碎纸片拼接复原的数学方法
碎纸片拼接复原的数学模型_杨武
121数学学习与研究2014.11碎纸片拼接复原的数学模型◎杨武李博(江苏南京农业大学工学院210000)【摘要】本文对碎片的拼接复原问题,建立了碎纸片拼接模型,编写matlab 程序,利用人机交互指令实现碎片的快速拼接.对2013年“高教社杯”全国大学生数学建模竞赛的B 题中所给11x 19个碎片文件进行拼接.【关键词】碎片拼接模型;matlab ;灰度值矩阵;Kmeans 聚类;人机交互一、研究背景及意义近年来,大量政府机关、企事业单位采用碎纸机对废弃文件或失效的机密文件进行破碎,这种破碎方法产生的碎片多为规则的.这使得在进行破碎文件的复原拼接时,只能根据文字内容进行匹配,为此,本文考虑应用当前的计算机识别技术开发碎纸片的自动拼接技术,对所有碎片搜索和筛选,寻找能够在某种指标上匹配的碎片进行拼接.提高拼接复原效率,从而大大降低人工工作量和难度.对碎片自动拼接问题的研究,不仅具有广阔的应用前景,而且具有很强的理论意义.二、图像碎片预处理首先,利用matlab 图像处理功能对碎纸片进行图像预处理.即将碎纸片数字化,转化为图片文件的数据.即一个二维数组构成的灰度值矩阵,这个矩阵存储着一张碎纸片各个像素点的颜色值,其中255表示白色,0表示黑色,图片中颜色均处在黑白、或黑白之间,图片数字化后的数字范围在0 255之间.三、碎纸片拼接模型的假设1.假设碎片原文件都存在上、下、左、右的页边距,且边距大于行间距和列间距;2.假设相邻碎片间纸张信息的损失可以忽略不计;3.假设碎纸机是沿平行或垂直于文字的方向对纸张进行切割的.四、碎纸拼接模型的建立1.挑出每行最左边的图片:根据图片的边缘留有空白部分的特性,挑选出图片最左边存在空白部分的图片作为左边界的候选图片.方法实现:计算图片左边距留白宽度:即可用灰度值矩阵中左端竖列上全为255(即左侧完全空白)的连续列数度量,由matlab 检测出每张图片的留白宽度.留白宽度排序:对上面得到的留白宽度进行排列,取排在前面的11张图片作为拼接过程的起始碎片.2.图片按行分类:根据Kmeans 聚类算法,对碎片进行按行分类.分类实现:①先根据底端一行是否为纯空白将209幅图分为下端有纯空白行和下端有被截文字两类.②对于空白行一类,下端空白行数相同或相近的纸条属于原文件同一行;③对于下端有被截文字的一类,下端被截文字高度相同或相近的纸条属于原文件同一行.④分析确定好的最左端图片的特征,依此为11个聚类中心,利用matlab 程序分类.3.对同行碎片进行拼接①拼配原则———突变数将所有的碎片进行处理后得到灰度值矩阵,分别记作M i (i =1,…,n )(n 为图片的数量)通过对每一张碎片的数据进行了分析,不难发现在每一张碎片上,同一行相邻两个点的像素值从0变为255或者从255变到0的比例仅有0.016%左右.将相邻两个像素值由0变到255或者由255变到0定义为一次突变.定义两张碎片的突变数如下:设Ri 为某张碎片M i 的最右侧一列像素值,L j 为另一张碎片M j 的最左侧一列像素值(Ri 和L j 均为180行的列向量),碎片M i 和M j 的突变数:T ij =∑180k =1flag (k )ij ,flag (k )ij =1R(k )i -L (k )j =2550R(k )i -L (k )j <{255,其中R(k )i 表示向量Ri 的第k 个分量,L (k )j 表示向量L j 的第k 个分量.②匹配过程以上面确定的最左边的碎片为起点,计算该碎片所在行的可能的碎片与其的突变数T.理论上T 值越小,两个图片的匹配的可能性最大,将T 进行由小到大的排序,在matlab 程序中让起始碎片优先与T 值最小的匹配,若匹配不成功再依次考虑T 值较大的,直至匹配成功.4.人工干预①人工干预时机:本文对209个已有碎片,分析发现若其余碎片与其的突变数仅有一个为0,则突变数为零的那个碎片一定与该碎片相匹配,一旦出现突变数均不为0,则需进行人工干预.②人工干预方法:为减少人工干预次数,做如下工作:1)计算碎片M i 灰度值矩阵最右一列Ri 与位于M i 行的其余碎片灰度值矩阵最左一列L j 的偏差平方和S 作为人工干预的指标:S =∑180i =1(Ri-L i )2.2)对偏差平方和S 由大到小进行排序,将碎片的序号放入集合US 中,S 大的最有可能与碎片M i 相匹配③在matlab 程序中让碎片M i 依次与集合US 中的图片进行匹配,每次对两个图进行匹配时,令命令窗口弹出这两个图匹配在一起的图片,进行人工观察.通过对拼接处文字字形和语义的分析,人工检查该匹配是否合理.5.纵向拼接①观察11条已拼好的横切纸条,根据所有纸条的上边缘特征确定位于原文件顶端的横切纸条,并以该纸条为起始纸条.②根据起始纸条的下边缘灰度值特征,利用上述步奏拼出整张文件.五、模型的评价与改进1.模型的优点:模型采用突变数和偏差平方和作为评价函数评定碎片间邻边的相关度,高效而且实用.能大大减少人工干预的次数.2.模型的局限性:由于研究的是碎纸机产生的碎片.该模型只考虑了对多个相同的形状规则的碎片进行拼接,且当碎片的数量增加且单个碎片的文字覆盖率越小时,更易产生灰度分布情况相似的碎片,需要进行人工干预的次数会相应增多.六、结论本文对碎纸片的匹配原则和人工干预进行了探讨和研究,建立了一个可靠高效的数学模型,利用图片数字化后数值之间的分布规律和相关度引入突变值和偏差平方和作为评价指标,利用matlab 软件实现快速拼接.并为了提高拼接准确性,巧妙地使用人机交互指令进行人工的检测干预.【参考文献】[1]何鹏飞,等.基于蚁群优化算法的碎纸拼接.计算机工程与科学,2011,33(7).[2]邓薇.MATLAB 函数速查手册.北京:人民邮电出版社,2010.[3]宋晓闯.基于灰度和几何特征的图像匹配算法研究.万方数据库,2013-09-13.。
碎纸片的拼接还原研究
碎纸片的拼接复原摘要碎纸片的拼接复原是一门借助计算机,把大量碎纸片重新拼接成初始纸张的技术。
针对问题一,本文首先利用碎纸片图像灰度矩阵的边缘矩阵,建立了两个碎纸片之间的匹配度函数,求得了每一张图片之间左右边缘匹配度矩阵。
然后根据左边边缘位置的碎片的左边空白部分最多的特点,确定了左边位置的碎纸片。
接着根据拼接碎纸片的拼接复原时,所有碎纸片匹配度之和取极大值的原则,采用贪心算法,得到了所有碎纸片的初始位置,拼接复原了附件1和附件2中纸片。
针对问题二,由于附件3碎片数量太多,并且碎片的拼接复原,是一个以碎纸片总匹配度为目标函数的组合优化问题。
所以本文采用遗传算法将碎纸片的编号作为基因,并将基因均匀分成19段,按顺序每一段对应一个初始纸片列位置,进行了求解。
然后,根据边缘碎纸片某些边的空白部分多的特征,对初始基因进行了优化。
接着,根据碎纸片的黑色像素密度不同的特点,将碎纸片分成三类,根据同类纸片优先匹配的原则,对遗传算法的运行过程进行了优化,拼接复原了附件3和附件4中纸片。
针对问题三,随着碎纸片量的增多,计算量急剧增加。
在上述拼接复原碎纸片的基础上,又引进了同行位置碎纸片的上部(或下部)空白位置宽度相近的聚类思想。
先对每个类内部拼接,在合并所有类并做一次整体拼接。
由于时间有限,我们未能完成最后一次的整体的拼接,但我们会在比赛后继续探究。
关键词:边缘矩阵匹配度函数遗传算法聚类一、问题重述碎片拼接实际用途已经越来越广泛,传统上拼接复原工作由人工完成,碎片拼接的准确率较高,但效率很低。
并且当碎片数量很大时,人工短时间内拼接出来几乎是不可能的。
所以开发碎纸的拼接技术,以提高拼接复原效率已成为越来越多人的期望。
现在,在碎纸片是规则的情况下,题目要求我们在以下条件建立碎纸片拼接复原模型和算法。
1.来自同一页印刷文字文件(中文、英文各一页)的碎纸机破碎纸片(仅纵切)拼接复原,并将附件1和附件2复原。
2.对碎纸机既纵切又横切文件的情形,将碎纸片拼接完整。
碎纸片拼接复原
m0 :0-0配对的个数 m1 :1-1配对的个数
m2 :不配对的个数
问题1:仅有纵切的情形
建模思想一 相邻碎片的灰度比较接近
假设从左往右进行拼接,最左侧碎片的序号为 k1
ki1
arg
min jIi
dki
j,
i 1, 2,
,n1
Ii {1, 2, , n} \ {k1, k2, , ki },
3. 所有碎片尺寸大小相等,边缘轮廓为规则的矩形。 4. 假设文字从左往右、从上往下书写的。
5. 所有碎片均已摆放端正,即碎片中的文字端正。
建模准备:数据的读取与处理
A= imread (filename) 读取文件名为filename的 图像文件到矩阵A BW= im2bw (A) 读将图像A转换成二值图像BW
2. 若i=n, 则停止, 输出拼接复原图序号index; 否则 计算第j( j I)个碎片最左侧列与第 ki 个碎片最右 侧列之间的距离,记距离最小的碎片的编号为 ki1
3. 置 index = index ki1, I I \ {ki1}, i i 1 ,转2
缺点 1.局部寻优方法,计算复杂度高;2.不易推 广到问题2和问题3中
2013年B题:碎纸片的拼接复原
【数据文件说明】 每一附件为同一页纸的碎片数据。 附件1、附件2为纵切碎片数据,每页纸被切为
19条碎片。 附件3、附件4为纵横切碎片数据,每页纸被切
为11×19个碎片。 附件5为纵横切碎片数据,每页纸被切为
11×19个碎片,每个碎片有正反两面。该 附件中每一碎片对应两个文件,共有 2×11×19个文件,例如,第一个碎片的 两面分别对应文件000a、000b。
2013年B题:碎纸片的拼接复原
基于规则碎纸片文字特征的拼接复原算法
基于规则碎纸片文字特征的拼接复原算法承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): B我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):中国人民解放军第三军医大学参赛队员(打印并签名) :1. 王家*2. 黄嘉*3. 邵*指导教师或指导教师组负责人(打印并签名):周*(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):基于规则碎纸片文字特征的拼接复原算法摘要目前对于碎纸片的拼接问题,大多数方法是基于不规则碎纸片的几何边缘特征进行拼接,而本题是基于规则碎纸片的文字特征进行的。
我们首先提取各碎纸片的像素边缘特征,然后通过寻找最大匹配率和少量人工干预,得到碎片拼接方案。
碎纸片复原
关于碎纸片的自动拼接复原的数学模型问题摘要本文根据碎纸片内的文字特征、图片像素特征特点提出了基于文字特征的文档碎纸片自动拼接复原模型。
根据碎纸拼接模型提出了基于MATLAB[1]语言为核心的自动拼接算法,并用该算法的程序对碎纸机碎纸的实际例子进行了拼接实验。
对这类边缘相似的碎纸片的拼接,理想的计算机拼接过程应与人工拼接过程类似,即拼接时不但要考虑待拼接碎纸片边缘是否匹配,还要判断碎片内的字迹断线或碎片内的文字内容是否匹配。
然而由于理论和技术的限制,让计算机具备类似人类那种识别碎片边缘的字迹断线、以及理解碎片内文字图像含义的智能几乎不太可能。
但是利用现有的计算机技术,完全可以获取碎片文字所在行的几何特征信息,比如文字行的行高、文字行的间距等信息。
拼接碎片时如利用这些信息进行拼接,其拼接效率无疑比单纯手工拼接要高。
针对问题一,由于碎纸片数量比较少且只有纵向切割,采用比较简单的二值模型进行碎纸配对。
由于图像都具有三颜色RGB,扫描之后的碎纸片需要对其进行灰度处理得到一张灰度值图像,若定义原点之后,每一个像素点都具有X、Y坐标值,碎纸片的灰度值可构成一个二维矩阵。
二维矩阵的每一个元素都代表着碎纸片的特征值,根据图片每一个灰度值的大小即可判断出碎纸图片边界特性。
对于一个选定的纸片,将每一个待拼接碎纸片的二维矩阵的最左一列与其二维矩阵的最右一列进行差值比较,再求把所有的差值求和,生成一个相应的矩阵。
将该矩阵的最小值来作为相似度矩阵的判断条件,以此便可求出该图片是否能够成功拼接。
最后利用加权平均的融合方法进行图像无缝平滑,得到无缝拼接[2]图像。
针对问题二:根据附件3和附件4给出的碎片资料可以看出,碎片除了有纵向切割之外还有横向切割,这给单一的拼接算法带来了一定的困难。
本文根据图片的质量与清晰度可以将问题简化,将附录所给出的碎纸片用简单的算法进行分组归类,使得拼接问题变得单一化,先使用第一问的模型进行纵向拼接成11行之后,再以第一问的模型进行横向拼接。
碎纸片的拼接复原
碎纸片的拼接复原摘要本文研究了碎纸片的复原问题。
对已有的碎纸片,我们利用Matlab求碎纸片边各侧边线的灰度值,通过最小偏差平方和法进行碎纸片间的相互匹配,中间加入人工干预进行筛选,将附件中的碎纸片全部还原。
之后,我们将该方法进行推广,可用以处理更复杂形状碎图片的的还原问题。
对问题一:首先假定附件一所给仅纵切的碎纸片的行文方向与各碎纸片两侧边线垂直,在此基础上先人工干预,根据碎纸片的剪切规范,甄选出原始图片的第一张和最后一张碎纸片,编号分别为008和006。
其次通过Matlab求出图片边线处各小网格点的灰度值,采用最小偏差平方和法,对编号008碎片右边线处的灰度值和其它碎纸片的左边线处的灰度值进行对应网格点的数值匹配,找到最匹配的碎纸片。
附件二碎片的处理进行了类似处理,给出的复原图片见附表4。
对问题二:附件三文本既纵切又横切,同样我们假设所给附件三中碎纸片的行文方向与碎纸片的上下左右边线分别平行或垂直。
在问题一的算法基础上,通过Matlab求出各碎纸片的4条边线的边界灰度值,然后利用最小偏差平方和法,对上下左右四边进行灰度值匹配,当结果多个时,我们进行了人工干预。
附件四依照附件三的方法类似处理,最终的复原见附表7和附表9。
对问题三:附件五中的图片既纵切又横切而且是正反面。
我们参照问题一、二的处理方法,加入反面的灰度值测算,随机选择一张碎纸片与其他碎纸片进行遍历匹配,得出4张匹配的碎纸片后,以这4张碎纸片为下一起点,扩张匹配,最终给出的复原图见附表12。
为适应更一般的情形,我们在模型改进部分,给出了当碎纸片的文字行文方向与碎纸片两侧边线不垂直时的处理方法(只处理了边线为直线的情形)。
首先是通过测算出的碎纸片灰度值确定出碎纸片的边缘线,其次定出碎纸片边缘线附近网格点的灰度值,最后完成边线的的匹配。
关键词:人工干预灰度矩阵灰度值最小偏差平方和法一问题重述1.1问题背景纸片文字是人们获取和交换信息的主要媒介,尤其是在计算机技术飞速发展、数码产品日益普及的今天。
基于欧氏距离的规则碎纸片拼接复原模型
其中, D 中第 i 行第 J 列元素表示第 i 号二值
矩 阵 所属 的碎 片 的左 边缘 和第 J 号 二值 矩 阵所 属 的
d 一 0 =
, j 等于 1 或2
( 5 )
d 一 =
, j 等于 1 或2
( 4 )
氏距 离 ( i , l = 0 , 1 , 2 , …, n ) 。
其中, d u - U 表示列向 量磊 与列向量 之间的欧
3 - 3 分割横 向复原图片并纵 向拼接
根据 已知每横行碎片个数 ,分割碎片横向拼接
图片,仅取各个横 向复原拼接图片的第一个碎片二 值矩阵的第一行与最后一行 , 组成矩阵 s ’ , 转置得到
矩阵 s i T计算 中各 列 向量 间的欧 氏距 离 。 记第 i 幅分 割后 的横 向拼 接 图片 中第 一 个碎 片
一
列之间的排列顺序 , 继而得到碎片的复原顺序。 由于 些碎片的边缘全为白色, 无法确定其位置 , 此时需
虑将碎纸片横向复原 , 得到横向呈带状的拼接图片 ; 然后根据附件 5的每横行碎片个数 , 分割横 向拼接 图片并进行纵 向复原 , 最后对无法判定 的碎片进行
人工 干 预 。
要 人 工干 预 。
运用 Ma t l a b 软件 , 得到附件 5 所有碎片数据的
二值 矩 阵 。
记碎片的正面的二值矩 阵为第 1 号至第 n 号, 碎片的反面的二值矩阵为第 n + l 号至 n + 2号 , 将所 有读人碎片的二值矩阵的第一列和最后一列取 出, 组成矩阵 s , 计算 s中各列 向量间的欧氏距离。 记第 i 号二值矩阵的第一列为 , 最后一列为
碎纸片还原问题求解
185 2 0 5 204 0 0 4
186 0 8 5 205 1 0 1
187 1 5 2 206 1 1 3
188 1 6 5 207 1 9 4
189 0 2 7 208 1 1 9
190 0 6 0 209 1 2 3
编号
…
顺序
…
编号
…
问题三的求解: 用求绝对差的算法匹配点对,后期运用欧式距离进行 检验匹配度. 步骤一 运用Matlab程序对418个碎片图像进行像素矩阵转换 计算,得到418个180 *72的矩阵,提取所得每个像素矩阵 的第一列像素矩阵和最后一列像素矩阵,即均为 180*1的 像素矩阵. 步骤二 对得到418个第一列像素矩阵和最后一列像素矩阵分 别进行列求和,然后分别存放在矩阵D和Dt中,接下来用 Dt的每一项依次减去D的每一项之后并求绝对值,得到一 个矩阵M.
0 1 0
0 0 2
0 1 6
0 0 1
0 0 4
0 0 5
0 0 9
0 1 3
0 1 8
0 1 6
0 0 1
0 0 4
0 0 5
0 0 9
同理得到附件2的拼接复原文件,拼接顺序如下表所示:
表4 附件2文件的复原拼接结果
顺序
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
编号
0 0 3
符号说明
Dn ————相对应的像素绝对差值
Sn (i, j ) ——像素矩阵的像素值
aij
————第i个碎片最后一列与第j个碎片第一列的图像矩阵值
一种碎纸片自动拼接复原算法
一种碎纸片自动拼接复原算法借助向量夹角模型,分析碎纸片间边界向量的关系,并在适当的人工干预下,提出一种碎片自动拼接复原算法。
仿真实例显示,该算法具有实现规则碎片自动拼接复原功能。
标签:向量夹角人工干预碎纸片拼接复原像素值碎纸片的拼接复原在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。
一般地,碎片拼接复原工作由人工完成,准确率较高,但效率低且工作量大。
特别是当碎片数量较多时,人工拼接很难在短时间内完成任务。
随着计算机技术的发展,人们试图开发碎纸片的自动拼接技术,以提高拼接复原效率。
本文针对来自同一文件且形状大小相同的碎纸片(碎纸机破碎的纸片,形状大小相同。
且破碎文件的方式有两种:第一种是纵切;第二种是既纵切又横切),借助向量夹角模型,分析了碎纸片间边界像素值的关系,并提出一种碎片自动拼接复原算法,在Matlab平台下结合人工干预,实现了碎纸片的自动拼接。
三、仿真实例本文数据来源于中国数学建模网《2013年高教社全国大学生数学建模竞赛》B题附件。
附件1和附件2中碎片的破碎方式为纵切,故可由算法设计①中的步骤实现碎片的自动拼接复原。
表3-1-1列出了19张碎片间的最佳匹配度。
从表3-1-1中可以看出,碎片7与碎片9的匹配度为1,即碎片7的右边界向量和碎片9的左边界向量完全相等,但是算法设计①中第一步得到排序第一的碎片为碎片9,排序倒数第一的碎片为碎片7,因而得到附件1碎片的拼接顺序为:9→15→13→16→4→11→3→17→2→5→6→10→14→19→12→8→18→1→7即附件1中图片名称顺序为:008→014→012→015→003→010→002→016→001→004→005→009→013→018→011→007→017→000→006附件2类似附件1的方法,可按算法设计①能实现碎片的拼接复原附件。
附件3、附件4和附件5中碎片较多,所以相关数据也较多,按算法设计②能实现碎片的拼接复原,这里不再重述了。
碎纸片的拼接复原数学模型的构建
碎纸片的拼接复原数学模型的构建摘要院本文讨论在碎纸机以不同方式破碎纸片的情况下建立碎纸片的拼接复原模型,以解决碎片数量巨大时人工拼接的难题,本文建立了三个具有针对性的模型。
模型一:方差分析法下的碎纸片拼接模型。
在以纵切方式破碎纸片的情况下,提取碎纸片左右边缘的灰度列向量,利用碎纸片边缘处为单边同宽空白区域的特殊性对碎纸片进行定位,再利用方差分析法和欧式距离解决了纵切碎纸片的拼接复原问题。
模型二:文字行间距一致性的碎纸片拼接模型。
以纵横方式破碎纸片,利用同行文字行间距一致性的主要特性可解决横向碎纸片的拼接复原问题,简化了模型,将离散的像素灰度矩阵平均化处理,进而利用欧氏距离对碎纸片进行匹配,得到了碎纸片复原后的完整图片。
模型三:二值化Otsu 算法的碎纸片拼接复原模型。
本文从双面纵横破碎纸片的问题出发,建立了纸片二值化Otsu 法拼接模型,先对碎纸片分组预处理,为将复杂模型简单化,再利用全局阈值方法中典型的Otsu 法求取碎纸片的最佳阈值,以该阈值对碎纸片中所含灰度值信息进行划分实现二值化处理,将边缘区域明显化,利用统计学方法求取拼接后的纸片间成功匹配的像素点占纸片边缘的概率,最终双面纵横破碎纸片的拼接复原问题得以解决。
Abstract: This paper discusses the construction of splicing scrap recovery model under the condition of shredder breaking paper intopieces in different ways, so as to solve the problem of artificial splicing when there is a great amount of pieces. This paper establishes threecorresponding model.Model One: Paper Scrap Splicing Model under Analysis of Variance.Shredding paper through longitudinal mode, the paper selects the gray scraps of paper around the edge extraction column vector,locates the paper scrap by using edge of paper scraps as blank area with same width, then solves the problem of reconstruction of thelongitudinal cutting paper splicing through analysis of variance method and Euclid Distance.Model Two: Paper Scrap Splicing Model with Consistency of Text Line Spacing.Shredding paper through vertical and horizontal mode, its main characteristics of peer text line spacing consistency can solve theproblem of reconstruction of splicing transverse paper scraps, simplifies the model, processes the pixel matrix of discrete in average andmatches the paper scraps through Euclid Distance and then gets the complete picture of paper scrap afterrecovery.Model Three: Paper Scrap Splicing Model Based on Binaryzation Otsu Algorithm.This paper firstly expounds the double side's vertical and horizontal mode, establishes the paper scrap splicing model based onbinaryzation Otsu algorithm. The paper firstly does preconditioning for paper scraps into groups, simplifies the complex model, and then getsthe optimal threshold of the paper scraps by using typical Otsu algorithm of global threshold method. The paper classifies the gray valueinformationof paper scraps through this threshold to realize binaryzation processing, specifies the edge area, evaluates the probability ofsuccessful matching pixels on edge of splicing paper, and finally solves the mosaic and restoration problems of double side's vertical andhorizontal mode.关键词院离散;方差分析;置信区间;阈值;Otsu 算法Key words: discrete;analysis of variance;confidence interval;threshold;Otsu algorithm中图分类号院TQ018 文献标识码院A 文章编号院1006-4311(2014)25-0238-031模型一考虑以为空间拼接情况,为了获取拼接图像所必须的数据,文章以像素为单位离散所得碎片:利用VC++使用了Windows.H 头文件并调用RGB 等结构定义获得不同像素点的g 值[1],生成了多个灰度矩阵。
碎纸片的拼接还原研究
碎纸片的拼接复原摘要碎纸片的拼接复原是一门借助计算机,把大量碎纸片重新拼接成初始纸张的技术。
针对问题一,本文首先利用碎纸片图像灰度矩阵的边缘矩阵,建立了两个碎纸片之间的匹配度函数,求得了每一张图片之间左右边缘匹配度矩阵。
然后根据左边边缘位置的碎片的左边空白部分最多的特点,确定了左边位置的碎纸片。
接着根据拼接碎纸片的拼接复原时,所有碎纸片匹配度之和取极大值的原则,采用贪心算法,得到了所有碎纸片的初始位置,拼接复原了附件1和附件2中纸片。
针对问题二,由于附件3碎片数量太多,并且碎片的拼接复原,是一个以碎纸片总匹配度为目标函数的组合优化问题。
所以本文采用遗传算法将碎纸片的编号作为基因,并将基因均匀分成19段,按顺序每一段对应一个初始纸片列位置,进行了求解。
然后,根据边缘碎纸片某些边的空白部分多的特征,对初始基因进行了优化。
接着,根据碎纸片的黑色像素密度不同的特点,将碎纸片分成三类,根据同类纸片优先匹配的原则,对遗传算法的运行过程进行了优化,拼接复原了附件3和附件4中纸片。
针对问题三,随着碎纸片量的增多,计算量急剧增加。
在上述拼接复原碎纸片的基础上,又引进了同行位置碎纸片的上部(或下部)空白位置宽度相近的聚类思想。
先对每个类内部拼接,在合并所有类并做一次整体拼接。
由于时间有限,我们未能完成最后一次的整体的拼接,但我们会在比赛后继续探究。
关键词:边缘矩阵匹配度函数遗传算法聚类一、问题重述碎片拼接实际用途已经越来越广泛,传统上拼接复原工作由人工完成,碎片拼接的准确率较高,但效率很低。
并且当碎片数量很大时,人工短时间内拼接出来几乎是不可能的。
所以开发碎纸的拼接技术,以提高拼接复原效率已成为越来越多人的期望。
现在,在碎纸片是规则的情况下,题目要求我们在以下条件建立碎纸片拼接复原模型和算法。
1.来自同一页印刷文字文件(中文、英文各一页)的碎纸机破碎纸片(仅纵切)拼接复原,并将附件1和附件2复原。
2.对碎纸机既纵切又横切文件的情形,将碎纸片拼接完整。
碎纸片拼接问题(2013B)
方法2:聚类算法:主要方法,效果好。
• 计算 Ai 的行和,得到一个特征向量 ri 。定义适当的 向量相似度指标,对 ri 进行相似度计算,然后对所有 碎片进行聚类,得到分行结果。
几种相似度度量指标:
1 欧式距离倒数: d ij || ri r j ||
夹角余弦: cos ij || r || || r || i j 相关系数: ij
规划方法:将每一行的碎片依次编号为 1, 2, , N . 定义两碎片之间的有向距离为 cij 。
令 xi ,k 1, 第 i 块碎片在第 k 个位置上 否则 0,
ห้องสมุดไป่ตู้
min z
N 1 N
c
k 1 i 1 j 1 , j i
N
ij
x i ,k x j ,k 1
c
MN
k ,l
x i , j , k x i , j 1 ,l
M 1 N MN
i 1 j 1 k 1 l 1 , l k
d
MN
k ,l
x i , j ,k x i 1 , j ,l
约束条件: (1)每个碎片只能放在一个位置上。
x
i 1 j 1
(1)整体的文字拼接正确度;
不易衡量。
(2)纸片两两之间的拼接正确度。
•如何计算纸片两两之间的拼接正确度? 分析:假设纸片 i 和 j 拼接在一起,i 左 j 右,则 应该可以计算出一个相关的正确度指标。 怎么计算?
• 利用什么信息计算? 利用Matlab 软件读取碎片,生成相对应的灰度值 数字矩阵 Ai 。
如何确定碎纸片的位置?
方法一:一次性确定所有碎纸片的位置。 方法二:分组确定碎纸片的位置。 方法三:逐一确定碎纸片的位置。
数学建模中的碎纸片拼接复原要点研究
数学建模中的碎纸片拼接复原要点研究嘿,你是不是也碰到过这样的一种场景?某天,不小心把文件弄坏了,纸张四分五裂,散落一地。
可能是你不小心掉了咖啡,可能是好奇心作祟,忍不住撕了某个文件,结果纸片就像乱七八糟的拼图一样,飞到天上,摔在地上,结果呢?你站在碎片堆里一脸懵逼,心里想着,“这怎么办?”你可以想象那种绝望的感觉,不是么?碎纸片拼接复原这事儿,虽然听起来有点疯狂,但它不仅仅是纸张的恢复,更是一种深层次的“重生”之道,充满了无限可能,简直就像是面对一堆零散的拼图,我们总能找到适合的解决方案。
看着那些纸片,你可能会想:“这就算了吧,反正都是碎片,哪里能拼得起来?”可是,事实是,解决这些碎片的方法其实有很多,数学建模的意义不就是什么?找到正确的方法和思路,让这些破碎的片段重新组合成一个完整的整体。
是不是有点像拼乐高?看似没有头绪,但只要找对了顺序,最后一切都能完美呈现。
你看,数学建模就有点这个意思。
对,那些碎片,它们可能是无序的,是乱糟糟的,可是只要你有了对的思路、方法,一切都能恢复如初,甚至超乎你想象的完美。
要说碎纸片的拼接复原,首先就得搞清楚什么是数学建模。
你得想象它不是一个万能的机器,它是一个思维工具,它能帮你捋清楚思路,找到其中的规律。
就像拼图游戏,你眼前散落的纸片就像是一个个信息块,散得毫无规律,似乎你根本无法看到整个画面。
但如果你能从碎片中抓住一些关键的联系,就能一步步找出这些碎片的拼接顺序。
所以,复原碎纸片的过程其实是一个“解谜”过程。
这其中不仅仅是纸张本身的重组,更是一个对空间、时间甚至是规则的深刻理解。
说白了,数学建模就像是给了我们一套“万能钥匙”,用它打开看似混乱的局面,找到通往完整答案的道路。
像拼图一样,首先得弄清楚每块拼图的形状,哪个角落是直的,哪个边缘是圆的,哪些部分应该放在一起。
这里面有很多学问,一旦你把规律摸清了,整个过程就像开挂一样,轻松自如。
可能会有人觉得:“哎呀,这个太复杂了吧,怎么能从一堆碎片中找到规律呢?”其实啊,碎纸片复原的关键就在于“分析”和“推理”。
碎纸片拼接复原解题思路
碎纸片拼接复原解题思路一、背景介绍碎纸片拼接复原是一项需要巧妙操作和观察力的游戏。
在这个游戏中,玩家需要拼接一些碎纸片,使其还原成完整的图案。
这个任务名称为“碎纸片拼接复原解题思路”。
二、游戏规则碎纸片拼接复原的游戏规则一般如下: 1. 给定一些碎纸片,每个碎纸片上都有一部分图案。
2. 碎纸片上的图案可能是图片、文字、颜色等。
3. 玩家需要根据碎纸片上的图案,将其拼接在一起还原成一个完整的图案。
4. 拼接时,碎纸片之间必须符合一定的拼接规则,比如图案的延续、颜色的衔接等。
三、解题思路要解决碎纸片拼接复原的问题,可以采取以下的思路: ### 1. 观察碎纸片首先,我们需要仔细观察每一个碎纸片,分析其图案、颜色以及可能的拼接方式。
这可以帮助我们理解整个图案的构成和拼接规则。
2. 找出连接点接下来,我们需要找出能够将两个碎纸片连接在一起的连接点。
连接点可能是某个图案的延续,或者是两个图案相衔接的部分。
通过找出连接点,我们可以确定碎纸片之间的拼接方式。
3. 确定连接顺序在找到连接点后,我们需要确定碎纸片的连接顺序。
这可以通过观察碎纸片上的图案延续和颜色衔接来判断。
我们可以先找到一个碎纸片,然后找到与之相连的碎纸片,并将其拼接在一起。
然后,再找到与已经拼接好的碎纸片相连的碎纸片,逐步拼接完成整个图案。
4. 拼接碎片根据确定的拼接顺序,我们可以开始拼接碎纸片了。
将每个连接点对齐,确保拼接的效果与原图案尽可能接近。
可以使用胶水或其他粘合剂来固定碎纸片,以确保它们不会松动。
四、技巧和注意事项在解决碎纸片拼接复原问题时,还需要注意以下几个技巧和注意事项: 1. 仔细观察:细心观察碎纸片上的图案和连接点,可以帮助我们找到正确的拼接方式。
2. 缓存碎片:将已经拼接好的碎纸片暂时存放在一边,以便于找到下一个相连的碎纸片。
3. 小步拼接:将拼接过程分成小步骤,逐步完成拼接,可以降低出错的概率。
4. 调整拼接角度:如果遇到无法拼接的情况,可以尝试旋转碎纸片,调整拼接角度,找到合适的连接点。
碎纸片拼接数学模型
碎纸片的拼接复原问题模型摘要本文研究的是碎纸片的拼接复原问题。
针对碎纸不同的裁剪特点,我们运用相关性系数法、聚类分析法等建立不同的模型来解决不同裁剪特点和不同纸张的复原问题。
针对问题一,我们利用图像数字化技术,借助MATLAB软件将题目中附件1,2所给的图片转化为灰度值矩阵,并作二值化处理,然后取出每个矩阵第一列和最后一列,采用相关系数分析的方法,计算每第一列和每最后一列相关系数,根据相关系数的大小确定相邻的图片,逐步确定各张图片的顺序,最后得到复原的图片。
中文文档拼接的顺序为:8,14,12,15,3,10,2,16,1,4,5,9,13,18,11,7,17,0,6,中文文档复原的结果见附录1;英文文档拼接的顺序为:3,6,2,7,15,18,11,0,5,1,9,13,10,8,12,14,17,16,4,英文文档复原结果见附录2。
针对问题二,同样,在将图片二值化处理后,我们运用聚类分析法将纵横裁剪后的图片进行行分类,经过人工干预后,获得需要的矩阵尺寸,然后根据图片的特点运用图片的上下边界和左右边界进行二次匹配,直到找到大致正确的图片排序;同时在必要时,进行二次人工干预,直到获得正确的图片排序。
关键词:碎纸片复原图像数字化相关性系数聚类法1 问题重述1.1 问题背景碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。
然而,传统的拼接复原工作需由人工完成,准确率较高,但效率很低。
特别是当碎片数量巨大,人工拼接很难在短时间内完成任务。
随着计算机技术的发展,人们试图开发碎纸片的自动拼接技术,以提高拼接复原效率。
本题即是通过一些模型算法开展对碎纸自动拼接技术的研究,具有重要的现实意义。
1.2 要解决的问题问题一:对于给定的来自同一页印刷文字文件的碎纸机破碎纸片(仅纵切),建立碎纸片拼接复原模型和算法,并针对附件1、附件2给出的中、英文各一页文件的碎片数据进行拼接复原。
如果复原过程需要人工干预,要求写出干预方式及干预的时间节点。
数学建模—碎纸片的拼接复原
碎纸片的拼接复原模型摘要本文针对破碎纸片形状规则和碎片间无有效重叠区域等特点,选取了信息熵、差方和、欧氏距离、相关系数、互信息和灰色斜率关联度作为碎纸片之间的相似性判别准则,给出了碎纸片拼接复原模型和算法,解决了破碎纸片的拼接复原问题.对于问题1,引入信息熵来衡量每个碎片含有的信息量,将熵值最小的碎片确定为印刷文字文件的第一列;利用差方和计算出第1列右端与其余碎片左端的相似程度,求得碎纸片之间的最佳匹配组合,借助Matlab软件成功实现了附件1和附件2的碎片拼接复原.对于问题2,通过计算每个碎片的信息熵,找到印刷文字文件第一列的11个碎片;再利用互信息和相关系数评价碎纸片之间的相似性程度,确定出碎片间的上下位置关系,得到了印刷文字文件的第一列;然后利用欧氏距离作为相似性测度,进一步进行碎片间的粗拼接.若某个碎纸片与多个碎片的欧氏距离相等,则利用灰色斜率关联度进行碎纸片间的细拼接,借助Matlab软件完成了对附件3和附件4给出的碎片拼接复原.对于问题3,基于模糊聚类方法,粗略地确定出每个碎片的正面和反面;然后利用问题2的算法对已分类的正面碎纸片进行拼接复原;针对无法复原的碎纸片,借助Matlab 软件和最优搜索算法进行人工干预,确定出附件5文件正面的拼接复原;根据碎片数据编号的命名规则,在正面碎片数据的拼接复原结果中填充对应编号的反面碎片数据,实现了附件5文件反面的拼接复原.最后,对碎纸片的拼接复原模型和算法进行了分析和展望.关键词:破碎纸片的拼接复原;信息熵;差方和;互信息;欧氏距离;灰色斜率关联度;模糊聚类1. 问题重述破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用.传统上,拼接复原工作需由人工完成,准确率较高,但效率很低.特别是当碎片数量巨大,人工拼接很难在短时间内完成任务.随着计算机技术的发展,人们试图开发碎纸片的自动拼接技术,以提高拼接复原效率,需解决以下几个问题:问题1,考虑对于给定的来自同一页印刷文字文件仅纵切的破碎纸片的拼接复原模型和算法,并针对B 题附件1、附件2给出的中、英文各一页文件的碎片数据进行拼接复原.如果复原过程需要人工干预,还需要写出干预方式及干预的时间节点.并就附件1和附件2的碎片数据给出拼接复原结果.问题2,考虑对于碎纸机既纵切又横切的情形,设计出碎纸片拼接复原模型和算法,并针对B 题附件3、附件4给出的中、英文各一页文件的碎片数据进行拼接复原.如果复原过程需要人工干预,请写出干预方式及干预的时间节点.并就附件3和附件4的碎片数据给出拼接复原结果.问题3,则需要考虑更一般的情形,即考虑有双面打印文件的碎纸片拼接复原问题.对B 题附件5给出的是一页英文印刷文字双面打印文件的碎片,设计相应的碎纸片拼接复原模型与算法,并就附件5的碎片数据给出拼接复原结果.2. 模型假设(1) 碎纸片的切割是等间距的,忽略切割碎纸片时由机器工作所产生的摩擦误差; (2) 碎片切缝处的图像灰度平滑;(3) 碎片在缩放的情况下,像素点保持稳定; (4) 碎片上的文字只显示黑白两种颜色.3. 符号说明N :每张碎片像素点的数目;ij a 、ij b :图像A 、B 在()j i ,的像素值;),(B A SSD :A 与B 的差方和;)(a h A :图像A 中第a 个灰度级的像素个数与总的像素个数之比;)(ab h AB :图像A 中第a 个灰度级和图像B 中第b 个灰度级的像素对数与两幅图像总的像素对数之比;)(A H 、)(B H :图像A 和B 各自含有的信息量;)(AB H :两幅图像A 和B 的联合信息熵;ij d :两幅图像A 和B 的欧式距离;ij a 、ij b :图像A 和B 在 ()j i ,位置的像素值; a :图像A 像素值的平均值;),(B A C :两幅图像A 和B 的相关系数;)(a P A 、)(b P B :碎片边缘概率密度; )(ab P AB :两碎片A 和B 的联合概率密度;);(B A I :两碎片A 和B 的互信息;)(t X :系统特征函数;)(t Y i :相关因素函数;tt x ∆∆)(:系统特征函数)(t X 在t 到t t ∆+的斜率; tt y i ∆∆)(:相关因素函数)(t Y i 在t 到t t ∆+的斜率; )(t x ∆:系统特征函数在t 到t t ∆+的增量;)(t y i ∆:相关因素函数在t 到t t ∆+的增量; x :系统特征函数的均值;i y :相关因素函数的均值;)(t i ξ:)(t X 与)(t Y i 在t 时刻的灰色斜率关联系数;D :对称距离矩阵;i ε:)(t X 与)(t Y i 在t 时刻的灰色斜率关联度.4. 问题分析由于文章以行书写,只有段首段尾有空白,切缝处恰好以列之间的空白或笔画出断开的概率较小,在拼接碎纸片前需要对B 题附件1—5的碎片内图像进行二值化处理,进而获取由0和1组成的矩阵.扫描后的图像有亮的图像和暗的背景组成,由于光照、拍摄角度等因素,一幅图像往往包括文字、背景还有噪声等.如果从多值的数字图像中直接提取目标,最常用的方法就是设定阈值T ,用T 将图像的数据分为两部分:大于T 的像素群和小于T 的像素群.由于5个附件中的文字显示都是黑白颜色,因此先调用Matlab 软件中的im2bw()对每个碎纸片进行二值化图像预处理,然后综合利用图像的相似性测度寻找高精度的匹配碎片,从而实现整个印刷文字文件的复原.5. 模型的建立与求解5.1 问题1的求解5.1.1 模型的建立差方和利用两幅图像对应位置的差方和均值表示图像之间的相似程度,定义为[1],∑-=ij21),()(ij ij NB A SSD b a (1) 式中,N 为每幅图像像素点的数目,ij a 和ij b 分别是图像A 和B 在()j i ,位置的像素值.当两幅图像正好可拼接时,),(B A SSD 值最小.差方和计算的时间复杂度为()2N O .信息熵反映了图像含有的信息量大小.信息熵越小,图像包含的信息量越小,往往空白区域越多,其定义为[2-4]:∑=aA A a h a h A H )(log )()( (2)其中,)(a h A 表示图像A 中第a 个灰度级的像素个数与总的像素个数之比. 5.1.2 拼接复原算法附件1和附件2中碎纸片的切割方式只有纵切一种,假设碎片的总数为n 个.考虑到纵切的特殊性,给出如下的拼接复原算法:步骤1 计算每一个碎纸片)1(n i A i ≤≤的信息熵)(i A H ,并确定出熵值最小的一个碎片n i i A H 1)}(min{=为印刷文字文件的第1列;步骤2 计算第1列图像A 的右边与其余1-n 个碎片)1,1(≠≤≤j n j A j 的左边的差方和),(1j A A SSD ,确定出与第1列图像差方和最小的碎片为印刷文字文件的第2列;步骤3 重复步骤2,依次继续,直到找到印刷文字文件的n 列为止. 5.1.3 问题1的求解借助Matlab 软件对以上拼接复原算法进行仿真,得到如下结果: (1) 附件1中的中文文件复原结果表1 附件1中19个碎片的信息熵从表1可以看出,19个碎片所包含的信息量中,第008碎片的信息熵最小,因此第008碎片是附件1中的中文文件的第1列.表2 附件1中19个碎片之间差方和最小的配对碎片表从表2可以得到附件1中的中文文件复原结果,如下表所示:表3 附件1中文件的拼接复原结果表附件1中的中文文件复原图结果见附录1.(2)附件2中的英文文件复原结果表4 附件2中19个碎片的信息墒从表4可以看出,所有19个碎片所包含的信息量中,第003碎片的信息墒最小,因此第003碎片是附件2文件的第1列.表5 附件2中19个碎片之间差方和最小的配对碎片表从表5可以得到附件2的英文文件复原结果,如下表所示表6 附件2英文件的拼接复原结果表附件2中英文文件的复原结果图见附录2.5.2 问题2的求解5.2.1 模型的建立由于互信息测度是从图像的统计信息出发,既不需要两幅图像的灰度关系,也不需要图像进行预处理,因此成为目前广泛使用的图像配准相似性测.在图像配准过程中,如果两幅图像精确匹配,互信息达到最大.联合熵定义如下[5]:)(log )()(,ab h ab h AB H AB ba AB ∑= (3)其中)(ab h AB 表示图像A 中第a 个灰度级和图像B 中第b 个灰度级的像素对数与两幅图像总的像素对数之比.互信息定义为)()()();(AB H B H A H B A I -+= (4)欧氏距离被视为两个图像的相似程度,距离越近就越相似,其定义为∑-=2)(ij ijij b ad (5)相关系数是标准化的协方差函数,当两幅图像的灰度之间存在线性畸变时,仍能较好的评价两幅图像之间的匹配性程度.图像的相关系数1),(≤B A C ,它是两幅图像A 和B 特征点之间近似程度的一种线性描述.如果),(B AC 越接近于1,两幅图像的相似程度越大,越近似于线性关系.选择相关系数中最大的相关系数所对应的特征点为这个点的匹配特征点.当两幅图像可匹配时,相关系数达到最大值.相关系数定义如下[7-9]:2/122))(*)(()(*)(),(∑∑∑----=b b a a b b a bB AC ij ij ijij ij(6)两幅图像相关系数计算的时间复杂度为)(2N O ,其中N 为每幅图像像素点的数目. 灰色斜率关联度的基本思想是根据待拼碎片的特征曲线(称系统特征函数)与参照碎片的特征曲线(称相关因素函数)的相似程度来判断其联系是否紧密,曲线越接近,关联度就越大,反之就越小.灰色斜率关联度的定义为[10]:∑-=-=11)(11n t i i t n ξε (7) 其中,t t y yt t x x t t x x tt x x t i i ∆∆-∆∆+∆∆+∆∆+=)(*1)(*1)(*11)(*11)(ξ (8)为灰色斜率关联系数.(7)、(8)式中)(t X 为系统特征函数,)(t Y i ()m i ,,2,1 =为相关因素函数(对应于参照碎片的特征曲线),∑==nt t x n x 1)(1,)()()(t x t t x t x -∆+=∆,t t x ∆∆)(为系统特征函数)(t X 在t 到t t ∆+的斜率, ∑==nt i i t y n y 1)(1,)()()(t y t t y t y i i i -∆+=∆, t t y i ∆∆)(为相关因素函数)(t Y i 在t 到t t ∆+的斜率.对于灰色斜率关联系数)(t i ξ公式(8)有如下性质[11-13]:(1) 任意的系统特征函数)(t X 与相关因素函数)(t Y i 的灰色斜率关联系数满足:1)(0≤<t i ξ,m i ,,2,1 =;(2) 灰色斜率关联系数)(t i ξ满足对称性;(3) 灰色斜率关联系数)(t i ξ只与)(t X 与)(t Y i 的几何形状有关,与相对位置无关; (4) )(t X 与)(t Y i 的斜率越接近,灰色斜率关联系数)(t i ξ就越大;(5) )(t X 与)(t Y i 在t 到t t ∆+的变化速度相同时,它们的斜率相等,这时1)(=t i ξ; 由上述公式及性质可知,灰色斜率关联系数反映了两曲线在某一点的变化率的一致程度,而灰色斜率关联度则是整个区间上灰色斜率关联系数的平均值.灰色斜率关联度i ε具有下列性质: (1) 10≤<i ε;(2) i ε只与)(t X 与)(t Y i 的变化率有关,而与它们的空间相对位置无关; (3) 当)(t X 与)(t Y i 变化率相同时, 1=i ε; (4) )(t X 与)(t Y i 的变化率越接近, i ε就越大;5.2.2 拼接复原算法附件3和附件4中碎纸片的切割方式有纵切和横切两种,假设碎片的总数为n 个(m ⨯k 个碎片组成整个原图),具体的拼接复原算法如下:步骤1 计算每一个碎纸片)1(n i A i ≤≤的信息熵)(i A H ,并确定出熵值最小的m 个碎片n i i A H 1)}(min{=为印刷文字文件的第1列的m 个碎片;步骤2 计算步骤1找到的m 个碎片的上半部图像和下部分图像之间互信息和相关系数,确定出m 个碎片的上下位置关系,得到印刷文字文件的第1列;步骤3 计算第1列中m 个碎片右边与其它碎片左边的欧氏距离,得到碎片之间关于欧氏距离的矩阵n m M ⨯;在矩阵n m M ⨯中,第i 行的值ij d 表示第i 个碎片与第j 个碎片之间的欧氏距离.步骤4 在n m M ⨯中,计算第)1(m i i ≤≤行的最小值i min ;若n m M ⨯中i min 在第i 行出现的次数为1且对应的列标为j ,则第i 个碎片和第j 个碎片是最佳匹配组合;若i min 在第i 行出现的次数为大于1,则进行步骤5.步骤5 i m i n 在i 行中出现的次数为大于1,则计算第i 个碎片的右边图像与其余碎片左边图像的灰色斜率关联度)1(n f if ≤≤ε,记灰色斜率关联度最大的值ih ε对应的列为k ;若第k 个碎片在步骤4的最佳匹配组合中没有出现,那么第i 个碎片和第k 个碎片是最佳匹配组合;若第k 个碎片已在步骤4的最佳匹配组合中出现过,选择灰色斜率关联度仅次于ih ε)(ih iy εε<的值对应的列y ;若第y 个碎片在步骤4的最佳匹配组合中没有出现,则第i 个碎片和第y 个碎片是最佳匹配组合,否则继续寻找第i 个碎片的最佳匹配碎片,直止找到满足斜率关联度最大且在以前的最佳匹配组合中没出现条件的碎片.步骤6 重复以上步骤,直到所有的碎片找到最佳的匹配组合为止.按照最佳匹配组合的关系将所有碎片链接起来,并在第1列中出现的碎片位置出换行,便可对文件的所有碎片数据进行拼接复原. 5.2.3 问题2的求解运行matlab 软件对以上算法进行仿真,得到如下的结果.(1) 附件3中的中文文件复原结果表7 附件3中碎片的排列序号附件3中文件的最终复原图见附录4.(2) 附件4中的英文文件复原结果附件4的复原结果表格形式如下表所示:表8 附件4中碎片的排列序号附件4中文件的最终复原图见附录6.5.3 问题3的求解5.3.1 模型的建立模糊聚类分析是一种将样本或者变量分类的统计方法,基于物以类聚的思想,它根据样本数量计算样本之间的距离(相似程度),按距离的大小,将样本或变量逐一归类,关系密切的类聚到一个小的分类单位,使同一类的对象之间具有较高的相似度,然后逐步扩大,使得关系疏远的类聚合到一个大的分类单位,知道所有的样本或变量都累计完毕.模糊聚类分析法常用的距离为绝对值距离和欧式距离,其中,欧氏距离在聚类分析中用的最广.计算流程如下[14-15]:(1) 将n 张碎纸片分为n 类,取其中一个碎纸片右侧一列和另外任意碎纸片左侧一列作为样本,两个样本之间的距离构成一个对称距离矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00021221112 n n n n d d d d d d D (2) 选择)0(D 中的非对角线上的最小元素,设这个最小元素是pq D ,此时{}p P x G =与{}q q x G =的距离最近,将q P G G 和合并成一个新类{}q P r G G G ,=.在)0(D 中消去q P G G 和所对应的行与列,并加入由新类r G 与剩下的其他未聚合的类间的距离所组成的新的距离矩阵)1(D ,它是n-1阶方阵;(3) 从)1(D 出发重复(2)的做法得)2(D ,再由)2(D 出发重复上述步骤,直到碎纸片聚成一个整体,聚类完成. 5.3.2 拼接复原算法附件5的碎片均为双面,假设碎片的总数为n 个(m ⨯k 个碎片组成整个原图的正面),具体的拼接复原算法如下:步骤1 基于模糊聚类分析法的思想,借助Matlab 软件编程将所有碎片区分粗分为正面和反面两大类;步骤2任选某一大类的碎片,利用问题2的拼接复原算法对该类的碎片进行拼接复原;步骤3 对无法拼接的碎片进行人工干预,直至所有的最碎片找到最佳的匹配组合为止.将所有的碎片进行链接,可复原文件的原图.根据碎片编号的命名规则,如果一面的原图复原成功,选择原图每个碎片对应序号的反面,可直接拼接复原出反面的原图.5.3.3 问题3的求解运行matlab软件对以上算法进行仿真,得到如下的结果.(1)附件5中的文件正面复原结果附件5中的文件正面复原结果见表9.附件5中文件正面的复原结果中间图见附录7.附件5中文件正面的复原结果中间图见附录8.对附录8中的碎片49a、161b、108b、045b、021a、042a、048b、180b、041b、202b和175b进行人工干预,得到附录9。
碎纸片的拼接复原(1)
碎纸片的拼接复原摘要计算机辅助碎片拼接是模式领域中的一个典型问题,它是司法鉴定,文物修复等领域有着广泛的应用。
目前的研究都是针对不规则图片的复原,对规则图片的研究还有待实现。
本文主要是研究规则形图片的复原问题,规则形图片的拼接不能像不规则图片拼接那样考虑其形状等,所以我们考虑从边缘相似度方面进行处理。
对于问题一:基于余弦相似度的算法,先对图片进行数字化处理,利用matlab程序求出每个图片的灰度值,然后提取出每个图片的最左边缘和最右边缘的灰度值并进行归类处理。
根据灰度值,利用人工干预,挑选出完整拼接图的第一张图片和最后一张图片。
我们把挑选出来的第一张图片的最右边缘灰度值和剩下的图片的最左边缘灰度值采用了余弦相似度算法进行匹配,找到最大相似度匹配图片。
之后依次循环遍历找到所有图片的最大相似匹配图。
最后利用matlab图片拼接技术实现图片的复原。
5.1问题一模型的建立和求解本文主要是研究碎纸片的拼接问题,由附件分析可知,这些图片均为规则的,所以我们没有考虑图片的形状问题。
为了得到完整的碎纸片的拼接图,我们着重研究了碎纸片颜色分布特征。
5.1.1图片的数字化灰度值,实现图片的数字化。
灰度是根据matlab程序我们计算出每张图片的]1[指黑白图像中点的颜色程度,范围一般从0到255,白色为255,黑色为0。
5.1.2图片的预处理图片预处理的目的是提取碎纸片的边缘颜色分布特征向量,预处理的过程为:图像边缘灰度值的提取——灰度值进行分类图像边缘灰度值的提取:根据图片的数字化结果,我们把每张图片的第一列和最后一列的灰度值提取出来,作为这张图片的颜色分布特征,。
灰度值进行分类:根据提取出的灰度值,我们把每张图片的第一列灰度值归为一类,放入excel表格中,我们称为left表格,把每张图片的最后一列灰度值归为一类,也放入excel表格中,我们称为right表格。
5.1.3图片的提取一张完整的纸张的左右两边都有空白的地方即左右边界灰度值都为255,所以我们先进行人工选择,把这张纸的左右两边先挑选出来,根据灰度值分类,我们从left表格中找出灰度值全为255的那列,即为第一张图片,从right表格中找出灰度值全为255的那列,即为最后一张图片。
碎扑克复原魔术原理
碎扑克复原魔术原理
碎扑克复原魔术的原理主要是利用了一些物理和数学的原理,以及心理学的小技巧。
以下是一些可能的原理:
1. 力学原理:扑克牌的质地和结构使其具有一定的弹性,当扑克牌被撕碎时,其碎片可能会以某种方式互相钩挂或卡在一起,形成一个较为稳定的结构。
魔术师可以利用力学原理,通过适当的操作使扑克牌碎片恢复原状。
2. 数学原理:扑克牌的尺寸和形状都有一定的规律,魔术师可以利用这些规律,通过计算和测量,将扑克牌碎片准确地拼回原来的形状。
3. 心理学原理:魔术师利用观众的心理预期和注意力,引导他们相信自己看到的扑克牌复原是真实的。
魔术师可能会使用暗示、引导、转移注意等技巧,让观众难以察觉其中的奥秘。
总的来说,碎扑克复原魔术需要魔术师具备高超的技巧和丰富的经验,同时还要掌握相关的物理、数学和心理学原理。
碎纸片的拼接复原的数学模型
碎纸片的拼接复原摘要本文主要采用了模糊模型识别、灰度相关、傅里叶变换等方法对碎纸自动拼接进行了深入探讨。
文中主要结合司法物证复原、历史文献修复、军事情报获取这一背景,针对横纵切碎自动拼接展开探究。
提出一种基于最大梯度和灰度相关的全景图拼接法。
同时采用边界提取法使图像预处理达到最好的效果,期间采用傅里叶变换对图像进行处理,最后再利用匹配准则等方法处理图像的拼接。
最终应用模糊模型识别法建立模型,通过隶属函数的建立实现最终的碎纸拼接。
期间有些碎纸片计算机无法识别,需要进行人工干预,从而才能得到一副完整的复原图。
图像拼接的主要工作流程可以概括为以下三个步骤:(1) 对图像碎片进行预处理,即对物体碎片数字化,得到碎片的数字图像。
(2) 图像碎片匹配,通过匹配算法找到相互匹配的图像碎片。
(3) 图像碎片的拼接合并,将相互匹配的图像碎片拼接在一起得到最终结果。
针对问题一:将图像导入MATLAB 进行相应的转化,由于数据量较大,所以对数据进行优化提取。
计算提取数据的均值与方差,找出其模糊集,建立符合题意的隶属函数。
由于模糊集的边界是模糊的,如果要把模糊概念转化为数学语言,需要选取不同的置信水平(01)λλ≤≤ 来确定其隶属关系,从而实现纵切图像的全景拼接。
(如表一、表二)针对于问题二:由于是横纵切碎纸片,所得图像较多,采用提取像素法对图片进行灰度分析,通过中介量阈值的确定来找出像素点的差别,梯度值在这一过程中也是作为衡量两张碎纸片是否匹配的标准。
从而对数据进行处理,最后导入MATLAB 软件实现拼接。
(如表三、表四)针对问题三:它是在问题一和问题二上加深了难度,采用提取像素点,傅里叶变换,灰度相关、模糊相似优先比等方法对问题进行分析,通过(0,1)矩阵的简化运算以及傅里叶变换得到最后的结果,但对于傅里叶变换需说明一点,变换之后的图像在原点平移之前四角是低频,最亮,平移之后中间是低频最亮,也就是说幅角比较大。
此过程中同时也需要人工干预,最终实现拼接。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
碎纸片拼接复原的数学方法拼图游戏,一种看似简单却富含深度的游戏,给人们带来了无穷的乐趣。
然而,大家是否想过,这样的游戏其实与数学有着密切的?让我们一起探索碎纸片拼接复原背后的数学方法。
碎纸片拼接复原,其实就是一个计算几何问题。
在数学领域,欧几里得几何和非欧几里得几何是两个基本而又重要的分支。
欧几里得几何主要研究的是在平面上两点之间的最短距离,这是我们日常生活中常见的几何学。
而非欧几里得几何则研究的是曲面上的几何学,这种几何学并不符合我们日常生活中的直觉。
碎纸片拼接复原的问题就是一种非欧几里得几何问题。
在计算机科学中,图论是研究图形和网络的基本理论。
其中,图形遍历算法可以用来解决碎纸片拼接复原问题。
这种算法的基本思想是:从一点出发,尽可能多地遍历整个图形,并在遍历的过程中对图形进行重建。
对于碎纸片拼接复原问题,我们可以将每一张碎纸片看作是图中的一个节点,当两张碎纸片拼接在一起时,它们就形成了一个边。
通过这种方式,我们可以将所有的碎纸片连接起来,形成一个完整的图形。
在计算机科学中,碎纸片拼接复原问题被广泛应用于图像处理、数据恢复等领域。
例如,在数字图像处理中,如果一张图片被切割成若干块,我们可以通过类似的方法来恢复原始的图片。
在数据恢复领域,当一个文件被删除或格式化时,我们也可以通过类似的方法来恢复文件。
碎纸片拼接复原的问题不仅是一个有趣的拼图游戏,更是一个涉及计算几何、图论等多个领域的数学问题。
通过运用这些数学方法,我们可以有效地解决这个问题,从而更好地理解和应用这些数学理论。
在我们的日常生活中,我们经常会遇到一些破碎的物品,例如碎镜子、破碎的瓷器,或是碎纸片等。
这些物品的复原过程都需要一种科学的方法来帮助他们重新拼接起来。
这种科学方法就是碎纸片拼接复原技术。
碎纸片拼接复原技术是一种基于数学模型的方法,它通过比较碎纸片边缘的形状、纹理、颜色等特征,来找到碎纸片之间的相似性和关联性,从而将它们拼接起来。
数学模型是碎纸片拼接复原技术的核心。
一般来说,碎纸片的拼接复原可以分为以下几个步骤:数据采集:我们需要对碎纸片进行数据采集,包括边缘的特征、颜色、纹理等。
这些数据将被用于后续的匹配和比对。
特征比对:在数据采集完成后,我们需要对碎纸片之间的特征进行比对。
这可以通过计算特征之间的相似度来完成。
常用的算法包括欧几里得距离、余弦相似度等。
拼接复原:在找到相似度最高的碎纸片后,我们就可以将它们拼接起来。
这个过程可以通过迭代的方式完成,每次将最相似的碎纸片拼接在一起,直到所有的碎纸片都被拼接完毕。
优化调整:我们还需要对拼接好的碎纸片进行优化调整,以确保它们的颜色、纹理等特征能够尽可能地一致。
在实际应用中,碎纸片拼接复原技术可以应用于许多领域。
例如,考古学中的文物修复、刑侦学中的现场证据收集、文化遗产保护等。
这项技术也可以帮助我们更好地理解和应用数学模型在实际生活中的应用。
碎纸片拼接复原技术是一种基于数学模型的方法,它通过比较碎纸片之间的特征来将它们拼接起来。
这种方法具有广泛的应用前景,可以帮助我们更好地理解和应用数学模型在实际生活中的应用。
随着科技的进步,图像处理技术在许多领域都找到了广泛的应用。
其中,碎纸片的拼接复原研究在司法鉴定、历史文献修复以及军事证据复原等领域具有特别重要的价值。
本文以Matlab为工具,对碎纸片的拼接复原进行研究,以期能提供一种有效的解决方法。
碎纸片的拼接复原主要依赖于图像处理技术中的特征匹配和图像拼接技术。
需要提取碎纸片的关键特征,如边缘、纹理、色彩等,然后通过匹配这些特征将碎纸片拼接起来。
图像预处理:使用Matlab的图像处理工具箱对碎纸片进行灰度化、降噪等预处理操作,以提高后续特征提取的准确性。
特征提取:使用SIFT(尺度不变特征变换)算法提取碎纸片的特征点。
SIFT算法对尺度、旋转等变化具有很好的稳定性,适合用于碎纸片的关键特征提取。
特征匹配:通过计算特征点之间的距离,找出相匹配的特征点,作为拼接的依据。
图像拼接:使用Matlab的图像拼接函数,将匹配好的碎纸片进行拼接,形成完整的图像。
拼接结果评估:通过计算拼接后的图像与原图像的相似度,对拼接结果进行评估,以确保拼接的准确性。
我们进行了一系列实验,对上述方法进行了验证。
实验结果表明,基于Matlab的碎纸片拼接复原方法能够有效地将碎纸片拼接起来,恢复出完整的图像。
同时,该方法对于不同尺寸、不同拍摄条件下的碎纸片都能取得较好的效果。
然而,这种方法也存在一些局限性。
例如,对于严重破损或污染的碎纸片,特征提取可能会变得困难,从而影响拼接的效果。
目前的算法对于计算量较大的图像处理速度可能较慢,需要在未来进一步优化算法以提高效率。
本文以Matlab为工具,对碎纸片的拼接复原进行了研究。
通过实验验证,基于Matlab的碎纸片拼接复原方法能够有效地将碎纸片拼接起来,恢复出完整的图像。
该方法具有较好的应用前景,值得进一步研究和推广。
未来我们将继续优化算法,提高拼接复原的准确性和效率,为相关领域提供更加有效的解决方案。
在图像处理和计算机视觉领域,碎纸片拼接复原是一个经典的问题。
它是图像修复和重建的一部分,涉及到将破碎的图像或文字片段重新组合成一个完整的图像或文字。
基于图像灰度值的拼接复原方法是一种常见的策略,它主要依赖于图像的灰度信息来识别和匹配相邻的碎纸片。
本文提出了一种基于图像灰度值的碎纸片拼接复原01规划模型。
该模型采用了一种混合整数规划(MIP)的方法,将问题转化为一个0-1规划问题,以便更有效地解决碎纸片拼接复原问题。
碎纸片拼接复原问题可以表述为寻找一种最优的拼接方式,使得拼接后的图像尽可能地接近原始图像,同时满足一些给定的约束条件。
在这个问题中,每个碎纸片都可以被视为一个像素块,而每个像素的灰度值可以代表该像素的颜色或亮度。
基于图像灰度值的碎纸片拼接复原01规划模型采用了混合整数规划(MIP)的方法。
将每个像素的灰度值表示为一个变量,然后根据原始图像的灰度值建立一些约束条件。
接着,定义一个目标函数,用于衡量拼接后的图像与原始图像的相似程度。
使用一些求解混合整数规划问题的算法求解该模型。
本模型采用了一些常见的求解混合整数规划问题的算法,例如分支定界法、割平面法等。
这些算法可以有效地求解大规模的混合整数规划问题。
在我们的模型中,我们采用了分支定界法来求解问题。
该算法首先将问题分解为一些子问题,然后通过不断地迭代和剪枝来求解最优解。
我们使用一些标准的测试数据集进行实验,并将本模型的求解结果与其他方法进行比较。
实验结果表明,本模型可以有效地解决碎纸片拼接复原问题,并且比其他方法更具有优势。
具体来说,本模型可以更准确地识别和匹配相邻的碎纸片,从而得到更完整的图像或文字。
本文提出了一种基于图像灰度值的碎纸片拼接复原01规划模型,该模型采用混合整数规划的方法来解决碎纸片拼接复原问题。
通过将问题转化为一个0-1规划问题,本模型可以更有效地解决碎纸片拼接复原问题,并且可以得到更完整的图像或文字。
实验结果表明,本模型比其他方法更具有优势,可以更准确地识别和匹配相邻的碎纸片,从而得到更完整的图像或文字。
在已有的相关研究中,碎纸片拼接技术主要分为基于图像特征和基于文字特征两类。
其中,基于图像特征的方法主要通过提取碎纸片的边缘、纹理等视觉特征进行匹配和拼接,这种方法对于一些具有明显特征的图像拼接效果较好,但对于一些无明显特征的文档碎片拼接时效果并不理想。
而基于文字特征的方法则通过提取碎纸片上的文字信息进行匹配和拼接,这种方法对于文档碎片拼接任务具有更高的准确性和适用性。
基于文字特征的碎纸片半自动拼接技术,首先需要对碎纸片进行文字区域的检测和识别,然后提取出每个文字区域中的特征。
常用的特征包括文字的形状、排列、字体、字号等。
接下来,通过分类和排序算法,将具有相似特征的碎纸片进行归类和排序,最后进行拼接。
在拼接过程中,还需要考虑一些诸如拼接顺序、空缺填补等问题,以保证拼接结果的准确性和美观性。
为了验证基于文字特征的碎纸片半自动拼接技术的效果,我们进行了一系列实验。
我们收集了一个包含多种不同类型文档碎纸片的实验数据集,然后采用基于文字特征的方法进行拼接。
在实验过程中,我们设定了不同的评估指标,包括准确率、召回率、F1值等,以全面评估拼接效果。
实验结果表明,基于文字特征的碎纸片半自动拼接技术对于文档碎片拼接任务具有显著的效果。
在我们的实验数据集中,该方法的准确率达到了2%,召回率达到了5%,F1值达到了8%。
这些结果表明,该方法能够有效地将不同文档的碎纸片进行正确的归类、排序和拼接,同时具有良好的稳定性和可重复性。
当然,我们的方法还存在一些不足之处。
在文字区域检测和识别阶段,对于一些字体、字号较小的碎纸片可能会出现误识别的情况。
在拼接阶段,对于一些残缺、模糊的碎纸片可能会出现拼接错误的问题。
为了解决这些问题,我们提出了一些改进措施。
例如,在文字区域检测和识别阶段,我们可以通过图像增强、二值化等预处理技术来提高识别的准确性。
在拼接阶段,我们可以通过引入更加智能的算法来自动判断拼接顺序、空缺填补等问题,以进一步提高拼接的准确性和效率。
基于文字特征的碎纸片半自动拼接技术具有广泛的应用前景。
例如,在文档修复、历史文献研究、艺术品修复等领域中,都需要对大量文档碎片进行拼接和处理。
通过应用该技术,可以大大提高这些工作的效率和准确性。
未来,我们还将继续对该技术进行深入研究和完善,以更好地服务于各领域的实际应用需求。
基于文字特征的文档碎纸片半自动拼接技术是一种非常重要的自动化处理技术。
通过该技术,可以快速、准确地完成大量文档碎片的拼接任务,提高文档的完整性和准确性。
虽然目前该技术还存在一些不足之处,但随着技术的不断发展和完善,相信它将会在越来越多的领域中得到应用和推广。
在日常生活和工作中,我们经常需要处理大量的文档资料。
然而,这些文档在经过一段时间的使用后,往往会被撕碎或者损坏,导致文档的信息丢失。
为了保护这些珍贵的文档信息,研究人员提出了碎纸片自动拼接算法,旨在将碎纸片重新拼接回原始文档。
本文将介绍一种基于动态聚类的文档碎纸片自动拼接算法,并对其进行详细探讨。
碎纸片自动拼接算法涉及到的基本原理是特征提取和匹配。
在碎纸片中,特征可以是文字、图案、色彩等。
通过提取这些特征,并将它们与相邻碎纸片中的特征进行比较,算法可以找到碎纸片之间的相似性,从而将它们拼接在一起。
在这个过程中,聚类算法或分类方法被广泛应用于碎纸片自动拼接中。
基于动态聚类的文档碎纸片自动拼接算法是一种高效的拼接方法。
它首先通过扫描碎纸片,提取出其中的特征,并将这些特征作为初始聚类中心。
然后,算法根据碎纸片之间的相似性,动态地将它们分配到不同的聚类中。
通过不断更新聚类中心,这种算法可以快速找到最相似的碎纸片,从而实现高效的拼接。