飞思卡尔16位单片机9S12XS128使用和程序
飞思卡尔MC9S12XS128单片机各模块使用方法及寄存器配置
飞思卡尔MC9S12XS128单片机各模块使用方法及寄存器配置手把手教你写S12XS128程序--PWM模块介绍该教程以MC9S12XS128单片机为核心进行讲解,全面阐释该16位单片机资源。
本文为第一讲,开始介绍该MCU的PWM模块。
PWM 调制波有8个输出通道,每一个输出通道都可以独立的进行输出。
每一个输出通道都有一个精确的计数器(计算脉冲的个数),一个周期控制寄存器和两个可供选择的时钟源。
每一个P WM 输出通道都能调制出占空比从0—100% 变化的波形。
PWM 的主要特点有:1、它有8个独立的输出通道,并且通过编程可控制其输出波形的周期。
2、每一个输出通道都有一个精确的计数器。
3、每一个通道的P WM 输出使能都可以由编程来控制。
4、PWM 输出波形的翻转控制可以通过编程来实现。
5、周期和脉宽可以被双缓冲。
当通道关闭或PWM 计数器为0时,改变周期和脉宽才起作用。
6、8 字节或16 字节的通道协议。
7、有4个时钟源可供选择(A、SA、B、SB),他们提供了一个宽范围的时钟频率。
8、通过编程可以实现希望的时钟周期。
9、具有遇到紧急情况关闭程序的功能。
10、每一个通道都可以通过编程实现左对齐输出还是居中对齐输出。
1、PWM启动寄存器PWMEPWME 寄存器每一位如图1所示:复位默认值:0000 0000B图1 PWME 寄存器每一个PWM 的输出通道都有一个使能位P WMEx 。
它相当于一个开关,用来启动和关闭相应通道的PWM 波形输出。
当任意的P WMEx 位置1,则相关的P WM 输出通道就立刻可用。
用法:PWME7=1 --- 通道7 可对外输出波形PWME7=0 --- 通道7 不能对外输出波形注意:在通道使能后所输出的第一个波形可能是不规则的。
当输出通道工作在串联模式时(PWMCTL 寄存器中的CONxx置1),那么)使能相应的16位PWM 输出通道是由PWMEx 的高位控制的,例如:设置PWMCTL_CON01 = 1,通道0、1级联,形成一个16位PWM 通道,由通道 1 的使能位控制PWM 的输出。
飞思卡尔MC9S12XS128技术手册翻译AD
飞思卡尔MC9S12XS128技术手册(AD转换部分)英文资料:飞思卡尔MC9S12XS256RMV1官方技术手册1.1 XS12系列单片机的特点XS12系列单片机特点如下:·16位S12CPU—向上支持S12模糊指令集并去除了其中的MEM, WAV, WAVR, REV, REVW 五条指令;—模块映射地址机制(MMC);—背景调试模块(BDM);·CRG时钟和复位发生器—COP看门狗;—实时中断;·标准定时器模块—8个16位输入捕捉或输出比较通道;;—16位计数器,8位精密与分频功能;—1个16位脉冲累加器;·周期中断定时器PIT—4具有独立溢出定时的定时器;—溢出定时可选范围在1到2^24总线时钟;—溢出中断和外部触发器;·多达8个的8位或4个16位PWM通道—每个通道的周期和占空比有程序决定;—输出方式可以选择左对齐或中心对其;—可编程时钟选择逻辑,且可选频率范围很宽;·SPI通信模块—可选择8位或16位数据宽度;—全双工或半双工通信方式;—收发双向缓冲;—主机或从机模式;—可选择最高有效为先输出或者最低有效位先输出;·两个SCI串行通信接口—全双工或半双工模式·输入输出端口—多达91个通用I/O引脚,根据封装方式,有些引脚未被引出;—两个单输入引脚;·封装形式—112引脚薄型四边引线扁平封装(LQFP);—80引脚扁平封装(QFP);—64引脚LQFP封装;·工作条件—全功率模式下单电源供电范围3.15V到5V;—CPU总线频率最大为40MHz—工作温度范围–40 C到125 C第十章模拟—数字转换10.1 介绍ADC12B16C是一个16通道,12位,复用方式输入逐次逼近模拟—数字转换器。
ATD的精度由电器规格决定。
10.1.1 特点·可设置8位、10位、12位精度·在停止模式下,ATD转换使用内部时钟·转换序列结束后自动进入低耗电模式·可编程采样时间·转化结果可选择左对齐或右对齐·外部触发控制·转换序列结束后产生中断·模拟输入的16个通道为复用方式·可以选择VRH、VRL、 (VRL+VRH)/2特殊转换方式·转换序列长度1到16·可选择连续转换方式·多通道扫描·任何AD通道均可配置外部触发功能,并且可选择4种额外的触发输入。
飞思卡尔MC9S12XS128功能模块驱动
用了一年多飞思卡尔MC9S12XS128这款处理器,现在总结下各个功能模块的驱动.//锁相环时钟的初始化总线频率为40MHz(总线时钟为锁相环时钟的一半)//晶振为11.0592MHzvoid PLL_init(void) //PLLCLK=2*OSCCLK*(SYNR+1)/(REFDV+1) { //锁相环时钟= 2*11.0592*(39+1)/(10+1)=80MHz 总线时钟为40MHzREFDV=0x0A;SYNR=0x67; //0110_0111 低6位的值为19,高两位的值为推荐值while(CRGFLG_LOCK != 1);CLKSEL_PLLSEL = 1; //选定锁相环时钟//FCLKDIV=0x0F; //Flash Clock Divide Factor 16M/16=1M}//周期中断定时器的初始化-// //周期中断通道1用于脉冲累加器的定时采样,定时周期为: 10ms= (199+1)*(1999+1)/(40M) (没有使用)//周期中断通道0用于控制激光管的轮流发射,定时周期为: 2000us= (399+1)*(199+1)/(40M)//2011/4/4 15:24 定时时间改为1msvoid PIT_init(void){PITCFLMT_PITE = 0; // 禁止使用PIT模块 PITCFLMT :PIT 控制强制加载微计数器寄存器。
PITCE_PCE0 = 1; // 使能定时器通道0//PITCE_PCE1 = 1; //使能定时器通道1PITMUX = 0; //通道0,和通道1均选择8位微计数器0//修改时间只需要改下面四行PITMTLD0 = 199; //向8位微计数器中加载的值PITLD0 = 199; //向16位计数器中加载的值//PITMTLD1 = 39; //向8位微计数器中加载的值 8位,最大值不要超过255//PITLD1 = 1999; //向16位计数器中加载的值PITINTE |= 0x01; //使能定时器通道0的中断PITCFLMT_PITE = 1;//使能PIT模块}//脉冲累加器的初始化, PT7口外接光电编码器//最新修改: 2011/3/25 16:53void PT7_PulAcc_Init(void){DDRT &= 0x77;//设置PT7,PT3口为输入(硬件上PT7,PT3通过跳线联到了一块)PERT |= 0x80; //使能通道7的上拉电阻PPST &= 0x7f; //电阻设为上拉电阻TCTL4 &= 0x3f; //禁止PT3的输入捕捉功能PACTL = 0x50; //启动脉冲累加计数器,上升沿触发,禁止触发中断和溢出中断,主定时器禁止}//通道1用于控制舵机1 PWM 高电平有效,//通道3用于控制电机1 PWM 低电平有效,这与前两代车高电平有效有区别!!!!!//通道7用于给上排激光管提供PWM信号 PWM高电平有效!!!!!//通道6用于给下排激光管提供PWM信号 PWM高电平有效!!!!!// 2011-03-17 7:56 增加了A端口的使用新增通道6//2011-6-9 23:03 //增加了通道4,5的联合使用,用于控制下排方向舵机 void PWM_init(void){PWME = 0x00;//PWM禁止PWMPRCLK = 0x03; // ClockA=40M/8=5M, Clock B = 40M/1=40M PWMSCLB = 10; // Clock SB= 40/2*10= 2MHz(供电机)PWMSCLA = 5; // SA = Clock A/2*5 = 5M/10 = 500K = SA 用于控制舵机PWMPOL = 0xe2; //1110_0010通道7,通道6与通道1、通道5先输出高电平然后输出低电平,POLx=1先输出高电平后输出低电平; PPOLx=0先输出低电平)PWMCAE = 0x00; // 左对齐输出(CAEx=0为左对齐,反之为中心对齐)//PWMCLK = 0010_1010 (0 1 4 5位控制SA_1;或A_0; 2 3 6 7位控制SB_1 或B_0)//为PWM通道1选择时钟 SA(500KHz),//为PWM通道5选择时钟 SA(500KHz),//为通道3选择时钟 SB(10MHz)//为通道7选择时钟B(40MHz)//为通道6选择时钟B(40MHz)PWMCLK = 0x2A; //0010_1010PWMCTL = 0x70; //0111_0000 CON45=1,把通道4,5联合使用。
飞思卡尔单片机烧写程序步骤
创建一个工程
选择单片机的型号,我一直用的是mc9s12xs128的单片机,然后在“choose your default connection:”里面选择最后一个“TBDML”,TBDML是一个仿真器,飞思卡尔单片机用的BDM 仿真器,选择好后下一步
这一步就是建立工程的名字和位置,左边选择语言类型,选择C即可,设置好名字和位置后点下一步
这个窗口指的是要不要从一个位置添加先前存在的工程,不用添加,直接下一步
直接下一步
这一步需要注意,在“Select the floating point format supported…….”里选择第二项,如上图,是选择浮点类型长度,选别的可能编译的时候出错,我也不知道为什么
这一步直接默认
直接点完成
即可完成工程的建立
工程建立后自动出来这个画面
在左边栏里,双击main.c会出来主程序,在里面写程序即可,写好后点一下这个按钮,生成一系列文件,如果没有错误,就不会有提示,遇到warming,一般没什么大问题,只要不是error就行,
然后烧写程序点绿色箭头,烧程序单片机通电。
先确保你的电脑装好仿真器的驱动,在资源管理器里面查看
同上显示的话表示正常,如果有黄色感叹号,则需要重新安装驱动。
飞思卡尔MC9S12XS128各模块初始化程序--超详细注释
飞思卡尔MC9S12XS128各模块初始化程序--超详细注释//**************************************************************************// 武狂狼2014.5.1 整理// 新手入门的助手////***************************************************************************注释不详细/*********************************************************/函数名称:void ATD0_init(void)函数功能:ATD初始化入口参数:出口参数:/***********************************************************/void ATD0_init(void){ATD0DIEN=0x00; //使用模拟输入功能|=1;数字输入功能// ATD0CTL0=0x07; //Bit[3:0]WRAP[3:0] 反转通道选择位ATD0CTL1=0x40; // 12位精度,采样前不放电 Bit[7]ETRIGSEL(外部触发源选择位。
=0选择A/D通道AN[15:0] |=1选择 ERTIG3~0)和Bit[3:0]ETRIGCH[3:0]选择外部触发通道// Bit[6:5]SRES[1:0]A/D分辨率选择位。
Bit[4]SMP_DIS =0采样前不放电|=1采样前内部电容放电,这会增加2个A/D时钟周期的采样时间,有助于采样前进行开路检测ATD0CTL2=0x40; // 快速清零,禁止中断,禁止外部触发ATD0CTL3=0x90; // 右对齐,转换序列长度为2,非FIFOATD0CTL4=0x03; // 采样时间4个周期,PRS=31,F(ATDCLK)=F(BUS)/(2(PRS+1))// ATD0CTL5=0x30; //启动AD转换序列//:对每项数据采集时,用到哪个通道采样可在相应子函数内设置某一通道(见Sample_AD.c)while(!ATD0STAT2L_CCF0);/*********************************************************/函数名称:void PIT_init(void)函数功能:初始化PIT 设置精确定时时间(1s)入口参数:无出口参数:无说明:无/***********************************************************/void PIT_init(void){PITCFLMT=0x00; //禁止PIT模块Bit[7] PITE:PIT模块使能位,0禁用|1使能// Bit[6] PITSWAI:等待模式下PIT停止位,0等待模式下,PIT模块正常运行| 1等待模式下,PIT模块停止产生时钟信号,冻结PIT模块// Bit[5] PITFRZ: 冻结模式下PIT计数器冻结位。
飞思卡尔16位单片机MC9S12XS128加密(程序下载不进去,正负极未短路,通电芯片不发烫)后解锁的方法及步骤w
飞思卡尔16位单片机MC9S12XS128加密(程序下载不进去,正负极未短路,通电芯片不发烫)后解锁的方法及步骤/*****************************************************************************/ *本人用此法成功解救了4块板子【窃喜!】,此说明是本人边操作边截图拼成的,有些是在别的说明上直接截图【有些图本人不会截取,就利用现成的了,不过那也是本人用豆和财富值换来的】,表达不清之处还望见谅,大家将就着看吧!如能有些许帮助,我心甚慰!!!————武狂狼2014.4.23 /*****************************************************************************/编译软件:CW5.1版本,下载器:飞翔BDMV4.6 【1】,连接好单片机,准备下载程序,单击下载按钮出现以下界面或(图1.1)图 1.1——4中所有弹出窗口均单击“取消”或红色“关闭”按钮依次进入下一界面(图1.2)(图1.3)(图1.4)******************************************************************************* *******************************************************************************【2】单击出现如下图所示下拉列表,然后单击(图2.1)出现下图(图2.2)对话框,按下面说明操作(图2.2)弹出图2.3,单击按钮,依次出现如图2.4--5窗口,均单击(图2.3)(图2.4)******************************************************************************* *******************************************************************************【3】单击出现下拉列表,然后单击下拉列表中单击按钮出现如下界面,单击选择相对应的单片机型号(我选的红色方框里的HCS12X….),单击OK. PS:【此步骤是本人自己试出来的,若不进行此操作,图3.3中下拉列表中无要找选项】(图3.1)(图3.3)(图3.4)(图3.5)红色方框2中默认即为所要选的文件,此步只需单击确认按钮即可,如有不同读者酌情处置。
飞思卡尔MC9S12XS128(定时器)ECT寄存器详解
1、定时器IC/OC功能选择寄存器TIOSIOS[7..0]IC/OC功能选择通道0 相应通道选择为输入捕捉(IC)1 相应通道选择为输出比较(OC)2、定时器比较强制寄存器 CFORCFOC[7..0]设置该寄存器某个FOCn位为1将导致在相应通道上立即产生一个输出比较动作,在初始化输出通道时候非常有用。
【说明】这个状态和正常状态下输出比较发生后,标志位未被置位后的情况相同。
3、输出比较7屏蔽寄存器 OC7MOC7M[7..0]OC7(即通道7的输出比较)具有特殊地位,它匹配时可以直接改变PT7个输出引脚的状态,并覆盖各个引脚原来的匹配动作结果,寄存器OC7M决定哪些通道将处于OC7的管理之下。
OC7M中的各位与PORTT口寄存器的各位一一对应。
当通过TIOS将某个通道设定为输出比较时,将OC7M中的相应位置1,对应的引脚就是输出状态,与DDR中的对应位的状态无关,但OC7Mn并不改变DDR相应位的状态。
【说明】OC7M具有更高的优先级,它优于通过TCTL1和TCTL2寄存器中的OMn和OLn设定的引脚动作,若OC7M中某个位置1,就会阻止相应引脚上由OM和OL设定的动作。
4、输出比较7数据寄存器 OC7DOC7D[7..0]OC7M对于其他OC输出引脚的管理限于将某个二进制值送到对应引脚,这个值保存在寄存器OC7D中的对应位中。
当OC7匹配成功后,若某个OC7Mn=1,则内部逻辑将OC7Dn送到对应引脚。
OC7D中的各位与PORTT口寄存器的各位一一对应。
当通道7比较成功时,如果OC7M中的某个位为1,OC7D中的对应位将被输出到PORTT的对应引脚。
【总结】通道7的输出比较(OC7)具有特殊的位置,在OC7Mn和OC7Dn两个寄存器设置以后,OC7成功输出后将会引起一系列的动作。
比如:OC7M0=1,则通道0处在OC7的管理下,在OC7成功后,系统会将OC7D0的逻辑数据(仅限0或者1)反应在PT0端口上。
飞思卡尔MC9S12XS128单片机中断优先级设置简易教程
本教程试图用最少的时间教你飞思卡尔XS128单片机的中断优先级设置方法和中断嵌套的使用,如果是新手请先学习中断的基本使用方法。
先来看看XS128 DataSheet 中介绍的相关知识,只翻译有用的:七个中断优先级每一个中断源都有一个可以设置的级别高优先级中断的可以嵌套低优先级中断复位后可屏蔽中断默认优先级为1同一优先级的中断同时触发时,高地址(中断号较小)的中断先响应注意:高地址中断只能优先响应,但不能嵌套同一优先级低地址的中断下面直接进入正题,看看怎么设置中断优先级:XS128中包括预留的中断一共有128个中断位,如果为每个中断都分配一个优先级寄存器的话会非常浪费资源,因此飞思卡尔公司想出了这样一种办法:把128个中断分为16个组,每组8个中断。
每次设置中断时,先把需要的组别告诉某个寄存器,再设置8个中断优先寄存器的某一个,这样只需9个寄存器即可完成中断的设置。
分组的规则是这样的:中断地址位7到位4相同的中断为一组,比如MC9SX128.h中这些中断的位7到位3都为D,他们就被分成了一组。
0~F正好16个组。
INT_CFADDR就是上面说到的用来设置组别的寄存器:我们需要设置某个组别的中断时,只要写入最后8位地址就行了,比如设置SCI0的中断优先级,就写入0xD0。
设置好组别之后,我们就要该组中相应的中断进行设置,设置中断的寄存器为这其实是一组寄存器,一共有8个,每个都代表中断组中的一个中断。
对应规则是这样的:中断地址的低四位除以2比如还是SCI0,低四位是6,除以二就是3,那么我们就需要设置INT_CFDATA3 往INT_CFDATAx中写入0~7就能设置相应的中断优先级了拿我本次比赛的程序来举个例子:我们的程序中需要3个中断:PIT0,PORTH,SCI0。
PIT0定时检测传感器数值,PORTH连接干簧管进行起跑线检测,SCI0接收上位机指令实现急停等功能。
因此中断优先级要SCI0>PORTH>PIT0。
MC9S12XS128例程
MC9S12XS128例程SCI程序串行通信时MCU与外部设备之间进行通信的一种简单而有效的硬件方法。
无论用查询方式还是中断方式进行串行通信编程,在程序初始化时均必须对SCI进行初始化。
初始化主要包括波特率设置、通信格式的设置、发送接收数据方式的设置等。
对SCI进行初始化,需要设置如下几部分:(1)定义波特率一般选内部总线时钟为串行通信的时钟源。
通过设置SCI波特率寄存器SCI0BD的波特率选择位SBR[12:0],来选择合适的分频系数。
(2)写控制字到SCI控制寄存器1(SCI0CR1)设置是否允许SCI、数据长度、输出格式、选择唤醒方法、是否校验等。
(3)写控制字到SCI控制寄存器2(SCI0CR2)设置是否允许发送与接收、是中断接收还是查询接收等。
串行通信程序如下:/** write in “Init.h” **/#include /* common defines and macros */#include "derivative.h" /* derivative-specific definitions */ //void InitBusClk(void); //可以不使用锁相环void InitSci(void);/** write in “Init.c” **///初始化程序#include "Init.h"/*//------------初始化Bus Clock------------//void InitBusClk(void) {DisableInterrupts;CLKSEL=0X00; //PLLSEL 1 : Bus Clock=PLLCLK/2// 0 : Bus Clock=OSCCLK/2PLLCTL_PLLON=1; //开启PLLSYNR=0; //OSCCLK=16MHzREFDV=0X0F;//PLLCLK=2*OSCCLK*[(1+SYNR)/(1+REFDV]=32/16=2MHz while(!(CRGFLG_LOCK==1)); //直到LOCK=1,when PLL is ready,退出循环CLKSEL_PLLSEL=1; //PLLSEL 1 : Bus Clock=PLLCLK/2=2MHz/2=1MHz// 0 : Bus Clock=OSCCLK/2=16M/2=8MHz}*///---------------初始化SCI---------------//void InitSci(void){SCI0BD=4545; //设波特率为110//SCI baud rate = SCI module clock/(16*SCIBD)=Bus Clock/(16*SCIBD)// = 8MHz/(16*4545)=500kHz/4545=110bps//SCIBD : SBR12-SBR0,Value from 1 to 8191SCI0CR1=0;SCI0CR2=0X2C; // 0010 1100 RIE=1,TE=1,RE=1// RIE=1 RDRF and OR interrupt requests enabled// TE=1 Transmitter enabled// RE=1 Receiver enabled}/** write in “SCI.h” **///函数声明unsigned char SciRead();void SciWrite(byte);/** write in “SCI.c” **///串行通信程序#include "Init.h"#include "SCI.h"//---------------读SCI数据---------------//unsigned char SciRead(){if(SCI0SR1_RDRF==1){//数据从移位寄存器传送到SCI数据寄存器SCIDRL//SCI0SR1_RDRF==1表明数据寄存器SCI0DRL为满,可以接收新的数据SCI0SR1_RDRF=1; //读取SCI数据寄存器会将RDRF清除,重新置位return SCI0DRL; //返回数据寄存器的数值}}//---------------写SCI数据---------------//void SciWrite(byte sci_value){while(!(SCI0SR1&0X80));//SCI0SR1_TDRE==1表明数据寄存器SCI0DRL为空,可以发送新的数据SCI0DRH=0;SCI0DRL=sci_value; //发送新的数据至数据寄存器SCI0DR}//---------------中断程序-----------------//#pragma CODE_SEG NON_BANKEDinterrupt 20 void Sci_Intrrupt(void){ //SCI的中断向量号为20 byte text;DisableInterrupts; //关中断text=SciRead(); //接收数据寄存器SCI0DRL中的数据asm nop;asm nop;SciWrite(text); //发送数据至数据寄存器SCI0DRLDDRA=0XFF; //设A口为输出,用来显示是否执行中断,可以不用PORTA_PA6=!PORTA_PA6;EnableInterrupts; //开中断}#pragma CODE_SEG DEFAULT/** write in “main.c”” **/#include "Init.h"#include "SCI.h"void main(void) {/* put your own code here */_DISABLE_COP(); //关看门狗DisableInterrupts; //关中断//InitBusClk();InitSci();EnableInterrupts; //开中断for(;;) {// _FEED_COP(); /* feeds the dog */} /* loop forever *//* please make sure that you never leave main */}A/D转换应用实例要让ATD 开始转换工作,必须经过以下三个步骤:1.将ADPU 置1,使ATD 启动;2.按照要求对转换位数、扫描方式、采样时间、时钟频率及标志检查等方式进行设置;3.发出启动命令;如果上电默认状态即能满足工作要求,那么只要将ADPU 置1,然后通过控制寄存器发出转换命令,即可实现转换。
飞思卡尔9S12XS128 单片机教程
9S12XS128 单片机开发工具包清华Freescale MCU/DSP 应用开发研究中心9S12XS128单片机开发工具包 (1)概述 (3)9S12XS128单片机 (3)9S12XS128开发工具包组件 (3)9S12XS128开发板及与PC 通信 (4)9S12XS128 开发板 (4)开发板的硬件连接 (5)PC机的设置 (6)监控程序及监控命令详解 (8)命令详解 (8)复位、中断向量表 (12)用户可以使用的RAM空间 (12)编译器CodeWarrior for HCS12 使用方法入门 (13)建立工程文件 (13)编写main.c 程序 (15)定义存储空间分配 (17)应用程序的编译 (18)向开发板下载程序 (20)运行应用程序 (21)概述这里描述的是一套9S12XS128 系列单片机开发系统套件。
以后的更新的版本见清华Freescale单片机应用开发研究中心的网站:。
开发系统主要由两个部分组成,分别是调试下载用的TBDML和开发用目标板。
其中TBDML的使用请参见文档“BDM for S12(TTBDM)用户手册V 34.pdf”。
目标板是有异步串行口的驱动的基本系统。
针对9S12XS128 芯片我们编写了9S12XS128目标板监控程序,可以方便地完成应用系统的开发。
用户可以在此基础上设计自己所需的目标母板,完成项目的初期开发。
应用软件完成后,用开发工具板擦除监控程序,下载最终的应用程序。
9S12XS128 单片机S12XS 16 位微控制器系列针对一系列成本敏感型汽车车身电子应用进行了优化。
S12X 产品满足了用户对设计灵活性和平台兼容性的需求,并在一系列汽车电子平台上实现了可升级性、硬件和软件可重用性、以及兼容性。
S12XS 系列可以经济而又兼容地扩展至带XGate 协处理器的S12XE 系列单片机,从而为用户削减了成本,并缩小了封装尺寸。
S12XS系列帮助设计者迅速抓住市场机遇,同时还能降低移植成本。
Freescale_MC9S12XS128程序总结
1.对IO口输入输出操作程序举例:A口接流水灯并实现闪烁void main(void) {while(1){DDRA=0xff;delay(500);PORTA=0xff;delay(500);PORTA=0;}另外,B、E口的IO功能操作也是一样的,因为位数一样寄存器一样,其他口的寄存器就不太一样了!J,P,M,T,S这五个口除具有数据寄存器外,他们都另外多出另一个端口输入寄存器(该寄存器功能我未知)!2.SPI总线接口SPI是一种高速高效的同步串行接口,这种接口主要用于MCU与外部的接口芯片交换数据,只要有SPI口的芯片都可以与单片机相连形成主从机系统进行数据的传递,比如SPI用于移位寄存器74HC164,这是个串入并出的芯片这样可以实现扩展IO口。
还有AD转换芯片AD7793,可以实现数模转换,还有飞思卡尔公司的电源管理芯片MC33389。
因设备有限此功能待以后调试!3.SCI总线接口MC9S12DG128单片机有两个SCI模块,可以选用其中任何一个。
他的使用有8个相应寄存器共设置,其中有波特率设置寄存器SCIBDH,SCIBDL,还有控制寄存器SCICR1,SCICR2,状态寄存器SCISR1,SCISR2,数据寄存器SCIDRH,SCIDRL;简单讲SCI的使用就是寄存器初始化,数据传送方式设置,下面举个初始化使用的简单例子:SCICR2=0x08;//发送使能设置SCIBDH=0x00;//波特率设置为9600SCIBDL=0x9c;就是这样这个是简单实用时的设置,发送函数如下:While(!(SCISR1&0x40))//检测是否发送完毕,一旦发送完毕就进入到死循环里边{}SCIDRL=C;//C代表需要传送的数据4.有关定时器TCNTTCNT是芯片内部的16位主定时器,他不停地对内部时钟信号进行计数,从0x0000直到0xffff,计满后溢出又返回到0x0000,程序随时可以读取,但在普通模式下禁止写入。
飞思卡尔9S12XS128 单片机教程
9S12XS128 单片机开发工具包清华Freescale MCU/DSP 应用开发研究中心9S12XS128单片机开发工具包 (1)概述 (3)9S12XS128单片机 (3)9S12XS128开发工具包组件 (3)9S12XS128开发板及与PC 通信 (4)9S12XS128 开发板 (4)开发板的硬件连接 (5)PC机的设置 (6)监控程序及监控命令详解 (8)命令详解 (8)复位、中断向量表 (12)用户可以使用的RAM空间 (12)编译器CodeWarrior for HCS12 使用方法入门 (13)建立工程文件 (13)编写main.c 程序 (15)定义存储空间分配 (17)应用程序的编译 (18)向开发板下载程序 (20)运行应用程序 (21)概述这里描述的是一套9S12XS128 系列单片机开发系统套件。
以后的更新的版本见清华Freescale单片机应用开发研究中心的网站:。
开发系统主要由两个部分组成,分别是调试下载用的TBDML和开发用目标板。
其中TBDML的使用请参见文档“BDM for S12(TTBDM)用户手册V 34.pdf”。
目标板是有异步串行口的驱动的基本系统。
针对9S12XS128 芯片我们编写了9S12XS128目标板监控程序,可以方便地完成应用系统的开发。
用户可以在此基础上设计自己所需的目标母板,完成项目的初期开发。
应用软件完成后,用开发工具板擦除监控程序,下载最终的应用程序。
9S12XS128 单片机S12XS 16 位微控制器系列针对一系列成本敏感型汽车车身电子应用进行了优化。
S12X 产品满足了用户对设计灵活性和平台兼容性的需求,并在一系列汽车电子平台上实现了可升级性、硬件和软件可重用性、以及兼容性。
S12XS 系列可以经济而又兼容地扩展至带XGate 协处理器的S12XE 系列单片机,从而为用户削减了成本,并缩小了封装尺寸。
S12XS系列帮助设计者迅速抓住市场机遇,同时还能降低移植成本。
飞思卡尔单片机MC9s12xs128调试PS2
========================PS2.h=====================================#ifndef _PS2_H#define _PS2_H#define PS2_CLK PTJ_PTJ1#define PS2_RW PORTA_PA1typedef struct PS2_V alueType {char PS2_V alueData; /* 码表Num :77 /:E04A*:7C -:7B7: 6C 8:75 9:7D +:794: 6B 5:73 6:74 +:791: 69 2:72 3:7A Enter:E05A0: 70 .:71*//* 对应返回值Num :-5 /:-4 *:7C -:-27: 7 8:8 9:9 +:-14: 4 5:5 6:6 +:-11: 1 2:2 3:3 Enter:100: 0 .:-3 空格-6*/unsigned char PS2_V alueKind; //0 按下,1松手}PS2_V alueType;#endif _PS2_H======================================PS2.c============================ #include "PS2.h"#include "MC9S12XS128.h"//extern unsigned char PS2_Buffer[3];//extern unsigned char PS2_StopCodeFlag=0;//从PS/2中获取一个按键unsigned char PS2_GetData(void){unsigned char temp,i,res;for(i=0;i<11;i++) {while(PS2_CLK);if(i>0 && i<9) {res=res>>1;if(PS2_RW) {res=res|0x80;}}while (!PS2_CLK);}return res;}void Key_Interrupt(void) {//DDRJ=0X00;PIEJ_PIEJ1=1;PPSJ_PPSJ1=0;}void PS2_InsertBuffer(unsigned char *buffer,unsigned char bufferdata) {unsigned char *tempdata=buffer+1;(*buffer++)=(*tempdata++);(*buffer++)=(*buffer++);(*buffer)=bufferdata;}void PS2_GetChar(PS2_V alueType *PS2_V alue){unsigned char temp;temp=PS2_GetData();(*PS2_V alue).PS2_V alueKind=0;if(temp!=0xe0 && temp!=0xf0){switch (temp){/* 对应返回值Num :-6 /:-4 *:-5 -:-27: 7 8:8 9:9 +:-14: 4 5:5 6:6 +:-11: 1 2:2 3:3 Enter:100: 0 .:-3*/case 0x70 : (*PS2_V alue).PS2_V alueData=0; return;case 0x69 : (*PS2_V alue).PS2_V alueData=1; return;case 0x72 : (*PS2_V alue).PS2_V alueData=2; return;case 0x7A : (*PS2_V alue).PS2_V alueData=3; return;case 0x6B : (*PS2_V alue).PS2_V alueData=4; return;case 0x73 : (*PS2_V alue).PS2_V alueData=5; return;case 0x74 : (*PS2_V alue).PS2_V alueData=6; return;case 0x6C : (*PS2_V alue).PS2_V alueData=7; return;case 0x75 : (*PS2_V alue).PS2_V alueData=8; return;case 0x7D : (*PS2_V alue).PS2_V alueData=9; return;case 0x71 : (*PS2_V alue).PS2_V alueData=-3; return;case 0x79 : (*PS2_V alue).PS2_V alueData=-1; return;case 0x7B : (*PS2_V alue).PS2_V alueData=-2; return;case 0x7C : (*PS2_V alue).PS2_V alueData=-5; return;case 0x77 : (*PS2_V alue).PS2_V alueData=-6; return;case 0x66 : (*PS2_V alue).PS2_V alueData=-7; return;}}else if(temp==0xe0){temp=PS2_GetData();if(temp==0xf0){temp=PS2_GetData();(*PS2_V alue).PS2_V alueKind=1;if(temp==0x5A){(*PS2_V alue).PS2_V alueData=10; return;}else if(temp==0x4A){(*PS2_V alue).PS2_V alueData=-4; return;}}else{(*PS2_V alue).PS2_V alueKind=0;if(temp==0x5A){(*PS2_V alue).PS2_V alueData=10; return;}else if(temp==0x4A){(*PS2_V alue).PS2_V alueData=-4; return;}}}else if (temp==0xf0){(*PS2_V alue).PS2_V alueKind=1;temp=PS2_GetData();switch (temp){/* 对应返回值Num :-6 /:-4 *:-5 -:-27: 7 8:8 9:9 +:-14: 4 5:5 6:6 +:-11: 1 2:2 3:3 Enter:100: 0 .:-3 空格-7*/case 0x70 : (*PS2_V alue).PS2_V alueData=0; return;case 0x69 : (*PS2_V alue).PS2_V alueData=1; return;case 0x72 : (*PS2_V alue).PS2_V alueData=2; return;case 0x7A : (*PS2_V alue).PS2_V alueData=3; return;case 0x6B : (*PS2_V alue).PS2_V alueData=4; return;case 0x73 : (*PS2_V alue).PS2_V alueData=5; return;case 0x74 : (*PS2_V alue).PS2_V alueData=6; return;case 0x6C : (*PS2_V alue).PS2_V alueData=7; return;case 0x75 : (*PS2_V alue).PS2_V alueData=8; return;case 0x7D : (*PS2_V alue).PS2_V alueData=9; return;case 0x71 : (*PS2_V alue).PS2_V alueData=-3; return;case 0x79 : (*PS2_V alue).PS2_V alueData=-1; return;case 0x7B : (*PS2_V alue).PS2_V alueData=-2; return;case 0x7C : (*PS2_V alue).PS2_V alueData=-5; return;case 0x77 : (*PS2_V alue).PS2_V alueData=-6; return;case 0x66 : (*PS2_V alue).PS2_V alueData=-7; return;}}}。
飞思卡尔MC9S12XS128单片机重点模块讲解
基于飞思卡尔 MC9S12XS128MCU 的模块讲解及测试
安徽工业大学 自动化系 刘昌元 } /*--------------------- 主函数------------------------------------*/ void main(void) { DDRB=0x3f; LED=0x01; EnableInterrupts; while(1) { delay(time); LED<<=1; delay(time); //延时 //高电平信号左移一位 //定义 B0-B5 口为输出 // 点亮第一只灯 //允许中断
基于飞思卡尔 MC9S12XS128MCU 的模块讲解及测试
安徽工业大学 自动化系 刘昌元 � 概述:
飞思卡尔单片机的端口名称和 51 系列单片机有区别, 51 单片最经典的通用 I/O 口名称是 P0 口、P1 口、 P2 口、P3 口。而飞思卡尔 128 单片机是由 A 口、B 口、 K 口、E 口等标称的, 熟悉 51 单片的同学在此学习飞思卡尔单片时要知道变通,同样的对于学习其他单片机也是 一样的,先熟悉端口名称,再熟悉其端口功能,再熟悉其寄存器。C 语言的编程语法和算法 思路是通用的。 现在功能强悍一点的单片都在内部集成了很多现成的模块, 我们可以通过对 其模块寄存器编程配置我们需要的功能即可, 此处的 128 单片机就是这样一款单片机, 在此 我就我个人学习的一些心得写出来, 仅供交流与参考, 同时我也希望帮助新手能够很快得上 手。 具体更深层的内容大家还需要去参考芯片的技术手册和其他参考书。 以下我就分模块来 讲解, 大家在学习的过程中也需要一个模块一个模块的来学习和测试。 其实我个人觉得买过 来的开发板用途不是很大,因为很多端口被其在 PCB 设计时固化了,留给我们的端口并不 多,使用起来极不方便,所以我个人建议大家可以买个带有最小系统的模块,自己用排针和 插槽焊一个程序调试板,再焊一排共阴极的发光二极管(最好能发不同颜色光的) ,再焊几 个开关电路和按键电路即可。 我们在代码的各个位置通过点亮发光二极管来知道程序走到哪 一步了。下面我提供的测试例程也是这么来的,节省硬件就是节省开支啊,多动脑子,多想 办法可以克服很多困难的。 注: 一个寄存器的多个位可以一次性写入配置的, 但是为了使大家读程序理解方便我对寄存 器的每一位几乎一位一位配置的,我麻烦了,不过可以给大家读程序带来方便。
MC9S12XS128单片机简介
MC9S12XS128 单片机简介1、HCS12X 系列单片机简介Freescale 公司的16 位单片机主要分为HC12 、HCS12、HCS12X 三个系列。
HC12核心是16 位高速CPU12 核,总线速度8MHZ;HCS12 系列单片机以速度更快的CPU12 内核为核心,简称S12 系列,典型的S12 总线速度可以达到25MHZ。
HCS12X 系列单片机是Freescale 公司于2005 年推出的HCS12 系列增强型产品,基于S12 CPU 内核,可以达到25MHz 的HCS12 的2-5 倍性能。
总线频率最高可达40 MHz。
S12X 系列单片机目前又有几个子系列:MC9S12XA 系列、MC9S12XB 系列、MC9S12XD 系列、MC9S12XE 系列、MC9S12XF系列、MC9S12XH 系列和MC9S12XS 系列。
MC9S12XS128 就是S12X 系列中的一个成员。
2、MC9S12XS128 性能概述MC9S12XS128 是16 位单片机,由16 位中央处理单元(CPU12X)、128KB 程序Flash(P-lash)、8KB RAM、8KB 数据Flash(D-lash)组成片内存储器。
主要功能模块包括:内部存储器内部PLL 锁相环模块2 个异步串口通讯SCI1 个串行外设接口SPIMSCAN 模块1 个8 通道输入/输出比较定时器模块TIM周期中断定时器模块PIT16 通道A/D 转换模块ADC1 个8 通道脉冲宽度调制模块PWM输入/输出数字I/O 口3、输入/输出数字I/O 口MC9S12XS128 有3 种封装,分别为64 引脚、80 引脚、112 引脚封装。
其全名分别为MC9S12XS128MAE、MC9S12XS128MAA、MC9S12XS128MAL。
MC9S12XS 系列具有丰富的输入/输出端口资源,同时集成了多种功能模块,端口包括PORTA、PORTB、PORTE、PORTK、PORTT、PORTS、PORTM、PORTP、PORTH、PORTJ 和PORTAD 共11 个端口。
飞思卡尔智能车-XS128芯片中文资料
第一讲:HCS12原理及应用--PWM模块介绍时间:2009-11-25 22:51来源:电子设计吧作者:dzsj8 点击:996次该教程以MC9S12DG128单片机为核心进行讲解,全面阐释该16位单片机资源。
本文为第一讲,开始介绍该MCU的PWM模块。
PWM 调制波有8个输出通道,每一个输出通道都可以独立的进行输出。
每一个输出通道都有一个精确的计数器(计算脉冲的个数),一个周期控制寄存器和两个可供选择的时钟源。
每一个P WM 输出通道都能调制出占空比从0—100% 变化的波形。
PWM 的主要特点有:1、它有8个独立的输出通道,并且通过编程可控制其输出波形的周期。
2、每一个输出通道都有一个精确的计数器。
3、每一个通道的P WM 输出使能都可以由编程来控制。
4、PWM 输出波形的翻转控制可以通过编程来实现。
5、周期和脉宽可以被双缓冲。
当通道关闭或PWM 计数器为0时,改变周期和脉宽才起作用。
6、8 字节或16 字节的通道协议。
7、有4个时钟源可供选择(A、SA、B、SB),他们提供了一个宽范围的时钟频率。
8、通过编程可以实现希望的时钟周期。
9、具有遇到紧急情况关闭程序的功能。
10、每一个通道都可以通过编程实现左对齐输出还是居中对齐输出。
第2讲:HCS12原理及应用--PWM寄存器说明1时间:2009-11-25 22:56来源:电子设计吧作者:dzsj8 点击:794次1、PWM启动寄存器PWMEPWME 寄存器每一位如图1所示:复位默认值:0000 0000B图1 PWME 寄存器每一个PWM 的输出通道都有一个使能位P WMEx 。
它相当于一个开关,用来启动和关闭相应通道的PWM 波形输出。
当任意的P WMEx 位置1,则相关的P WM 输出通道就立刻可用。
用法:PWME7=1 --- 通道7 可对外输出波形PWME7=0 --- 通道7 不能对外输出波形注意:在通道使能后所输出的第一个波形可能是不规则的。
飞思卡尔智能车S12XS128PWM控制程序编写
飞思卡尔智能车S12XS128PWM控制程序编写SeptStringS原创,转载请注明。
对于飞思卡尔智能车,电机和舵机的控制通常使⽤的都是以PWM脉冲宽度调制的⽅法实现的,其可⾏性基于电机可以由占空⽐控制转速,⽽舵机也由脉宽控制摆动。
PWM 调制波有 8 个输出通道,每⼀个输出通道都可以独⽴的进⾏输出。
每⼀个输出通道都有⼀个精确的计数器(计算脉冲的个数),⼀个周期控制寄存器和两个可供选择的时钟源。
每⼀个 PWM 输出通道都能调制出占空⽐从 0—100% 变化的波形。
PWM控制程序的编写⼀般按照以下的⼀种流程:1,禁⽌PWM模块;//这是由于改变周期和脉宽等操作需要在PWM禁⽌的情况下才能被设置2,PWM级联选择,是否级联通道67,45,23,01;//最多单独使⽤8个8位和级联使⽤4个16位3,给通道选择时钟源控制位;//0,1,4,5通道可选择ClockA和ClockSA;2,3,6,7通道可选择ClockB和ClockSB4,给时钟源A\B预分频;//可对总线时钟进⾏预分频,确定ClockA和ClockB,满⾜1,2,4,8,16,32,64,128这8个分频量5,根据时钟源A\B确定时钟源SA\SB;//由ClockA和ClockB、分频设值来确定ClockA和ClockB,满⾜1-255的分频量6,输出极性的选择;//也就是选择输出极性先低后⾼还是先⾼后低7,对齐⽅式的选择;//可设置为左对齐或者中间对齐⽅式8,实际通道频率的计算;//也就是周期的设定9,占空⽐寄存器的设置;//占空⽐常数的设定,可以以此决定占空⽐10,使能PWM模块。
//你已经⾸尾呼应了,有⽊有接下来通过寄存器的介绍,以上⾯流程为⼤纲,详细地说明⼀下该如何操作~~【PWME】寄存器PWME = (PWME~7 | PWME~6 | PWME~5 | PWME~4 | PWME~3 | PWME~2 | PWME~1 | PWME~0)将每⼀位设置为1即可使能该位,0对应的既是禁⽌。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
飞思卡尔16位单片机9S12XS128使用收藏最近做一个关于飞思卡尔16位单片机9S12XS128MAA的项目,以前未做过单片机,故做此项目颇有些感触。
现记录下这个艰辛历程。
以前一直是做软件方面的工作,很少接触硬件,感觉搞硬件的人很高深,现在接触了点硬件发现,与其说使用java,C#等语言写程序是搭积木,不如说搞硬件芯片搭接的更像是在搭积木(因为芯片是实实在在拿在手里的东西,而代码不是滴。
还有搞芯片内部电路的不在此列,这个我暂时还不熟悉)。
目前我们在做的这个模块,就是使用现有的很多芯片,然后根据其引脚定义,搭接出我们需要的功能PCB板,然后为其写程序。
废话不多说,进入正题。
单片机简介:9S12XS128MAA单片机是16位的单片机80个引脚,CPU是CPU12X,内部RAM 8KB,EEPROM:2KB,FLASH:128KB,外部晶振16M,通过内部PLL可得40M总线时钟。
9S12XS128MAA单片机拥有:CAN:1个,SCI:2个,SPI:1个,TIM:8个,PIT:4个,A/D:8个,PWM:8个下面介绍下我们项目用到的几个模块给出初始化代码1、时钟模块初始化单片机利用外部16M晶振,通过锁相环电路产生40M的总线时钟(9S12XS128系列标准为40M),初始化代码如下:view plaincopy to clipboardprint?/******************系统时钟初始化****************/void Init_System_Clock(){asm { // 这里采用汇编代码来产生40M的总线LDAB #3STAB REFDVLDAB #4STAB SYNRBRCLR CRGFLG,#$08,*//本句话含义为等待频率稳定然后执行下一条汇编语句,选择此频率作为总线频率BSET CLKSEL,#$80}}/******************系统时钟初始化****************/void Init_System_Clock(){asm { // 这里采用汇编代码来产生40M的总线LDAB #3STAB REFDVLDAB #4STAB SYNRBRCLR CRGFLG,#$08,*//本句话含义为等待频率稳定然后执行下一条汇编语句,选择此频率作为总线频率BSET CLKSEL,#$80}}上面的代码是汇编写的,这个因为汇编代码量比较少,所以用它写了,具体含义注释已经给出,主函数中调用此函数即可完成时钟初始化,总线时钟为40M.2、SCI模块初始化单片机电路做好了当然少不了和PC之间的通信,通信通过单片机串口SCI链接到PC 端的COM口上去。
下面进行SCI初始化view plaincopy to clipboardprint?/******************初始化系统SCI****************/void Init_System_SCI(){SCI0BD=260; //设置为9600bps SCIbaud_rate=PLLclock/(16*SCI0BD)SCI0CR1=0; //8位模式,无奇偶校验位SCI0CR2=0x2C; //发送允许,接受中断允许}/******************初始化系统SCI****************/void Init_System_SCI(){SCI0BD=260; //设置为9600bps SCIbaud_rate=PLLclock/(16*SCI0BD)SCI0CR1=0; //8位模式,无奇偶校验位SCI0CR2=0x2C; //发送允许,接受中断允许}初始化之后就可以利用SCI与PC之间的通信了,下面介绍如何与PC间通信首先用线将单片机与PC上的COM口链接起来,具体链接使用的线需要根据RS-232串口的线的定义链接然后PC端打开超级终端,使用9600bps,无奇偶校验,然后链接即可,注意COM口选择要正确。
单片机端的发送代码如下:view plaincopy to clipboardprint?void sci_write(unsigned char sendchar) {//SCI写函数while(!(SCI0SR1&0x80));//判断发送是否准备好SCI0DRH=0;SCI0DRL=sendchar;}void sci_write(unsigned char sendchar) {//SCI写函数while(!(SCI0SR1&0x80));//判断发送是否准备好SCI0DRH=0;SCI0DRL=sendchar;}单片机端的接收代码如下:view plaincopy to clipboardprint?unsigned char sci_read(){ //SCI读函数while(SCI0SR1_RDRF!=1);return SCI0DRL;}unsigned char sci_read(){ //SCI读函数while(SCI0SR1_RDRF!=1);return SCI0DRL;}注意了,上面的两个函数操作的都是一个字节,而不是字符串,它只能读一个字节,或者写一个字节下面写一个简单的println函数view plaincopy to clipboardprint?void println(unsigned char *str) { //输出字符串函数while(*str){sci_write(*str);str++;}//将str里内容发出去sci_write('\r\n');//加个控制字符,便于PC端程序识别和处理}void println(unsigned char *str) { //输出字符串函数while(*str){sci_write(*str);str++;}//将str里内容发出去sci_write('\r\n');//加个控制字符,便于PC端程序识别和处理}SCI初始化时候调用println函数将向PC端发送字符串3、PWM模块初始化PWM是脉冲调制,就是产生一定频率的方波,但是一个周期内的方波占空比是可调的,在我们的这个项目里PWM是用来控制舵机和电机的,下面介绍了PWM0,PWM1为两个独立的8为PWM用于控制电机,PWM2,PWM3级联为一个16位的PWM用于控制舵机转向。
PWM模块的初始化:view plaincopy to clipboardprint?/******************初始化系统PWM****************/void Init_System_PWM(){//所有PWM不可用PWME=0x00;//PWM23连级使用PWMCTL_CON23=1;//CLOCK A,CLOCK B,预分频,CLOCKA=40/1=40M,CLOCKB=40/1=40MPWMPRCLK=0x00;//对PWM0,PWM1,PWM23计数器清零PWMCNT0=PWMCNT1 = 0;PWMCNT23=0;//SA=40M/(2*10)=2MHZPWMSCLA=10;//SB=40M/(2*20)=1M;PWMSCLB=20;//选择SA为PWM0的频率PWMCLK_PCLK0=1;// 选择SA为PWM1的频率PWMCLK_PCLK1=1;//选择SB做时钟做PWM23频率PWMCLK_PCLK3=1;//极性设置,先输出高电平,计数到DTY时,反转电平PWMPOL_PPOL0=PWMPOL_PPOL1=1;PWMPOL_PPOL3=1;//左对齐PWMCAE_CAE0=PWMCAE_CAE1=PWMCAE_CAE3=0;//设置PWM23的频率为1M/20K=50HZPWMPER23=20000;PWMDTY23=10000;//占空比为50%//PWMPER0=PWMPER1=2M/100=20KHZPWMPER1=100;PWMDTY1=50;PWMPER0=100;PWMDTY0=50;PWME_PWME3=PWME_PWME0=PWME_PWME1=1;//使能PWM3}/******************初始化系统PWM****************/void Init_System_PWM(){//所有PWM不可用PWME=0x00;//PWM23连级使用PWMCTL_CON23=1;//CLOCK A,CLOCK B,预分频,CLOCKA=40/1=40M,CLOCKB=40/1=40M PWMPRCLK=0x00;//对PWM0,PWM1,PWM23计数器清零PWMCNT0=PWMCNT1 = 0;PWMCNT23=0;//SA=40M/(2*10)=2MHZPWMSCLA=10;//SB=40M/(2*20)=1M;PWMSCLB=20;//选择SA为PWM0的频率PWMCLK_PCLK0=1;// 选择SA为PWM1的频率PWMCLK_PCLK1=1;//选择SB做时钟做PWM23频率PWMCLK_PCLK3=1;//极性设置,先输出高电平,计数到DTY时,反转电平PWMPOL_PPOL0=PWMPOL_PPOL1=1;PWMPOL_PPOL3=1;//左对齐PWMCAE_CAE0=PWMCAE_CAE1=PWMCAE_CAE3=0;//设置PWM23的频率为1M/20K=50HZPWMPER23=20000;PWMDTY23=10000;//占空比为50%//PWMPER0=PWMPER1=2M/100=20KHZPWMPER1=100;PWMDTY1=50;PWMPER0=100;PWMDTY0=50;PWME_PWME3=PWME_PWME0=PWME_PWME1=1;//使能PWM3}初始化后的PWM0,PWM1频率为20K,占空比为50%,PWM23频率为50HZ,占空比为50%此时可以通过程序调整PWMDTY23,PWMDTY0,PWMDTY1来改变PWM的占空比,从而实现控制的目的4、初始化系统PIT用于产生定时中断PIT是Periodic Interrupt Timer的缩写,是定时时钟中断,比如我想每隔0.1S做一件事,那么就可以使用它来定时,XS128MAA中有4个定时器定时器的初始化代码:view plaincopy to clipboardprint?//初始化系统PIT模块,PIT0产生时钟中断void init_PIT(){//关闭PIT功能PITCFLMT=0;//打开PIT0,即PIT0 开始工作PITCE_PCE0=1;//PIT0使用微计数器0,这句话可以不写,因为默认初始化的时候就0 PITMUX_PMUX0=0;//设置微计数器0的值PITMTLD0=199;//设置通道0计数器的值PITLD0=1999;//经过上面的计算得出产生中断时间为//((199+1)*(1999+1)/40000000)=0.01s//打开通道0的中断PITINTE_PINTE0=1;//PIT使能PITCFLMT_PITE=1;}//初始化系统PIT模块,PIT0产生时钟中断void init_PIT(){//关闭PIT功能PITCFLMT=0;//打开PIT0,即PIT0 开始工作PITCE_PCE0=1;//PIT0使用微计数器0,这句话可以不写,因为默认初始化的时候就0 PITMUX_PMUX0=0;//设置微计数器0的值PITMTLD0=199;//设置通道0计数器的值PITLD0=1999;//经过上面的计算得出产生中断时间为//((199+1)*(1999+1)/40000000)=0.01s//打开通道0的中断PITINTE_PINTE0=1;//PIT使能PITCFLMT_PITE=1;}进过上面的代码初始化,系统将会每隔0.01s产生一次中断5、Timer模块初始化Timer模块可用于脉冲输入捕捉,和输出比较。