c k+1+…+c2k﹣1=2(c k+c k+1+…+c2k﹣1)﹣c k,S2k﹣1=﹣4(k﹣13)2+4×132﹣50,∴当k=13时,S2k﹣1取得最大值.S2k﹣1的最大值为626.(3)所有可能的“对称数列”是:①1,2,22,2m﹣2,2m﹣1,2m﹣2,22,2,1;②1,2,22,2m﹣2,2m﹣1,2m﹣1,2m﹣2,22,2,1;③2m﹣1,2m﹣2,22,2,1,2,22,2m﹣2,2m﹣1;④2m﹣1,2m﹣2,22,2,1,1,2,22,2m﹣2,2m﹣1.对于①,当m≥2008时,S2008=1+2+22+…+22007=22008﹣1.当1500<m≤2007时,S2008=1+2+…+2m﹣2+2m﹣1+2m﹣2+…+22m﹣2009=2m﹣1+2m﹣1﹣22m﹣2009=2m+2m﹣1﹣22m﹣2009﹣1.对于②,当m≥2008时,S2008=22008﹣1.当1500<m≤2007时,S2008=2m+1﹣22m﹣2008﹣1.对于③,当m≥2008时,S2008=2m﹣2m﹣2008.当1500<m≤2007时,S2008=2m+22009﹣m﹣3.对于④,当m≥2008时,S2008=2m﹣2m﹣2008.当1500<m≤2007时,S2008=2m+22008﹣m﹣2.点评:本题一道新定义题,这样的题做法是严格按照定义要求,将其转化为已知的知识和方法去解决,本题涉及到等差数列的通项公式,等比数列求和,构造数列等知识.10.(2006•北京)设等差数列{a n}的首项a1及公差d都为整数,前n项和为S n.(Ⅰ)若a11=0,S14=98,求数列{a n}的通项公式;(Ⅱ)若a1≥6,a11>0,S14≤77,求所有可能的数列{a n}的通项公式.考点:等差数列的通项公式;等差数列的性质.专题:计算题;压轴题.分析:(Ⅰ)本题是关于等差数列的基本量的运算,设出题目中的首项和公差,根据第十一项和前十四项的和两个数据列出方程组,解出首项和公差的值,写出数列的通项.(Ⅱ)根据三个不等关系,写出关于首项和公差的不等式组,解不等式组,得到一个范围,根据{a n}的首项a1及公差d都为整数得到所有可能的结果,写出通项公式.解答:解:(Ⅰ)由S=98得2a1+13d=14,14又a11=a1+10d=0,∴解得d=﹣2,a1=20.∴{a n}的通项公式是a n=22﹣2n,(Ⅱ)由得即由①+②得﹣7d<11.即d>﹣.由①+③得13d≤﹣1即d≤﹣于是﹣<d≤﹣又d∈Z,故d=﹣1 ④将④代入①②得10<a1≤12.又a1∈Z,故a1=11或a1=12.∴所有可能的数列{a n}的通项公式是a n=12﹣n和a n=13﹣n,点评:本题考查数列的基本量,是一个综合问题,题目中结合不等式和方程的解法,根据题目所给的关系,写出关于数列的首项和公差的方程组,解方程组得到公差和首相,再写出通项公式.11.(2006•山东)已知数列{a n}中,,点(n,2a n+1﹣a n)在直线y=x上,其中n=1,2,3….(Ⅰ)令b n=a n+1﹣a n﹣1,求证数列{b n}是等比数列;(Ⅱ)求数列{a n}的通项;(Ⅲ)设S n、T n分别为数列{a n}、{b n}的前n项和,是否存在实数λ,使得数列为等差数列?若存在,试求出λ.若不存在,则说明理由.考点:等比关系的确定;等差关系的确定;数列的求和;数列递推式.专题:计算题;压轴题.分析:(Ⅰ)把点(n、2a﹣a n)代入直线方程可得2a n+1=a n+n代入b n和b n+1中两式相除结n+1果为常数,故可判定{b n}为等比数列.(Ⅱ)由(Ⅰ)可求得数列{b n}的通项公式,进而可求得数列的前n项和,进而可得{a n}的通项公式.(Ⅲ)把数列a n}、{b n}通项公式代入a n+2b n,进而得到S n+2T的表达式代入T n,进而推断当且仅当λ=2时,数列是等差数列.解答:解:(Ⅰ)由已知得,∵,又b n=a n+1﹣a n﹣1,b n+1=a n+2﹣a n+1﹣1,∴===,∴{b n}是以为首项,以为公比的等比数列.(Ⅱ)由(Ⅰ)知,,∴,∴,,…∴,将以上各式相加得:∴,∴.∴.(Ⅲ)存在λ=2,使数列是等差数列.由(Ⅰ)、(Ⅱ)知,a n+2b n=n﹣2∴=又∴当且仅当λ=2时,数列是等差数列.点评:本题主要考查了等比关系和等差关系的确定.要利用好a和a n﹣1的关系.n12.(2006•山东)已知a1=2,点(a n,a n+1)在函数f(x)=x2+2x的图象上,其中n=1,2,3,…(1)证明数列{lg(1+a n)}是等比数列;(2)设T n=(1+a1)(1+a2)…(1+a n),求T n及数列{a n}的通项;(3)记,求数列{b n}的前n项S n,并证明.考点:等比关系的确定;数列的求和;数列递推式.专题:计算题;证明题;压轴题.分析:(1)把点(a,a n+1)代入函数式,整理得a n+1+1=(a n+1)2,两边取对数整理得,进n而判断{lg(1+a n)}是公比为2的等比数列.(2)根据等比数列的通项公式求的数列{lg(1+a n)}的通项公式,进而求的a n代入到T n=(1+a1)(1+a2)(1+a n)求的T n.(3)把(2)求的a n代入到,用裂项法求和求得项,又,原式得证.解答:解:(Ⅰ)由已知a=a n2+2a n,n+1∴a n+1+1=(a n+1)2∵a1=2∴a n+1>1,两边取对数得lg(1+a n+1)=2lg(1+a n),即∴{lg(1+a n)}是公比为2的等比数列.(Ⅱ)由(Ⅰ)知lg(1+a n)=2n﹣1•lg(1+a1)=∴∴∴T n=(1+a1)(1+a2)(1+a n)==31+2+22+…+2n﹣1=(Ⅲ)∵a n+1=a n2+2a n∴a n+1=a n(a n+2)∴∴又∴∴S n=b1+b2+…+b n==∵∴又∴.点评:本题主要考查了等比关系的确定和数列的求和问题.考查了学生对数列知识的综合掌握.13.(2006•天津)已知数列{x n},{y n}满足x1=x2=1,y1=y2=2,并且(λ为非零参数,n=2,3,4,…).(1)若x1,x3,x5成等比数列,求参数λ的值;(2)当λ>0时,证明;当λ>1时,证明:.考点:等比数列的性质;不等式的证明.专题:计算题;证明题;压轴题.分析:(1)根据把x=x2=1代入求得x3,同理可求得x4=λ3,x5=λ6,进而根据等比中项的1性质求得λ.(2)根据根据不等式性质可知有≥…≥=λn﹣1;=…=λn﹣1进而可得出,再看当λ>1时得出≥,即≥\frac{{x}_{n+1}}{{x}_{n}},代入\frac{{x}_{1}﹣{y}_{1}}{{x}_{2}﹣.{y}_{2}}+\frac{{x}_{2}﹣{y}_{2}}{{x}_{3}﹣{y}_{3}}+…+\frac{{x}_{n}﹣{y}_{n}}{{x}_{n+1}﹣{y}_{n+1}},原式得证解答:(1)解:由已知x=x2=1,且1∴x3=λ,同理可知x4=λ3,x5=λ6,若x1、x3、x5成等比数列,则x32=x1x5,即λ2=λ6.而λ≠0,解得λ=±1.(2)证明:(Ⅰ)由已知λ>0,x1=x2=1及y1=y2=2,可得x n>0,y n>0.由不等式的性质,有≥…≥=λn﹣1;另一方面,=…=λn﹣1.因此,=(n∈N*).故(n∈N*).(Ⅱ)当λ>1时,由(Ⅰ)可知,y n>x n≥1(n∈N*).又由(Ⅰ)(n∈N*),则≥,从而≥(n∈N*).∴点评:本题以数列的递推关系为载体,结合等比数列的等比中项及前n项和的公式,运用不等式的性质及证明等基础知识进行运算和推理论证.14.(2006•天津)已知数列{x n}满足x1=x2=1并且为非零参数,n=2,3,4,…).(1)若x1、x3、x5成等比数列,求参数λ的值;(2)设0<λ<1,常数k∈N*且k≥3,证明.考点:等比数列的性质;等差数列的前n项和;数列的应用;不等式的证明.专题:计算题;证明题;压轴题.分析:(1)令n=2,3,4代入到为非零参数,n=2,3,4,…)中得到x、x3、x5若它们成1等比数列则根据x32=x1x5,即求出λ即可;(2)设,由已知,数列{a n}是以为首项、λ为公比的等比数列,化简不等式左边由0<λ<1,常数k∈N*且k≥3得证.解答:解:(1)解:由已知x=x2=1,且.1若x1、x3、x5成等比数列,则x32=x1x5,即λ2=λ6.而λ≠0,解得λ=±1.(2)证明:设,由已知,数列{a n}是以为首项、λ为公比的等比数列,故,则=λn+k﹣2.λn+k﹣3λn﹣1.因此,对任意n∈N*,===.当k≥3且0<λ<1时,,所以.点评:本小题以数列的递推关系为载体,主要考查等比数列的等比中项及前n项和公式、等差数列前n项和公式、不等式的性质及证明等基础知识,考查运算能力和推理论证能力.15.(2005•山东)已知数列{a n}的首项a1=5,前n项和为S n,且S n+1=2S n+n+5(n∈N*)(I)证明数列{a n+1}是等比数列;(II)令f(x)=a1x+a2x2+…+a n x n,求函数f(x)在点x=1处的导数f'(1)并比较2f'(1)与23n2﹣13n的大小.考点:等比关系的确定;导数的运算;不等式比较大小.专题:综合题;压轴题.分析:(I)根据a=S n+1﹣S n,得到n≥2时a n+1和a n关系式即a n+1=2a n+1,两边同加1得到n+1a n+1+1=2(a n+1),最后验证n=1时等式也成立,进而证明数列{a n+1}是等比数列.(II)通过(I){a n+1}的首项为5公比为2求得数列a n+1的通项公式,进而求得a n 的通项公式,代入f(x)进而求出f'(x),再求得f‘(1),进而求得2f‘(1).要比较2f'(1)与23n2﹣13n的大小,只需看2f′(1)﹣(23n2﹣13n)于0的关系.解答:解:(I)由已知S=2S n+n+5(n∈N*),n+1可得n≥2,S n=2S n﹣1+n+4两式相减得S n+1﹣S n=2(S n﹣S n﹣1)+1即a n+1=2a n+1从而a n+1+1=2(a n+1)当n=1时S2=2S1+1+5所以a2+a1=2a1+6又a1=5所以a2=11从而a2+1=2(a1+1)故总有a n+1+1=2(a n+1),n∈N*又a1=5,a1+1≠0从而=2即数列{a n+1}是等比数列;(II)由(I)知a n=3×2n﹣1因为f(x)=a1x+a2x2+…+a n x n所以f′(x)=a1+2a2x+…+na n x n﹣1从而f′(1)=a1+2a2++na n=(3×2﹣1)+2(3×22﹣1)+…+n(3×2n﹣1)=3(2+2×22++n×2n)﹣(1+2++n)=3(n﹣1)•2n+1﹣+6.由上2f′(1)﹣(23n2﹣13n)=12(n﹣1)•2n﹣12(2n2﹣n﹣1)=12(n﹣1)•2n﹣12(n﹣1)(2n+1)=12(n﹣1)[2n﹣(2n+1)]①当n=1时,①式=0所以2f'(1)=23n2﹣13n;当n=2时,①式=﹣12<0所以2f'(1)<23n2﹣13n当n≥3时,n﹣1>0又2n=(1+1)n=C n0+C n1++C n n﹣1+C n n≥2n+2>2n+1所以(n﹣1)[2n﹣(2n+1)]>0即①>0从而2f′(1)>23n2﹣13n.点评:本题主要考查了数列中等比关系的确定.往往可以通过,q为常数的形式来确定.16.(2005•重庆)数列{a n}满足a1=1且8a n+1a n﹣16a n+1+2a n+5=0(n≥1).记.(Ⅰ)求b1、b2、b3、b4的值;(Ⅱ)求数列{b n}的通项公式及数列{a n b n}的前n项和S n.考点:数列的求和;数列递推式.专题:计算题;压轴题.分析:(法一)(I)由a结合递推公式可求a2,a3,a4,代入求b1,b2,b3,b41(II)先由(I)中求出的b1,b2,b3,b4的值,观察规律可猜想数列为等比数列,进而可求b n,结合⇒,从而猜想得以证明,代入求出a n•b n,进而求出前n和s n(法二)(I)代入递推公式可得,代入可求b1,b2,b3,b4(II)利用(I)中的递推关系个构造数列为等比数列,从而可求b n,s n(法三)(I)同法一(II)先由(I)中求出的b1,b2,b3,b4的值,观察规律可猜想数列b n+1﹣b n为等比数列,仿照法一再证明猜想,根据求通项的方法求b n,进一步求s n解答:解:法一:(I)a1=1,故;,故;,故;,故.(II)因,故猜想是首项为,公比q=2的等比数列.因a n≠2,(否则将a n=2代入递推公式会导致矛盾)故.因,故确是公比为q=2的等比数列.因,故,,由得,故S n=a1b1+a2b2+…+a n b n===法二:(Ⅰ)由得,代入递推关系8a n+1a n﹣16a n+1+2a n+5=0,整理得,即,由a1=1,有b1=2,所以.(Ⅱ)由,所以是首项为,公比q=2的等比数列,故,即.由,得,故S n=a1b1+a2b2+…+a n b n===.法三:(Ⅰ)同解法一(Ⅱ)猜想{b n+1﹣b n}是首项为,公比q=2的等比数列,又因a n≠2,故.因此=;=.因是公比q=2的等比数列,,从而b n=(b n﹣b n﹣1)+(b n﹣1﹣b n﹣2)+…+(b2﹣b1)+b1===.由得,故S n=a1b1+a2b2+…+a n b n===.点评:本题考查了数列的综合运用:递推关系的运用,构造等比求数列通项,累加求通项,归纳推理的运用,综合考查了考生的推理运算能力.17.(2004•上海)设P1(x1,y1),P1(x2,y2),…,P n(x n,y n)(n≥3,n∈N)是二次曲线C上的点,且a1=|OP1|2,a2=|OP2|2,…,a n=|OP n|2构成了一个公差为d(d≠0)的等差数列,其中O是坐标原点.记S n=a1+a2+…+a n.(1)若C的方程为=1,n=3.点P1(10,0)及S3=255,求点P3的坐标;(只需写出一个)(2)若C的方程为(a>b>0).点P1(a,0),对于给定的自然数n,当公差d变化时,求S n的最小值;(3)请选定一条除椭圆外的二次曲线C及C上的一点P1,对于给定的自然数n,写出符合条件的点P1,P2,…P n存在的充要条件,并说明理由.考点:等差数列的性质;数列的求和;椭圆的应用.专题:计算题;压轴题.分析:(1)依题意可分别求得a和a3,进而把椭圆方程和圆的方程联立求得交点即P3的坐1标.(2)根据原点O到二次曲线C:(a>b>0)上各点的最小距离为b,最大距离为a.根据a1=a2,判断d<0,进而根据a n≥b2,求得≤d,进而判断S n在[,0)上递增,进而求得S n的最小值.(3)点P1(a,0),则对于给定的n,点P1,P2,P n存在的充要条件是d>0.根据双曲线的性质可知原点O到双曲线C上各点的距离h的范围,进而根据|OP1|=a2推断点P1,P2,P n存在当且仅当|OP n|2>|OP1|2符合.解答:解:(1)a=|OP1|2=100,由S3=(a1+a3)=255,得a3=|OP3|3=70.1由,得,∴点P3的坐标可以为(2,).(2)原点O到二次曲线C:(a>b>0)上各点的最小距离为b,最大距离为a.∵a1=|OP1|2=a2,∴d<0,且a n=|OP n|2=a2+(n﹣1)d≥b2,∴≤d<0.∵n≥3,>0∴S n=na2+d在[,0)上递增,故S n的最小值为na2+•=.(3)若双曲线C:﹣=1,点P1(a,0),则对于给定的n,点P1,P2,P n存在的充要条件是d>0.∵原点O到双曲线C上各点的距离h∈[|a|,+∞),且|OP1|=a2,∴点P1,P2,P n存在当且仅当|OP n|2>|OP1|2,即d>0.点评:本题主要考查了等差数列的性质.涉及了圆锥曲线和函数的知识,考查了学生综合分析问题和基本的运算能力.18.(2003•上海)已知数列{a n}(n为正整数)是首项是a1,公比为q的等比数列.(1)求和:a1C20﹣a2C21+a3C22,a1C30﹣a2C31+a3C32﹣a4C33;(2)由(1)的结果归纳概括出关于正整数n的一个结论,并加以证明.(3)设q≠1,S n是等比数列{a n}的前n项和,求:S1C n0﹣S2C n1+S3C n2﹣S4C n3+…+(﹣1)n S n+1C n n.考点:数列的求和;等比数列的性质.专题:计算题;证明题;压轴题.分析:(1)利用组合数公式和等比数列的通项公式进行化简,再利用平方差和立方差公式合并.(2)利用归纳推理和(1)的结果进行推理出结论,利用二项式定理从左边到右边证明.(3)由题意知数列{a n}是等比数列,而且q≠1,求出s n代入所给的式子,进行整理和分组,再利用二项式定理求解.解答:解:(1)aC20﹣a2C21+a3C22=a1﹣2a1q+a1q21=a1(1﹣q)2a1C30﹣a2C31+a3C32﹣a4C33=a1(1﹣q)2a1C30﹣a2C31+a3C32﹣a4C33=a1﹣3a1q+3a1q2﹣a1q3=a1(1﹣q)3;(2)归纳概括的结论为:若数列{a n}是首项为a1,公比为q的等比数列,则a1C n0﹣a2C n1+a3C n2﹣a4C n3+…+(﹣1)n a n+1C n n=a1(1﹣q)n,n为正整数证明:a1C n0﹣a2C n1+a3C n2﹣a4C n3+…+(﹣1)n a n+1C n n=a1C n0﹣a1qC n1+a1q2C n2﹣a1q3C n3+…+(﹣1)n a1q n C n n=a1[C n0﹣qC n1+q2C n2﹣q3C n3+…+(﹣1)n q n C n n]=a1(1﹣q)n;∴左边=右边,该结论成立.(3)∵数列{a n}(n为正整数)是首项是a1,公比为q的等比数列,而且q≠1.∴=,∴S1C n0﹣S2C n1+S3C n2﹣S4C n3+…+(﹣1)n S n+1C n n=[(1﹣q)c n0﹣(1﹣q2)c n1+(1﹣q3)c n2﹣(1﹣q4)c n3+…+(﹣1)n(1﹣q n+1)c n n] ==.点评:本题为等比数列和二项式定理的综合应用,还用到组合数公式,计算量大;在化简式子时根据特点进行分组求解,利用二项式定理进行化简.19.(2014秋•周村区校级月考)已知数列{b n}是等差数列,b1=1,b1+b2+…+b10=145.(1)求数列{b n}的通项b n;(2)设数列{a n}的通项a n=log a(1+)(其中a>0,且a≠1),记S n是数列{a n}的前n项和.试比较S n与log a b n+1的大小,并证明你的结论.考点:等差数列的通项公式;数列的求和;数学归纳法.专题:计算题;证明题;压轴题.分析:(1)根据数列{b}是等差数列,建立b1与d的方程组,解之即可;n(2)因此要比较S n与log a b n+1的大小,可先比较(1+1)(1+)(1+)与的大小,利用用数学归纳法证明此式,当a>1时,S n>log a b n+1,当0<a<1时,S n<log a b n+1.解答:解:(1)设数列{b}的公差为d,由题意得n解得所以b n=3n﹣2.(2)由b n=3n﹣2,知S n=log a(1+1)+log a(1+)++log a(1+)=log a[(1+1)(1+)(1+)],log a b n+1=log a.因此要比较S n与log a b n+1的大小,可先比较(1+1)(1+)(1+)与的大小.取n=1有(1+1)>,取n=2有(1+1)(1+)>,由此推测(1+1)(1+)(1+)>.①若①式成立,则由对数函数性质可断定:当a>1时,S n>log a b n+1.当0<a<1时,S n<log a b n+1.下面用数学归纳法证明①式.(ⅰ)当n=1时已验证①式成立.(ⅱ)假设当n=k(k≥1)时,①式成立,即(1+1)(1+)(1+)>.那么,当n=k+1时,(1+1)(1+)(1+)(1+)>(1+)=(3k+2).因为==,所以(3k+2)>.因而(1+1)(1+)(1+)(1+)>.这就是说①式当n=k+1时也成立.由(ⅰ),(ⅱ)知①式对任何正整数n都成立.由此证得:当a>1时,S n>log a b n+1.当0<a<1时,S n<log a b n+1.点评:本小题主要考查等差数列基本概念及其通项求法,考查对数函数性质,考查归纳、推理能力以及用数学归纳法进行论证的能力.20.(2010•重庆)在数列{a n}中,a1=1,a n+1=ca n+c n+1(2n+1)(n∈N*),其中实数c≠0.(1)求{a n}的通项公式;(2)若对一切k∈N*有a2k>a zk﹣1,求c的取值范围.考点:数列递推式;数学归纳法.专题:计算题;压轴题;探究型;归纳法.分析:(1)根据a,a2和a3猜测a n=(n2﹣1)c n+c n﹣1,进而用数学归纳法证明.1(2)把(1)中求得的a n代入a2k>a zk﹣1,整理得(4k2﹣1)c2﹣(4k2﹣4k﹣1)c﹣1>0,分别表示c k和又c k',根据c k<<1求得c≥1,再根据c k'<0,判断出单调递增知c k'≥c1'求得<﹣,最后综合答案可得.解答:解:(1)由a=1,a2=ca1+c23=(22﹣1)c2+c1a3=ca2+c3•5=(32﹣1)c3+c2,猜测a n=(n2﹣1)c n+c n﹣1,下面用数学归纳法证明,当n=1是,等式成立假设当n=k,等式成立即a k=(k2﹣1)c k+c k﹣1,则当n=k+1时a k+1=ca k+c k+1(2k+1)=(k2+2k)c k+1+c k=[(k+1)2﹣1]c k+1+c k,综上a n=(n2﹣1)c n+c n﹣1,对任意n∈N都成立.(2)由a2k>a zk﹣1得[(2k)2﹣1]c2k+c2k﹣1>[(2k﹣1)2﹣1]c2k﹣1+c2k﹣2,因c2k﹣2>0,所以(4k2﹣1)c2﹣(4k2﹣4k﹣1)c﹣1>0解此不等式得c>c k,或c<c k',其中c k=c k'=易知c k=1又由<=4k2+1,知c k<<1因此由c>c k对一切k∈N成立得c≥1又c k'=<0,可知单调递增,故c k'≥c1'对一切k∈N*成立,因此由c<c k'对一切k∈N*成立得c<﹣从而c的取值范围是(﹣∞,﹣)∪[1,+∞]点评:本题主要考查了数列的递推式.考查了学生综合运用所学知识和实际的运算能力.21.(2010•安徽模拟)已知函数y=f(x)的图象是自原点出发的一条折线,当n≤y≤n+1(n=0,1,2,…)时,该图象是斜率为b n的线段(其中正常数b≠1),设数列|x n|由f(x n)=n(n=1,2,…)定义.(1)求x1、x2和x n的表达式;(2)求f(x)的表达式,并写出其定义域;(3)证明:y=f(x)的图象与y=x的图象没有横坐标大于1的交点.考点:数列的极限.专题:综合题;压轴题.分析:(1)依题意f(0)=0,又由f(x)=1,进而利用斜率公式得x1=1,再由当n≤y≤n+11(n=0,1,2,…)时,该图象是斜率为b n的线段(其中正常数b≠1),可得x n的递推关系,再利用累加法求得x n的表达式.(2)先求出f(x)的表达式,再根据b的取值情况分别求得f(x)的定义域.(3)法1:分情况用数学归纳法证明.法2:分情况利用当x n<x≤x n+1时有f(x)﹣f(x n)=b n(x﹣x0)>x﹣x n(n≥1),从而f(x)﹣x>f(x n)﹣x n.进而得解.解答:解:(1)依题意f(0)=0,又由f(x)=1,当0≤y≤1时,函数y=f(x)的图象是1斜率为b0=1的线段,故由得x1=1.又由f(x2)=2,当1≤y≤2时,函数y=f(x)的图象是斜率为b的线段,故由,即得.。
高考数学压轴专题大同备战高考《不等式》难题汇编含答案解析

数学高考《不等式》复习资料一、选择题1.抛物线的焦点为F ,准线为l ,A ,B 是抛物线上的两个动点,且满足23AFB π∠=,设线段AB 的中点M 在l 上的投影为N ,则MN AB 的最大值是( )A 3B 3C 3D 3【答案】B 【解析】 【分析】 【详解】试题分析:设,A B 在直线l 上的投影分别是11,A B ,则1AF AA =,1BF BB =,又M是AB 中点,所以111()2MN AA BB =+,则1112MN AA BB AB AB +=⋅2AF BF AB +=,在ABF ∆中222AB AF BF =+22cos3AF BF π-22AF BF AF BF =++2()AF BF AF BF =+-2()AF BF ≥+2()2AF BF +-23()4AF BF =+,所以22()43AF BF AB+≤,即233AF BF AB +≤,所以33MN AB ≤,故选B .考点:抛物线的性质. 【名师点晴】在直线与抛物线的位置关系问题中,涉及到抛物线上的点到焦点的距离,焦点弦长,抛物线上的点到准线(或与准线平行的直线)的距离时,常常考虑用抛物线的定义进行问题的转化.象本题弦AB 的中点M 到准线的距离首先等于,A B 两点到准线距离之和的一半,然后转化为,A B 两点到焦点F 的距离,从而与弦长AB 之间可通过余弦定理建立关系.2.已知二次函数2()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数都有()0f x ≥,则(1)'(0)f f 的最小值为( ) A .2 B .52C .3D .32【答案】A 【解析】()220{,440a f x acb b ac >≥∴∴≥∆=-≤Q 恒成立,,且0,0c a >> 又()()()2,00,1f x ax b f b f a b c =+∴'='=>++,()()221241111120b f a c ac f b +∴=+≥+≥+=+=' 当且仅当()()120f a c f ='时,不等式取等号,故的最小值为3.若,x y 满足约束条件360601x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则122y x ⎛⎫⋅ ⎪⎝⎭的最小值为( )A .116B .18C .1D .2【答案】A 【解析】 【分析】画出约束条件所表示的可行域,结合指数幂的运算和图象确定出目标函数的最优解,代入即可求解. 【详解】由题意,画出约束条件360601x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩所表示的可行域,如图所示,其中可得(3,1)A -,(5,1)B ,(3,3)C ,因为1222yx x y -⎛⎫⋅= ⎪⎝⎭,令z x y =-,当直线y x z =-经过A 时,z 取得最小值, 所以z 的最小值为min 314z =--=-,则1222yxx y -⎛⎫⋅= ⎪⎝⎭的最小值为41216-=. 故选:A .【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力.4.已知等差数列{}n a 中,首项为1a (10a ≠),公差为d ,前n 项和为n S ,且满足15150a S +=,则实数d 的取值范围是( )A.[; B.(,-∞C.)+∞D.(,)-∞⋃+∞【答案】D 【解析】 【分析】由等差数列的前n 项和公式转化条件得11322a d a =--,再根据10a >、10a <两种情况分类,利用基本不等式即可得解. 【详解】Q 数列{}n a 为等差数列,∴1515455102a d d S a ⨯=+=+,∴()151********a S a a d +++==, 由10a ≠可得11322a d a =--, 当10a >时,1111332222a a d a a ⎛⎫=--=-+≤-= ⎪⎝⎭1a 时等号成立; 当10a <时,11322a d a =--≥=1a =立;∴实数d的取值范围为(,)-∞⋃+∞.故选:D. 【点睛】本题考查了等差数列前n 项和公式与基本不等式的应用,考查了分类讨论思想,属于中档题.5.已知关于x 的不等式()()222240m x m x -+-+>得解集为R ,则实数m 的取值范围是( ) A .()2,6B .()(),26,-∞+∞UC .(](),26,-∞⋃+∞D .[)2,6【答案】D 【解析】 【分析】分20m -=和20m -≠两种情况讨论,结合题意得出关于m 的不等式组,即可解得实数m 的取值范围.【详解】当20m -=时,即当2m =时,则有40>,该不等式恒成立,合乎题意;当20m -≠时,则()()220421620m m m ->⎧⎪⎨∆=---<⎪⎩,解得26m <<. 综上所述,实数m 的取值范围是[)2,6. 故选:D. 【点睛】本题考查利用变系数的二次不等式恒成立求参数,要注意对首项系数是否为零进行分类讨论,考查运算求解能力,属于中等题.6.已知0a b >>,则下列不等式正确的是( ) A .ln ln a b b a ->- B.|||b a < C .ln ln a b b a -<- D.|||b a ->【答案】C 【解析】 【分析】利用特殊值代入法,作差比较法,排除不符合条件的选项,即可求解,得到答案. 【详解】由题意,因为0a b >>,取,1a e b ==,则ln 0,ln a b b a e -=-=,1b a e ==-,可排除A 、D 项;取11,49a b ==711812b a ==,可排除B 项; 因为满足0a b >>条件的排除法,可得A 、B 、D 是错误的. 故选:C . 【点睛】本题主要考查了不等式与不等关系,以及不等式的的基本性质,其中解答中合理赋值,代入排除是解答的关键,着重考查了推理与运算能力.7.已知变量,x y 满足2402400x y x y x +-≥⎧⎪+-≤⎨⎪≥⎩,则24x y --的最小值为( )A.85B .8C .165D .163【答案】D 【解析】 【分析】222424512x y x y ----=⨯+,而222412x y --+表示点(,)x y 到直线240x y --=的距离,作出可行域,数形结合即可得到答案. 【详解】因为222424512x y x y ----=⨯+,所以24x y --可看作为可行域内的动点到直线240x y --=的距离的5倍,如图所示,点44(,)33A 到直线240x y --=的距离d 最小,此时224424333512d -⨯-==+, 所以24x y --1653d =. 故选:D. 【点睛】本题考查目标函数的含绝对值的线性规划问题,考查学生数形结合与转化与化归的思想,是一道中档题.8.若实数x ,y 满足40,30,0,x y x y y --≤⎧⎪-≥⎨⎪≥⎩,则2x y y +=的最大值为( )A .512B .8C .256D .64【答案】C 【解析】 【分析】作出可行域,如下图阴影部分所示,令x y m +=,可知要使2m z =取到最大值,只需m 取到最大值即可,根据图像平移得到答案. 【详解】作出可行域,如下图阴影部分所示,令x y m +=,可知要使2m z =取到最大值,只需m 取到最大值即可, 观察图像可知,当直线x y m +=过点()6,2A 时m 取到最大值8, 故2x yy +=的最大值为256.故选:C .【点睛】本题考查了线性规划问题,画出图像是解题的关键.9.若x ,y 满足约束条件40,20,20,x y x x y -+≥⎧⎪-≤⎨⎪+-≥⎩且z ax y =+的最大值为26a +,则a 的取值范围是( ) A .[1,)-+∞ B .(,1]-∞-C .(1,)-+∞D .(,1)-∞-【答案】A 【解析】 【分析】画出约束条件的可行域,利用目标函数的最值,判断a 的范围即可. 【详解】作出约束条件表示的可行域,如图所示.因为z ax y =+的最大值为26a +,所以z ax y =+在点(2,6)A 处取得最大值,则1a -≤,即1a ≥-.故选:A【点睛】本题主要考查线性规划的应用,利用z 的几何意义,通过数形结合是解决本题的关键.10.已知不等式240x ax -+≥对于任意的[1,3]x ∈恒成立,则实数a 的取值范围是( ) A .(,5]-∞ B .[5,)+∞C .(,4]-∞D .[4,)+∞【答案】C 【解析】若不等式240x ax -+≥对于任意的[1,3]x ∈恒成立,则4a x x≤+对于任意的[1,3]x ∈恒成立,∵当[1,3]x ∈时,4[4,5]x x+∈,∴4a ≤,即实数a 的取值范围是(,4]-∞,故选C .【方法点晴】本题主要考查利用导数求函数的最值以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立;④ 讨论参数. 本题是利用方法 ① 求得a 的取值范围的.11.已知函数()2814f x x x =++,()()2log 4g x x =,若[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立,则a 的最大值为( )A .-4B .-3C .-2D .-1【答案】C 【解析】 【分析】由[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立得:()f x 的值域为()g x 的值域的子集,从而28142a a ++≤,故可求a 的最大值为2-.【详解】由[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立, 得:()f x 的值域为()g x 的值域的子集,由()()2log 4g x x =(]20,1x ∈()2g x ⇒≤ ,所以(](),2g x ∈-∞ 当43a --≤≤ 时,()21f x-#-,此时()f x 的值域为()g x 的值域的子集成立.当3a >-时,()22814f x a a -≤≤++,须满足()f x 的值域为()g x 的值域的子集,即28142a a ++≤,得62a -≤≤- 所以a 的最大值为2-. 故选:C. 【点睛】本题主要考查恒成立和存在性问题,注意把两类问题转化为函数值域的包含关系,此问题属于中档题目.12.已知变量,x y 满足约束条件121x y x +⎧⎨-⎩剟„,则x y y +的取值范围是( )A.12,23⎡⎤⎢⎥⎣⎦B .20,3⎛⎤ ⎥⎝⎦C .11,3⎛⎤-- ⎥⎝⎦D .3,22⎡⎤⎢⎥⎣⎦【答案】B 【解析】 【分析】 作出不等式121x y x +⎧⎨-⎩剟„表示的平面区域,整理得:x y y +1x y =+,利用yx 表示点(),x y 与原点的连线斜率,即可求得113x y -<-„,问题得解. 【详解】将题中可行域表示如下图,整理得:x y y+1xy =+ 易知yk x=表示点(),x y 与原点的连线斜率, 当点(),x y 在()1.3A -处时,yk x=取得最小值-3.且斜率k 小于直线1x y +=的斜率-1, 故31k -≤<-,则113x y -<-„, 故203x y y +<„. 故选B 【点睛】本题主要考查了利用线性规划知识求分式型目标函数的取值范围,考查转化能力,属于中档题.13.若实数x ,y ,对任意实数m ,满足()()222122211x y mx y m x y m ⎧-≤-⎪⎪+≥+⎨⎪-+-≤⎪⎩,则由不等式组确定的可行域的面积是( ) A .14π B .12πC .πD .32π 【答案】A 【解析】 【分析】画出约束条件的可行域,然后求解可行域的面积. 【详解】实数x ,y ,对任意实数m ,满足2221222(1)()1x y m x y m x y m --⎧⎪++⎨⎪-+-⎩„…„的可行域如图:可行域是扇形,14个圆,面积为:211144ππ⨯⨯=.故选:A .【点睛】本题考查线性规划的应用,考查数形结合以及计算能力,意在考查学生对这些知识的理解掌握水平.14.已知点()2,1A ,O 是坐标原点,点(), P x y 的坐标满足:202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩,设z OP OA =⋅u u u r u u u r,则z 的最大值是( )A .2B .3C .4D .5【答案】C 【解析】 【分析】画出约束条件的可行域,转化目标函数的解析式,利用目标函数的最大值,判断最优解,代入约束条件求解即可. 【详解】解:由不等式组202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩可知它的可行域如下图:Q ()2,1A ,(), P x y∴2z OP OA x y =⋅=+u u u r u u u r,可图知当目标函数图象经过点()1,2B 时,z 取最大值,即24z x y =+=.故选:C. 【点睛】本题考查线性规划的应用,考查转化思想以及数形结合思想的应用,属于中档题.15.已知函数()lg f x x =,0a b >>,()()f a f b =,则22a b a b+-的最小值等于( ).A 5B .3C .23D .22【答案】D【解析】 试题分析:因为函数()lg f x x =,0a b >>,()()f a f b =所以lg lg a b =-所以1a b=,即1ab =,0a b >> 22a b a b+-22()2()22()a b ab a b a b a b a b a b -+-+===-+---22()22a b a b ≥-⨯=- 当且仅当2a b a b-=-,即2a b -=时等号成立 所以22a b a b+-的最下值为22 故答案选D考点:基本不等式.16.若 x y ,满足约束条件02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩,则z x y =-的最小值是( )A .0B .3-C .32D .3 【答案】B【解析】可行域为一个三角形ABC 及其内部,其中3(0,),(0,3),(1,1)2A B C ,所以直线z x y =-过点B 时取最小值3-,选B.17.设x ∈R ,则“|1|1x -<”是“220x x --<”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】 1111102x x x -<⇔-<-<⇔<<,22012x x x --<⇒-<<,故为充分不必要条件.18.设x ,y 满足约束条件则的最大值与最小值的比值为( )A .B .C .D .【答案】A【解析】【分析】 作出不等式组所表示的可行域,平移直线,观察直线在轴上取得最大值和最小值时相应的最优解,再将最优解代入目标函数可得出最大值和最小值,于此可得出答案。
高考数学压轴专题2020-2021备战高考《不等式》难题汇编含解析

【最新】数学高考《不等式》复习资料(1)一、选择题1.抛物线的焦点为F ,准线为l ,A ,B 是抛物线上的两个动点,且满足23AFB π∠=,设线段AB 的中点M 在l 上的投影为N ,则MN AB 的最大值是( )A 3B 3C 3D 3【答案】B 【解析】 【分析】 【详解】试题分析:设,A B 在直线l 上的投影分别是11,A B ,则1AF AA =,1BF BB =,又M是AB 中点,所以111()2MN AA BB =+,则1112MN AA BB AB AB +=⋅2AF BF AB +=,在ABF ∆中222AB AF BF =+22cos3AF BF π-22AF BF AF BF =++2()AF BF AF BF =+-2()AF BF ≥+2()2AF BF +-23()4AF BF =+,所以22()43AF BF AB+≤,即233AF BF AB +≤,所以33MN AB ≤,故选B .考点:抛物线的性质. 【名师点晴】在直线与抛物线的位置关系问题中,涉及到抛物线上的点到焦点的距离,焦点弦长,抛物线上的点到准线(或与准线平行的直线)的距离时,常常考虑用抛物线的定义进行问题的转化.象本题弦AB 的中点M 到准线的距离首先等于,A B 两点到准线距离之和的一半,然后转化为,A B 两点到焦点F 的距离,从而与弦长AB 之间可通过余弦定理建立关系.2.在下列函数中,最小值是2的函数是( ) A .()1f x x x=+ B .1cos 0cos 2y x x x π⎛⎫=+<< ⎪⎝⎭C .()223f x x =+D .()42xxf x e e =+- 【答案】D 【解析】 【分析】根据均值不等式和双勾函数依次计算每个选项的最小值得到答案. 【详解】 A. ()1f x x x=+,()122f -=-<,A 错误; B. 1cos 0cos 2y x x x π⎛⎫=+<< ⎪⎝⎭,故()cos 0,1x ∈,2y >,B 错误; C. ()2f x ==,故()f x ≥,C 错误; D. ()4222xx f x e e =+-≥=,当4xx e e=,即ln 2x =时等号成立,D 正确. 故选:D . 【点睛】本题考查了均值不等式,双勾函数求最值,意在考查学生的计算能力和应用能力.3.已知实数x ,y满足不等式||x y +≥,则22x y +最小值为( )A .2B .4C.D .8【答案】B 【解析】 【分析】先去掉绝对值,画出不等式所表示的范围,再根据22x y +表示圆心在原点的圆求解其最小圆的半径的平方,即可求解. 【详解】 由题意,可得当0y ≥时,x y +≥ (2)当0y <时,x y -≥如图所示,画出的图形,可得不等式表示的就是阴影部分的图形, 又由22xy +最小值即为原点到直线的垂线段的长度的平方,又由2d ==,所以24d =,即22xy +最小值为4.故选:B .【点睛】本题主要考查了线性规划的知识,以及点到直线的距离公式的应用,着重考查了数形结合思想,以及计算能力.4.已知0a b >>,则下列不等式正确的是( ) A .ln ln a b b a ->- B .|||a b b a < C .ln ln a b b a -<- D .|||a b b a ->【答案】C 【解析】 【分析】利用特殊值代入法,作差比较法,排除不符合条件的选项,即可求解,得到答案. 【详解】由题意,因为0a b >>,取,1a e b ==,则ln 0,ln a b b a e -=-=,1a b e b a e ==-,可排除A 、D 项;取11,49a b ==711812a b b a ==,可排除B 项; 因为满足0a b >>条件的排除法,可得A 、B 、D 是错误的.故选:C . 【点睛】本题主要考查了不等式与不等关系,以及不等式的的基本性质,其中解答中合理赋值,代入排除是解答的关键,着重考查了推理与运算能力.5.已知x ,y 满足约束条件1,22,326,x y x y x y +≥⎧⎪-≥-⎨⎪+≤⎩,若22x y z +≥恒成立,则实数z 的最大值为( )A.22B.25 C.12D.2【答案】C【解析】【分析】画出约束条件所表示的平面区域,根据22x y+的几何意义,结合平面区域求得原点到直线10x y+-=的距离的平方最小,即可求解.【详解】由题意,画出约束条件122326x yx yx y+≥⎧⎪-≥-⎨⎪+≤⎩所表示的平面区域,如图所示,要使得22x y z+≥恒成立,只需()22minz x y≥+,因为22x y+表示原点到可行域内点的距离的平方,结合平面区域,可得原点到直线10x y+-=的距离的平方最小,其中最小值距离为221211d-==+,则212d=,即12z≤所以数z的最大值12.故选:C.【点睛】本题主要考查了简单的线性规划的应用,其中解答中正确作出约束条件所表示的平面区域,结合22x y+的几何意义求解是解答的关键,着重考查了数形结合思想,以及计算能力.6.若实数x,y满足40,30,0,x yx yy--≤⎧⎪-≥⎨⎪≥⎩,则2x yy+=的最大值为()A.512 B.8 C.256 D.64【答案】C 【解析】 【分析】作出可行域,如下图阴影部分所示,令x y m +=,可知要使2m z =取到最大值,只需m 取到最大值即可,根据图像平移得到答案. 【详解】作出可行域,如下图阴影部分所示,令x y m +=,可知要使2m z =取到最大值,只需m 取到最大值即可, 观察图像可知,当直线x y m +=过点()6,2A 时m 取到最大值8, 故2x yy +=的最大值为256.故选:C .【点睛】本题考查了线性规划问题,画出图像是解题的关键.7.已知实数x 、y 满足约束条件103300x y x y y -+≥⎧⎪--≤⎨⎪≥⎩,则2z x y =+的最大值为( )A .1-B .2C .7D .8【答案】C 【解析】 【分析】作出不等式组表示的平面区域,作出目标函数对应的直线,结合图象知当直线过点C 时,z 取得最大值.【详解】解:作出约束条件表示的可行域是以(1,0),(1,0),(2,3)-为顶点的三角形及其内部,如下图表示:当目标函数经过点()2,3C 时,z 取得最大值,最大值为7.故选:C. 【点睛】本题主要考查线性规划等基础知识;考查运算求解能力,数形结合思想,应用意识,属于中档题.8.已知集合{}2230A x x x =-->,(){}lg 11B x x =+≤,则()R A B =I ð( )A .{}13x x -≤<B .{}19x x -≤≤C .{}13x x -<≤D .{}19x x -<<【答案】C 【解析】 【分析】解出集合A 、B ,再利用补集和交集的定义得出集合()R A B ⋂ð. 【详解】解不等式2230x x -->,得1x <-或3x >;解不等式()lg 11x +≤,得0110x <+≤,解得19x -<≤.{}13A x x x ∴=-或,{}19B x x =-<≤,则{}13R A x x =-≤≤ð,因此,(){}13R A B x x ⋂=-<≤ð,故选:C. 【点睛】本题考查集合的补集与交集的计算,同时也考查了一元二次不等式以及对数不等式的求解,考查运算求解能力,属于中等题.9.若x ,y 满足约束条件40,20,20,x y x x y -+≥⎧⎪-≤⎨⎪+-≥⎩且z ax y =+的最大值为26a +,则a 的取值范围是( ) A .[1,)-+∞ B .(,1]-∞-C .(1,)-+∞D .(,1)-∞-【答案】A【解析】 【分析】画出约束条件的可行域,利用目标函数的最值,判断a 的范围即可. 【详解】作出约束条件表示的可行域,如图所示.因为z ax y =+的最大值为26a +,所以z ax y =+在点(2,6)A 处取得最大值,则1a -≤,即1a ≥-.故选:A【点睛】本题主要考查线性规划的应用,利用z 的几何意义,通过数形结合是解决本题的关键.10.已知函数()2f x ax bx =+,满足()()241f f -≥≥,()12f -≤,则()2f 的最大值为( ) A .12 B .13C .14D .15【答案】C 【解析】 【分析】根据已知条件可得,a b 满足的不等式2242a b a b a b -≥⎧⎪+≤⎨⎪-≤⎩,作出不等式组所表示的平面区域,又()242f a b =+,利用线性规划即可求出()2f 的最大值.【详解】由已知得2242a b a b a b -≥⎧⎪+≤⎨⎪-≤⎩,可得(),P a b 的表示的平面区域如图:可求出()3,1A ,()2,2B ,()0,2C -, 目标函数()242z f a b ==+,可化为122b a z =-+,当直线过点A 时,max 14z =. 故选:C. 【点睛】本题主要考查求线性约束条件下的最值计算,关键是根据,a b 满足的不等式作出可行域,并将目标函数()242z f a b ==+变形为122b a z =-+进行平移,找到截距的最大值.11.已知x>0,y>0,x+2y+2xy=8,则x+2y 的最小值是 A .3 B .4 C .92D .112【答案】B 【解析】 【详解】解析:考察均值不等式2228(2)82x y x y x y +⎛⎫+=-⋅≥- ⎪⎝⎭,整理得2(2)4(2)320x y x y +++-≥即(24)(28)0x y x y +-++≥,又x+2 y>0,24x y ∴+≥12.已知ABC V 外接圆的半径2R =,且223sin 2AA =.则ABC V 周长的取值范围为( )A. B.(4, C.4+ D.(4+【答案】C 【解析】 【分析】由2sin 2A A =及倍角公式可得23A π=,2sin a R A ==得2212b c bc =++,再利用基本不等式及三角形两边之和大于第三边求出b c +的取值范围即可得到答案. 【详解】由题意,22cos 1123A A -=-,即cos 13A A -=-,可化为33A π⎛⎫-= ⎪⎝⎭,即sin 3A π⎛⎫-= ⎪⎝⎭,因为0A π<<,所以33A ππ-=, 即23A π=,2sin a R A ==ABC V 的内角A ,B ,C ,的对边分别为a ,b ,c ,由余弦定理得,2212b c bc =++,因为222b c bc +≥(当且仅当b c =时取“=”),所以22123b c bc bc =++≥,即4bc ≤,又因为22212()b c bc b c bc =++=+-,所以2()124bc b c =+-≤,故4b c +≤,则4a b c ++≤+b c a +>,所以2a b c a ++>=4a b c +++≤.故ABC V 周长的取值范围为4+.故选:C 【点睛】本题考查利用余弦定理求三角形周长的取值范围,涉及到辅助角公式、基本不等式求最值,考查学生的运算求解能力,是一道中档题.13.已知函数()2222,2{log ,2x x x f x x x -+≤=> ,若0R x ∃∈,使得()2054f x m m ≤- 成立,则实数m 的取值范围为 ( ) A .11,4⎡⎤-⎢⎥⎣⎦B .1,14⎡⎤⎢⎥⎣⎦C .12,4⎡⎤-⎢⎥⎣⎦D .1,13⎡⎤⎢⎥⎣⎦【答案】B 【解析】由函数的解析式可得函数的最小值为:()11f =,则要考查的不等式转化为:2154m m≤-,解得:114m≤≤,即实数m的取值范围为1,14⎡⎤⎢⎥⎣⎦.本题选择B选项.点睛: (1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值.(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.14.已知变量,x y满足约束条件121x yx+⎧⎨-⎩剟„,则x yy+的取值范围是( )A.12,23⎡⎤⎢⎥⎣⎦B.20,3⎛⎤⎥⎝⎦C.11,3⎛⎤--⎥⎝⎦D.3,22⎡⎤⎢⎥⎣⎦【答案】B【解析】【分析】作出不等式121x yx+⎧⎨-⎩剟„表示的平面区域,整理得:x yy+1xy=+,利用yx表示点(),x y 与原点的连线斜率,即可求得113xy-<-„,问题得解.【详解】将题中可行域表示如下图,整理得:x yy+1xy=+易知ykx=表示点(),x y与原点的连线斜率,当点(),x y在()1.3A-处时,ykx=取得最小值-3.且斜率k小于直线1x y+=的斜率-1,故31k-≤<-,则113xy-<-„,故2 03x yy+<….故选B【点睛】本题主要考查了利用线性规划知识求分式型目标函数的取值范围,考查转化能力,属于中档题.15.已知x,y满足约束条件234x yx yy-≥⎧⎪+≤⎨⎪≥⎩,若z ax y=+的最大值为4,则a=()A.2 B.12C.-2 D.12-【答案】A【解析】【分析】由约束条件可得到可行域,根据图象可知最优解为()2,0A,代入可构造方程求得结果.【详解】由约束条件可知可行域如下图阴影部分所示:当直线:l y ax z=-+经AOBV区域时,当l过点()2,0A时,在y轴上的截距最大,即()2,0A为最优解,42a∴=,解得:2a=.故选:A.【点睛】本题考查线性规划中的根据目标函数的最值求解参数值的问题,关键是能够通过约束条件准确得到可行域,根据数形结合的方式确定最优解.16.若均不为1的实数a、b满足0a b>>,且1ab>,则()A.log3log3a b>B.336a b+>C.133ab a b++>D.b aa b>【答案】B【解析】【分析】举反例说明A,C,D不成立,根据基本不等式证明B成立.【详解】当9,3a b ==时log 3log 3a b <; 当2,1a b ==时133ab a b ++=; 当4,2a b ==时b a a b =; 因为0a b >>,1ab >,所以23323323236a b a b a b ab ++>=>>,综上选B.【点睛】本题考查比较大小,考查基本分析论证能力,属基本题.17.已知2(0,0)x y xy x y +=>>,则2x y +的最小值为( )A .10B .9C .8D .7 【答案】B【解析】【分析】由已知等式得到211x y +=,利用()2122x y x y x y ⎛⎫+=++ ⎪⎝⎭可配凑出符合基本不等式的形式,利用基本不等式求得最小值.【详解】由2x y xy +=得:211x y+= ()212222225529x y x y x y x y x y y x y x ⎛⎫∴+=++=++≥+⋅= ⎪⎝⎭(当且仅当22x y y x =,即x y =时取等号)2x y ∴+的最小值为9故选:B【点睛】本题考查利用基本不等式求解和的最小值的问题,关键是能够灵活对等于1的式子进行应用,配凑成符合基本不等式的形式.18.数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线22322():16C x y x y =+恰好是四叶玫瑰线.给出下列结论:①曲线C 经过5个整点(即横、纵坐标均为整数的点);②曲线C 上任意一点到坐标原点O 的距离都不超过2;③曲线C 围成区域的面积大于4π;④方程()223221)60(x y x y xy +=<表示的曲线C 在第二象限和第四象限其中正确结论的序号是( )A .①③B .②④C .①②③D .②③④ 【答案】B【解析】【分析】利用基本不等式得224x y +≤,可判断②;224x y +=和()3222216x y x y +=联立解得222x y ==可判断①③;由图可判断④.【详解】()2223222216162x y x yx y ⎛⎫++=≤ ⎪⎝⎭, 解得224x y +≤(当且仅当222x y ==时取等号),则②正确;将224x y +=和()3222216x yx y +=联立,解得222x y ==,即圆224x y +=与曲线C 相切于点,(,(,, 则①和③都错误;由0xy <,得④正确.故选:B.【点睛】本题考查曲线与方程的应用,根据方程,判断曲线的性质及结论,考查学生逻辑推理能力,是一道有一定难度的题.19.已知函数()lg f x x =,0a b >>,()()f a f b =,则22a b a b+-的最小值等于( ).A B .C .2 D .【答案】D【解析】 试题分析:因为函数()lg f x x =,0a b >>,()()f a f b =所以lg lg a b =- 所以1a b=,即1ab =,0a b >>22a ba b+-22()2()22()a b ab a b a b a b a b a b -+-+===-+---≥=当且仅当2a b a b-=-,即a b -=时等号成立所以22a b a b+-的最下值为22 故答案选D考点:基本不等式.20.某企业生产甲、乙两种产品,销售利润分别为2千元/件、1千元/件.甲、乙两种产品都需要在A B 、两种设备上加工,生产一件甲产品需用A 设备2小时,B 设备6小时;生产一件乙产品需用A 设备3小时,B 设备1小时. A B 、两种设备每月可使用时间数分别为480小时、960小时,若生产的产品都能及时售出,则该企业每月利润的最大值为( ) A .320千元B .360千元C .400千元D .440千元 【答案】B【解析】设生产甲、乙两种产品x 件,y 件时该企业每月利润的最大值,由题意可得约束条件: 2348069600,0,x y x y x y x N y N+≤⎧⎪+≤⎪⎨≥≥⎪⎪∈∈⎩, 原问题等价于在上述约束条件下求解目标函数2z x y =+的最大值.绘制目标函数表示的平面区域如图所示,结合目标函数的几何意义可知:目标函数在点()150,60B 处取得最大值:max 2215060360z x y =+=⨯+=千元. 本题选择B 选项.点睛:含有实际背景的线性规划问题其解题关键是找到制约求解目标的两个变量,用这两个变量建立可行域和目标函数,在解题时要注意题目中的各种相互制约关系,列出全面的制约条件和正确的目标函数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年10月18日姚杰的高中数学组卷一.选择题〔共17小题〕1.〔2021•浙江〕设△ABC,P0是边AB上一定点,满足,且对于边AB上任一点P,恒有那么〔〕A.∠ABC=90°B.∠BAC=90°C.AB=AC D.AC=BC2.〔2021•广东〕对任意两个非零的平面向量和,定义○=,假设平面向量、满足||≥||>0,与的夹角,且○和○都在集合中,那么○=〔〕A.B.1 C.D.3.〔2007•天津〕设两个向量和,其中λ,m,α为实数.假设,那么的取值范围是〔〕A.[﹣6,1]B.[4,8]C.〔﹣∞,1]D.[﹣1,6]4.〔2021•广东〕对任意两个非零的平面向量和,定义°=.假设两个非零的平面向量,满足与的夹角,且•和•都在集合中,那么•=〔〕A.B.C.1 D.5.〔2021•山东〕设A1,A2,A3,A4是平面直角坐标系中两两不同的四点,假设〔λ∈R〕,〔μ∈R〕,且,那么称A3,A4调和分割A1,A2,点C〔c,0〕,D〔d,O〕〔c,d∈R〕调和分割点A〔0,0〕,B〔1,0〕,那么下面说法正确的选项是〔〕A.C可能是线段AB的中点B.D可能是线段AB的中点C.C,D可能同时在线段AB上D.C,D不可能同时在线段AB的延长线上6.〔2021•福建〕设,,为同一平面内具有相同起点的任意三个非零向量,且满足与不共线,⊥,||=||,那么|•|的值一定等于〔〕A.以,为邻边的平行四边形的面积B.以,为两边的三角形面积C.,为两边的三角形面积D.以,为邻边的平行四边形的面积7.〔2021•浙江〕,是平面内两个互相垂直的单位向量,假设向量满足〔﹣〕•〔﹣〕=0,那么||的最大值是〔〕A.1 B.2 C.D.8.〔2007•山东〕在直角△ABC中,CD是斜边AB上的高,那么以下等式不成立的是〔〕A.B.C.D.9.〔2007•湖北〕连掷两次骰子得到的点数分别为m和n,记向量与向量的夹角为θ,那么的概率是〔〕A.B.C.D.10.〔2006•福建〕||=1,||=,•=0,点C在∠AOB内,且∠AOC=30°,设=m+n〔m、n∈R〕,那么等于〔〕A.B.3 C.D.11.〔2005•湖南〕P是△ABC所在平面上一点,假设,那么P是△ABC的〔〕A.外心 B.内心 C.重心 D.垂心12.〔2005•江西〕在△OAB中,O为坐标原点,,那么当△OAB的面积达最大值时,θ=〔〕A.B.C.D.13.〔2005•安徽〕点O是三角形ABC所在平面内的一点,满足,那么点O是△ABC的〔〕A.三个内角的角平分线的交点 B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点14.平面上一点P在原坐标系中的坐标为〔0,m〕〔m≠0〕,而在平移后所得到的新坐标系中的坐标为〔m,0〕,那么新坐标系的原点O′在原坐标系中的坐标为〔A 〕A.〔﹣m,m〕B.〔m,﹣m〕C.〔m,m〕 D.〔﹣m,﹣m〕15.〔2021•桃城区校级模拟〕设向量,满足,,<>=60°,那么||的最大值等于〔〕A.2 B.C.D.116.〔2021•安徽〕在平面直角坐标系中,O是坐标原点,两定点A,B满足||=||=•=2,那么点集{P|=λ+μ,|λ|+|μ|≤1,λ,μ∈R}所表示的区域的面积是〔〕A.B. C. D.17.〔2021•上海〕在边长为1的正六边形ABCDEF中,记以A为起点,其余顶点为终点的向量分别为、、、、;以D为起点,其余顶点为终点的向量分别为、、、、.假设m、M分别为〔++〕•〔++〕的最小值、最大值,其中{i,j,k}⊆{1,2,3,4,5},{r,s,t}⊆{1,2,3,4,5},那么m、M满足〔〕A.m=0,M>0 B.m<0,M>0 C.m<0,M=0 D.m<0,M<0二.解答题〔共13小题〕18.〔2005•上海〕在直角坐标平面中,点P1〔1,2〕,P2〔2,22〕,P3〔3,23〕,…,P n〔n,2n〕,其中n是正整数.对平面上任一点A0,记A1为A0关于点P1的对称点,A2为A1关于点P2的对称点,…,A n为A n﹣1关于点P n的对称点.〔1〕求向量的坐标;〔2〕当点A0在曲线C上移动时,点A2的轨迹是函数y=f〔x〕的图象,其中f〔x〕是以3位周期的周期函数,且当x∈〔0,3]时,f〔x〕=lgx.求以曲线C为图象的函数在〔1,4]上的解析式;〔3〕对任意偶数n,用n表示向量的坐标.19.〔2021•上海〕定义向量=〔a,b〕的“相伴函数〞为f〔x〕=asinx+bcosx,函数f〔x〕=asinx+bcosx的“相伴向量〞为=〔a,b〕〔其中O为坐标原点〕.记平面内所有向量的“相伴函数〞构成的集合为S.〔1〕设g〔x〕=3sin〔x+〕+4sinx,求证:g〔x〕∈S;〔2〕h〔x〕=cos〔x+α〕+2cosx,且h〔x〕∈S,求其“相伴向量〞的模;〔3〕M〔a,b〕〔b≠0〕为圆C:〔x﹣2〕2+y2=1上一点,向量的“相伴函数〞f〔x〕在x=x0处取得最大值.当点M在圆C上运动时,求tan2x0的取值范围.20.〔2021•江苏〕如图,在正四棱柱ABCD﹣A1B1C1D1中,AA1=2,AB=1,点N是BC 的中点,点M在CC1上.设二面角A1﹣DN﹣M的大小为θ,〔1〕当θ=90°时,求AM的长;〔2〕当时,求CM的长.21.〔2021•山东〕设m∈R,在平面直角坐标系中,向量a=〔mx,y+1〕,向量b=〔x,y﹣1〕,a⊥b,动点M〔x,y〕的轨迹为E.〔Ⅰ〕求轨迹E的方程,并说明该方程所表示曲线的形状;〔Ⅱ〕m=.证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且OA⊥OB〔O为坐标原点〕,并求该圆的方程;〔Ⅲ〕m=.设直线l与圆C:x2+y2=R2〔1<R<2〕相切于A1,且l与轨迹E只有一个公共点B1.当R为何值时,|A1B1|取得最大值?并求最大值.22.〔2007•四川〕设F1、F2分别是椭圆=1的左、右焦点.〔Ⅰ〕假设P是第一象限内该椭圆上的一点,且,求点P的作标;〔Ⅱ〕设过定点M〔0,﹣2〕的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角〔其中O为坐标原点〕,求直线l的斜率k的取值范围.23.〔2021•丰台区校级一模〕如图,△OFP的面积为m,且=1.〔I〕假设,求向量与的夹角θ的取值范围;〔II〕设,且.假设以O为中心,F为焦点的椭圆经过点P,当取得最小值时,求此椭圆的方程.24.设、为平面向量,假设存在不全为零的实数λ,μ使得λ+μ=0,那么称、线性相关,下面的命题中,、、均为平面M上的向量.①假设=2,那么、线性相关;②假设、为非零向量,且⊥,那么、线性相关;③假设、线性相关,、线性相关,那么、线性相关;④向量、线性相关的充要条件是、共线.上述命题中正确的选项是〔写出所有正确命题的编号〕25.〔2005•安徽〕椭圆的中心为坐标原点O,焦点在x轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A、B两点,与=〔3,﹣1〕共线.〔Ⅰ〕求椭圆的离心率;〔Ⅱ〕设M为椭圆上任意一点,且,证明λ2+μ2为定值.26.〔2021•江苏模拟〕如图,D是△ABC的中点,,那么λ1+λ2=.27.〔2021•泗县校级模拟〕单位圆⊙O:x2+y2=1,A〔1,0〕,B是圆上的动点,∥,.〔1〕求点P的轨迹E的方程;〔2〕求过A作直线l被E截得的弦长的最小值.28.〔2021•西安校级模拟〕向量,动点M到定直线y=1的距离等于d,并且满足,其中O是坐标原点,k是参数.〔1〕求动点M的轨迹方程,并判断曲线类型;〔2〕当时,求的最大值和最小值;〔3〕如果动点M的轨迹是圆锥曲线,其离心率e满足,求实数k的取值范围.29.〔2021•上海〕在直角坐标平面xOy上的一列点A1〔1,a1〕,A2〔2,a2〕,…,A n〔n,a n〕,…,简记为{A n}、假设由构成的数列{b n}满足b n+1>b n,n=1,2,…,其中为方向与y轴正方向相同的单位向量,那么称{A n}为T点列,〔1〕判断,,是否为T点列,并说明理由;〔2〕假设{A n}为T点列,且点A2在点A1的右上方、任取其中连续三点A k、A k+1、A k+2,判断△A k A k+1A k+2的形状〔锐角三角形、直角三角形、钝角三角形〕,并予以证明;〔3〕假设{A n}为T点列,正整数1≤m<n<p<q满足m+q=n+p,求证:.30.〔2021•临川区校级一模〕设点F〔,0〕〔p为正常数〕,点M在x轴的负半轴上,点P 在y轴上,且,.〔Ⅰ〕当点P在y轴上运动时,求点N的轨迹C的方程;〔Ⅱ〕直线l过点F且与曲线C相交于不同两点A,B,分别过点A,B作直线l1:x=﹣的垂线,对应的垂足分别为A1,B1,求的值;〔Ⅲ〕在〔Ⅱ〕的条件下,记,,,λ=,求λ的值.2021年10月18日姚杰的高中数学组卷参考答案与试题解析一.选择题〔共17小题〕1.〔2021•浙江〕设△ABC,P0是边AB上一定点,满足,且对于边AB上任一点P,恒有那么〔〕A.∠ABC=90°B.∠BAC=90°C.AB=AC D.AC=BC考点:平面向量数量积的运算.专题:平面向量及应用.分析:设||=4,那么||=1,过点C作AB的垂线,垂足为H,在AB上任取一点P,设HP0=a,那么由数量积的几何意义可得||2﹣〔a+1〕||+a≥0恒成立,只需△=〔a+1〕2﹣4a=〔a﹣1〕2≤0即可,由此能求出△ABC是等腰三角形,AC=BC.解答:解:设||=4,那么||=1,过点C作AB的垂线,垂足为H,在AB上任取一点P,设HP0=a,那么由数量积的几何意义可得,=||•||=||2﹣〔a+1〕〕||,•=﹣a,于是•≥••恒成立,整理得||2﹣〔a+1〕||+a≥0恒成立,只需△=〔a+1〕2﹣4a=〔a﹣1〕2≤0即可,于是a=1,因此我们得到HB=2,即H是AB的中点,故△ABC是等腰三角形,所以AC=BC.应选:D.点评:此题主要考查了平面向量的运算,向量的模及向量的数量积的概念,向量运算的几何意义的应用,还考查了利用向量解决简单的几何问题的能力2.〔2021•广东〕对任意两个非零的平面向量和,定义○=,假设平面向量、满足||≥||>0,与的夹角,且○和○都在集合中,那么○=〔〕A.B.1 C.D.考点:平面向量数量积的运算.专题:空间向量及应用.分析:由题意可得•==,同理可得•==,故有n≥m 且m、n∈z.再由cos2θ=,与的夹角θ∈〔0,〕,可得cos2θ∈〔,1〕,即∈〔,1〕,由此求得n=3,m=1,从而得到•==的值.解答:解:由题意可得•====.同理可得•====.由于||≥||>0,∴n≥m 且m、n∈z.∴cos2θ=.再由与的夹角θ∈〔0,〕,可得cos2θ∈〔,1〕,即∈〔,1〕.故有n=3,m=1,∴•==,应选C.点评:此题主要考查两个向量的数量积的定义,得到n≥m 且m、n∈z,且∈〔,1〕,是解题的关键,属于中档题.3.〔2007•天津〕设两个向量和,其中λ,m,α为实数.假设,那么的取值范围是〔〕A.[﹣6,1]B.[4,8]C.〔﹣∞,1]D.[﹣1,6]考点:相等向量与相反向量;平面向量共线〔平行〕的坐标表示.专题:压轴题.分析:利用,得到λ,m的关系,然后用三角函数的有界性求解的比值,为了简化,把换元.解答:解:由,,,可得,设代入方程组可得消去m化简得,再化简得再令代入上式得〔sinα﹣1〕2+〔16t2+18t+2〕=0可得﹣〔16t2+18t+2〕∈[0,4]解不等式得因而解得﹣6≤k≤1.应选A.点评:此题难度较大,题目涉及到向量、三角函数的有界性、还用到了换元和解不等式等知识,表达了化归的思想方法.4.〔2021•广东〕对任意两个非零的平面向量和,定义°=.假设两个非零的平面向量,满足与的夹角,且•和•都在集合中,那么•=〔〕A.B.C.1 D.考点:平面向量数量积的运算.专题:平面向量及应用.分析:先求出•=,n∈N,•=,m∈N,再由cos2θ=∈〔0,〕,故m=n=1,从而求得•=的值.解答:解:∵°•=====,n∈N.同理可得°•====,m∈N.再由与的夹角,可得cosθ∈〔0,〕,∴cos2θ=∈〔0,〕,故m=n=1,∴•==,应选:D.点评:此题主要考查两个向量的数量积的定义,求得m=n=1,是解题的关键,属于中档题.5.〔2021•山东〕设A1,A2,A3,A4是平面直角坐标系中两两不同的四点,假设〔λ∈R〕,〔μ∈R〕,且,那么称A3,A4调和分割A1,A2,点C〔c,0〕,D〔d,O〕〔c,d∈R〕调和分割点A〔0,0〕,B〔1,0〕,那么下面说法正确的选项是〔〕A.C可能是线段AB的中点B.D可能是线段AB的中点C.C,D可能同时在线段AB上D.C,D不可能同时在线段AB的延长线上考点:平面向量坐标表示的应用.专题:平面向量及应用.分析:由题意可得到c和d的关系,,只需结合答案考查方程的解的问题即可.A和B中方程无解,C中由c和d的范围可推出C和D点重合,由排除法选择答案即可.解答:解:由可得〔c,0〕=λ〔1,0〕,〔d,0〕=μ〔1,0〕,所以λ=c,μ=d,代入得〔1〕假设C是线段AB的中点,那么c=,代入〔1〕d不存在,故C不可能是线段AB 的中点,A错误;同理B错误;假设C,D同时在线段AB上,那么0≤c≤1,0≤d≤1,代入〔1〕得c=d=1,此时C和D点重合,与条件矛盾,故C错误.应选D点评:此题为新定义问题,考查信息的处理能力.正确理解新定义的含义是解决此题的关键.6.〔2021•福建〕设,,为同一平面内具有相同起点的任意三个非零向量,且满足与不共线,⊥,||=||,那么|•|的值一定等于〔〕A.以,为邻边的平行四边形的面积B.以,为两边的三角形面积C.,为两边的三角形面积D.以,为邻边的平行四边形的面积考点:平面向量数量积的运算.专题:计算题;压轴题.分析:利用向量的数量积公式表示出,有得到的夹角与夹角的关系,利用三角函数的诱导公式和条件表示成的模及夹角形式,利用平行四边形的面积公式得到选项.解答:解:假设与的夹角为θ,|•|=||•||•|cos<,>|=||•||•|cos〔90°±θ〕|=||•||•sinθ,即为以,为邻边的平行四边形的面积.应选A.点评:此题考查向量的数量积公式、三角函数的诱导公式、平行四边形的面积公式.7.〔2021•浙江〕,是平面内两个互相垂直的单位向量,假设向量满足〔﹣〕•〔﹣〕=0,那么||的最大值是〔〕A.1 B.2 C.D.考点:平面向量数量积的坐标表示、模、夹角.专题:压轴题.分析:本小题主要考查向量的数量积及向量模的相关运算问题,所给出的两个向量是互相垂直的单位向量,这给运算带来很大方便,利用数量积为零的条件时要移项变化.解答:解:.∵,∵,∴,∵cosθ∈[﹣1,1],∴的最大值是.应选C.点评:启发学生在理解数量积的运算特点的根底上,逐步把握数量积的运算律,引导学生注意数量积性质的相关问题的特点,以熟练地应用数量积的性质,此题也可以利用数形结合,,对应的点A,B在圆x2+y2=1上,对应的点C在圆x2+y2=2上即可.8.〔2007•山东〕在直角△ABC中,CD是斜边AB上的高,那么以下等式不成立的是〔〕A.B.C.D.考点:平面向量数量积的性质及其运算律.专题:压轴题.分析:根据,∴A是正确的,同理B也正确,再由D答案可变形为,通过等积变换判断为正确,从而得到答案.解答:解:∵,∴A是正确的,同理B也正确,对于D答案可变形为,通过等积变换判断为正确应选C.点评:此题主要考查平面向量的数量积的定义.要会巧妙变形和等积变换.9.〔2007•湖北〕连掷两次骰子得到的点数分别为m和n,记向量与向量的夹角为θ,那么的概率是〔〕A.B.C.D.考点:数量积表示两个向量的夹角;等可能事件的概率.专题:计算题;压轴题.分析:由题意知此题是一个古典概型,根据分步计数原理可以得到试验发生包含的所有事件数,满足条件的事件数要通过列举得到,题目大局部内容考查的是向量的问题,这是一个综合题.解答:解:由题意知此题是一个古典概型,试验发生包含的所有事件数6×6,∵m>0,n>0,∴=〔m,n〕与=〔1,﹣1〕不可能同向.∴夹角θ≠0.∵θ∈〔0,】•≥0,∴m﹣n≥0,即m≥n.当m=6时,n=6,5,4,3,2,1;当m=5时,n=5,4,3,2,1;当m=4时,n=4,3,2,1;当m=3时,n=3,2,1;当m=2时,n=2,1;当m=1时,n=1.∴满足条件的事件数6+5+4+3+2+1∴概率P==.应选C.点评:向量知识,向量观点在数学.物理等学科的很多分支有着广泛的应用,而它具有代数形式和几何形式的“双重身份〞能融数形于一体,能与中学数学教学内容的许多主干知识综合,形成知识交汇点.10.〔2006•福建〕||=1,||=,•=0,点C在∠AOB内,且∠AOC=30°,设=m+n〔m、n∈R〕,那么等于〔〕A.B.3 C.D.考点:向量的共线定理;向量的模.专题:计算题;压轴题.分析:将向量沿与方向利用平行四边形原那么进行分解,构造出三角形,由题目,可得三角形中三边长及三个角,然后利用正弦定理解三角形即可得到答案.此题如果没有点C在∠AOB内的限制,应该有两种情况,即也可能为OC在OA顺时针方向30°角的位置,请大家注意分类讨论,防止出错.解答:解:法一:如下图:=+,设=x,那么=.=∴==3.法二:如下图,建立直角坐标系.那么=〔1,0〕,=〔0,〕,∴=m+n=〔m,n〕,∴tan30°==,∴=3.应选B点评:对一个向量根据平面向量根本定理进行分解,关键是要根据平行四边形法那么,找出向量在基底两个向量方向上的分量,再根据条件构造三角形,解三角形即可得到分解结果.11.〔2005•湖南〕P是△ABC所在平面上一点,假设,那么P是△ABC的〔〕A.外心 B.内心 C.重心 D.垂心考点:平面向量数量积的运算;数量积判断两个平面向量的垂直关系.专题:计算题;压轴题.分析:此题考查的知识点是平面向量的数量积运算,由,我们任取其中两个相等的量,如,根据平面向量乘法分配律,及减法法那么,我们可得,同理我们也可以得到PA⊥BC,PC⊥AB,由三角形垂心的性质,我们不难得到结论.解答:解:∵,那么由得:,∴PB⊥AC同理PA⊥BC,PC⊥AB,即P是垂心应选D点评:重心定理:三角形的三条中线交于一点,这点到顶点的距离是它到对边中点距离的2倍.该点叫做三角形的重心.外心定理:三角形的三边的垂直平分线交于一点.该点叫做三角形的外心.垂心定理:三角形的三条高交于一点.该点叫做三角形的垂心.内心定理:三角形的三内角平分线交于一点.该点叫做三角形的内心.12.〔2005•江西〕在△OAB中,O为坐标原点,,那么当△OAB的面积达最大值时,θ=〔〕A.B.C.D.考点:数量积表示两个向量的夹角;向量在几何中的应用.专题:压轴题.分析:在边长为1的正方形中,减去要求的三角形以外的三角形的面积,把要求的结果表示为有三角函数的代数式,后面题目变为求三角函数的最值问题,逆用二倍角公式得到结果.解答:解:在直角坐标系里△OAB的面积=1﹣==∵θ∈〔0,],∴2θ∈〔0,π]∴当2θ=π时取得最大,即θ=应选D.点评:此题考查简单的图形面积和三角函数的最值问题,用三角函数表示的式子,因此代入后,还要进行简单的三角函数变换,二倍角公式逆用.13.〔2005•安徽〕点O是三角形ABC所在平面内的一点,满足,那么点O是△ABC的〔〕A.三个内角的角平分线的交点 B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点考点:平面向量数量积的运算;向量在几何中的应用.专题:计算题;压轴题.分析:由得到,从而所以OB⊥AC,同理得到OA⊥BC,所以点O是△ABC的三条高的交点解答:解;∵∴;∴;∴OB⊥AC,同理由得到OA⊥BC∴点O是△ABC的三条高的交点应选D点评:此题考查向量的数量积及向量的运算,对学生有一定的能力要求14.平面上一点P在原坐标系中的坐标为〔0,m〕〔m≠0〕,而在平移后所得到的新坐标系中的坐标为〔m,0〕,那么新坐标系的原点O′在原坐标系中的坐标为〔A 〕A.〔﹣m,m〕B.〔m,﹣m〕C.〔m,m〕 D.〔﹣m,﹣m〕考点:向量在几何中的应用.专题:压轴题;阅读型.分析:利用平移公式求出平移向量,再利用平移公式求出新坐标系的原点O′在原坐标系中的坐标.解答:解:设按向量,那么新坐标系的原点O′在原坐标系中的坐标为〔k,l〕那么据平移公式故∴解得即新坐标系的原点O′在原坐标系中的坐标为〔﹣m,m〕应选项为A点评:此题考查平移公式的应用.15.〔2021•桃城区校级模拟〕设向量,满足,,<>=60°,那么||的最大值等于〔〕A.2 B.C.D.1考点:平面向量数量积的坐标表示、模、夹角.专题:计算题;压轴题.分析:利用向量的数量积求出的夹角;利用向量的运算法那么作出图;结合图,判断出四点共圆;利用正弦定理求出外接圆的直径,求出最大值.解答:解:∵,∴的夹角为120°,设,那么;=如下图那么∠AOB=120°;∠ACB=60°∴∠AOB+∠ACB=180°∴A,O,B,C四点共圆∵∴∴由三角形的正弦定理得外接圆的直径2R=当OC为直径时,模最大,最大为2应选A点评:此题考查向量的数量积公式、向量的运算法那么、四点共圆的判断定理、三角形的正弦定理.16.〔2021•安徽〕在平面直角坐标系中,O是坐标原点,两定点A,B满足||=||=•=2,那么点集{P|=λ+μ,|λ|+|μ|≤1,λ,μ∈R}所表示的区域的面积是〔〕A.B. C. D.考点:平面向量的根本定理及其意义;二元一次不等式〔组〕与平面区域;向量的模.专题:压轴题;平面向量及应用.分析:由两定点A,B满足==2,说明O,A,B三点构成边长为2的等边三角形,设出两个定点的坐标,再设出P点坐标,由平面向量根本定理,把P的坐标用A,B的坐标及λ,μ表示,把不等式|λ|+|μ|≤1去绝对值后可得线性约束条件,画出可行域可求点集P所表示区域的面积.解答:解:由两定点A,B满足==2,说明O,A,B三点构成边长为2的等边三角形.不妨设A〔〕,B〔〕.再设P〔x,y〕.由,得:.所以,解得①.由|λ|+|μ|≤1.所以①等价于或或或.可行域如图中矩形ABCD及其内部区域,那么区域面积为.应选D.点评:此题考查了平面向量的根本定理及其意义,考查了二元一次不等式〔组〕所表示的平面区域,考查了数学转化思想方法,解答此题的关键在于读懂题意,属中档题.17.〔2021•上海〕在边长为1的正六边形ABCDEF中,记以A为起点,其余顶点为终点的向量分别为、、、、;以D为起点,其余顶点为终点的向量分别为、、、、.假设m、M分别为〔++〕•〔++〕的最小值、最大值,其中{i,j,k}⊆{1,2,3,4,5},{r,s,t}⊆{1,2,3,4,5},那么m、M满足〔〕A.m=0,M>0 B.m<0,M>0 C.m<0,M=0 D.m<0,M<0考点:平面向量数量积的运算;进行简单的合情推理.专题:压轴题;平面向量及应用.分析:利用向量的数量积公式,可知只有,其余数量积均小于等于0,从而可结论.解答:解:由题意,以A为起点,其余顶点为终点的向量分别为、、、、;以D为起点,其余顶点为终点的向量分别为、、、、,∴利用向量的数量积公式,可知只有,其余数量积均小于等于0,∵m、M分别为〔++〕•〔++〕的最小值、最大值,∴m<0,M<0应选D.点评:此题考查向量的数量积运算,考查学生分析解决问题的能力,分析出向量数量积的正负是关键.二.解答题〔共13小题〕18.〔2005•上海〕在直角坐标平面中,点P1〔1,2〕,P2〔2,22〕,P3〔3,23〕,…,P n〔n,2n〕,其中n是正整数.对平面上任一点A0,记A1为A0关于点P1的对称点,A2为A1关于点P2的对称点,…,A n为A n﹣1关于点P n的对称点.〔1〕求向量的坐标;〔2〕当点A0在曲线C上移动时,点A2的轨迹是函数y=f〔x〕的图象,其中f〔x〕是以3位周期的周期函数,且当x∈〔0,3]时,f〔x〕=lgx.求以曲线C为图象的函数在〔1,4]上的解析式;〔3〕对任意偶数n,用n表示向量的坐标.考点:平面向量的综合题.专题:综合题;压轴题;平面向量及应用;圆锥曲线的定义、性质与方程.分析:〔1〕利用中点坐标公式求出点A1,A2的坐标,再利用向量的坐标公式求出的坐标.〔2〕由判断出y=f〔x〕的图象是由C按平移得到的;得到C是由f〔x〕左移两个单位,下移4个单位得到,利用图象变换求出C的解析式.〔3〕利用向量的运算法那么将有以P n为起点终点的向量表示,利用向量的坐标公式求出各向量的坐标,利用等比数列的前n项和公式求出向量的坐标.解答:解:〔1〕设点A0〔x,y〕,A1为A0关于点P1的对称点,A1的坐标为〔2﹣x,4﹣y〕,A1为P2关于点的对称点A2的坐标为〔2+x,4+y〕,∴={2,4}.〔2〕∵={2,4},∴f〔x〕的图象由曲线C向右平移2个单位,再向上平移4个单位得到.因此,设曲线C是函数y=g〔x〕的图象,其中g〔x〕是以3为周期的周期函数,且当x∈〔﹣2,1]时,g〔x〕=lg〔x+2〕﹣4.于是,当x∈〔1,4]时,g〔x〕=lg〔x﹣1〕﹣4.〔3〕=++…+,由于=,得=2〔++…+〕=2〔{1,2}+{1,23}+…+{1,2n﹣1}〕=2{,}={n,}点评:此题考查中点坐标公式、向量的坐标公式、图象的平移变换、等比数列的前n项和公式.19.〔2021•上海〕定义向量=〔a,b〕的“相伴函数〞为f〔x〕=asinx+bcosx,函数f〔x〕=asinx+bcosx的“相伴向量〞为=〔a,b〕〔其中O为坐标原点〕.记平面内所有向量的“相伴函数〞构成的集合为S.〔1〕设g〔x〕=3sin〔x+〕+4sinx,求证:g〔x〕∈S;〔2〕h〔x〕=cos〔x+α〕+2cosx,且h〔x〕∈S,求其“相伴向量〞的模;〔3〕M〔a,b〕〔b≠0〕为圆C:〔x﹣2〕2+y2=1上一点,向量的“相伴函数〞f〔x〕在x=x0处取得最大值.当点M在圆C上运动时,求tan2x0的取值范围.考点:平面向量的综合题;复合三角函数的单调性.专题:计算题;压轴题;新定义.分析:〔1〕先利用诱导公式对其化简,再结合定义即可得到证明;〔2〕先根据定义求出其相伴向量,再代入模长计算公式即可;〔3〕先根据定义得到函数f〔x〕取得最大值时对应的自变量x0;再结合几何意义求出的范围,最后利用二倍角的正切公式即可得到结论.解答:解:〔1〕g〔x〕=3sin〔x+〕+4sinx=4sinx+3cosx,其‘相伴向量’=〔4,3〕,g〔x〕∈S.〔2〕h〔x〕=cos〔x+α〕+2cosx=〔cosxcosα﹣sinxsinα〕+2cosx=﹣sinαsinx+〔cosα+2〕cosx∴函数h〔x〕的‘相伴向量’=〔﹣sinα,cosα+2〕.那么||==.〔3〕的‘相伴函数’f〔x〕=asinx+bcosx=sin〔x+φ〕,其中cosφ=,sinφ=.当x+φ=2kπ+,k∈Z时,f〔x〕取到最大值,故x0=2kπ+﹣φ,k∈Z.∴tanx0=tan〔2kπ+﹣φ〕=cotφ=,tan2x0===.为直线OM的斜率,由几何意义知:∈[﹣,0〕∪〔0,].令m=,那么tan2x0=,m∈[﹣,0〕∪〔0,}.当﹣≤m<0时,函数tan2x0=单调递减,∴0<tan2x0≤;当0<m≤时,函数tan2x0=单调递减,∴﹣≤tan2x0<0.综上所述,tan2x0∈[﹣,0〕∪〔0,].点评:本体主要在新定义下考查平面向量的根本运算性质以及三角函数的有关知识.是对根底知识的综合考查,需要有比拟扎实的根本功.20.〔2021•江苏〕如图,在正四棱柱ABCD﹣A1B1C1D1中,AA1=2,AB=1,点N是BC 的中点,点M在CC1上.设二面角A1﹣DN﹣M的大小为θ,〔1〕当θ=90°时,求AM的长;〔2〕当时,求CM的长.考点:向量在几何中的应用.专题:立体几何.分析:〔1〕建立如下图的空间直角坐标系,D﹣xyz,设CM=t〔0≤t≤2〕,通过,求出平面DMN的法向量为,,求出平面A1DN 的法向量为,推出〔1〕利用θ=90°求出M的坐标,然后求出AM 的长.〔2〕利用cos=以及,求出CM 的长.解答:解:建立如下图的空间直角坐标系,D﹣xyz,设CM=t〔0≤t≤2〕,那么各点的坐标为A〔1,0,0〕,A1〔1,0,2〕,N〔,1,0〕,M〔0,1,t〕;所以=〔,1,0〕.=〔1,0,2〕,=〔0,1,t〕设平面DMN的法向量为=〔x1,y1,z1〕,那么,,即x1+2y1=0,y1+tz1=0,令z1=1,那么y1=﹣t,x1=2t所以=〔2t,﹣t,1〕,设平面A1DN的法向量为=〔x2,y2,z2〕,那么,,即x2+2z2=0,x2+2y2=0,令z2=1那么y2=1,x2=﹣2所以=〔﹣2,1,1〕,〔1〕因为θ=90°,所以解得t=从而M〔0,1,〕,所以AM=〔2〕因为,所以,cos==因为=θ或π﹣θ,所以=解得t=0或t=根据图形和〔1〕的结论,可知t=,从而CM的长为.点评:此题是中档题,考查直线与平面,直线与直线的位置关系,考查转化思想的应用,向量法解答立体几何问题,方便简洁,但是注意向量的夹角,计算数据的准确性.21.〔2021•山东〕设m∈R,在平面直角坐标系中,向量a=〔mx,y+1〕,向量b=〔x,y﹣1〕,a⊥b,动点M〔x,y〕的轨迹为E.〔Ⅰ〕求轨迹E的方程,并说明该方程所表示曲线的形状;〔Ⅱ〕m=.证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且OA⊥OB〔O为坐标原点〕,并求该圆的方程;〔Ⅲ〕m=.设直线l与圆C:x2+y2=R2〔1<R<2〕相切于A1,且l与轨迹E只有一个公共点B1.当R为何值时,|A1B1|取得最大值?并求最大值.考点:平面向量数量积的运算;圆的标准方程;轨迹方程;直线和圆的方程的应用.专题:平面向量及应用;直线与圆;圆锥曲线的定义、性质与方程;圆锥曲线中的最值与范围问题.分析:〔1〕由a⊥b,所以a•b=0,代入坐标化简整理即得轨迹E的方程mx2+y2=1.此为二元二次曲线,可分m=0、m=1、m>0且m≠1和m<0四种情况讨论;〔2〕当m=时,轨迹E的方程为=1,表示椭圆,设圆的方程为x2+y2=r2〔0<r<1〕,当切线斜率存在时,可设圆的任一切线方程为y=kx+t,由直线和圆相切可得k和t的关系,由OA⊥OB,所以x1x2+y1y1=0,只需联立直线和圆的方程,消元,维达定理,又可以得到k和t的关系,这样就可解出r.当切线斜率不存在时,代入检验即可.〔3〕因为l与圆C相切,故△OA1B1为直角△,故|A1B1|2=|OB1|2﹣|OA1|2,只需求出OB1和OA1的长度即可,直线l与圆C相切,且与椭圆相切找出关系,将|A1B1|表示为R的函数,转化为函数求最值.解答:解:〔Ⅰ〕因为a⊥b,所以a•b=0,即〔mx,y+1〕•〔x,y﹣1〕=0,故mx2+y2﹣1=0,即mx2+y2=1.当m=0时,该方程表示两条直线;当m=1时,该方程表示圆;当m>0且m≠1时,该方程表示椭圆;当m<0时,该方程表示双曲线.〔Ⅱ〕当时,轨迹E的方程为,设圆的方程为x2+y2=r2〔0<r<1〕,当切线斜率存在时,可设圆的任一切线方程为y=kx+t,A〔x1,y1〕,B〔x2,y2〕,所以,即t2=r2〔1+k2〕.①因为OA⊥OB,所以x1x2+y1y1=0,即x1x2+〔kx1+t〕〔kx2+t〕=0,整理得〔1+k2〕x1x2+kt〔x1+x2〕+t2=0.②由方程组消去y得〔1+4k2〕x2+8ktx+4t2﹣4=0.③由韦达定理代入②式并整理得〔1+k2〕,即5t2=4+4k2.结合①式有5r2=4,r=,当切线斜率不存在时,x2+y2=也满足题意,故所求圆的方程为x2+y2=.〔Ⅲ〕显然,直线l的斜率存在,设l的方程y=k1x+t1,B1〔x3,y3〕轨迹E的方程为.由直线l与圆相切得t12=R2〔1+k12〕,且对应③式有△=〔8k1t1〕2﹣4〔1+4k12〕〔4t12﹣4〕=0,即t12=1+4k12,由方程组,解得当l与轨迹E只有一个公共点时,对应的方程③应有两个相等的.由韦达定理x32===,又B1在椭圆上,所以,因为l与圆C相切,所以|A1B1|2=|OB1|2﹣|OA1|2=x32+y32﹣R2===≤,其中,等号成立的条件,。