永磁直驱风力发电机结构
直驱式永磁同步风力发电机概述
直驱式永磁同步风力发电机概述永磁同步发电机是一种以永磁体进行励磁的同步电机,应用于风力发电系统,称为永磁同步风力发电机。
永磁同步风力发电机一般不用齿轮箱,而将风力机主轴与低速多极同步发电机直接连接,为“直驱式”,所以称为直驱式永磁同步风力发电机,以下本章除特指外均简称为永磁同步发电机。
一、永磁同步发电机的特点1.与传统电励磁同步发电机比较同步发电机是一种应用广泛的交流电机,其显著特点是转子转速n与定子电流频率f之间具有固定不变的关系,即n=n0=60f/p,其中n为同步转速,p为极对数。
现代社会中使用的交流电能几乎全部由同步发电机产生。
永磁同步发电机是一种结构特殊的同步发电机,它与传统的电励磁同步发电机的主要区别在于:其主磁场由永磁体产生,而不是由励磁绕组产生。
与普通同步发电机相比,永磁同步发电机具有以下特点:(1)省去了励磁绕组、磁极铁芯和电刷-集电环结构,结构简单紧凑,可靠性高,免维护。
(2)不需要励磁电源,没有励磁绕组损耗,效率高。
(3)采用稀土永磁材料励磁,气隙磁密较高,功率密度高,体积小,质量轻。
(4)直轴电枢反应电抗小,因而固有电压调整率比电励磁同步发电机小。
(5)永磁磁场难以调节,因此永磁同步发电机制成后难以通过调节励磁的方法调节输出电压和无功功率(普通同步发电机可以通过调节励磁电流方便地调节输出电压和无功功率)。
(6)永磁同步发电机通常采用钕铁硼或铁氧体永磁,永磁体的温度系数较高,输出电压随环境温度的变化而变化,导致输出电压偏离额定电压,且难以调节。
(7)永磁体存在退磁的可能。
目前,永磁同步发电机的应用领域非常广泛,如航空航天用主发电机、大型火电站用副励磁机、风力发电、余热发电、移动式电源、备用电源、车用发电机等都广泛使用各种类型的永磁同步发电机,永磁同步发电机在很多应用场合有逐步代替电励磁同步发电机的趋势。
2.与非直驱式双馈风力发电机比较虽然双馈风力发电机是目前应用最广泛的机型,但随着风力发电机组单机容量的增大,双馈型风力发电系统中齿轮箱的高速传动部件故障问题日益突出,于是不用齿轮箱而将风力机主轴与低速多极同步发电机直接连接的直驱式布局应运而生。
永磁风机结构
永磁风机结构
永磁风机是一种利用永磁材料制成电磁体的直驱发电机,它具有高效率、低噪音、可靠性强等特点,在风能领域有着广泛的应用。
永磁风机结构主要由发电机、传动系统、变桨机构、塔架和控制系统组成。
其中发电机是永磁风机最关键的部分,它是将机械能转化为电能的核心部分。
发电机由转子和定子两部分组成,其中转子由永磁材料组成,可靠性高,定子则由铜线和铁芯构成。
在永磁风机的发电机中,永磁体固定在转子上,直接转动,由此产生电力。
由于永磁体不需要额外的电力来激励,这种发电机可以大大提高发电机的能效比,并且减少了发电机的重量和体积。
传动系统包括主轴、齿轮箱和发电机。
主轴是风机的转动部分,齿轮箱则是将主轴的转速变换为发电机所需要的转速。
为了适应不同的风速,永磁风机还配备了变桨机构,用来调节叶片的角度,提高风机的效率。
塔架是将风机固定在地面或者水下的支架,以保证风机稳定运行。
控制系统则负责调节发电机、变桨机构和传动系统的运行状态,确保风
机在不同的风速下都能正常发电。
总之,永磁风机的结构简单、可靠性高、效率较高,在未来的风能利用中,具有广阔的发展前景。
1 . 5 M W 直驱永磁风力发电机组发电机的分析
酒泉职业技术学院毕业设计(论文)12 级风能与动力技术专业题目:1.5MW永磁直驱风力发电机组发电机的分析毕业时间:二O一五年六月学生姓名:孙其军指导教师:甄亮班级:12级风电(2)班2014 年6月20日酒泉职业技术学院2015 届各专业毕业论文(设计)成绩评定表目录摘要: (4)一、绪论 (4)(一)风能的储备 (4)(二)我国风能的利用 (5)二、发电机的介绍 (7)(一)直驱发电机的介绍 (7)(二)直驱式风力发电机原理及发电机组概述 (8)三、 1.5MW永磁直驱风力发电机结构 (9)(一)永磁直驱风力发电机结构 (9)(二)转子特点: (10)(三)风力发电机磁路结构 (11)(四)满足冷却与散热条件 (13)(五)永磁直驱风力发电机的优点 (13)四、永磁直驱风力发电机组变速恒频并网运行 (14)(一)运行控制 (14)(二)并网控制 (16)五、总结 (16)参考文献: (18)致谢 (19)1.5MW永磁直驱风力发电机组发电机的分析摘要:由于永磁风力发电机在国内的应用还并不多见,仅有一些发达国家掌握主要的技术,对永磁发电机系统特性的研究具有广泛的理论意义和实用价值。
直驱型风力发电机组在运行时,风机不接增速齿轮箱,直接与发电机耦合;发电机的定子为三相或多相绕组,转子采用永磁体或电励磁结构;定子发出非工频的电能,电压也随转速变化;系统中有整流逆变装置,发电机发出的电能是电压和频率都在变化的交流电,经整流逆变后变成恒压恒频的电能输入电网;通过调节逆变装置的控制信号可以改变系统输出的有功功率和无功功率,实时满足电网的功率需要。
在变速恒频直驱风力发电机组中,整流逆变装置的容量需要与发电机容量相等。
关键词:风力发电;直驱;永磁同步发电机。
一、绪论(一)风能的储备风能跟太阳能一样属于一种可再生资源, 具有清洁、丰富、一次性等特点, 在社会与经济的发展过程中, 它已经越来越成为一种被广泛重视的能源。
永磁同步风力发电系统的组成、工作原理及控制机理
永磁同步风力发电系统的系统基本组成、工作原理、控制模式论述1.系统的基本组成:直驱式同步风力发电系统主要采用如下结构组成:风力机(这里概括为:叶片、轮毂、导航罩)、变桨机构、机舱、塔筒、偏航机构、永磁同步发电机、风速仪、风向标、变流器、风机总控系统等组成。
其中全功率变流器又可分为发电机侧整流器、直流环节和电网侧逆变器。
就空间位置而言,变流器和风机总控系统一般放在塔筒底部,其余主要部件均位于塔顶。
2.工作原理:系统中能量传递和转换路径为:风力机把捕获的流动空气的动能转换为机械能,直驱系统中的永磁同步发电机把风力机传递的机械能转换为频率和电压随风速变化而变化的不控电能,变流器把不控的电能转换为频率和电压与电网同步的可控电能并馈入电网,从而最终实现直驱系统的发电并网控制。
3.控制模式:风力发电机组的控制系统是综合性控制系统。
它不仅要监视电网、风况和机组运行参数,对机组运行进行控制。
而且还要根据风速与风向的变化,对机组进行优化控制,以提高机组的运行效率和发电量。
风力发电控制系统的基本目标分为三个层次:分别为保证风力发电机组安全可靠运行,获取最大能量,提供良好的电力质量。
控制系统主要包括各种传感器、变距系统、运行主控制器、功率输出单元、无功补偿单元、并网控制单元、安全保护单元、通讯接口电路、监控单元。
具体控制内容有:信号的数据采集、处理,变桨控制、转速控制、自动最大功率点跟踪控制、功率因数控制、偏航控制、自动解缆、并网和解列控制、停机制动控制、安全保护系统、就地监控、远程监控。
一、系统运行时控制:1、偏航系统控制:偏航系统的控制包括三个方面:自动对风、自动解缆和风轮保护。
1)自动对风正常运行时偏航控制系统自动对风,即当机舱偏离风向一定角度时,控制系统发出向左或向右调向的指令,机舱开始对风,当达到允许的误差范围内时,自动对风停止。
2)自动解缆当机舱向同一方向累计偏转2~3圈后,若此时风速小于风电机组启动风速且无功率输出,则停机,控制系统使机舱反方向旋转2~3圈解绕;若此时机组有功率输出,则暂不自动解绕;若机舱继续向同一方向偏转累计达3圈时,则控制停机,解绕;若因故障自动解绕未成功,在扭缆达4圈时,扭缆机械开关将动作,此时报告扭缆故障,自动停机,等待人工解缆操作。
永磁同步发电机的结构
永磁同步发电机的结构直驱式永磁发电机在结构上主要有轴向与盘式两种结构,轴向结构又分为内转子、外转子等;盘式结构又分为中间转子、中间定子、多盘式等;另外还有双凸极发电机与开关磁阻发电机。
一、内转子永磁同步发电机1.结构模型图6-9为内转子永磁同步风力发电机组的结构模型。
与普通交流电机一样,永磁同步发电机也由定子和转子两部分组成,定子、转子之间有空气隙,转子由多个永久磁铁构成。
图6-10为内转子永磁同步发电机的结构模型。
图6-9 内转子永磁同步风力发电机组的结构模型图6-10 内转子永磁同步发电机的结构模型2.定子结构永磁同步发电机的定子铁芯通常由0.5mm厚的硅钢片制成以减小铁耗,上面冲有均匀分布的槽,槽内放置三相对称绕组。
定子槽形通常采用与永磁同步电动机相同的半闭口槽,如图6-11所示。
为有效削弱齿谐波电动势和齿槽转矩,通常采用定子斜槽。
定子绕组通常由圆铜线绕制而成,为减少输出电压中的谐波含量,大多采用双层短距和星形接法,小功率电机中也有采用单层绕组的,特殊场合也采用正弦绕组。
3.转子结构由于永磁同步发电机不需要起动绕组,转子结构比异步启动永磁同步电动机简单,有较充足的空间放置永磁体。
转子通常由转子铁芯和永磁体组成。
转子铁芯既可以由硅钢片叠压而成,也可以是整块钢加工而成。
根据永磁体放置位置的不同,将转子磁极结构分为表面式和内置式两种。
表面式转子结构的永磁体固定在转子铁芯表面,结构简单,易于制造。
内置式转子结构的永磁体位于转子铁芯内部,不直接面对空气隙,转子铁芯对永磁体有一定的保护作用,转子磁路的不对称产生磁阻转矩,相对于表面式结构可以产生更强的气隙磁场,有助于提高电机的过载能力和功率密度,但转子内部漏磁较大,需要采取一定的隔磁措施,转子结构和加工工艺复杂,且永磁体用量多。
图6-11 典型永磁同步发电机的结构示意图1—定子铁芯;2—定子槽;3—转子铁芯;4—永磁体;5—轴二、外转子永磁同步发电机1.外转子永磁同步风力发电机组外转子永磁同步风力发电机的发电绕组在内定子上,绕组与普通三相交流发电机类似;转子在定子外侧,由多个永久磁铁与外磁轭构成,外转子与风轮轮毂安装成一体,一同旋转。
直驱式永磁同步风力发电机组简介
直驱式永磁同步风力发电机组简介
直驱式永磁同步发电机采用永磁体外转子结构,相比较同功率的风力发电机组,尺寸和外径相对较小。
直驱永磁同步发电机组是风带动叶轮直接驱动转子转动,靠增加磁极的对数使发电机的额定转速下降达到转速调节的目的。
由于发电机组不需要增速齿轮箱,一般故障现象如润滑油泄漏,齿轮箱过载,机械损大等问题也减少很多,直接降低客户后期的运维成本。
直驱式永磁同步风力发电机组可以通过变桨系统来控制风力发电机组输出的最大功率,同时也会控制有功功率的上升变化率功能。
当风电场的风速急剧上升时,通过控制变桨的角度,风力发电机组不会出现因功率急剧上升载荷突然增大引起风机安全事故的情况。
同时永磁风力发电机组具备机端电压控制控制功能,机组具备有一定的无功调节能力,当系统出现电压波动时,可以控制和稳定机端电压。
直驱永磁同步发电机采用全功率变流器来实现并网,初始发电机发出交流电的电压和频率还有相位都不稳定。
需要通过整流单元整流变成直流电,经过电压升高,将电能输送到直流母排上,通过逆变单元把直流电逆变成能够和电网相匹配的电能。
变流器机侧和网侧有各有独立的控制器,各个系统之间通过控制器通讯进行数据交换和控制。
直驱式风力发电机组简介
3.0MW直驱式风力发电机组简介直驱永磁风力发电机取消了沉重的增速齿轮箱,发电机轴直接连接到叶轮轴上,转子的转速随风速而改变,其交流电的频率也随之变化,经过置于地面的大功率电力电子变换器,将频率不定的交流电整流成直流电,再逆变成与电网同频率的交流电输出。
国际先进的无齿轮箱直驱风力发电机,用低速多极永磁发电机,并使用一台全功率变频器将频率变化的风电送入电网。
直接驱动式风力发电机组由于没有齿轮箱,零部件数量相对传统风电机组要少得多。
其主要部件包括:叶轮叶片、轮毂、变桨系统、发电机转子、发电机定子、偏航系统、测风系统、底板、塔架等(如图1.1 所示)。
1.1 直驱型风力发电机总体设计方案直驱型风力发电机组采用水平轴、三叶片、上风向、变桨距调节、直接驱动、永磁同步发电机并网的总体设计方案,相对于传统的异步发电机组其优点如下[1]:1(1)由于传动系统部件的减少,提高了风力发电机组的可靠性和可利用率;2(2)永磁发电技术及变速恒频技术的采用提高了风电机组的效率;3(3)机械传动部件的减少降低了风力发电机组的噪音;4(4)可靠性的提高降低了风力发电机组的运行维护成本;5(5)机械传动部件的减少降低了机械损失,提高了整机效率;6(6)利用变速恒频技术,可以进行无功补偿;7(7)由于减少了部件数量,使整机的生产周期大大缩短。
2 直驱风力发电机组变桨特性叙述直驱型风力发电机组为变桨距调节型风机,叶片在运行期间,它会在风速变化的时候绕其径向轴转动。
因此,在整个风速范围内可能具有几乎最佳的桨距角和较低的切入风速。
在高风速下,改变桨距角以减少功角,从而减小了在叶片上的气动力。
这样就保证了叶轮输出功率不超过发电机的额定功率。
对于变桨距调节后对的功率特性的影响等等问题,这里我们将对机组叶片上的气动性能进行分析,从而进一步的了解变桨后,对风力发电机组的性能影响2.1 不同变桨角度下的特性根据叶素理论,当一个叶素在流畅中运动时,叶素的上表面是负压力(吸力);下表面是正压力。
直驱永磁同步式发电机原理
直驱永磁同步式发电机原理
直驱永磁同步式发电机是一种利用永磁材料和直驱技术的发电机,其原理基于电磁学和磁学的基本原理。
以下是直驱永磁同步式发电机的基本工作原理:
1.永磁同步发电机结构:直驱永磁同步式发电机通常由转子和定
子两部分组成。
转子上嵌有永磁体,这些永磁体通常是稀土磁体,如钕
铁硼(NdFeB)。
定子上则布置有线圈。
2.永磁场产生:当转子旋转时,永磁体在转子上产生一个稳定的
磁场。
这个永磁场是由永磁体的磁性质所提供的,它可以保持在整个转
子旋转过程中不变。
3.电磁感应:定子上的线圈被永磁体的磁场穿过,根据法拉第电
磁感应定律,感应出电动势。
线圈上的导体通过这个感应电动势产生电
流。
4.直驱技术:直驱指的是发电机的转子直接与风力发电机的转子
(通常是风力涡轮机)相连接,而不需要传统的齿轮箱。
这减少了机械
部件,提高了传动效率,并减少了维护成本。
5.输出电能:通过调节定子上的电流,可以获得所需的输出电
能。
输出电流的交流特性可以通过逆变器进行转换,以匹配电网或存储
系统的要求。
直驱永磁同步式发电机的主要优点包括效率高、维护成本低、启动转矩大等特点。
这种发电机常用于风力发电系统,其中直驱技术可以提高整个风力涡轮系统的可靠性和效率。
直驱式风力发电机组概述(来自lsaac空间站)
直驱式风力发电机组概述二极三相交流发电机转速约每分钟3000转,四极三相交流发电机转速约每分钟1500转,而风力机转速较低,小型风力机转速约每分钟最多几百转,大中型风力机转速约每分钟几十转甚至十几转,必须通过齿轮箱增速才能带动发电机以额定转速旋转。
下图是一台采用齿轮箱增速的水平轴风力发电机组的结构示意图。
使用齿轮箱会降低风力机效率,齿轮箱是易损件,特别大功率高速齿轮箱磨损厉害、在风力机塔顶环境下维护保养都较困难。
不用齿轮箱用风力机浆叶直接带动发电机旋转发电是可行的,这必须采用专用的低转速发电机,称之为直驱式风力发电机。
近些年直驱式风力发电机已从小型风力发电机向大型风力发电机应用发展,国内具有自主知识产权的2MW永磁直驱风力发电机已研制成功,据报道目前国外最大的风力发电机组已达7MW,是直驱式发电机组。
低转速发电机都是多极结构,水轮发电机就是低速多极发电机,风力机用的直驱式发电机也有类似原理构造,一种多极内转子结构,只是要求在结构上更轻巧一些。
近些年高磁能永磁体技术发展很快,特别是稀土永磁材料钕铁硼在直驱式发电机中得到广泛应用。
采用永磁体技术的直驱式发电机结构简单、效率高。
永磁直驱式发电机在结构上主要有轴向与盘式结构两种,轴向结构又分为内转子、外转子等;盘式结构又分为中间转子、中间定子、多盘式等;还有开始流行的双凸极发电机与开关磁阻发电机。
下图是一个内转子直驱式风力发电机组的结构示意图。
其定子与普通三相交流发电机类似,转子由多个永久磁铁构成。
外转子永磁直驱式风力发电机的发电绕组在内定子上,绕组与普通三相交流发电机类似;转子在定子外侧,由多个永久磁铁与外磁軛构成,外转子与风轮轮毂安装成一体,一同旋转。
本栏有对外转子直驱式风力发电机的专门介绍,下图是一个外转子直驱式风力发电机组的结构示意图。
盘式永磁直驱式风力发电机的定子与转子都呈平面圆盘结构,定子与转子轴向排列,有中间转子、中间定子、多盘式等结构,本栏有对中间转子与中间定子直驱式风力发电机的专门介绍,下图是一个中间定子直驱式风力发电机组的结构示意图。
直驱式风机结构
内转子永磁直驱风力发电机With Internal Rotor Direct-driveGenerator内转子永磁直驱风力发电机的结构采用普通发电机广泛采用的结构,采用多凸极结构,其气隙中的磁通方向与电机轴垂直(径向磁通)。
与普通发电机相比只是要求在结构上更轻巧一些。
图1是多极内转子结构的定子与转子局部图,显示了磁通的走向。
图1--内转子发电机的磁路下面通过一个内转子永磁直驱风力发电机模型来介绍其结构与组成,先介绍发电机部分。
发电机定子铁芯由导磁良好的硅钢片叠成,铁芯内圆周均匀分布着许多槽,定子绕组嵌放在定子槽内,组成三相绕组,每相绕组由多个线圈组成,按一定规律排列,见图2。
为了清晰显示定子铁心的构造,本模型的线圈槽数比实际直驱发电机要少一些,例如一个50对磁极的定子槽数为150个或更多。
图2--定子铁心与绕组转子是多极结构,在转子磁轭外圆周贴有多个永磁体磁极,形成多凸极转子,相邻永磁体外表面极性相反,磁通方向如图1所示。
转子磁轭通过转子支撑体固定在电机转轴套上,见图3。
图3--永磁体凸极转子转子安装在定子内周,与定子之间有很小的气隙,可自由旋转,见图4。
转子旋转时,定子绕组切割磁力线感生电势。
图4--定子与转子下面介绍内转子直驱式风力发电机组的基本结构。
在塔架顶部的机舱里有支撑整个机组的机座,机座下部底盘装有偏航电机,在机座上有固定发电机定子的机架,见图5。
图5--机舱内的机组机座把内转子永磁发电机的定子安装在机架上,见图6。
图6--安装定子把永磁极转子安装在主轴上,见图7图7--安装转子把装有叶片的轮毂安装在机座的转轴上,轮毂上装有变桨机构,轮毂与转子固定连接,风轮与转子同步旋转,见图8。
图8--内转子直驱式永磁风力发电机组组成在轮毂外部安装导流罩,在机舱安装电器柜,控制系统,润滑系统,测风装置等。
图9是一个内转子直驱式永磁风力发电机组的结构示意图。
图9--内转子直驱式永磁风力发电机组剖视图。
5KW直驱式永磁风力发电机的设计
摘要当今对可再生能源的开发利用中,风能由于其突出的优点而成为了研究的热点,风力发电是我国能源和电力可持续发展战略的最现实的选择。
直驱永磁同步风力发电机去掉了风力发电系统中常见的齿轮箱,让风力机直接拖动电机转子运转在低速状态,这样就没有了齿轮箱所带来的噪声、故障率高和维护成本大等问题,从而提高了运行的可靠性。
本文对风力发电机的发展史和风力发电机的种类进行了详细的介绍;根据永磁电机的技术要求,进行电磁方案的初步设计,确定电机的基本结构、永磁体和铁心尺寸及绕组参数;应用ANSOFT软件进行风力发电机的设计并优化永磁发电机的性能指标。
关键词: 风力发电机,永磁电机设计,ANSOFT软件ABSTRACTRecently ,the renewable energy such as wind power have been strongly encouraged because of environmental problem and shortage of traditional energy sources in the near future.Without the typical gearbox in wind-generating system and the disadvantages caused by gearbox,the PMSG(Permanent Magnet Synchronous Generator)is directly driven by the wind turbine at low speed,which makes the operation of the generator more liable.The history of the development of wind turbines and wind turbine types were described in detail; Based on permanent magnet motor of the technical requirements,designer makes the preliminary design of the electromagnetic program, and determines the basic structure of the motor, permanent magnet and the core size and winding parameters; Apply ANSOFT ware to design wind turbine and to optimize performance of permanent magnet generator.KEY WORDS:Wind turbine, permanent magnet motor design, ANSOFT software目录摘要 (I)ABSTRACT (II)第1章绪论 (1)1.1 风力发电机的发展历史概述 (1)1.2 风力发电机的分类 (2)1.2.1直驱式风力发电机 (2)1.2.2双馈式风力发电机 (2)1.3 永磁风力发电机的特点 (3)1.4 本设计开发的风力发电机 (4)第2章永磁风力发电机的设计 (5)2.1发电机结构的选取 (5)2.2 永磁同步发电机电机转子磁路结构 (6)2.2.1切向式转子磁路结构 (6)2.2.2径向式转子磁路结构 (7)2.2.3混合式转子磁路结构 (8)2.2.4轴向式转子磁路结构 (8)2.3 励磁电动势和气隙合成电动势 (9)2.4 交、直轴电枢反应和电枢反应电抗 (12)2.5 固有电压调整率和降低措施 (13)2.6 短路电流倍数的计算 (14)2.7 永磁同步发电机电动势波形 (15)2.8 永磁材料的性能和选用 (16)2.8.1热稳定性 (16)2.8.2磁稳定性 (17)2.8.3化学稳定性 (17)2.8.4时间稳定性 (17)2.8.5永磁材料的选择原则为: (17)2.8.6 主要尺寸的选择 (18)2.8.7 永磁体尺寸与电磁负荷的选择 (19)2.8.8 定子绕组参数 (20)2.9手算算例 (23)第3章运用ansoft软件进行风力发电机的设计 (28)3.1 ansoft软件介绍 (28)3.2 RMXPRT介绍及应用 (28)3.2.1 RMXPRT工作界面 (28)3.2.2RMXPRT的特点 (30)3.3 Maxwell控制板 (31)3.3.1定子设计 (32)3.3.2定子绕组设计 (33)3.3.3转子磁极数据 (34)3.4设计输出 (35)3.5性能曲线 (41)第4章结论 (48)致谢 (49)参考文献 (50)第1章绪论1.1 风力发电机的发展历史概述我国是最早使用风帆船和风车的国家之一,至少在3000年前的商代就出现了帆船,到唐代风帆船已广泛用于江河航运。
永磁直驱风力发电机技术综述
永磁直驱风力发电机技术综述发表时间:2018-07-02T11:27:53.600Z 来源:《电力设备》2018年第7期作者:左禾[导读] 摘要:风能是一种清洁的可再生能源,其分布面广,开发利用潜力巨大,而风力发电则是最为常规的风能利用技术。
(西安中车永电捷力风能有限公司陕西西安 710000)摘要:风能是一种清洁的可再生能源,其分布面广,开发利用潜力巨大,而风力发电则是最为常规的风能利用技术。
永磁直驱风力发电机采用永磁体作为励磁系统,由风轮直接驱动发电机,是风力发电机的主要发展方向,通常采用径向气隙以及轴向气隙结构,包括减小起动转矩、冷却和散热设计、永磁体的固定以及发电机的防雷设计等关键技术。
文章就永磁直驱风力发电机技术进行相关分析。
关键词:永磁直驱;风力发电机;技术应用1 风力发电机1.1 风力发电机含义风力发电机主要是一种电力设备,其能够把风能转为机械功,从而带动转子旋转,最后输出交流电。
在广义上,风能也作为太阳能,因此,风力发电机也是以大气为介质、太阳为热源的热能利用发电机。
1.2 风力发电机原理风力发电原理说来很简单,但做起来很难,其利用风去带动风车叶片使叶片旋转,再通过增速机提高叶片旋转速度,以此促使发电机进行发电。
风力发电相较于柴油发电要好很多,因为其利用自然能源。
风力发电不能够作为备用电源,但其使用寿命长,可长期利用。
1.3 风力发电机类型(1)异步型,包括笼型异步发电机和绕线式双馈异步发电机。
(2)同步型,包括永磁同步发电机和电励磁同步发电机。
(3)水平轴,目前利用最多的风力发电机类型。
(4)垂直轴,新型的风力发电机。
与水平轴风力发电机相比,其效率较高,且没有噪音,维护简单,中小型发电机首选。
1.4 永磁直驱风电机组的结构组成永磁直驱风力发电机组没有齿轮箱,风轮直接驱动发电机,亦称无齿轮风力发电机,采用永磁体代替励磁线圈,减少了励磁损耗。
此外,永磁电机无需从电网吸收无功功率来建立磁场,由于没有励磁装置,减少了很多电气设备,从而使机组具有可靠、高效、方便安装和维护等很多优点。
永磁同步直驱式风电机zw_wz
试比较永磁同步直驱式和双馈感应式风电机组的结构、造价、适用场合和工作特性以及工作原理的不同。
结构直接驱动式永磁风力发电系统结构如下图,风轮机直接祸合永磁风力发电机,发电机输出由可控硅整流后,再经逆变器将能量发送给电网或蓄电池。
双馈结构:叶轮—主轴—齿轮箱—连轴器—发电机(变流器—滑环—转子)—电网工作原理及工作特性直驱系统主要由风力机(这里概括为:叶片、轮毂、导航罩)、变桨机构、机舱、塔筒、偏航机构、永磁同步发电机、风速仪、风向标、变流器、风机总控系统等组成。
就空间位置而言,交流器和风机总控系统一般放在塔筒底部,其余主要部件均位于塔顶。
系统中能量传递和转换路径为:风力机把捕获的流动空气的动能转换为机械能,直驱系统中的永磁同步发电机把风力机传递的机械能转换为频率和电压随风速变化而变化的不控电能,变流器把不控的电能转换为频率和电压与电网同步的可控电能并馈入电网,从而最终实现直驱系统的发电并网控制。
直接驱动型采用多极异步电机与叶轮直接连接进行驱动的方式,从而免去了齿轮箱这一传统部件。
Mw级的风力发电机一般需采用3级齿轮增速,将风力机的转速由每分钟数十转增至上千转,齿轮传动不仅降低了风电转换效率和产生噪声,而且由于机械磨损需要润滑清洗等定期维护,往往成为系统机械故障的重要来源。
取消增速机,采用风力机直接驱动的发电机对于提高系统效率和运行可靠性具有重要意义。
直接驱动式发电系统必须采用超低速的发电机。
当发电机输出电压频率不变时,电机绕组的极数与转速成反比,而电机电磁功率与转速成正比,如果保持与高速电机具有相同的额定功率,直接驱动低速发电机就必须有较多的极数和较大的体积,因此,就提高了发电机的制造成本。
此外,低速发电机由于极数很多而受其铁芯尺寸和槽数所限,每极每相槽数过少而无法采用正常的分布和短距绕组,致使发电机的输出电压、电流波形含有较大的谐波分量,给发电机绕组设计带来很大困难。
双馈式发电机是变速运行风电系统的一种,包括风力机、齿轮箱、感应发电机、PWM 变频器和直流侧电容器等。
大功率直驱永磁风力发电机的电磁结构分类 及特征分析
大功率直驱永磁风力发电机的电磁结构分类及特征分析摘要:结合风力发电的运行成本,对电磁的结构进行科学地设计,是大功率直驱式风力发电机的重要研究课题。
基于此,本文对六种比较典型的DDPM-WG展开了电磁结构与特点的分析。
有利于对大功率直驱永磁风力的发电机不断地优化电磁的结构。
关键词:直驱;永磁风力发电机;电磁结构;分类;比较标准直驱永磁的风力发电机得到了相关人士的认可。
尤其在运行、发电效率、维修成本具有较大的优点。
相比带有齿轮的发电机更加可靠。
然而,大功率的直驱式风力发电机中,直驱永磁的发电机一般在低速状态下安全运行,这样,发电机会存在较大的磁路气隙的直径,切向力也会很高,导致发电机整体的重量大、体积庞大,增加了企业的研制成本。
所以,探讨易于加工、维修的直驱发电机永磁风力发电机具有重要的现实意义。
一、大功率直驱永磁风力发电机的特征空气动力学和风涡轮机的稳态功率可知:机械的转换功率大,则风涡轮的叶片也越大,随之叶尖速也会变大。
然而,不断增强的叶尖速会产生噪声污染,其数值一般受到相应的局限。
这样,其额定的转速也会改变。
实际上,对于大功率的风力发电机,其风轮的叶片转速较低,一般在10-30 r/min。
同时,这种直驱的发电机转矩也很大。
对正常的风力发电系统的发电机,气隙的单位面积上力密度保持在25-50 kN/m2区间。
大功率风力直驱发电机的体积随功率的增大而增大,重量也会增大。
总之,大功率直驱永磁风力发电机是一个低速、大转矩、体积更大、重量更重的发电机,从而导致了其制造、运输和安装的成本很高。
二、直驱永磁风力发电机电磁结构的分类方法为了减少直驱风力发电机的体积和重量,选用永磁同步电机就是一个很好的措施.由于永磁体的形状、大小尺寸、空间摆放的位置以及方向具有多种灵活的组合,使其电磁的结构呈现多样化特点。
本文仅对四种最具代表性的磁同步式的电机展开分析。
(一)气隙磁通的划分气隙磁通一般可以分为两种类型。
即轴向、径向的气隙磁通。
第4章 永磁直驱风力发电机组
4.5基于感应发电机的风电机组 4.5.1 笼型感应发电机
4.5.2.恒速恒频风电机组
4.5.3.双速恒频机组
4.5.4优化转差机组
4.5.5变速恒频机组
几种创新型风力发电机组
第4章 永磁直驱风力发电机组 及其它
4.1永磁直驱风电机组的组成 4.2永磁直驱风电机组发电系统 4.3永磁直驱风电机组机舱总成 4.4其他同步风电机组 4.5基于感应发电机的风电机组
4.1永磁直驱风电机组的组成
直驱永磁风力发电机组由风力机、发 电系统、制动系统、监控系统、温控和润 滑系统等组成。其主要特点是采用多极永 磁同步发电机(PMSG)和全功率变流器, 发电机轴直接连接到风轮上。
1.直流侧电压控制 2.PWM波的产生 3.交流侧电流的控制
4.3永磁直驱风电机组机舱总成
4.3.1主传动 单轴承
发电机内部制动机构
4.4其他同步风电机组 4.4.1电励磁直驱式风电机组
4.4.2应用液力机械增速箱的风电机组
4.4.3应用电磁调速的风电机组
外转子 内转子
外转子
4.2永磁直驱风电机组发电系统
4.2.1永磁同步发电机 1.结构
2.工作原理
3. 磁极结构
内转子
外转子
4.2.2变流器 1.不可控整流+Boost+逆变
2.背靠背双PWM变流器
4.2.3发电系统保护电路 1.定子侧保护电路
2.电网侧保护电路
4.2.4变流器的控制策略
直驱式永磁同步风力发电系统
ω P = K mech_opt
3 opt wt
v4
Tmech
v1 < v2 < v3 < v4
Topt
=
ω K 2 opt wt
D
v3
v4
C v3
v2 v1
B v2
A v1
O
ωwt
O
ωwt
Pmech _ opt
⎛
= 0.5ρCP π max R2 ⎜⎜⎝
Rωwt λopt
3. 如何能够省去齿轮箱
E ≈ 4.44 f1N1kw1Φm
f1
=
pin 60
增大极对数,就有可能在较低的转速下获得较高的频率和输 出电压。
但双馈风力发电机,极对数增加,转子加工的难度增加,而 且体积和成本也增加,所以无法省去齿轮箱。
电励磁的同步发电机,尽管可以做到极对数增加很多,但体 积会随着极对数的增加而增加得比较快。
如在装光电编码器的时候将电机打开,使其零起点对准永磁磁 极的几何中心线,则光电编码器转过多少度,永磁磁极就转了 多少度。
理论可行,但实际不可行。即使电机可以打开,光电编码器的 零刻度也无法进行目测对准。
对于电动机,通常使用的方法是,先在定子绕组中通电,建立 一个恒定磁场,转子磁极会旋转到与磁场方向一致的位置上。 这个时候磁极的零点就找到了。
id 、iq分别是定子电流的dq轴分量
(3)磁链方程
⎧⎪ψ d = Ldid +ψ f ⎨⎪⎩ψ q = Lqiq
⎧⎪ ⎨ ⎪⎩
Ld Lq
= =
Ldm Lqm
+ Lσ s + Lσ s
分别是定子dq轴的自感
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
永磁直驱风力发电机结构:永磁直驱风力发电机的结构主要包括风轮、永磁同步发电机、机架及偏航系统、主控系统、变流器、空-空循环冷却系统、液压系统、润滑系统、变压器、中央监控系统、塔架和机舱等部分。
风轮是永磁风力发电机的核心部件,也是最直接受到风能作用的部分。
它由多个叶片组成,通过风力的作用使得风轮旋转。
风轮通常采用可调角度的叶片设计,以便在不同风速下获得最高效率的转动。
发电机通过法兰与风轮直接相连,省去了影响风机可靠性的最薄弱环节———齿轮箱,以及主轴系统、联轴器等传动部件。
风轮与发电机转子直联,简化了结构,缩短了传动链,最大限度地提高了机组的可靠性和传动效率。
机架和偏航系统支持整个发电机组的运行,并能根据风向的变化自动调整机舱的角度,以保证风轮始终对准风向,提高发电效率。
主控系统负责整个发电机组的运行控制,包括启动、停机、偏航、故障保护等功能。
变流器将发电机产生的电能转换为符合电网要求的电能,空-空循环冷却系统则负责冷却发电机和变流器等发热部件。
液压系统和润滑系统则分别提供机组运行所需的液压动力和润滑。
此外,永磁直驱风力发电机还包括变压器、中央监控系统、塔架和机舱等部分。
变压器将发电机产生的电能升压后送入电网,中央监控系统则负责监控整个发电机组的运行状态和性能。
塔架和机舱则构成了发电机组的支撑结构和运行环境。