高中数学--离散型随机变量及其分布列

合集下载

离散型随机变量及其分布列、数字特征-高考数学复习

离散型随机变量及其分布列、数字特征-高考数学复习

0.8 .

解析:由结论2易得 E ( X )=0.8.
目录
课堂演练
考点 分类突破
精选考点 典例研析 技法重悟通
PART
2
目录
分布列的性质
【例1】 (1)(2024·云南一中检测)设离散型随机变量ξ的分布列
如下表所示,则下列各式正确的是(
ξ
-1
0

1
2
3
P
D. P (ξ<0.5)=0
目录
1
1
1
3
3
3
3
3
2
1
1
+ d ≤ ,所以- ≤ d ≤ .
3
3
3
目录
解题技法
离散型随机变量分布列性质的应用
(1)利用“总概率之和为1”可以求相关参数的取值范围或值;
(2)利用“离散型随机变量在某一范围内的概率等于它取这个范围
内各个值的概率之和”求某些特定事件的概率;
(3)可以根据性质判断所得分布列结果是否正确.
【例2】 (多选)设离散型随机变量 X 的分布列为
X
P
0
q
1
0.4
2
0.1
3
0.2
4
0.2
若离散型随机变量 Y 满足 Y =2 X +1,则下列结果正确的有(

A. q =0.1
B. E ( X )=2, D ( X )=1.4
C. E ( X )=2, D ( X )=1.8
D. E ( Y )=5, D ( Y )=7.2
(2) E ( aX + b )= aE ( X )+ b , D ( aX + b )= a 2 D
( X );

【高中数学】离散型随机变量及其分布列+练习题

【高中数学】离散型随机变量及其分布列+练习题

离散型随机变量及其分布列一、离散型随机变量随着试验结果变化而变化的变量称为随机变量,常用字母X 、Y 、ξ、η…表示.所有取值可以一一列出的随机变量称为离散型随机变量.二、离散型随机变量的分布列一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…x i ,…,x n ,X 取每一个值x i (i =1,2,…,n)的概率P(X =x i )=p i ,则表称为离散型随机变量X 的概率分布列,简称为X 的分布列.有时为了表达简单,也用等式P(X =x i )=pi ,i =1,2,…,n 表示X 的分布列.X x 1x 2…x i …x nPp 1P 2…p i …p n三、离散型随机变量分布列的性质:1.i P ≥0,i =1,2,…,n ;211ni i p ==∑.四、常见离散型随机变量的分布列1.两点分布X 01P 1-p p如果随机变量X 的分布列为两点分布列,就称X 服从两点分布,而称p =P(X =1)为成功概率.2.超几何分布列一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{X =k}发生的概率为(),0,1,2,k n k M N MnNC C P X k k m C --=== .其中m =min{M ,n},且n≤N ,M≤N ,n ,M ,N ∈N*.称分布列X 01…mP00n M N Mn NC C C --11n M N Mn NC C C --…m n m M N Mn NC C C --为超几何分布列.如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从超几何分布.例1:设随机变量X 的分布列如下:则p 为()X 1234P 161316pA.16B.13C.23D.12解:由16+13+16+p =1,∴p =13.2.抛掷2颗骰子,所得点数之和记为X ,那么X =4表示的随机试验结果是()A .2颗都是4点B .1颗是1点,另一颗是3点C .2颗都是2点D .1颗是1点,另1颗是3点,或者2颗都是2点解:X =4表示的随机试验结果是1颗1点,另1颗3点或者两颗都是2点.例3:若随机变量X 的分布列P (x =i )=i2a(i =1、2、3),则P (x =2)=()A.19B.16C.13D.14解:由12a +22a +32a =62a =1,得a =3.∴P (x =2)=22×3=13.=0.3,那么n =________.解:1n×3=0.3,∴n =10.例5:从装有3个红球,2个白球的袋中随机取出2个球,设其中有X 个红球,则随机变量X 的概率分布为X 012P解:P (X =0)=1C 25=110,P (X =1)=C 13C 12C 25=35,P (X =2)=C 23C 25=310.1.对随机变量的理解(1)随机变量具有如下特点:其一,在试验之前不能断言随机变量取什么值,即具有随机性;其二,在大量重复试验中能按一定统计规律取实数值的变量,即存在统计规律性.(2)由离散型随机变量分布列的概念可知,离散型随机变量的各个可能值表示的事件是彼此互斥的.因此,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.2.分布列正误的检验方法对于离散型随机变量的分布列,要注意利用它的两条性质检验所列分布列是否正确,如果求出的离散型随机变量的分布列不满足这两条性质,就说明计算过程中存在错误;反之,也不能说明所得分布列一定是正确的.但要掌握利用这两条性质判断计算过程是否存在错误的方法.例6:设X 是一个离散型随机变量,其分布列为:X -101P 121-2q q 2则q 等于()A .1B .1±22C .1-22D .1+22解:由分布列的性质知1-2q ≥0,q 2≥0,12+1-2q +q 2=1,∴q =1-22.ξ123…nP k n k n k n …k n则k 的值为()A.12B .1C .2D .3解:由k n +k n +…+kn=1,∴k =1.ξ-2-10123P112312412112212112若P (ξ2<x )=1112,则实数x 的取值范围是__________.解:由P (ξ2<x )=1112且结合分布列得4<x ≤9.i i =1,2….2.P 1+P 2+…+P n =1.其主要作用是用来判断离散型随机变量的分布列的正确性,或者用来计算随机变量取某些值的概率.例9:某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A 饮料,另外4杯为B 饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A 饮料.若4杯都选对,则月工资定为3500元;若4杯选对3杯,则月工资定为2800元;否则月工资定为2100元.令X 表示此人选对A 饮料的杯数.假设此人对A 和B 两种饮料没有鉴别能力.求X 的分布列.解:X 的所有可能取值为:0,1,2,3,4,P (X =i )=C i 4C 4-i4C 48(i =0,1,2,3,4),即X 01234P170167036701670170例10:袋中有3个白球,3个红球和5个黑球.从中抽取3个球,若取得1个白球得1分,取得1个红球解:得分ξ的取值为-3,-2,-1,0,1,2,3.ξ=-3时表示取得3个球均为红球,∴P (ξ=-3)=C 33C 311=1165.ξ=-2时表示取得2个红球和1个黑球,∴P (ξ=-2)=C 23C 15C 311=111.ξ=-1时表示取得2个红球和1个白球,或1个红球和2个黑球.∴P (ξ=-1)=C 23C 13+C 13C 25C 311=1355.ξ=0时表示取得3个黑球或1红、1黑、1白,∴P (ξ=0)=C 35+C 13C 13C 15C 311=13.ξ=1时表示取得1个白球和2个黑球或2个白球和1个红球,∴P (ξ=1)=C 13C 25+C 23C 13C 311=1355.ξ=2时表示取得2个白球和1个黑球,∴P (ξ=2)=C 23C 15C 311=111.ξ=3时表示取得3个白球,∴P (ξ=3)=C 33C 311=1165.∴所求概率分布列为:ξ-3-2-10123P116511113551313551111165例11:在学校组织的足球比赛中,某班要与其他4个班级各赛一场,在这4场比赛的任意一场中,此班级每次胜、负、平的概率相等.已知当这4场比赛结束后,该班胜场多于负场.(1)求该班级胜场多于负场的所有可能的个数和;(2)若胜场次数为X ,求X 的分布列.解:(1)若胜一场,则其余为平,共有C 14=4种情况;若胜两场,则其余两场为一负一平或两平,共有C 24C 12+C 24=18种情况;若胜三场,则其余一场为负或平,共有C 34×2=8种情况;若胜四场,则只有一种情况.综上,共有31种情况.(2)X 的可能取值为1,2,3,4,P (X =1)=431,P (X =2)=1831,P (X =3)=831,P (X =4)=131,所以X 的分布列为X 1234P4311831831131解:(1)所选3人中恰有一名男生的概率P =C 25C 14C 39=1021.(2)ξ的可能取值为0,1,2,3.P (ξ=0)=C 35C 39=542,P (ξ=1)=C 25C 14C 39=1021,P (ξ=2)=C 15C 24C 39=514,P (ξ=3)=C 34C 39=121.∴ξ的分布列为ξ0123P5421021514121解:由题意知η可取3,2,1,0即当η=3时,ξ=0.η=2时,ξ=1.η=1时,ξ=2.η=0时,ξ=3.∴η的分布列为η3210P5421021514121例13:第:31届奥林匹克夏季运动会于2016年8月5日至21日在里约热内卢举行,为了搞好接待工作,组委会在某学院招募了12名男志愿者和18名女志愿者,将这30名志愿者的身高编成如下茎如图(单位:cm):若身高在175cm 以上(包括175cm)定义为“高个子”,身高在175cm 以下定义为“非高个子”,且只有“女高个子”才能担任“礼仪小姐”.(1)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,再从这5人中选2人,那么至少有1人是“高个子”的概率是多少?(2)若从所有“高个子”中选3名志愿者,用ξ表示所选志愿者中能担任“礼仪解:(1)根据茎叶图,有“高个子”12人,“非高个子”18人,用分层抽样的方法,每个人被抽中的概率是530=16,所以抽中的“高个子”有12×16=2人,“非高个子”有18×16=3人.用事件A 表示“至少有1名‘高个子’被选中”,则它的对立事件A 表示“没有1名‘高个子’被选中”,则P (A )=1-P (A )=1-C 23C 25=1-310=710.因此,至少有1人是“高个子”的概率是710.(2)依题意,ξ的可能取值为0,1,2,3,则P (ξ=0)=C 38C 312=1455,P (ξ=1)=C 14C 28C 312=2855,P (ξ=2)=C 24C 18C 312=1255,P (ξ=3)=C 34C 312=155.因此,ξ的分布列为ξ0123P145528551255155胜A 、乙胜B 、丙胜C 的概率分别为0.6,0.5,0.5.假设各盘比赛结果相互独立.(1)求红队至少两名队员获胜的概率;(2)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望E(ξ).解:(1)设甲胜A 的事件为D ,乙胜B 的事件为E ,丙胜C 的事件为F ,则D 、E 、F 分别表示甲不胜A 、乙不胜B 、丙不胜C 的事件.因为P (D )=0.6,P (E )=0.5,P (F )=0.5,由对立事件的概率公式知P (D )=0.4,P (E )=0.5,P (F )=0.5红队至少两人获胜的事件有:DE F ,D E F ,D EF ,DEF .由于以上四个事件两两互斥且各盘比赛的结果相互独立,因此红队至少两人获胜的概率为P =P (DE F )+P (D E F )+P (D EF )+P (DEF )=0.6×0.5×0.5+0.6×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.55.(2)由题意知ξ可能的取值为0,1,2,3.又由(1)知F 、E 、D 是两两互斥事件,且各盘比赛的结果相互独立,因此p (ξ=0)=P (DEF )=0.4×0.5×0.5=0.1,P (ξ=1)=P (DE F )+P (DEF )+P (D EF )=0.4×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.35,P (ξ=3)=P (DEF )=0.6×0.5×0.5=0.15.由对立事件的概率公式得P (ξ=2)=1-P (ξ=0)-P (ξ=1)-P (ξ=3)=0.4.所以ξ的分布列为:ξ0123P0.10.350.40.15因此E (ξ)=0×0.1+1×0.35+2×0.4+3×0.15=1.6.离散型随机变量及其分布列训练题1一、选择题1.下列4个表格中,可以作为离散型随机变量分布列的一个是()A. B.C.D.2.袋中装有10个红球、5个黑球.每次随机抽取1个球后,若取得黑球则另换1个红球放回袋中,直到取到红球为止.若抽取的次数为ξ,则表示“放回5个红球”事件的是()A .ξ=4B .ξ=5C .ξ=6D .ξ≤53.离散型随机变量X 的概率分布规律为P (X =n )=a n (n +1)(n =1,2,3,4),其中a 是常数,则P (12<X <52)的值为()A.23B.34C.45D.564.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,其分布列为P (X ),则P (X =4)的值为()A.1220 B.2755 C.27220 D.21255.一只袋内装有m 个白球,n -m 个黑球,连续不放回地从袋中取球,直到取出黑球为止,设此时取出了ξ个白球,下列概率等于(n -m )A 2mA 3n的是()A .P (ξ=3)B .P (ξ≥2)C .P (ξ≤3)D .P (ξ=2)二、填空题6.随机变量X 的分布列如下:X -101P a b c 其中a ,b ,c 成等差数列,则P (|X |=1)=______.7.设随机变量X 只能取5、6、7、…、16这12个值,且取每个值的概率相同,则P (X >8)=________,P (6<X ≤14)=________.三、解答题8.口袋中有n (n ∈N *)个白球,3个红球,依次从口袋中任取一球,如果取到红球,那么继续取球,且取出的红球不放回;如果取到白球,就停止取球.记取球的次数为X .若P (X =2)=730,求:(1)n 的值;(2)X 的分布列.X 012P0.30.40.5X 012P0.3-0.10.8X1234P0.20.50.3X 012P1727379.一项试验有两套方案,每套方案试验成功的概率都是23,试验不成功的概率都是13.甲随机地从两套方案中选取一套进行这项试验,共试验了3次,且每次试验相互独立.(1)求3次试验都选择了同一套方案且都试验成功的概率;(2)记3次试验中,都选择了第一套方案并试验成功的次数为X ,求X 的分布列.10.在某射击比赛中,比赛规则如下:每位选手最多射击3次,射击过程中若击中目标,方可进行下一次射击,否则停止射击;同时规定第i (i =1,2,3)次射击时击中目标得4-i 分,否则该次射击得0分.已知选手甲每次射击击中目标的概率为0.8,且其各次射击结果互不影响.(1)求甲恰好射击两次的概率;(2)设选手甲停止射击时的得分总数为ξ,求随机变量ξ的分布列.1.C2.C3.解析:由(11×2+12×3+13×4+14×5)×a =1.知45a =1∴a =54.故P (12<X <52)=P (1)+P (2)=12×54+16×54=56.答案:D4.解析:由题意取出的3个球必为2个旧球1个新球,故P (X =4)=C 23C 19C 312=27220.答案:C5.解析:由超几何分布知P (ξ=2)=n -m A 2mA 3n答案:D6.解析:∵a ,b ,c 成等差数列,∴2b =a +c .又a +b +c =1,∴b =13,∴P (|X |=1)=a +c =23.答案:237.解析:P (X >8)=23,P (6<X ≤14)=23.答案:23238.解:(1)由P (X =2)=730知C 13C 1n +3×C 1n C 1n +2=730,∴90n =7(n +2)(n +3).∴n =7.(2)X =1,2,3,4且P (X =1)=710,P (X =2)=730,P (X =3)=7120,P (X =4)=1120.∴X 的分布列为X 1234P710730712011209.解:(1)记事件“一次试验中,选择第i 套方案并试验成功”为A i ,i =1,2,则P (A i )=1C 12×23=13.3次试验选择了同一套方案且都试验成功的概率P =P (A 1·A 1·A 1+A 2·A 2·A 2)=313⎛⎫ ⎪⎝⎭+313⎛⎫ ⎪⎝⎭=227.(2)由题意知X 的可能取值为0,1,2,3,则X ~B (3,23),P (X =k )=C k 3313k-⎛⎫ ⎪⎝⎭23k⎛⎫⎪⎝⎭,k =0,1,2,3.X 的分布列为X 0123P127294982710.解:(1)记“选手甲第i 次击中目标的事件”为A i (i =1,2,3),则P (A i )=0.8,P (A i )=0.2,依题意可知:A i 与A j (i ,j =1,2,3,i ≠j )相互独立,所求的概率为P (A 1A 2)=P (A 1)P (A 2)=0.8×0.2=0.16.(2)ξ的可能取值为0,3,5,6.P (ξ=0)=0.2,P (ξ=3)=0.8×0.2=0.16,P (ξ=5)=0.82×0.2=0.128,P (ξ=6)=0.83=0.512.所以ξ的分布列为:ξ0356P 0.20.160.1280.512【参考答案】离散型随机变量及其分布列训练题2一.选择题(共15小题)1.设随机变量ξ的分布列由,则a 的值为()A .1B .C .D .2.设随机变量X 等可能取值1,2,3,…,n ,如果P (X <4)=0.3,那么()A .n=3B .n=4C .n=10D .n=93.下列表中能成为随机变量ξ的分布列的是()A .B .C .D .4.已知8件产品中有2件次品,从中任取3件,取到次品的件数为随机变量,用ξ表示,那么ξ的取值()A .0,1B .1,2C .0,1,2D .0,1,2,35.设离散型随机变量X 的概率分布如表:则随机变量X 的数学期望为()A .B .C .D .6.设随机变量X 的概率分布列为X 1234P m则P (|X ﹣3|=1)=()A .B .C .D .7.设随机变量X 的概率分布如右下,则P (X≥0)=()X ﹣101P p A .B .C .D .8.随机变量ξ的分布列为P (ξ=k )=,k=1,2,3,其中c 为常数,则P (ξ≥2)等于()A .B .C .D .9.两名学生参加考试,随机变量x 代表通过的学生数,其分布列为x 012p那么这两人通过考试的概率最小值为()A .B .C .D .10.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒子中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,其分布列为P (X ),则P (X=4)的值为()A .B .C .D .ζ﹣101P 0.30.40.4ζ123P 0.40.7﹣0.1ζ﹣101P0.30.40.3ζ123P0.30.40.4X123P ip11.6件产品中有2件次品与4件正品,从中任取2件,则下列可作为随机变量的是()A.取到产品的件数B.取到正品的件数C.取到正品的概率D.取到次品的概率12.已知随机变量ξ~B(9,)则使P(ξ=k)取得最大值的k值为()A.2B.3C.4D.513.设随机变量的ξ的分布列为P(ξ=k)=(k=1,2,3,4,5,6),则P(1.5<ξ<3.5)=()A.B.C.D.14.已知随机变量X的分布列为:P(X=k)=,k=1,2,…,则P(2<X≤4)等于()A.B.C.D.15.袋中共放有6个仅颜色不同的小球,其中3个红球,3个白球,每次随机任取1个球,共取2次,则下列不可作为随机变量的是()A.取到红球的次数B.取到白球的次数C.2次取到的红球总数D.取球的总次数二.填空题(共5小题)16.设ξ是一个离散型随机变量,其概率分布列如下:ξ﹣101P0.5q2则q=.17.设随机变量X的分布列为P(X=i)=,i=1,2,3,则P(X=2)=.18.随机变量X的分布列为X x1x2x3P p1p2p3若p1,p2,p3成等差数列,则公差d的取值范围是.19.设随机变量X的概率分布为P(X=2k)=ak(a为常数,k=1,2,3,4,5),则P(X>6)=.20.(2014•嘉定区校级模拟)己知A、B两盒中都有红球、白球,且球的形状、大小都相同,盒子A中有m 个红球与10﹣m个白球,盒子B中有10﹣m个红球与m个白球(0<m<10).分别从A、B中各取一个球,ξ表示红球的个数,表中表示的是随机变量ξ的分布列则当m为时,D(ξ)取到最小值.ξ012P?三.解答题(共8小题)21.M公司从某大学招收毕业生,经过综合测试,录用了14名男生和6名女生,这20名毕业生的测试成绩如茎叶图所示(单位:分),公司规定:成绩在180分以上者到“甲部门”工作;180分以下者到“乙部门”工作.另外只有成绩高于180分的男生才能担任“助理工作”.(Ⅰ)如果用分层抽样的方法从“甲部分”人选和“乙部分”人选中选取8人,再从这8人中选3人,那么至少有一人是“甲部门”人选的概率是多少?(Ⅱ)若从所有“甲部门”人选中随机选3人,用X表示所选人员中能担任“助理工作”的人数,写出X的分布列,并求出X的数学期望.22.某校参加高一年级期中考试的学生中随机抽出60名学生,将其数学成绩分成六段[40,50)、[50,60)、…、[90,100]后得到如图部分频率分布直方图,观察图形的信息,回答下列问题:(1)求分数在[70,80)内的频率,并补全这个频率分布直方图;(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;(3)若从60名学生中随抽取2人,抽到的学生成绩在[40,60)记0分,在[60,80)记1分,在[80,100]记2分,用ξ表示抽取结束后的总记分,求ξ的分布列和数学期望.23.2013年2月20日,针对房价过高,国务院常务会议确定五条措施(简称“国五条”).为此,记者对某城市的工薪阶层关于“国五条”态度进行了调查,随机抽取了60人,作出了他们的月收入的频率分布直方图(如图),同时得到了他们的月收入情况与“国五条”赞成人数统计表(如表):(Ⅰ)试根据频率分布直方图估计这60人的平均月收入;(Ⅱ)若从月收入(单位:百元)在[15,25),[25,35)的被调查者中各随机选取3人进行追踪调查,记选中的6人中不赞成“国五条”的人数为X ,求随机变量X 的分布列及数学期望.24.在某校高三学生的数学校本课程选课过程中,规定每位同学只能选一个科目.已知某班第一小组与第二小组各有六位同学选择科目甲或科目乙,情况如下表:现从第一小组、第二小组中各任选2人分析选课情况.(1)求选出的4人均选科目乙的概率;(2)设ξ为选出的4个人中选科目甲的人数,求ξ的分布列和数学期望.月收入(百元)赞成人数[15,25)8[25,35)7[35,45)10[45,55)6[55,65)2[65,75)1科目甲科目乙总计第一小组156第二小组246总计391225.某游乐场有A、B两种闯关游戏,甲、乙、丙、丁四人参加,其中甲乙两人各自独立进行游戏A,丙丁两人各自独立进行游戏B.已知甲、乙两人各自闯关成功的概率均为,丙、丁两人各自闯关成功的概率均为.(1)求游戏A被闯关成功的人数多于游戏B被闯关成功的人数的概率;(2)记游戏A、B被闯关总人数为ξ,求ξ的分布列和期望.26.某超市在节日期间进行有奖促销,凡在该超市购物满300元的顾客,将获得一次摸奖机会,规则如下:奖盒中放有除颜色外完全相同的1个红球,1个黄球,1个白球和1个黑球.顾客不放回的每次摸出1个球,若摸到黑球则停止摸奖,否则就要将奖盒中的球全部摸出才停止.规定摸到红球奖励10元,摸到白球或黄球奖励5元,摸到黑球不奖励.(Ⅰ)求1名顾客摸球3次停止摸奖的概率;(Ⅱ)记X为1名顾客摸奖获得的奖金数额,求随机变量X的分布列和数学期望.一.选择题(共15小题)1.D;2.C;3.C;4.C;5.C;6.B;7.C;8.C;9.B;10.C;11.B;12.A;13.A;14.A;15.D;二.填空题(共5小题)16.;17.;18.[-,];19.;20.1或9;三.解答题(共8小题)21.解:(I)用分层抽样的方法,每个人被抽中的概率为=,根据茎叶图,有“甲部门”人选10人,“乙部门”人选10人,所以选中的“甲部门”人选有10×=4人,“乙部门”人选有10×=4人,用事件A表示“至少有一名甲部门人被选中”,则它的对立事件表示“没有一名甲部门人被选中”,则P(A)=1﹣P()=1﹣=1﹣=.因此,至少有一人是“甲部门”人选的概率是;(Ⅱ)依据题意,所选毕业生中能担任“助理工作”的人数X的取值分别为0,1,2,3,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==.因此,X的分布列如下:所以X的数学期望EX=0×+1×+2×+3×=.22.解:(1)设分数在[70,80)内的频率为x,根据频率分布直方图,有(0.01+0.015×2+0.025+0.005)×10+x=1,可得x=0.3,所以频率分布直方图如图所示(2)平均分为=45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71(3)学生成绩在[40,60)的有0.25×60=15人,在[60,80)的有0.45×60=27人,在[80,100)的有0.3×60=18人,ξ的可能取值是0,1,2,3,4则,,,,所以ξ的分布列为:∴23.解:(Ⅰ)这60人的月平均收入为(20×0.015+30×0.015+40×0.025+0.02×50+60×0.015+70×0.01)×10=43.5(百元)(Ⅱ)根据频率分布直方图可知[15,25)的人数为0.015×10×60=9人,其中不赞成的只有1人;[25,35)的人数为0.015×10×60=9人,其中不赞成的有2人.则X的所有取值可能为0,1,2,3.,,P (X=2)=+,.∴随机变量X 的分布列为∴E (X )==1.24.解:(1)设“从第一小组选出的2人选科目乙”为事件A ,“从第二小组选出的2人选科目乙”为事件B ,由于事件A 、B 相互独立,且P (A )=,P (B )=,所以选出的4人均选科目乙的概率为:P (A •B )=P (A )•P (B )=;(2)ξ可能的取值为0,1,2,3,则P (ξ=0)=,P (ξ=1)=+=,P (ξ=3)==,P (ξ=2)=1﹣P (ξ=0)﹣P (ξ=1)﹣P (ξ=3)=,ξ的分布列为:所以ξ的数学期望为:0×+1×+2×+3×=1.25.解:(1).(2)ξ可取0,1,2,3,4,P (ξ=0)=(1﹣)2(1﹣)2=;P (ξ=1)=()(1﹣)()2+(1﹣)2=;P (ξ=2)=++=;P (ξ=3)==;P (ξ=4)==.∴ξ的分布列为:ξ01234PE ξ=0×+1×+2×+3×+4×=.26.(Ⅰ)解:设“1名顾客摸球3次停止摸奖”为事件A ,则共有基本事件:1+++=16个,则A 事件包含基本事件的个数为=6个,则P (A )==,故1名顾客摸球3次停止摸奖的概率为,(Ⅱ)解:随机变量X 的所有取值为0,5,10,15,20.,,,,.所以,随机变量X 的分布列为:X 0123P (X )X 05101520P。

高中理科数学-离散型随机变量及分布列汇编

高中理科数学-离散型随机变量及分布列汇编

理科数学复习专题 统计与概率 离散型随机变量及其分布列知识点一1、离散型随机变量:随着实验结果变化而变化的变量称为随机变量,常用字母,X,Y ,x h g g g 表示,所有取值可以一一列出的随机变量,称为离散型随机变量。

2、离散型随机变量的分布列及其性质:(1)定义:一般的,若离散型随机变量X 可能取的不同值为12,,,,,,i n x x x x g g g g g g X 取每一个值(1,2,,)i x i n =g g g 的概率为()i i P X x p ==,则表称为离散型随机变量离散型随机变量X ,简称X 的分布列。

(2)分布列的性质:①0,1,2,,i p in ?g g g ;②11ni i p ==å(3)常见离散型随机变量的分布列:①两点分布:若随机变量X 的分布列为,则称X 服从两点分布,并称(1)p P x ==为成功概率②超几何分布:一般的,在含有M 件次品的N 件产品中,任取n 件,其中恰有X件次品,则()(0,1,2,,k n k M N MnNC C P X k k m C --===g g g g 其中m i n {,m M n =,且*,,,,)n N M N n MN N #?,称分布列为超几何分布列。

如果随机变量X 的分布列题型一 由统计数据求离散型随机变量的分布列【例1】已知一随机变量的分布列如下,且E (ξ)=6.3,则a 值为( )A. 5 【变式1】 某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%;一旦失败,一年后将丧失全部资金的50%.下表是过去200例类似项目开发的实施结果:则该公司一年后估计可获收益的期望是________.题型二 由古典概型求离散型随机变量的分布列(超几何分布)【例2】在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求:(1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X 元的概率分布列.【变式2】某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A 饮料,另外4杯为B饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料.若4杯都选对,则月工资定为3 500元;若4杯选对3杯,则月工资定为2 800元;否则月工资定为2 100元.令X表示此人选对A饮料的杯数.假设此人对A和B两种饮料没有鉴别能力.(1)求X的分布列;(2)求此员工月工资的期望.知识点二1.条件概率及其性质对于两个事件A和B,在已知事件B发生的条件下,事件A发生的概率叫做条件概率,用符号P(A|B)来表示,其公式为P(A|B)=P(AB)P(B)(P(B)>0).在古典概型中,若用n(B)表示事件B中基本事件的个数,则P(A|B)=n(AB) n(B).2.相互独立事件(1)对于事件A、B,若事件A的发生与事件B的发生互不影响,称A、B是相互独立事件.(2)若A与B相互独立,则P(AB)=P(A)P(B).(3)若A与B相互独立,则A与B,A与B,A与B也都相互独立.(4)若P(AB)=P(A)P(B),则A与B相互独立.3.二项分布(1)独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有__两__种结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的.(2)在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则P(X=k)=C k n p k(1-p)n-k(k=0,1,2,…,n),此时称随机变量X服从二项分布,记为X~B(n,p),并称p为成功概率.题型三 条件概率例1 (1)从1,2,3,4,5中任取2个不同的数,事件A 为“取到的2个数之和为偶数”,事件B 为“取到的2个数均为偶数”,则P (B |A )= ________.(2)如图所示,EFGH 是以O 为圆心,半径为1的圆的内接正方形,将一粒豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形OHE (阴影部分)内”,则P (B |A )=________.练:某地空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是________.题型四 由独立事件同时发生的概率求离散型随机变量的分布列(二项分布)例1 在一场娱乐晚会上,有5位民间歌手(1至5号)登台演唱,由现场数百名观众投票选出最受欢迎歌手.各位观众须彼此独立地在选票上选3名歌手,其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱,因此在1至5号中随机选3名歌手.(1)求观众甲选中3号歌手且观众乙未选中3号歌手的概率;(2)X 表示3号歌手得到观众甲、乙、丙的票数之和,“求X ≥2”的事件概率.例2在一次数学考试中,第21题和第22题为选做题.规定每位考生必须且只须在其中选做一题.设4名学生选做每一道题的概率均为12.(1)求其中甲、乙两名学生选做同一道题的概率;(2)设这4名考生中选做第22题的学生个数为ξ,求ξ的概率分布.练习:一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X ,求X 的概率分布.(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?【误区解密】抽取问题如何区分超几何分布和二项分布?例:某学校10个学生的考试成绩如下:(≥98分为优秀) (1)10人中选3人,求至多1人优秀的概率(2)用10人的数据估计全级,从全级的学生中任选3人,用X 表示优秀人数的个数,求X 的分布列练:18、某市在“国际禁毒日”期间,连续若干天发布了“珍爱生命,远离毒品”的电视公益广告,期望让更多的市民知道毒品的危害性.禁毒志愿者为了了解这则广告的宣传效果,随机抽取了100名年龄阶段在[)10,20,[)20,30,[)30,40,[)40,50,[)50,60的市民进行问卷调查,由此得到样本频率分布直方图如图所示.(Ⅰ)求随机抽取的市民中年龄在[)30,40的人数; (Ⅱ)从不小于40岁的人中按年龄段分层抽样的方法随机抽取5从,求[)50,60年龄段抽取的人数;(Ⅲ)从(Ⅱ)中方式得到的5人中再抽到2人作为本次活动的获奖者,记X 为年龄在[)50,60年龄段的人数,求X 的分布列及数学期望.2、一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为(5,15],(15,25](25,35],(35,45],由此得到样本的重量频率分布直方图,如图.(Ⅰ)求a 的值;(Ⅱ)根据样本数据,试估计盒子中小球重量的平均值;(Ⅲ)从盒子中随机抽取3个小球,其中重量在(5,15]内的小球个数为ξ,求ξ的分布列和数学期望及方差.。

高中数学--离散型随机变量及其分布列..

高中数学--离散型随机变量及其分布列..

【思路点拨】
(1)总取法为 C3 10,关键是求出三个小球
上的数字各不相同有多少取法;(2)先确定 X 的求值,再确定 X 取每个值的概率;(3)由计分范围确定 X 的范围,利用的结 论求概率.
【尝试解答】 (1)法一:“一次取出的 3 个小球上的数
1 1 1 C3 C 5 2C2C2 2 字互不相同”的事件记为 A,则 P(A)= = . C3 3 10
ξ P
1 5 31
2 10 31
3 10 31
4 5 31
5 1 31
5 10 10 5 1 80 从而 E(ξ)=1× +2× +3× +4× +5× = . 31 31 31 31 31 31
∴共有 8C2 3对相交棱.
2 8×3 4 8C3 ∴P(ξ=0)= 2 = = . C12 66 11 4 【答案】 11
• 1.离散型随机变量 • (1)随机变量:将随机现象中试验(或观 数 测)的每一个可能的结果都对应于一个 , 这种对应称为一个随机变量,通常用大写 X Y 的英文字母如 、 来表示. • (2)离散型随机变量 一一列出 • 所有取值可以 的随机变乓球, 其中9个新的,3个旧的,从盒中任取3个球 来用,用完后装回盒中,此时盒中旧球个 数X是一个随机变量,其分布列为P(X),则 P(X1 =4)的值为( ) 27
A. 220 B. 55 27 C. 220
1 C2 27 3C9 故 P(X=4)= 3 = . C12 220

袋中装着标有数字1,2,3,4,5 的小球各2个,从袋中任取3个小球,按3个 小球上最大数字的9倍计分,每个小球被取 出的可能性都相等,用X表示取出的3个小 球上的最大数字,求: • (1)取出的3个小球上的数字互不相同的概 率; • (2)随相变量X的分布列; • (3)计分介于20分到40分之间的概率.

2023年高考数学(理科)一轮复习——离散型随机变量及其分布列

2023年高考数学(理科)一轮复习——离散型随机变量及其分布列
索引
感悟提升
分布列性质的两个作用 (1)利用分布列中各事件概率之和为1可求参数的值及检查分布列的正确性. (2)随机变量X所取的值分别对应的事件是两两互斥的,利用这一点可以求随机 变量在某个范围内的概率.
索引
考点二 离散型随机变量的分布列
例1 (12分)某市某超市为了回馈新老顾客,决定在2022年元旦来临之际举行 “庆元旦,迎新年”的抽奖派送礼品活动.为设计一套趣味性抽奖送礼品的活 动方案,该超市面向该市某高中学生征集活动方案,该中学某班数学兴趣小 组提供的方案获得了征用.方案如下:将一个4×4×4的正方体各面均涂上红色, 再把它分割成64个相同的小正方体.经过搅拌后,从中任取两个小正方体,记 它们的着色面数之和为ξ,记抽奖一次中奖的礼品价值为η.
索引
6.(2021·郑州检测)设随机变量X的概率分布列为
X1 2 34
P
1 3
m
1 4
1 6
5 则P(|X-3|=1)=___1_2____.
解析 由13+m+14+16=1,解得 m=14, P(|X-3|=1)=P(X=2)+P(X=4)=14+16=152.
索引
考点突破 题型剖析
KAODIANTUPOTIXINGPOUXI
索引
P(ξ=1)=CC13·C29 16=1386=12, P(ξ=2)=CC23·C29 06=336=112.
所以ξ的分布列为
ξ 012
P
5 12
1 2
1 12
索引
感悟提升
1.超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.超 几何分布的特征是: (1)考察对象分两类;(2)已知各类对象的个数;(3)从中抽取若干个个体,考查 某类个体数X的概率分布. 2.超几何分布主要用于抽检产品、摸不同类别的小球等概率模型,其实质是古 典概型.

高二数学选修2-3离散型随机变量及分布列(一)

高二数学选修2-3离散型随机变量及分布列(一)

〔1〕求常数a;〔2〕求P(1<ξ<4)
例3:一袋中装有6个同样大小的小球,编号为1、2、3、4、5、
6,现从中随机取出3个小球,以 表示取出球的最大号码,
求 的分布 列.
解: 的所有取值为:3、4、5、6.
“ 3” 表示其中一个球号码等于 “3〞,另两个都比“3〞小
“ 4” 表示其中一个球号码等于“4
Y=
0,掷出奇数点 1,掷出偶数点
思考2:
随机变量与函数有类似的地方吗?
随机变量和函数都是一种映射,随机变量把随 机试验的结果映为实数,函数把实数映为实数。在 这两种映射之间,试验结果的范围相当于函数的定 义域,随机变量的取值范围相当于函数的值域。我 们把随机变量的取值范围叫做随机变量的值域。
例如,在含有10件次品的100件产品中,任意抽取 4件,可能含有的次品件数X将随着抽取结果的变化而 变化,是一个随机变量。其值域是{0,1,2,3,4}.
〔4〕接连不断地射击,首次命中目标需要的射击次数 .
Байду номын сангаас( =1、2、3、···、n、···)

〔5〕某一自动装置无故障运转的时间 .

( 取0,内的一切值)

〔6〕某林场树木最高达50米,此林场树木的高度 .
( 取0,50内的一切值)
注1:随机变量分为离散型随机变量和连续型 随机变量。
注2:某些随机试验的结果不具备数量性质, 但仍可以用数量来表示它。
P1
2
1 1 …1
48
2 n1
P
1 3
1 2 33
1 3
2 3
2

1 3
2 3
n
2、设随机变量的分布列为 P( i) a1i, i 1,2,3

高中数学_离散型随机变量及其分布列教学设计学情分析教材分析课后反思

高中数学_离散型随机变量及其分布列教学设计学情分析教材分析课后反思

教学设计一、教材分析《离散型随机变量及其分布列》是人教B版《普通高中课程标准实验教科书数学选修2-3》第二章随机变量及其分布的第一节离散型随机变量及其分布列的第一课时,主要内容是学习离散型随机变量的定义、分布列的定义、性质、应用和两点分布模型。

离散型随机变量的分布列是高中阶段的重点内容,它作为概率与统计的桥梁与纽带,既是概率的延伸,也是学习统计学的理论基础,起到承上启下的作用,是本章的关键知识之一,也是后续第三节离散型随机变量的均值和方差的基础。

二、学情分析在必修三的教材中,学生已经学习了有关统计概率的基本知识,在本书的第一章中也全面学习了排列组合的有关内容,有了知识上的准备; 并且通过古典概率的学习,基本掌握了离散型随机变量取某些值时对应的概率, 有了方法上的准备, 但并未系统化。

高二14的学生,思维活跃,已初步具备自主探究的能力,动手能力运算能力尚佳,但基础薄弱,对数学图形、符号、文字三种语言的相互转化,以及处理抽象问题的能力,还有待于提高。

三、教学策略分析学生是教学的主体,本节课要给学生提供各种参与机会。

本课以情境为载体,以学生为主体,以问题为手段,激发学生观察思考、猜想探究的兴趣。

注重引导帮助学生充分体验“从实际问题到数学问题”的建构过程,通过具体实例,让学生感受“从特殊到一般,再从一般到特殊”的抽象思维过程,应用类比、归纳、转化的思想方法,得到分布列概念及性质,培养学生分析问题、解决问题的能力。

四、目标分析1.理解核心概念——离散型随机变量定义、分布列及两点分布模型,掌握分布列的性质,会求离散型随机变量的分布列,并能解决实际问题;2.提高能力——通过例题及变式,提高学生分析解决问题的能力;3. 通过情境导入使学生在具体情境中认识随机变量及其分布列对于刻画随机现象的重要性,体会数学来源于生活,又应用于生活的本质。

培养学生对数学学习的兴趣,体会学习的成功感。

五、教学重点与难点教学重点离散型随机变量定义、分布列的概念及性质,两点分布的模型;教学难点离散型随机变量及分布列的概念。

高中数学离散型随机变量分布列、期望与方差

高中数学离散型随机变量分布列、期望与方差

离散型随机变量——分布列、期望与方差从近几年高考试题看,离散型随机变量的期望与方差涉及到的试题背景有:①产品检验问题;②射击,投篮问题;③选题、选课,做题,考试问题;④试验,游戏,竞赛,研究性问题;⑤旅游,交通问题;⑥摸球球问题;⑦取卡片,数字和入座问题;⑧信息,投资,路线问题;⑨与概率分布直方图关联问题;⑩综合函数、方程、数列、不等式、导数、线性规划等知识问题着重考查分析问题和解决问题的能力。

一、离散型随机变量的分布列、期望与方差1.离散型随机变量及其分布列: (1)离散型随机变量:如果在试验中,试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化的,这样的变量X 叫做一个随机变量.如果随机变量X 的所有可能的取值都能一一列举出来,则称X 为离散型随机变量. (2)离散型随机变量的特点:①结果的可数性;②结果的未知性。

(3)离散型随机变量的分布列:设离散型随机变量X 所有可能的取值为i x ,与i x 对应的概率为i p (1,2,,)i n =,则下表:称为离散型随机变量X 的概率分布,或称为离散型随机变量X 的分布列. (4)离散型随机变量的分布列的性质:①0i p >(1,2,,)i n =;②11nii p==∑(1,2,,)i n =.③(P ξ≥1)()()k k k x P x P x ξξ+==+=+⋅⋅⋅ 2.离散型随机变量的数学期望:(1)定义:一般地,设一个离散型随机变量X 所有可能的取的值是1x ,2x ,…,n x , 这些值对应的概率是1p ,2p ,…,n p ,则1122()n n E x x p x p x p =+++,叫做这个离散型随机变量X 的均值或数学期望(简称期望).(2)离散型随机变量的数学期望刻画了这个离散型随机变量的平均取值水平.3.离散型随机变量的方差:(1)定义:一般地,设一个离散型随机变量X 所有可能取的值是1x ,2x ,…,n x ,这 些值对应的概率是1p ,2p ,…,n p ,则2221122()(())(())(())n n D X x E x p x E x p x E x p =-+-++-叫做这个离散型随机变量X 的方差.(2)离散型随机变量的方差反映了离散随机变量的取值相对于期望的平均波动的大小 (离散程度).(3)()D X的算术平方根叫做离散型随机变量X 的标准差,它也是一个衡量离散 型随机变量波动大小的量.4.随机变量aX b +的期望与方差:①()()E aX b aE X b +=+;②2()().D aX b a D X +=二、条件概率与事件的独立性:1.条件概率:对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件 概率,用符号“(|)P B A ”来表示.把由事件A 与B 的交(或积),记做D A B =(或D AB =). 2.事件的独立性如果事件A 是否发生对事件B 发生的概率没有影响,即(|)()P B A P B =,这时,我们称两 个事件A ,B 相互独立,并把这两个事件叫做相互独立事件.如果事件1A ,2A ,…,n A 相互独立,那么这n 个事件都发生的概率,等于每个事件发生的概率的积,即1212()()()()n n P A A A P A P A P A =⨯⨯⨯,并且上式中任意多个事 件i A 换成其对立事件后等式仍成立.三、几类典型的概率分布:1.两点分布:如果随机变量X 的分布列为其中01p <<,1q p =-,则称离散型随机变量X 服从参数为p 的二点分布.注:①两点分布又称01-分布,由于只有两个可能结果的随机试验叫做伯努利试验, 所以这种分布又称为伯努利分布. ②();().E X p D X np ==2.超几何分布:一般地,设有总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n 件 ()n N ≤,这n 件中所含这类物品件数X 是一个离散型随机变量,它取值为m 时的概率为C C ()C m n mM N Mn NP X m --==(0m l ≤≤,l 为n 和M 中较小的一个),称离散型随机变量X 的这 种形式的概率分布为超几何分布,也称X 服从参数为N ,M ,n 的超几何分布.记为:(,,)X H N M n .注:();ME X n N=2()()()(1)n N n N M M D X N N --=-. 3.二项分布:(1)定义:如果每次试验,只有两个可能的结果A 及A ,且事件A 发生的概率相同(p ). 那么重复地做n 次试验,各次试验的结果相互独立,这种试验称为n 次独立重复试验.在n 次试验中,事件A 恰好发生k 次的概率为:()C (1)kk n k n n P k p p -=-(0,1,,)k n =.(2)二项分布:若将事件A 发生的次数为X ,事件A 不发生的概率为1q p =-,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率是()C k k n k n P X k p q-==, 其中0,1,2,,k n =,于是得到X 的分布列:由于表中第二行恰好是二项展开式00111()C C C C n n n kk n k n n n n n n q p p q p q p q p q --+=++++各对应项的值,所以称这样的离散型随机变量X 服从参数为n ,p 的二项分布, 记作~(,)X B n p . (3)二项分布的均值与方差:若~(,)X B n p ,则()E X np =,()D x npq =(1)q p =-.4.几何分布:(1)定义:在独立重复试验中,某事件第一次发生时,所作试验的次数X 也是一个正 整数的离散型随机变量.“X k =”表示在第k 次独立重复试验时事件第一次发生.如果把k 次试验时事件A 发生记为k A 、事件A 不发生记为k A ,()k p A p =,()1,k p A p =- 那么112311231()()()()()()()(1)k k k k k P X k P A A A A A P A P A P A P A P A p p ---====-.(0,1,2,k =…);于是得到随机变量ξ的概率分布如下:记作(,),Xg k p(2)若(,),X g k p 则1()E X p =;21()pD X p-=(1)q p =-. 5.正态分布(1)概率密度曲线:样本数据的频率分布直方图,在样本容量越来越大时,直方图上 面的折线所接近的曲线.在随机变量中,如果把样本中的任一数据看作随机变量X ,则 这条曲线称为X 的概率密度曲线.(2)曲线位于横轴的上方,它与横轴一起所围成的面积是1,而随机变量X 落在指定的两个数a b ,之间的概率就是对应的曲边梯形的面积. (2)正态分布:①定义:如果随机现象是由一些互相独立的偶然因素所引起的, 而且每一个偶然因素在总体的变化中都只是起着均匀、微小的作 用,则表示这样的随机现象的随机变量的概率分布近似服从正态分 布.服从正态分布的随机变量叫做正态随机变量,简称正态变量. ②正态变量概率密度曲线的函数表达式为 22()2()x f x μσ--=,x ∈R , 其中μ,σ是参数,且0σ>,μ-∞<<+∞.式中的参数μ和σ分别为正态变量的数学期望和标准差. 期望为μ、标准差为σ的正态分布通常记作:2(,)XN μσ.③正态变量的概率密度函数的图象叫做正态曲线.④标准正态分布:我们把数学期望为0,标准差为1的正态分布叫做标准正态分布. ⑤正态变量在区间(,)μσμσ-+,(2,2)μσμσ-+,(3,3)μσμσ-+内,取值的概率分别是 68.3%,95.4%,99.7%.⑥正态变量在()-∞+∞,内的取值的概率为1,在区间(33)μσμσ-+,之外的取值的概率是 0.3%,故正态变量的取值几乎都在距x μ=三倍标准差之内,这就是正态分布的3σ原则.⑦若2~()N ξμσ,,()f x 为其概率密度函数,则称()()()xF x P x f t dt ξ-∞==⎰≤为概率分布函 数,特别的,2~(01)N ξμσ-,,称22()t x x dt φ-=⎰为标准正态分布函数,()()x P x μξφσ-<=.离散型随机变量——分布列、期望与方差考点1.产品检验问题:例1.已知甲盒子内有3个正品元件和4个次品元件,乙盒子内有5个正品元件和4个次品 元件,现从两个盒子内各取出2个元件,试求(1)取得的4个元件均为正品的概率; (2)取得正品元件个数ε的数学期望.例2.某车间在三天内,每天生产10件某产品,其中第一天,第二天分别生产出了1件、 2件次品,而质检部每天要从生产的10件产品中随意抽取4件进行检查,若发现有次品, 则当天的产品不能通过.(1)求第一天通过检查的概率;(2)求前两天全部通过检查的概率;(2)若厂内对车间生产的产品采用记分制:两天全不通过检查得0分,通过1天、 2天分别得1分、2分.求该车间在这两天内得分的数学期望.考点2.比赛问题:例3.,A B 两队进行篮球决赛,共五局比赛,先胜三局者夺冠,且比赛结束。

第53讲-离散型随机变量及其分布列(解析版)

第53讲-离散型随机变量及其分布列(解析版)

第53讲离散型随机变量及其分布列一、考情分析1.理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性;2.了解超几何分布,并能解决简单的实际问题.二、知识梳理1.离散型随机变量如果随机变量X的所有可能的取值都能一一列举出来,则称X为离散型随机变量.2.离散型随机变量的分布列及性质(1)离散型随机变量的分布列:若离散型随机变量X所有可能取的值为x1,x2,…,x i,…,x n,X取每一个值x i(i=1,2,…,n)的概率为p1,p2,…,p n,则表称为离散型随机变量X.(2)离散型随机变量分布列的性质:①p i≥0(i=1,2,3,…,n);②p1+p2+…+p n=1;③P(x i≤x≤x j)=p i+p i+1+…+p j.3.常见离散型随机变量的分布列(1)二点分布:如果随机变量X的分布列为其中0<p<1,q=1-p,则称离散型随机变量p的二点分布.(2)超几何分布:设有总数为N件的两类物品,其中一类有M件,从所有物品中任取n 件(n≤N),这n件中所含这类物品件数X是一个离散型随机变量,当X=m时的概率为P(X=m)=C m M C n-mN-MC n N(0≤m≤l,l为n和M中较小的一个),称离散型随机变量X的这种形式的概率分布为超几何分布,也称X服从参数为N,M,n的超几何分布.三、经典例题考点一 离散型随机变量分布列的性质【例1】 设随机变量X 的分布列为P ⎝ ⎛⎭⎪⎫X =k 5=ak (k =1,2,3,4,5).(1)求a 的值; (2)求P ⎝ ⎛⎭⎪⎫x ≥35;(3)求P ⎝ ⎛⎭⎪⎫110<X ≤710. 解 (1)由分布列的性质,得P ⎝ ⎛⎭⎪⎫X =15+P ⎝ ⎛⎭⎪⎫X =25+P ⎝ ⎛⎭⎪⎫X =35+P ⎝ ⎛⎭⎪⎫X =45+P (X =1)=a +2a+3a +4a +5a =1,所以a =115.(2)P ⎝ ⎛⎭⎪⎫X ≥35=P ⎝ ⎛⎭⎪⎫X =35+P ⎝ ⎛⎭⎪⎫X =45+P (X =1)=3×115+4×115+5×115=45. (3)P ⎝ ⎛⎭⎪⎫110<X ≤710=P ⎝ ⎛⎭⎪⎫X =15+P ⎝ ⎛⎭⎪⎫X =25+P ⎝ ⎛⎭⎪⎫X =35=115+215+315=25.规律方法 分布列性质的两个作用(1)利用分布列中各事件概率之和为1可求参数的值及检查分布列的正确性.(2)随机变量X 所取的值分别对应的事件是两两互斥的,利用这一点可以求随机变量在某个范围内的概率.考点二 超几何分布的应用 典例迁移【例2】 (经典母题)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用.现有6名男志愿者A 1,A 2,A 3,A 4,A 5,A 6和4名女志愿者B 1,B 2,B 3,B 4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示. (1)求接受甲种心理暗示的志愿者中包含A 1但不包含B 1的概率; (2)用X 表示接受乙种心理暗示的女志愿者人数,求X 的分布列.解 (1)记接受甲种心理暗示的志愿者中包含A 1但不包含B 1的事件为M ,则P (M )=C 48C 510=518.(2)由题意知X 可取的值为0,1,2,3,4,则P (X =0)=C 56C 510=142,P (X =1)=C 46C 14C 510=521,P (X =2)=C 36C 24C 510=1021,P (X =3)=C 26C 34C 510=521,P (X =4)=C 16C 44C 510=142.因此X的分布列为【迁移探究1】用X表示接受乙种心理暗示的男志愿者人数,求X的分布列. 解由题意可知X的取值为1,2,3,4,5,则P(X=1)=C16C44C510=142,P(X=2)=C26C34C510=521,P(X=3)=C36C24C510=1021,P(X=4)=C46C14C510=521,P(X=5)=C56C510=142.因此X的分布列为【迁移探究2】用X表示接受乙种心理暗示的女志愿者人数与男志愿者人数之差,求X 的分布列.解由题意知X可取的值为3,1,-1,-3,-5,则P(X=3)=C44C16C510=142,P(X=1)=C34C26C510=521,P(X=-1)=C24C36C510=1021,P(X=-3)=C14C46C510=521,P(X=-5)=C56C510=142,因此X的分布列为规律方法 1.超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.超几何分布的特征是:(1)考察对象分两类;(2)已知各类对象的个数;(3)从中抽取若干个个体,考查某类个体数X的概率分布.2.超几何分布主要用于抽检产品、摸不同类别的小球等概率模型,其实质是古典概型. 考点三求离散型随机变量的分布列【例3】为创建国家级文明城市,某城市号召出租车司机在高考期间至少进行一次“爱心送考”,该城市某出租车公司共200名司机,他们进行“爱心送考”的次数统计如图所示.(1)求该出租车公司的司机进行“爱心送考”的人均次数;(2)从这200名司机中任选两人,设这两人进行送考次数之差的绝对值为随机变量X,求X的分布列.解(1)由统计图得200名司机中送考1次的有20人,送考2次的有100人,送考3次的有80人,∴该出租车公司的司机进行“爱心送考”的人均次数为20×1+100×2+80×3200=2.3.(2)从该公司任选两名司机,记“这两人中一人送考1次,另一人送考2次”为事件A,“这两人中一人送考2次,另一人送考3次”为事件B,“这两人中一人送考1次,另一人送考3次”为事件C,“这两人送考次数相同”为事件D,由题意知X的所有可能取值为0,1,2,P(X=1)=P(A)+P(B)=C120C1100C2200+C1100C180C2200=100199,P(X=2)=P(C)=C120C180C2200=16199,P(X=0)=P(D)=C220+C2100+C280C2200=83199,∴X的分布列为规律方法求随机变量分布列的主要步骤:(1)明确随机变量的取值,并确定随机变量服从何种概率分布;(2)求每一个随机变量取值的概率;(3)列成表格.对于抽样问题,要特别注意放回与不放回的区别,一般地,不放回抽样由排列数公式求随机变量对应的概率,放回抽样由分步乘法计数原理求随机变量对应的概率.[方法技巧]1.对于随机变量X的研究,需要了解随机变量取哪些值以及取这些值或取某一个集合内的值的概率,对于离散型随机变量,它的分布正是指出了随机变量X的取值范围以及取这些值的概率.2.求离散型随机变量的分布列,首先要根据具体情况确定X 的取值情况,然后利用排列、组合与概率知识求出X 取各个值的概率.四、 课时作业1.(2020·浙江高三二模)已知随机变量ξ满足1(0)3P ξ==,()1P x ξ==,2(2)3P x ξ==-,若203x <<,则随x 增大( ) A .()E ξ增大()D ξ增大 B .()E ξ减小()D ξ增大 C .()E ξ减小()D ξ减小 D .()E ξ增大()D ξ减小【答案】C【解析】解:随机变量ξ满足1(0)3P ξ==,()1P x ξ==,2(2)3P x ξ==-, 124()012()333E x x x ξ∴=⨯+⨯+-=-,. 若203x <<,则随x 增大,()E ξ减小,()D ξ减小. 2.(2020·广东湛江二十一中高三月考)新型冠状病毒肺炎的潜伏期X (单位:日)近似服从正态分布:()2~7,X N σ,若(3)0.872P X >=,则可以估计潜伏期大于等于11天的概率为( )A .0.372B .0.256C .0.128D .0.744【答案】C【解析】因为7μ=,所以根据正态曲线的对称性知,.3.(2020·四川省遂宁市第二中学校高三其他(理))“学习强国”是一个网络学习平台,给人们提供了丰富的学习素材.某单位为了鼓励职工加强学习,组织了200名职工对“学习强国”中的内容进行了测试,并统计了测试成绩(单位:分).若测试成绩服从正态分布,且成绩在区间内的人数占总人数的,则此次测试成绩不低于130分的职工人数大约为( ) A .10 B .32 C .34 D .37【答案】B【解析】设测试成绩为ξ,则()2~120,N ξσ,又,所以()()18411013022525P P ξξ≤=≥=⨯=, 所以成绩不低于130分的职工人数大约为42003225⨯=.4.(2020·新疆高三三模(理))某校有甲、乙两个数学建模兴趣班.其中甲班有40人,乙班有50人.现解析两个班的一次考试成绩,算得甲班的平均成绩是90分,乙班的平均成绩是81分,则这两个数学建模兴趣班所有同学的平均成绩是( ) A .85 B .85.5C .86D .86.5【答案】A【解析】解:由题意,这两个数学建模兴趣班所有同学的平均成绩是,故选:A . 5.(2020·黑龙江哈九中高二月考(理))已知随机变量,则该变量的方差()D ξ=( ) A .43B .C .89D .【答案】C 【解析】1~4,3B ξ⎛⎫ ⎪⎝⎭,由二项分布的方差公式可得()11841339D ξ⎛⎫=⨯⨯-= ⎪⎝⎭.6.(2020·苏州大学附属中学高二月考)校园内移栽4棵桂花树,已知每棵树成活的概率为45,那么成活棵数X 的方差是( ) A . B .C .D .【答案】C【解析】由条件可知 所以()411645525D X =⨯⨯=. 7.(2020·四川宜宾·高三其他(理))某同学投篮命中的概率为0.6,且各次投篮是否命中相互独立,他投篮3次,至少连续2次命中的概率是( ) A .0.504 B .0.524 C .0.624 D .0.648【答案】A【解析】由题可知:若连续两次命中概率为:()220.610.60.288⨯⨯-=若连续三次命中概率为:30.60.216=所以他投篮3次,至少连续2次命中的概率是0.2880.2160.504+=8.(2020·辽宁辽阳·高三三模(理))已知随机变量X 服从正态分布,且,则()4P X >=( ) A .0.6 B .0.2C .0.4D .0.35【答案】B【解析】∵随机变量X 服从正态分布,∴正态曲线的对称轴是2x =, ∵, ∴.9.(2020·大连市普兰店区第三十八中学高三开学考试)已知随机变量ξ服从正态分布,若(3)0.84ξ<=P ,则(1)P ξ≤=( )A .0.16B .0.32C .0.68D .0.84【答案】A 【解析】由,因为正态分布的对称轴为:2x =, 所以(1)(3)0.16P P ξξ≤=≥=.10.(2020·湖南高三其他(理))纹样是中国传统文化的重要组成部分,它既代表着中华民族的悠久历史、社会的发展进步,也是世界文化艺术宝库中的巨大财富.小楠从小就对纹样艺术有浓厚的兴趣.收集了如下9枚纹样微章,其中4枚凤纹徽章,5枚龙纹微章.小楠从9枚徽章中任取3枚,则其中至少有一枚凤纹徽章的概率为( ). A .34B .C .2137D .542【答案】B【解析】从9枚纹样微章中选择3枚,所有可能事件的数量为39C , 满足“一枚凤纹徽章也没有”的所有可能事件的数目为35C ,因为“至少有一枚凤纹徽章”的对立事件为“一枚凤纹徽章也没有”, 所以,故选:B.11.(2020·江苏南京·高三开学考试)某校有1000人参加某次模拟考试,其中数学考试成绩近似服从正态分布2(105,)(0)N σσ>,试卷满分150分,统计结果显示数学成绩优秀(高于120分)的人数占总人数的15,则此次数学考试成绩在90分到105分之间的人数约为( )A .150B .200C .300D .400【答案】C【解析】∵()()1901205P X P X ≤=≥=,()2390120155P X ≤≤=-=, 所以()39010510P X ≤≤=,所以此次数学考试成绩在90分到105分之间的人数约为3100030010⨯=. 12.(2020·湖南益阳·高三月考)已知随机变量ξ服从正态分布()21,N σ,若(4)0.9P ξ<=,则( ) A .0.2 B .0.4 C .0.6 D .0.8【答案】D【解析】因为随机变量ξ服从正态分布()21,N σ,所以正态曲线的对称轴为1x =, 因为(4)0.9P ξ<=,所以(4)(2)0.1P P ξξ≥=<-=, 所以,故选:D13.(2020·浙江高三月考)袋子A 中装有若干个均匀的红球和白球,从A 中有放回地摸球,每次摸出一个,摸出一个红球的概率是13,有3次摸到红球即停止.记5次之内(含5次)摸到红球的次数为ξ,则ξ的数学期望()E ξ=( )A .B .C .D .【答案】A【解析】由题意,ξ能取的值为0,1,2,3, 则,,()232511802133243P C ⎛⎫⎛⎫==⋅⋅-=⎪ ⎪⎝⎭⎝⎭ξ, ,则ξ的数学期望()32808051131012324324324324381E =⨯+⨯+⨯+⨯=ξ. 14.(2020·福建高三其他)某校在一次月考中共有800人参加考试,其数学考试成绩X 近似服从正态分布2(105,)N σ,试卷满分150分.现已知同学甲的数学成绩为90分,学校排名为720,同学乙的数学成绩为120分,那么他的学校排名约为( ) A .60 B .70C .80D .90【答案】C【解析】因为同学甲的数学成绩为90分,学校排名为720, 则数学成绩小于等于90分对应的概率约为()80072019080010P X -≤==,又数学考试成绩X 近似服从正态分布2(105,)N σ, 所以()()11209010P X P X ≥=≤=,则成绩数学成绩大于等于120分的学生约为80人, 因此若同学乙的数学成绩为120分,那么他的学校排名约为80名.15.(2020·全国开学考试(理))宋代文学家欧阳修在《卖油翁》中写道“(翁)乃取一葫芦置于地,以钱覆盖其口,徐以杓酌油沥之,自钱孔入,而钱不湿”,由此诠释出了“熟能生巧”的道理.已知铜钱是直径为4cm 的圆,正中间有一边长为1cm 的正方形小孔现先后两次随机向铜钱上滴一滴油(油滴的大小忽略不计),则两次油滴均落入孔中的概率为( ) A .2116π B .116πC .214π D .14π【答案】A【解析】解:圆的面积为22=4ππ⨯ 2cm ,正方形的面积为21cm , 则一滴油滴落入孔中的概率14πP =, 所以两滴油滴均落入孔中的概率.16.(2020·沙坪坝·重庆一中高三月考(理))已知随机变量ξ服从二项分布,则( ) A . B .8C .D .5【答案】C【解析】因为随机变量ξ服从二项分布,所以()22651555D ξ⎛⎫=⨯⨯-= ⎪⎝⎭,所以,故选:C. 17.(2020·山东高三开学考试)已知参加2020年某省夏季高考的53万名考生的成绩Z 近似地服从正态分布()2453,99N ,估计这些考生成绩落在的人数约为( )(附:()2,Z N μσ~,则()0.6827P Z μσμσ-<≤+=,()220.9545P Z μσμσ-<≤+=)A .36014B .72027C .108041D .168222【答案】B 【解析】()2453,99ZN ,453,99μσ∴==,()3545520.6827P Z ∴<≤=,()2556510.9545P Z <≤=,()()()2556513545525526512P Z P Z P Z <≤-<≤∴<≤=,这些考生成绩落在的人数约为.18.(多选题)(2020·山东青岛·高三开学考试)近年来中国进入一个鲜花消费的增长期,某农户利用精准扶贫政策,贷款承包了一个新型温室鲜花大棚,种植销售红玫瑰和白玫瑰.若这个大棚的红玫瑰和白玫瑰的日销量分别服从正态分布2(,30)N μ和2(280,40)N ,则下列选项正确的是( )附:若随机变量X 服从正态分布2(,)N μσ,则()0.6826P X μσμσ-<<+≈.A .若红玫瑰日销售量范围在(30,280)μ-的概率是0.6826,则红玫瑰日销售量的平均数约为250B .红玫瑰日销售量比白玫瑰日销售量更集中C .白玫瑰日销售量比红玫瑰日销售量更集中D .白玫瑰日销售量范围在(280,320)的概率约为0.3413 【答案】ABD【解析】对于选项A :+30=280,=250μμ,正确;对于选项B C :利用σ越小越集中,30小于40,B 正确,C 不正确; 对于选项D :,正确.19.(多选题)(2020·广东珠海·高三月考)已知随机变量X 的取值为不大于()n n N *∈的非负整数,它的概率分布列为其中满足[0,1]i p ∈,且0121n p p p p ++++=.定义由X 生成的函数,()g x 为函数()f x 的导函数,()E X 为随机变量X 的期望.现有一枚质地均匀的正四面体型骰子,四个面分别标有1,2,3,4个点数,这枚骰子连续抛掷两次,向下点数之和为X ,此时由X 生成的函数为1()f x ,则( )A .()(2)E X g =B .115(2)2f =C .()(1)E X g =D .1225(2)4f =【答案】CD 【解析】解:因为, 则, ,令1x =时,,故选项A 错误,选项C 正确;连续抛掷两次骰子,向下点数之和为X ,则X 的分布列为:234567811()16161616161616f x x x x x x x x =++++++故选项B 错误;选项D 正确.20.(多选题)(2020·湖北葛洲坝中学高三月考)下列命题中正确的是( ) A .命题p :,1x e x ->的否定:0x ∀≥,1x e x -≤B .若随机变量ξ服从正态分布()21,N σ,(4)0.79P ξ≤=,则(2)0.21P ξ≤-=;C .根据一组样本数据的散点图判断出两个变量线性相关,由最小二乘法求得其回归直线方程为0.3y x m =-,若样本中心点为,则4m =D .若随机变量()100,X B p ,且()20E X =,则()12D X =【答案】BC【详解】对于选项A ,命题p :,1x e x ->的否定为:0x ∀<,1x e x -≤,所以A 不正确;对于选项B ,因为随机变量ξ服从正态分布()21,N σ,所以正态曲线关于1x =对称,所以(2)(4)10.790.21P P ξξ≤-=≥=-=,所以B 正确; 对于选项C ,因为回归直线一定经过样本中心点,所以, 即4m =,所以C 正确; 对于选项D ,因为()100,XB p ,且()20E X =,所以10020p =,即0.2p =,所以()1000.20.816D X =⨯⨯=,所以D 不正确.21.(2020·云南师大附中高三月考(理))华为手机作为全球手机销量第二位,一直深受消费者喜欢.据调查数据显示,2019年度华为手机(含荣耀)在中国市场占有率接近.小明为了考查购买新手机时选择华为是否与年龄有一定关系,于是随机调查100个2019年购买新手机的人,得到如下不完整的列表.定义30岁以下为“年轻用户”,30岁以上为“非年轻用户”.附:.(1)将列表填充完整,并判断是否有的把握认为购买手机时选择华为与年龄有关?(2)若采用分层抽样的方法从购买华为手机用户中抽出9个人,再随机抽3人,其中年轻用户的人数为X ,求X 的分布列和期望. 【详解】(1)易得由列表可得()210036122824 1.042 2.70640603664⨯-⨯=≈<⨯⨯⨯,故没有的把握认为购买手机时选择华为与年龄有关系. (2)利用分层抽样抽取9个购买华为手机的用户, 易知其中有3个年轻用户,6个非年轻用户.现在其中随机抽取3人,设抽到的年轻用户人数为X , 则X 可能的取值为0,1,2,3,易得()()336390,1,2,3i i C C P X i C i -===, 故分布列为.22.(2020·云南高三月考(理))某校从高三年级中选拔一个班级代表学校参加“学习强国知识大赛”,经过层层选拔,甲、乙两个班级进入最后决赛,规定回答1相关问题做最后的评判选择由哪个班级代表学校参加大赛.每个班级4名选手,现从每个班级4名选手中随机抽取2人回答这个问题.已知这4人中,甲班级有3人可以正确回答这道题目,而乙班级4人中能正确回答这道题目的概率每人均为34,甲、乙两班级每个人对问题的回答都是相互独立,互不影响的. (1)求甲、乙两个班级抽取的4人都能正确回答的概率;(2)设甲、乙两个班级被抽取的选手中能正确回答题目的人数分别为X ,Y ,求随机变量X ,Y 的期望()E X ,()E Y 和方差()D X ,()D Y ,并由此解析由哪个班级代表学校参加大赛更好? 【详解】解:(1)甲、乙两个班级抽取的4人都能正确回答的概率; (2)甲班级能正确回答题目人数为X ,X 的取值分别为1,2,()121341112C C P X C ===,()2432122C P X C ===,则()11312222E X =⨯+⨯=,()22313111222224D X ⎛⎫⎛⎫=-⨯+-⨯= ⎪ ⎪⎝⎭⎝⎭, 乙班级能正确回答题目人数为Y ,Y 的取值分别为0,1,2, ∵,∴()33242E Y =⨯=,()3132448D Y =⨯⨯=, 由,可知,由甲班级代表学校参加大赛更好.23.(2020·河南洛阳·月考(理))为提升销量,某电商在其网店首页设置了一个“勇闯关,贏红包”的游戏小程序,其游戏规则如下:在网页上设置三个翻牌关卡,每个关卡翻牌结果只有两种:Pass (通过)与Fail (失败),若买家通过这三关,则认为闯关成功;若三关均未通过或只通过三关中的一关,则游戏失败;若三关中恰好通过两关,则允许参加复活环节.复活环节有两个翻牌关卡,若两关均通过,也认为闯关成功,否则认为闯关失败.假定买家每一关通过的概率均为13,且各关卡之间是否通过相互独立.(1)求某买家参加这个游戏闯关成功的概率;(2)若闯关成功,则买家可赢得50元的购物红包.若闯关失败.则可获得10元红包,红包均可直抵在该网店购物的货款.某日有8100人参与了游戏且均在该网店消费. (ⅰ)求该日所有买家所获红包总金额X 的数学期望:(ⅱ)假定该电商能从未中奖的买家的购物中平均获利8元/人,从中奖的买家的购物中平均获利120元/人(均不含所发红包在内).试从数学期望的角度判断该电商这一日通过游戏搞促销活动是否合算,并说明理由.【详解】解:(1)买家通过三关的概率为33311327C⎛⎫⨯=⎪⎝⎭,买家参加复活环节并闯关成功的概率为,所以买家闯关成功的概率.(2)(ⅰ)由(1)可知,一名买家闯关成功的概率581 P=,设这8100名买家中闯关成功的人数为Y,则,且,所以Y的数学期望为()5 810050081E Y=⨯=,所以该日所有买家所获红包总金额X的数学期望为元.(ⅱ)设电商该日剔除红包款后盈利Z元,则元,由此可见,该电商该日通过游戏搞促销活动盈利较多,很合算.。

高中三年级上学期数学《离散型随机变量的分布列》(教学设计)

高中三年级上学期数学《离散型随机变量的分布列》(教学设计)

7.2.2离散型随机变量的分布列(教学设计)【学习目标】1.能知道取有限个值的离散型随机变量及其分布列的概念2.会求出简单的离散型随机变量的分布列并能记住分布列的性质3.能知道两点分布及其导出过程,并能简单的运用【自主学习】知识点一离散型随机变量的分布列(1)所有取值可以一一列出的随机变量,称为离散型随机变量.(2)离散型随机变量X可能的取值为x1,x2,…,x i,…,x n,则它的概率分布列用表格可表示为用等式可表示为P(X=x i)=p i,i=1,2,…,n,离散型随机变量分布列的变化情况可以用图象来表示.知识点二两点分布随机变量X的分布列是:其中0<p<1,q=1-p,则称离散型随机变量X服从参数p的两点分布.称p=P(X=1)为成功概率.【合作探究】探究一求离散型随机变量的分布列【例1】从装有除颜色外完全相同的6个白球,4个黑球和2个黄球的箱中随机地取出两个球,规定每取出1个黑球赢2元,而每取出1个白球输1元,取出黄球无输赢.(1)以X表示赢得的钱数,随机变量X可以取哪些值?求X的分布列;(2)求出赢钱(即X>0时)的概率.【解】(1)从箱中取两个球的情形有以下6种:{2个白球},{1个白球,1个黄球},{1个白球,1个黑球},{2个黄球},{1个黑球,1个黄球},{2个黑球}.当取到2个白球时,随机变量X=-2;当取到1个白球,1个黄球时,随机变量X=-1;当取到1个白球,1个黑球时,随机变量X=1;当取到2个黄球时,随机变量X=0;当取到1个黑球,1个黄球时,随机变量X=2;当取到2个黑球时,随机变量X=4.所以随机变量X的可能取值为-2,-1,0,1,2,4.P(X=-2)=26212=522,P(X=-1)=112212=211,P(X=0)=22212=166,P(X=1)=114212=411,P(X=2)=112212=433,P(X=4)=24212=111.所以X的分布列如下:(2)P(X>0)=P(X=1)所以赢钱的概率为1933.归纳总结:解题的关键有两点:一是依据试验的所有可能结果写出随机变量的可能取值;二是依据随机变量取值所对应的结果求出随机变量取每一个值的概率.另外,利用随机变量分布列中各个概率和为1对所求分布列进行验证也会防止出错【练习1】一袋中装有4只同样大小的球,编号分别为1,2,3,4,现从中随机取出2个球,以X 表示取出球的最大号码,则X 的分布列为.解析:由题意随机变量X 所有可能取值为2,3,4.且P (X =2)=124=16,P (X =3)=1224=13,P (X =4)=1324=12. 因此X 的分布列为探究二 分布列的性质【例2】设随机变量X 的分布列为P (X =i )=ai (i =1,2,3,4),求: (1)P ({X =1}∪{X =3});(2)⎪⎭⎫⎝⎛<<2521X P .解 题中所给的分布列为=110. (1)P ({X =1}∪{X =3})=P (X =1)+P (X =3) =110+310=25.(2)⎪⎭⎫⎝⎛<<2521X P =P (X =1)+P (X =2)=110+210=310.归纳总结:本题是一道离散型随机变量的分布列的计算与离散型随机变量的分布列的性质的应用综合起来的好题.主要先由离散型随机变量的分布列的性质求出a 的值,然后写出其相应的离散型随机变量的分布列,再利用离散型随机变量的分布列求出其相应的概率.本题中离散型随机变量取不同的值时所表示的随机事件彼此互斥,故由概率的加法公式求出其概率【练习2】已知离散型随机变量ξ的分布列如下:求k 的值.解:因为1=k +2k +…+2n -1k =k (1+2+…+2n -1)=k ·1-2n1-2=(2n -1)k ,所以k =12n -1.探究三 两点分布【例3】袋内有10个白球,5个红球,从中摸出2个球,记X =0,两球全红;1,两球非全红.)求X 的分布列.解 由题设可知X 服从两点分布 P (X =0)=25215=221; P (X =1)=1-P (X =0)=1921. ∴X 的分布列为归纳总结:(1)看取值:随机变量只取两个值:0和1.(2)验概率:检验P(X=0)+P(X=1)=1是否成立.如果一个分布满足以上两点,则该分布是两点分布,否则不是两点分布.【练习3】篮球比赛中每次罚球命中得1分,不中得0分.已知某运动员罚球命中的概率为0.85,求他一次罚球得分的分布列.解由题意,结合两点分布的特征可知,所求分布列为探究四分布列与统计知识的综合应用【例4】经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T表示为X的函数;(2)根据直方图估计利润T不少于57 000元的概率;(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量X∈[100,110),则取X=105,且X=105的概率等于需求量落入[100,110)的频率),求T的分布列.【思路分析】每一个小矩形的面积即相应的概率.【解】(1)当X∈[100,130)时,T=500X-300(130-X)=800X-39 000,当X∈[130,150]时,T=500×130=65 000.所以T=800X-39 000,100≤X<130,65 000,130≤X≤150.)(2)由(1)知利润T不少于57 000元时120≤X≤150.由直方图知需求量X∈[120,150]的频率为0.7,所以下一个销售季度内的利润T不少于57 000元的概率的估计值为0.7.(3)依题意可得T的分布列为归纳总结:【练习4】某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上40件产品作为样本称出它们的重量(单位:克),重量的分组区间为(490,495],(495,500],…,(510,515],由此得到样本的频率分布直方图,如图所示.(1)根据频率分布直方图,求重量超过505克的产品数量;(2)在上述抽取的40件产品中任取2件,设Y为重量超过505克的产品数量,求Y的分布列.解:(1)根据频率分布直方图可知,重量超过505克的产品数量为40×(0.05×5+0.01×5)=40×0.3=12.(2)Y的可能取值为0,1,2,且Y服从参数为N=40,M=12,n=2的超几何分布,故P(Y=0)=0228240=63130,P(Y=1)=1128240=2865,P(Y=2)=2028240=11130.所以Y的分布列为。

新高考数学复习考点知识讲解5---离散型随机变量及其分布列

新高考数学复习考点知识讲解5---离散型随机变量及其分布列
X
x1
x2

xi

xn
P
p1
p2

pi

pn
称为离散型随机变量X的概率分布列,简称为X的分布列,有时为了表达简单,也用等式P(X=xi)=pi,i=1,2,…,n表示X的分布列.
3、性质
①pi≥0(i=1,2,…,n);② pi=1.
4、若随机变量X的分布列为
X
0
1
P
1-p
p
则称该分布列为两点分布列或0-1分布.若随机变量X的分布列为两点分布列,则称X服从两点分布,称p=P(X=1)为成功概率
答案】设(i,j)表示掷两次骰子后出现的点数,i表示第一次的点数,j表示第二次的点数.
(1)Y的可能取值为1,2,3,4,5,6.
当Y=1时,(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(3,1),(4,1),(5,1),(6,1).故P(Y=1)= ,同理P(Y=2)= = ,P(Y=3)= ,P(Y=4)= ,P(Y=5)= = ,P(Y=6)= .所以Y的概率分布列为
A.20B.24C.4D.18
【答案】B
【解析】由于后四位数字两两不同,且都大于5,因此只能是6,7,8,9四位数字的不同排列,故有 =24(种).
题型三离散型随机变量的分布列
例3 将一颗骰子掷2次,求下列随机事件的分布列.
(1)两次掷出的最小点数Y;
(2)第一次掷出的点数减去第二次掷出的点数之差ξ.
P(X=1)= = ,
P(X=2)= = .
所以X的分布列为
X
0
1
2
P
4、设离散型随机变量X服从两点分布,若 ,则

高中数学选修2-3-离散型随机变量及其分布列

高中数学选修2-3-离散型随机变量及其分布列

离散型随机变量及其分布列知识集结知识元离散型随机变量及其分布列知识讲解1.离散型随机变量及其分布列【考点归纳】1、相关概念;(1)随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示.(2)离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是随机变量,η=aξ+b,其中a、b是常数,则η也是随机变量.(3)连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量(4)离散型随机变量与连续型随机变量的区别与联系:离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出.2、离散型随机变量(1)随机变量:在随机试验中,试验可能出现的结果可以用一个变量X来表示,并且X是随着试验结果的不同而变化的,这样的变量X叫做一个随机变量.随机变量常用大写字母X,Y,…表示,也可以用希腊字母ξ,η,…表示.(2)离散型随机变量:如果随机变量X的所有可能的取值都能一一列举出来,则称X为离散型随机变量.3、离散型随机变量的分布列.(1)定义:一般地,设离散型随机变量X的所有可能值为x1,x2,…,x n;X取每一个对应值的概率分别为p1,p2,…,p n,则得下表:X x1x2…x i…x nP p1p2…p i…p n该表为随机变量X的概率分布,或称为离散型随机变量X的分布列.(2)性质:①p i≥0,i=1,2,3,…,n;②p1+p2+…+p n=1.例题精讲离散型随机变量及其分布列例1.'袋中有2个白球,3个红球,5个黄球,这10个小球除颜色外完全相同.(1)从袋中任取3个球,求恰好取到2个黄球的概率;(2)从袋中任取2个球,记取到红球的个数为ξ,求ξ的分布列、期望E(ξ)和方差D(ξ).'例2.'甲、乙两人做定点投篮游戏,已知甲每次投篮命中的概率均为p,甲投篮3次均未命中的概率为,乙每次投篮命中的概率均为q,乙投篮2次恰好命中1次的概率为,甲、乙每次投篮是否命中相互之间没有影响.(1)若乙投篮3次,求至少命中2次的概率;(2)若甲、乙各投篮2次,设两人命中的总次数为X,求X的分布列和数学期望.'例3.'抛掷甲,乙两枚质地均匀且四面上分别标有1,2,3,4的正四面体,其底面落于桌面,记底面上所得的数字分别为x,y.记[]表示的整数部分,如:[]=1,设ξ为随机变量,ξ=[].(Ⅰ)求概率P(ξ=1);(Ⅱ)求ξ的分布列,并求其数学期望E(ξ).'当堂练习解答题练习1.'玉山一中篮球体育测试要求学生完成“立定投篮”和“三步上篮”两项测试,“立定投篮”和“三步上篮”各有2次投篮机会,先进行“立定投篮”测试,如果合格才能参加“三步上篮”测试.为了节约时间,每项测试只需且必须投中一次即为合格.小华同学“立定投篮”的命中率为,“三步上篮”的命中率为.假设小华不放弃任何一次投篮机会且每次投篮是否命中相互独立.(1)求小华同学两项测试均合格的概率;(2)设测试过程中小华投篮次数为X,求随机变量X的分布列和数学期望.'练习2.'某支教队有8名老师,现欲从中随机选出2名老师参加志愿活动,(1)若规定选出的至少有一名女老师,则共有18种不同的需安排方案,试求该支教队男、女老师的人数;(2)在(1)的条件下,记X为选出的2位老师中女老师的人数,写出X的分布列.'练习3.'装有除颜色外完全相同的6个白球、4个黑球和2个黄球的箱中随机地取出两个球,规定每取出1个黑球赢2元,而每取出1个白球输1元,取出黄球无输赢.(1)以X表示赢得的钱数,随机变量X可以取哪些值?求X的分布列;(2)求出赢钱(即X>0时)的概率.'练习4.'将10个白小球中的3个染成红色,3个染成黄色,试解决下列问题:(1)求取出3个小球中红球个数ξ的分布列;(2)求取出3个小球中红球个数多于白球个数的概率.'练习5.'新高考改革后,假设某命题省份只统一考试数学和语文,英语学科改为参加等级考试,每年考两次,分别放在每个学年的上下学期,其余六科政治,历史,地理,物理,化学,生物则以该省的省会考成绩为准.考生从中选择三科成绩,参加大学相关院校的录取.(Ⅰ)若英语等级考试有一次为优,即可达到某“双一流”院校的录取要求.假设某考生参加每次英语等级考试事件是相互独立的,且该生英语等级考试成绩为优的概率为,求该考生直到高二下期英语等级考试才为优的概率(Ⅱ)据预测,要想报考某“双一流”院校,省会考的六科成绩都在95分以上,才有可能被该校录取假设某考生在省会考六科的成绩都考到95分以上的概率都是,设该考生在省会考时考到95以上的科目数为X求X的分布列及数学期望.'练习6.'某高中志愿者男志愿者5人,女志愿者3人,这些人要参加社区服务工作.从这些人中随机抽取4人负责文明宣传工作,另外4人负责卫生服务工作.(Ⅰ)设M为事件;“负责文明宣传工作的志愿者中包含女志愿者甲但不包含男志愿者乙”,求事件M发生的概率;(Ⅱ)设X表示参加文明宣传工作的女志愿者人数,求随机变量X的分布列与数学期望.'练习7.'今年学雷锋日,乌鲁木齐市某中学计划从高中三个年级选派4名教师和若干名学生去当学雷锋文明交通宣传志愿者,用分层抽样法从高中三个年级的相关人员中抽取若干人组成文明交通宣传小组,学生的选派情况如下:(Ⅰ)求x,y的值;(Ⅱ)若从选派的高一、高二、高三年级学生中抽取3人参加文明交通宣传,求他们中恰好有1人是高三年级学生的概率;(Ⅲ)若4名教师可去A、B、C三个学雷锋文明交通宣传点进行文明交通宣传,其中每名教师去A、B、C三个文明交通宣传点是等可能的,且各位教师的选择相互独立.记到文明交通宣传点A的人数为X,求随机变量X的分布列和数学期望。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学--离散型随机变量及其分布列1.若随机变量X 的概率分布列为且p 1=12p 2,则p 1等于( )A.12 B.13 C.14D.16 【解析】 由p 1+p 2=1且p 2=2p 1可解得p 1=13.【答案】 B2.已知随机变量X 的分布列为P (X =i )=i2a (i =1,2,3),则P (X =2)等于( )A.19 .16 C.13D.14【解析】 ∵12a +22a +32a =1,∴a =3,P (X =2)=22×3=13.【答案】 C3.袋中有大小相同的5只钢球,分别标有1,2,3,4,5五个号码,任意抽取2个球,设2个球号码之和为X ,则X 的所有可能取值个数为( )A .25B .10C .7D .6 【解析】 X 的可能取值为1+2=3,1+3=4,1+4=5=2+3,1+5=6=4+2,2+5=7=3+4,3+5=8,4+5=9.【答案】 C4.随机变量X 的分布列如下:其中a ,b ,c【解析】 ∵a ,b ,c 成等差数列,∴2b =a +c .又a +b +c =1,∴b =13,∴P (|X |=1)=a +c =23.【答案】 235.(2012·安徽高考)某单位招聘面试,每次从试题库随机调用一道试题,若调用的是A 类型试题,则使用后该试题回库,并增补一道A 类试题和一道B 类型试题入库,此次调题工作结束;若调用的是B 类型试题,则使用后该试题回库,此次调题工作结束。

试题库中现共有n +m 道试题,其中有n 道A 类型试题和m 道B 类型试题,以X 表示两次调题工作完成后,试题库中A 类试题的数量.(1)求X =n +2的概率; (2)设m =n ,求X 的分布列.【解】 (1)X =n +2表示两次调题均为A 类型试题,概率为n m +n ×n +1m +n +2=n (n +1)(m +n )(m +n +2).(2)m =n 时,每次调用的是A 类型试题的概率为P =12,随机变量X 可取n ,n +1,n +2.P (X =n )=(1-p )2=14,P (X =n +1)=2p (1-p )=12,P (X =n +2)=p 2=14,所以X 的分布列为课时作业【考点排查表】1.设某项试验的成功率为失败率的2倍,用随机变量X 去描述1次试验的成功次数,则P (X =0)的值为( )A .1 B.12 C.13D.15【解析】 设X 的分布列为:即“X =0”表示试验失败,“X 设失败的概率为p ,成功的概率为2p .由p +2p =1,则p =13,因此选C.【答案】 C2.若P (X ≤x 2)=1-β,P (X ≥x 1)=1-α,其中x 1<x 2,则P (x 1≤X ≤x 2)等于( ) A .(1-α)(1-β) B .1-(α+β) C .1-α(1-β)D .1-β(1-α) 【解析】 由分布列性质可有:P (x 1≤X ≤x 2)=P (X ≤x 2)+P (X ≥x 1)-1=(1-β)+(1-α)-1=1-(α+β). 【答案】 B3.已知离散型随机变量X 的分布列为则k 的值为( ) A.12 B .1 C .2D .3【解析】 由分布列性质有k n +k n +…+kn =1,得k =1.【答案】 B4.今有电子原件50个,其中一级品45个,二级品5个,从中任取3个,出现二级品的概率为( )A.C 35C 350 B.C 15+C 25+C 35C 350C .1-C 345C 350D.C 15C 245+C 25C 245C 350【解析】 不出现二级品的结果数为C 345, 不出现二级品的概率为C 345C 350,∴出现二级品的概率为1-C 345C 350.【答案】 C5.设袋中有80个红球,20个白球,若从袋中任取10个球,则其中恰有6个红球的概率为( )A.C 480C 610C 10100B.C 680C 410C 10100 C.C 480C 620C 10100D.C 680C 420C 10100【解析】 超几何分布恰有6个红球则有4个白球,结果数为C 680C 420, ∴恰有6个红球的概率为C 680C 420C 10100.【答案】 D6.一只袋内装有m 个白球,n -m 个黑球,连续不放回地从袋中取球,直到取出黑球为止,设此时取出了ξ个白球,下列概率等于(n -m )A 2mA 3n的是( ) A .P (ξ=3) B .P (ξ≥2) C .P (ξ≤3)D .P (ξ=2)【解析】 由超几何分布知P (ξ=2)=(n -m )A 2mA 3n 【答案】 D 二、填空题7.随机变量X 的分布列P (X =k )=a ⎝⎛⎭⎫23k,k =1,2,3,…,则a 的值为________.【解析】 由 ∞k =1P (X =k )=1,即 a ⎣⎡⎦⎤23+⎝⎛⎭⎫232+⎝⎛⎭⎫233+ (1)∴a 231-23=1,解得a =12.【答案】 128.若离散型随机变量X 的分布列为常数c =______.【解析】 由离散型随机变量分布列的基本性质知 ⎩⎪⎨⎪⎧9c 2-c +3-8c =1,0≤9c 2-c ≤1,0≤3-8c ≤1,解得c =13.【答案】 139.抛掷2颗骰子,所得点数之和X 是一个随机变量,则P (X ≤4)=________.【解析】 相应的基本事件空间有36个基本事件,其中X =2对应(1,1);X =3对应(1,2),(2,1);X =4对应(1,3),(2,2),(3,1).所以P (X ≤4)=P (X =2)+P (X =3)+P (X =4) =136+236+336=16. 【答案】 16三、解答题10.设一汽车在前进途中要经过4个路口,汽车在每个路口遇到绿灯(允许通行)的概率为34,遇到红灯(禁止通行)的概率为14.假定汽车只在遇到红灯或到达目的地时才停止前进,ξ表示停车时已经通过的路口数,求:(1)ξ的分布列;(2)停车时最多已通过3个路口的概率.【解】 (1)ξ的所有可能值为0,1,2,3,4.用A k 表示事件“汽车通过第k 个路口时不停(遇绿灯)”,则P (A k )=34(k =1,2,3,4),且A 1,A 2,A 3,A 4独立.故P (ξ=0)=P (A 1)=14;P (ξ=1)=P (A 1·A 2)=34×14=316;P (ξ=2)=P (A 1·A 2·A 3)=(34)214=964;P (ξ=3)=P (A 1·A 2·A 3·A 4)=(34)314=27256;P (ξ=4)=P (A 1·A 2·A 3·A 4)=(34)4=81256.从而ξ有分布列:(2)P (ξ≤3)=1-P (ξ=4)=1-81256=175256.即停车时最多已通过3个路口的概率为175256.11.在10件产品中,有3件一等品,4件二等品,3件三等品,从这10件产品中任取3件,求:(1)取出的3件产品中一等品件数X 的分布列;(2)取出的3件产品中一等品件数多于二等品件数的概率.【解】 (1)由于从10件产品中任取3件的结果数为C 310,从10件产品中任取3件,其中恰有k 件一等品的结果数为C k 3C 3-k7,那么从10件产品中任取3件,其中恰有k 件一等品的概率为P (X =k )=C k 3C 3-k7C 310,k =0,1,2,3.所以随机变量X 的分布列是(2)设“取出的3A ,“恰好取出1件一等品和2件三等品”为事件A 1,“恰好取出2件一等品”为事件A 2,“恰好取出3件一等品”为事件A 3.由于事件A 1,A 2,A 3彼此互斥,且A =A 1∪A 2∪A 3,而P (A 1)=C 13C 23C 310=340,P (A 2)=P (X =2)=740,P (A 3)=P (X =3)=1120,∴取出的3件产品中一等品件数多于二等品件数的概率为P (A )=P (A 1)+P (A 2)+P (A 3)=340+740+1120=31120. 12.一个袋中装有若干大小相同的黑球、白球和红球,已知从袋中任意摸出1个球,得到黑球的概率是25;从袋中任意摸出2个球,至少得到1个白球的概率是79.(1)若袋中共有10个球; ①求白球的个数;②从袋中任意摸出3个球,记得到白球的个数为X ,求随机变量X 分布列;(2)求证:从袋中任意摸出2个球,至少得到1个黑球的概率不大于710,并指出袋中哪种颜色的球个数最少.【解】 (1)①记“从袋中任意摸出两个球,至少得到一个白球”为事件A ,设袋中白球的个数为x ,则P (A )=1-C 210-x C 210=79,得到x =5.故白球有5个.②随机变量X 的取值为0,1,2,3, P (X =0)=C 35C 310=112;P (X =1)=C 15C 25C 310=512;P (X =2)=C 25C 15C 310=512;P (X =3)=C 35C 310=112.故X 的分布列为:(2)证明:设袋中有n 由题意得y =25n ,所以2y <n,2y ≤n -1,故y n -1≤12.设“从袋中任意摸出两个球,至少有1个黑球”为事件B , 则P (B )=25·n -y n -1+35·y n -1+25·y -1n -1=25+35×y n -1≤25+35×12=710. 所以白球的个数比黑球多,白球个数多于25n ,红球的个数少于n5.故袋中红球个数最少.四、选做题13.(2012·全国新课标高考)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:以100(1)若花店一天购进16枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列; (2)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.【解】 (1)当n ≥16时,y =16×(10-5)=80. 当n ≤5时,y =5n -5(16-n )=10n -80.得:y =⎩⎪⎨⎪⎧10n -80,(n ≤15),80, (n ≥16).(n ∈N )(2)①X 可取60,70,80P (X =60)=0.1,P (X =70)=0.2,P (X =80)=0.7 X 的分布列为②购进17y =(14×5-3×5)×0.1+(15×5-2×5)×0.2+(16×5-1×5)×0.16+17×5×0.54=76.4.76.4>76得:应购进17枝.。

相关文档
最新文档