5第五章多电子原子

合集下载

量子化学第五章 电子自旋和角动量

量子化学第五章 电子自旋和角动量


为一个体系中的任意两个角动量,
可能是两个轨道角动量或两个自旋角动量,或一个轨
道角动量一个自旋角动量。
46
量子化学 第五章
角动量量子数分别为 j1 和 j 2 ,

的本征值分别为:
其中

作用得到总角动量 ,即
47
量子化学 第五章
M 是一个向量,M= MxiMyjMzk
可以证明:
(i, j, k为单位矢量)
以 代表任一角动量,
、和
分别 代表 x, y, z 方向的分量.
则:
27
量子化学 第五章
上述算符间存在以下对易关系:
28
量子化学 第五章
假设: 是
共同的本征函数,

如果 j 和 mj 分别为标记 M 大小和方向的量子数。
则:
如果 M 指的是 M l ,则 j 和 mj 分别为l 和 m 。 如果 M 指的是 M s ,则 j 和 mj 分别为s 和 ms 。
量子化学 第五章
12
量子化学 第五章
(2)自旋算符的本征值
对电子而言,自旋量子数 s =1/2, 自旋磁量子 数为 ms=1/2, -1/2,
故 的本征值为
的本征值为 ms1 2 or1 2
(3)自旋算符的本征函数
用 和 分别表示向上自旋和向下自旋的状态。
13
量子化学 第五章
自旋波函数 是算符 的本征值为 的本征函数。 是算符 的本征值为 的本征函数。 是算符 的本征值为 的本征函数。
14
量子化学 第五章
(4)电子在中心力场中的运动 没有考虑电子自旋时,电子在中心力场中的运动的
定态波函数为: n ,l,m R n ,l(r)Y l,m (, )

原子物理讲义 第五章 多电子原子

原子物理讲义 第五章 多电子原子

第五章 多电子原子:泡利原理(YCS )§5-1 氦光谱和能级氦原子是1868年分析日全蚀光谱时发现的,30年后在地球矿物中找到.实验表明,氦及元素周期表第二族元素铍、镁、钙、锶、钡、镭、锌、镉、汞的光谱结构相仿.氦原子光谱的特点(详见P.213氦原子能级图)(氦能谱的以上4个特点分别包含着4个物理概念):1)明显地分成两套谱线系,左边一套为单层,右边一套多为三层;两套能级间无跃迁,各自内部的跃迁产生了两套独立的光谱.每一套都象碱金属原子光谱一样含有主线系,辅线系和伯格曼系等.但两套线系的构成截然不同.2)存在几个亚稳态,表明某种选择规则限制了这些态以自发辐射的形式发生衰变;3)基态01S 1与第一激发态13S 2间能量相差很大,为eV.7719;电离能也是所有元素中最大的,为eV .5824;4)在三层结构那套能级中没有来自2(1S)的能级.§5-2 电子组态和原子态1.电子组态:原子中各电子状态的组合描述一个电子的状态可用s l m m l n 、、、四个量子数.考虑电子的自旋-轨道相互作用,s l m m 、不再有确定值,则电子的状态用j j m l n 、、、描述.氢原子只有一个电子,在不考虑原子核运动时,电子状态就表示原子状态.对于碱金属原子,理论上可证明原子实的总角动量为0且不易被激发,被激发的只是价电子,可认为价电子的状态就表示碱金属原子状态.多电子原子则必须考虑电子间的相互作用,原子的状态是价电子运动状态的耦合.由于轨道运动的能量只取决于量子数l n 、,所以常用nl 来标记电子状态.例如:氢原子处于基态时,电子处于01=、=l n 的状态,记为s 1;氦原子处于基态时,两个电子都处于s 1态,则用两个电子状态的组合s 1s 1或21s 来表示;若一个原子有3个电子,其中两个处在0,2==l n 的状态,另一个处在1,2==l n 的状态,则电子组态为p s222.在给定的电子组态中,各电子的轨道角动量大小是确定的,但其轨道角动量和自旋角动量的方向不确定.因此每一个电子组态可耦合成若干原子态,由同一电子组态耦合成的不同原子态将且具有不同的能量,因为不同的角动量耦合产生的附加能量不同. 2.价电子间的相互作用价电子间的相互作用除电子自身的轨道与自旋耦合外,电子间的轨道与轨道、自旋与自旋、轨道与自旋等角动量都要发生耦合作用.如两个价电子间可有6种耦合方式(如图示):),(),(),(),(),(),(126215224113212211s l G s l G s l G s l G s s G l l G 、、、、、.这6种耦合的强弱不等,一般情况下,65G G 、较弱可不考虑.下面考虑两种极端情况. 1)S L -耦合:21G G 、较43G G 、强得多,将两个轨道角动量和两个自旋角动量分别合成总轨道角动量L 和总自旋角动量S ,再将L 和S合成总角动量J .(S L -耦合对于较轻元素的低激发态成立,适用性较广)2)j j -耦合:43G G 、较21G G 、强得多,将各个电子的轨道与自旋耦合成各个电子的总角动量1j 和2j,再将其耦合成原子的总角动量J .(j j -耦合则较少见,只在较重元素的激发态中出现)对于多电子耦合的情况可记为:⎩⎨⎧==-==-J j j j l s l s l s j j JL S l l l s s s S L )())()((:),(),,)(,,(:3233221132132113.S L-耦合的原子态21l l L +=.L的大小为: 212121,,1,,)1(l l l l l l L L L L --++=+= 21s s S +=.S 的大小为:⎩⎨⎧=±=+=01,)1(21s s S S S S原子的总角动量S L J+=,量子数S L S L S L J --++=,,1,对于具有两个价电子的原子,当L 给定时,对应于0,1==S S 的两种情况,J 的取值分别为:1)0=S时,L J =,表示原子只有一个可能的角动量状态,所以是单态. 2)1=S 时,1,,1-+=L L L J ,所以原子是三重态.由以上分析知,具有两个价电子的原子都有单态和三重态的能级结构. 例:原子有两个价电子,其角动量状态分别为 21,2;21,12211====s l s l ,用S L-耦合确定其原子态.总自旋量子数1,0=S ,3,2,1=L ,则当0=S 时,3,2,1==L J ;原子态为11P 、21D 、31F当1,1==L S 时,⎪⎩⎪⎨⎧=012J ,原子态为⎪⎩⎪⎨⎧031323P P P ;当2,1==L S 时, ⎪⎩⎪⎨⎧=123J ,原子态为⎪⎩⎪⎨⎧132333D D D ;当3,1==L S 时,⎪⎩⎪⎨⎧=234J ,原子态为⎪⎩⎪⎨⎧233343F F F共有12种可能的原子态.为了简洁,可排列成右上表.S L-耦合方法用于氦原子,即可证实其状态.(此略) 4.j j -耦合组成的原子态当每个电子自身的自旋-轨道耦合作用强,而电子间的耦合作用很弱时,采用j j -耦合.设第i 个电子的轨道角动量和自旋角动量分别为i l 和i s ,则第i 个电子的总角动量为i i i s l j +=,按量子力学规则,每个电子的总角动量的量子数为:ii i i i i i s l s l s l j --++=,,1,原子的总角动量为:21j j J +=其大小为)1(+=J J J ,212121,,1,j j j j j j J --++=j j -耦合组成的原子态常用符号J j j ),(21表示.如pd 电子组态形成的原子态为:1,22,30,1,2,31,2,3,4)23,21(;)25,21(;)23,23(;)25,23(,也是12种可能的原子态.结论:同一电子态,用S L -耦合形成的原子态与用j j -耦合形成的原子态的个数相等.5.两个角动量耦合的一般法则(以轨道角动量为例说明)⎪⎪⎩⎪⎪⎨⎧--++=+=+=+=⇒+=21212122211121,1,,)1()1()1(l l l l l l l l l L l l L l l L L L L其中若21l l >,则l 共有)12(2+l 个取值.(见下例)例:两个电子的角动量为⎩⎨⎧-=-=⎩⎨⎧==101101z ,112111,,m ,,m l l l l 方向的投影分别为在.因角动量相加只要将其投影值相加即可(详见教材中例子).6.电子组态变动的跃迁选择定则: 原子中各电子的量子数之和∑il为偶(奇)数时原子具有偶(奇)宇称.辐射跃迁只能发生在不同的宇称状态之间.即:偶宇称态⇔奇宇称态 7.耦合的选择定则:S L -耦合的选择定则:⎪⎩⎪⎨⎧→±=∆±=∆=∆)00(1,010除外J L Sj -j 耦合的选择定则:⎩⎨⎧→±=∆±=∆)00(1010j 除外,,J耦合的选择规则决定了氦原子的能谱.由于S L -耦合中0=∆S ,决定了氦的两套能级间不可能发生相互跃迁.对于氦,两个价电子的原子态有单态(0S =)和三重态(1S =)两类,选择定则0=∆S 要求两类能级之间不能发生跃迁(须注意0=∆S 这一规则并非对所有原子适用),好像这两类能级属于不同原子一样,因而产生两套谱线系.人们把产生单重线的叫仲氦,产生多重线的叫正氦.实际上,仲氦是两电子自旋取向相反(0S =)的氦原子,而正氦是两电子自旋取向相同(1S =)的氦原子.氦原子之间可通过相互碰撞来交换能量,这不必服从选择规则,故正常的氦气是“正氦”与“仲氦”的混合.关于氦的三重态谱线,有著名的黄色3D 线,1868年8月18日在太阳日珥的光谱中观察到这条线,从而发现了氦.用高分辨仪器可看出此线有三成分.从光谱看三重态和单态间没有跃迁,有一条很弱的06.591A =λ的线,最初认为是氦的三重态和单态间间的跃迁,后来证实这是氖的谱线.§5-3 泡利不相容原理1.历史回顾:玻尔对元素周期系的解释作了很多工作,曾特别讨论了氦原子内层轨道的“填满”问题,关于为什么每一轨道上只能放有限数目电子的问题,玻尔猜测:“只有当电子和睦时,才可能接受具有相同量子数的电子”,否则就“厌恶接受”.(牵强解释)泡利于1921年(时年21岁)涉足原子内电子的填充问题,他意识到,元素周期系的背后隐藏着一个重要的原理.至1925年,泡利通过对原子光谱和强磁场内的塞曼效应的分析,建立了他的不相容原理,使玻尔的解释有了牢固的基础.1940年泡利又证明了不相容原理对自旋为半整数的粒子不是附加的新原理,而是相对论性波动方程的必然结果. 2.不相容原理(1925年):在一个原子中不可能有两个或两个以上的电子具有完全相同的四个量子数(s l m m l n ...),即原子中的每一个状态只能容纳一个电子.另一种更普通的表述:在费米子(自旋为21的奇数倍的微观粒子)组成的系统中,不能有两个或更多的粒子处于完全相同的状态.(电子、质子、中子等均为费米子)泡利不相容原理是微观粒子运动的基本规律之一.利用它可解释原子内部的电子分布状况和元素周期律.泡利不相容原理反映的这种严格的排斥性的物理本质是什么?至今仍是个谜. 3.泡利不相容原理的应用1)氦原子的基态按L -S 耦合规则,氦的基态应有01S 和13S 两个态,但实际上只有1S ,这是因为两个电子的lm l n ,,相同(0,0,1===l m ln ),但s m 必定不能相同之故,不可能出现三重态13S .2)原子的大小玻尔曾认为原子的半径随Z 的增大而减小(核外电子都要占据能量最低的轨道,故受到的引力相等;Z 增大,核外电子受到的引力增大导致离核的距离减小).这是错误的.按泡利原理,虽第一层的轨道半径小了,但电子是分层排列的,但轨道层数增加了,原子的大小随Z 而变的变更甚微.所以原子的大小几乎都一样.(这是经典物理和旧量子论解释不了的)3)金属中的电子对金属加热过程中,核与核外电子得到的能量不均匀,几乎全由原子核得到.为什么?金属中,要使底层电子得到能量而激发十分困难,因为它附近的能态已被占满.而加热1万度才能给电子约1eV 的能量,但实际上,当加热到几百度时,金属的晶格点阵就被破坏而熔解了.所以金属中除最外层电子能从加热中得到少许能量外,其余能量均被核吸收了.4)原子核内独立核子运动按泡利原理,密度甚高的原子核内,基态附近的状态均被占满,核子之间没有相互碰撞,表现为独立的运动. 5) 核子内的有色夸克基本粒子中约95%的粒子为强子,强子的性质比较有规律,这说明强子的内部结构有相似之处.在海森堡的核子同位旋概念、坂田昌一(1956年)的强子内部对称性模型基础上,1961年美国的盖尔曼和奈曼提出对强子进行分类的“八重法”,据其理论预言的重子-Ω于1964年被实验所证实.盖尔曼进一步的研究使他提出了“夸克模型”,使这种对称性理论得到真正的进展.盖尔曼用具有一定对称性的上夸克(u )、下夸克(d )和奇异夸克(s )替换了坂田模型中的三种粒子.夸克是自然界中更为基本的物质微粒,所有的强子都由这三种夸克u 、d 、s 及其反粒子粲夸克(c )、底夸克(b )和顶夸克(t )组成.人们推测具有相同性质的粒子必定成批出现的,并且根据已知的一些粒子的性质可以预见尚未发现的其它粒子.夸克模型能成功地解释许多事实,把曾经很复杂的问题简单化了.夸克是自旋为21的费米子,设这三个夸克均处于基态,当两个夸克的自旋方向确定后,第三个夸克的取向必与前两个中的一个相同,这显然违反了泡利原理.但这种危机并未发生,这是因为基于夸克有适当的全同粒子的对称性,人们以红、绿、蓝三种颜色作为描写夸克量子状态的量子数(即三维自由度),解决了这一问题,并由此生发了描述强相互作用的量子色动力学. 4.同科电子*n 和l 相同的电子称同科电子.由于受泡利原理的限制,同科电子形成的原子态要少得多,这是因为对于同科电子,本来可能有的角动量状态由于泡利原理被去除了,从而使同科电子产生的状态数目大大减少.例如:0111S s s →,而1301,21S S s s →斯莱特图解法:例如:具有相同n 的两个电子,其组态为2np ,依泡利原理,两组量子数),,,(s l m m l n 不能全同,因1,0±=l m 有3个取值,21±=s m 有两个取值,则得到可能的l m 和s m 的取值见表26.1(教材P.223)(注意:经典物理中两个粒子可区分,但量子物理中两个全同电子是不可区分,不可加以“标记”的,这是经典物理与量子物理的原则区别之一)将表26.1数据用LS M M -图表示,图中每一小方块相应于不同的L S M M -值,方块中数字代表状态数,(a )一共有15种可能的状态,与表相符.(b)、(c)、(d)分别代表三种态项.3np 组态的电子合成的态项详见P.225.同科电子的态项与非同科电子的态项(详见P.225表)§5-4 元素周期表1.元素性质的周期性19世纪中叶人们已认识到元素的许多性质随着原子核的电荷数Z 的增加呈周期性的变化,这是原子结构随Z 的增加而呈周期性变化的结果.如摩尔体积、熔点、线胀系数、原子光谱、电离能等.元素的电离能随Z 的变化关系(详见P.226图示):表明元素的化学性质的周期变化特性. 2.元素周期表人们将化学性质相近的金属元素和卤族元素分别列为两个元素族.1869年,门捷列夫提出元素周期表,将当时所知道的62个元素按原子量(现在认识到应按原子序数)增加的次序排列,则原子的属性表现出有规律的重复,从而完成对所有元素的分族.当时有不少空缺的元素尚待发现,但可预言这些未知元素的性质.1874-1875年,化学家据预言发现了三个元素:钪、镓、锗,随后又陆续发现一些,元素周期表不断得到充实.到目前这止,公认的共109种元素.元素周期表中,每行称为一个周期,共有七个周期.同一列的元素称为一族,同族元素具有具有相似的化学性质和物理性质.左起第一族为碱金属,化合价为正1价,原子光谱都具有双重结构,电离能最小.第二族为碱土金属,化合价为正2价,原子光谱有单重和三重结构两套线系.最右一族为惰性气体,化学性质不活泼,电离能最大.元素周期表提出后的50余年内.人们不能对元素的周期性做出满意解释.玻尔在提出氢原子的量子理论后,就致力于周期表的解释.他凭直觉提出原子内的电子是按壳层排列的,同一壳层的电子具有相同的主量子数n.他的设想被证实,但他未说明为什么每一壳层只能容纳一定数量的电子.直至1925年泡利提出不相容原理后,才认识到元素的周期性是电子组态的周期性反映,而电子组态的周期性则联系于特定轨道的可容性.这样,化学性质的周期性用原子结构的物理图象得到了说明,使化学概念“物理化”,化学不再是一门和物理学互不相通的学科了.3.原子中电子的壳层中结构(结合元素电离能随Z 而变的规律分析)决定原子壳层结构(即电子所处状态)的两条准则: 1)泡利不相容原理.它决定壳层中电子的数目.2)能量最小原理.体系能量最低时,体系最稳定,它决定壳层的次序. 元素周期表就是按以上两条准则排列的.主量子数n 决定能量的主要部分,n 相同的电子分布在一个壳层上, ,3,2,1=n 的壳层分别称为K,L,M,N,O, …壳层.n 一定时,角量子数可取n 个值,对应于1,,3,2,1,0-=n l的支壳层分别用s,p,d,f,g,h …表示.l一定时,s m 有两种取向,l m 有)12(+l )种取值.因此每一角量子数为l 的支壳层中最多可容纳的电子数为:)12(2+=l N ln 一定时,)1(,,2,1,0-=n l ,共有n 个取值,因此每一壳层最多可容纳的电子数为:2122)12(22)12(2n n n l N n l n =-+=+=∑-=各支壳层和壳层中最多可容纳的电子数(见表)电子壳层的填充:按泡利原理从能量最低的状态开始填充,填满最低能态后才依次填充更高的能态.一般说来,n 越小或n 一定时l 越小,则能量越低. 某一特定壳层的电子能量,不仅取决于n ,还与l 有关,实际判断原子能级高低的经验规则:1))(l n +的值相同,则n 小的能级低;2) )(l n +的值不同,若n 相同,则l 小的能级低;若n 不同,则n 小的能级低.具体次序为: p d f s p d f s p d s p d s p s p s s 7,6,5,7,6,5,4,6.5,4,5,4.3,4,3.3,2,2,14.原子基态对于某一特定的原子,可按照其Z 确定其电子组态.一个电子组态可合成若干原子态,需按照泡利原理选出物理上允许的原子态,然后按洪特定则确定这些原子态的能量次序.其中能量最低的即为原子基态.1) 洪特定则(1925提出的经验规则):同一电子组态形成的原子态,(1)具有相同L 值的能级中, S 值最大(即重数最高)的能级位置最低;(2)具有相同S 值的能级中,具有最大L 值的能级位置最低.针对同科电子的洪特附加定则:对于同一l 值而J 值不同的能级,有以下两种情况 1)正常次序:当同科电子数小于或等于闭壳层占有数的一半时,具有最小J 值的能级(即SL -)处在最低;2)倒转次序:当同科电子数大于闭壳层占有数的一半时,具有最大J 值的能级(即SL -)处在最低2)朗德间隔定则:在三重态中,一对相邻能级间的间隔与两个J 值中较大的那个值成正比. 3)矢量合成法对由同科电子构成的组态,考虑到必须遵从泡利原理,通常不直接用S L-耦合的方法,而用合成投影合成法.要点如下:(1)按洪特定则,同科电子填入同一支壳层时,表现为尽可能以相同方向的自旋分别填入lm 不同的态,写出各电子的自旋量子数的值,求出总的自旋量子数:∑===Ni siS m M S1(2)在不违背泡利原理的前提下(即同科电子的si m 和li m 不全同),将各同科电子可能取的轨道磁量子数lim 的最大值相加,即得原子基态的总轨道量子数:∑===Ni li L m M L1(3)按洪特定则,决定原子基态光谱项的总角动量量子数,最后写出原子基态的光谱项.5.电离能变化的解释He 2:同一壳层的两个电子都受到e 2+的库仑力作用,结合能都很大;Li 3:由于静电屏蔽作用,最外层电子只受到e 1+的库仑力作用,且外层电子距核较远,结合能较小;而内层的两个电子受到e 3+的库仑力作用,其结合能较He 2中的电子要大;Be 4:最外层的两个电子受到e 2+的库仑力作用,…可见,随着壳层的增加,外层电子的结合能依次增高.如右图所示,Na 11的外层电子只受到一个有效正电荷的作用,而Ar 18外层的8个电子中的每一个都受到8个有效电荷的作用,因此,Ar 18要远比Na 11稳定.。

第5章多电子原子

第5章多电子原子
N个价电子原子: n1l1 n 2 l 2 ⋯ n N LN
如:氦原子基态: 1s1s 或 1s 2 镁原子基态: 3s3s 或 3s 2
第一激发态: 1s2s 第一激发态: 3s3p
具有两个价电子的原子, 具有两个价电子的原子,除基态外, 除基态外,所有能级都是一个电子 留在最低态, 另一个电子被激发所形成的。 留在最低态 ,另一个电子被激发所形成的 。单电子激发.
h 2π
PJ = J ( J + 1)
2.原子态符号
( j1 j 2 ) J
3.跃迁选择定则
∆j = 0, ±1
∆J = 0,±1
(0 → 0除外)
例4 用 j −
解:
j 耦合确定例2中 pd 电子组态的原子态。
l1 = 1, s1 =
1 3 1 , j1 = , 2 2 2
l 2 = 2, s 2 =
2.电子组态与能级的对应关系 2.电子组态与能级的对应关系
组态的主量子数和轨道角量子数不同, 组态的主量子数和轨道角量子数不同,会引起能量的差异; 会引起能量的差异; 如1s1s 与 1s2s对应的能量不同;1s2s 与1s2p对应 的能量也不同。 一般来说, 一般来说,主量子数不同, 主量子数不同,引起的能量差异较大, 引起的能量差异较大,主量子 数相同, 轨道角量子数不同, 引起的能量差异相对较小一些。 数相同 ,轨道角量子数不同 ,引起的能量差异相对较小一些 。
G3 和 G4 较强于 G1 和 G2
j − j 耦合
PJ = Pj1 + Pj2
推广到更多的电子系统:
j − j : ( s1 , l1 )( s2 , l2 )⋯ = ( j1 , j2 ⋯) = PJ

多电子原子

多电子原子

第二种情况: 在同一nl态中具有k个电子,即k个同科电子 1.忽略电子之间的相互作用: nl的状态数为N=2(2l+1)。当k个电子按这些状态 分布时,由于泡利原理的限制,不能存在 ml和 ms 相同的电子。因而,问题便归结为求N个状态按k 的组合数,即简并度

G
k Cn
N ( N 1)( N 2) ( N k 1) k!

n 1
★一个能级包含的量子态数目,称这一能级的简并 度
多电子组态: 第一种情况:每个nl (次壳层)中,只有一个电子
★若忽略电子之间的相互作用,电子能量与量子数 n和l有关 电子i可以有Ni个态:Ni=2(2l+1) 多电子的组合,原子的能级简并度为 G=N1﹒N2﹒N2 …Ni 1.如果忽略电子的自旋—轨道相互作用 角动量L可有2L+1种取向, 角动量S可有2S+1种可能的取向 ●由量子数L和S表征的能级的简并度为 GLS=(2L+1)(2S+1)

共振线 (n1P→n1S0)

互组合线 (n3P→n1S0) 无 457.115nm 657.278nm 689.259nm 791.134nm
B Mg Ca Sr Ba
234.861nm 285.213nm 422.673nm 460.733nm 553.54பைடு நூலகம்nm
弱 强 强 较强
1


两者是竞争的,其能级寿命很短,主要以 前者自电离方式衰变,因而是一个自电离 态。
3.双电子被激发时,n逐渐增大,电子-电子相互作 用甚至可与电子与核的作用比较,因而两个电子 的运动产生了关联。这种双电子激发的里德堡态 是研究电子关联的理想体系,自 1989 年以来人们 开始关注这方面的理论工作。 4.一般来说,原子的自电离态有较高的衰变率,谱 线较宽。但是近来也发现不少窄线宽的自电离态, 它们具有较长寿命,特别在双电子高激发态中出 现。这种亚稳自电离态为产生真空紫外激光提供 了可能性。

原子物理

原子物理

E2 L
E2
6、对氦和镁能级结构的说明 (1)氦和镁的能级图都是LS耦合由能级图可看出
L相同,S大的能级低于S小的。3S 低于 1S
3P 低于 1P
对照能级图
(2)3S 实际上是单层的。
J L 1 三重态 S 1 J L J S 1
L 0 J L 1
S只有一个值。
原子处于两个什么状态
多(价)电子原子 电子组态确定后,不过是每个价电子的轨道大小 和形状确定了,但价电子间还有相互作用,所以并 不能确定它的原子态。
六种相互作用
G1(s1s2 ) G2 (l1l2 )
G3 (l1s1) G4 (l2s2 )
静电相互作用
第一电子l1 G3 s1
G2 G5 G6 G1
4、洪特定则(LS耦合)
在同一电子组态形成的能级中
(1)L相同时,S大的能级低。(如
P 3 0,1, 2

1P1
能级低)
(2)S相同时,L大的能级低。(如 3D 比 3P 能级低)
(3)LS相同时,J不同时:正常次序J小的能级低。
反常次序J小的能级高。
19.77
电离电势 和氢原子比较
反常次序
亚稳态 基态
(3)镁的 3P 三能级的次序是正常的,间隔符合朗德定则。 而氦的 3P 能级间隔是反常的,间隔也不符合朗德定则。
(4)洪特定则和朗德间隔定则都是对LS耦合而言的,它们只 是一些近似规律。事实上许多原子的能级次序并不一定符合
这些规律,各能级分裂后间隔大小也因原子中电子间隔的各
轨道总角动量的大小 pL L(L 1)
30, 20, 12, 6, 2
原子的总角动量
pJ

原子物理学第四,五,六,七章课后习题答案

原子物理学第四,五,六,七章课后习题答案

第四章 碱金属原子1. 已知Li 原子光谱主线系最长波长0A 6707=λ,辅线系系限波长A 3519=∞λ.求Li 原子第一激发电势和电离电势.解:主线系最长波长是原子从第一激发态跃迁至基态的光谱线的波长E h hc νλ∆==第一激发电势1eU E =∆34811976.626210310V 1.850V 1.602210 6.70710E hc U e e λ---∆⨯⨯⨯====⨯⨯⨯辅线系系限波长是原子从无穷处向第一激发态跃迁产生的 辅线系~~*2n R n νν∞=-,~~*n n νν∞→∞=192 5.648910J hc eU λ-∞==⨯2 3.526V U =电离电势:U =U 1+U 2=5.376V2. Na 原子的基态3S .已知其共振线波长为58930A ,漫线系第一条的波长为81930A ,基线系第一条的波长为184590A ,主线系的系限波长为24130A 。

试求3S 、3P 、3D 、4F 各谱项的项值. 解:主线系波数~p 22s p ,3,4,(3)()n R Rn n ν=-=-∆-∆~~p 2s ,(3)n Rn νν∞→∞==-∆系限波长:p λ∞=24130A =72.41310m -⨯~1613S 71m 4.144210m 2.41310T ν--∞-===⨯⨯共振线为主线系第一条线, 是原子从3P 到3S 跃迁产生的光谱线 共振线波长:λp1=58930A =75.89310m -⨯~61p13S 3P 71 1.696910m 5.89310mT T ν--=-==⨯⨯1616S 3P 3m 104473.2m 106969.1--⨯=⨯-=T T漫线系(第一辅线系)波数~d 22p d ,3,4,(3)()n R Rn n ν=-=-∆-∆漫线系第一条线是原子从3D 到3P 跃迁产生的光谱线 漫线系第一条光谱线的波长7d18.19310m λ-=⨯167D 3P 31~d m 102206.1m10193.81--⨯=⨯=-=T T ν1616P 3D 3m 102267.1m 102206.1--⨯=⨯-=T T基线系(柏格曼线系)波数,5,4,)()3(2f 2d ~f =∆--∆-=n n RR n ν 基线系第一条线是原子从4F 到3D 跃迁产生的光谱线 基线系第一条光谱线的波长6f1 1.845910m λ-=⨯156F 4D 31fm 104174.5m108459.1--⨯=⨯=-=T T ν 1515D 3F 4m 108496.6m 104174.5--⨯=⨯-=T T3. K 原子共振线波长为7665Å,主线系系限波长为2858Å. 已知K 原子的基态为4S. 试求4S 、4P 谱项的量子数修正项∆S 、∆P 值各为多少?K 原子的主线系波数,5,4,)()4(2P 2S ~p=∆--∆-=n n RR n ν 2S ~~p )4(,∆-==∞→∞Rn n νν 1617~m 104990.3m 10858.211---∞∞⨯=⨯==p λν 16~S 4m 104990.3-∞⨯==νT而 2S S 4)4(∆-=RT 所以 S4S 4T R =∆- 17m 100973731.1-∞⨯=≈R R 7709.14S =∆-2291.2S =∆K 原子共振线为主线系第一条线, 是原子从4P 到4S 跃迁产生的光谱线1p A 7665=λ167P 4S 41pm 103046.1m10665.7--⨯=⨯=-=T T ν 1616S 4P 4m 101944.2m 103046.1--⨯=⨯-=T T而 2P P 4)4(∆-=RT 所以 P4P 4T R =∆- 17m 100973731.1-∞⨯=≈R R7638.14P4P =-=∆T R第五章 多电子原子1. He 原子的两个电子处在2p3d 电子组态.问可能组成哪几种原子态?用原子态的符号表示之.已知电子间是LS 耦合.解:p 电子的轨道角动量和自旋角动量量子数分别为,11=l 211=s . d 电子的轨道角动量和自旋角动量量子数分别为,21=l 212=s . 因为是LS 耦合,所以.,,1,212121l l l l l l L -⋯-++=.1,2,3=L.0,1.2121=-+=S s s s s S 或而 .,,1,S L S L S L J -⋯-++=.1,0,1===J S L 原子态为11P . .0,1,2,1,1===J S L 原子态为30,1,2P ..2,0,2===J S L 原子态为12D ..1,2,3,1,2===J S L 原子态为31,2,3D ..3,0,3===J S L 原子态为13F . .2,3,4,1,3===J S L 原子态为32,3,4F .2. 已知He 原子的两个电子被分别激发到2p 和3d 轨道,其所构成的原子态为3D ,问这两电子的轨道角动量p l 1与p l 2之间的夹角,自旋角动量p s 1与p s 2之间的夹角分别为多少?(1). 解:已知原子态为3D ,电子组态为2p3d, 所以2,1,1,221====l l S L因此'1212221211212221222211113733212/)(cos cos 26)1(6)1(22)1(οθθθπ==---=-+==+==+==+=l l l l L l l l l L L l l p p p p P p p p p P L L P l l p hl l p 所以'0'0471061373180=-=οθL(2).1212122s s S s s p p P =======因为所以而'2212221222212221228109312/)(cos cos 2οθθθ=-=---=-+=s s s s S s s s s S p p p p P p p p p P 所以'0'0327028109180=-=οθS4. 试以两个价电子l 1=2和l 2=3为例说明,不论是LS 耦合还是jj 耦合都给出同样数目的可能状态. (1) LS 耦合.3,221==l l.,,1,212121l l l l l l L -⋯-++=.1,23,4,5=L .2121==s s .0,1=S.,,1,S L S L S L J -⋯-++=当S =0时,J =L , L 的5个取值对应5个单重态, 即1=L 时,1=J ,原子态为11P .2=L 时,2=J ,原子态为12D .3=L 时,3=J ,原子态为13F . 4=L 时,4=J ,原子态为14G .5=L 时,5=J ,原子态为15H .当S =1时,.1,,1-+=L L L J代入一个L 值便有一个三重态.5个L 值共有5乘3等于15个原子态,分别是:1=L 时,0,1,2=J 原子态为30,1,2P2=L 时,1,2,3=J 原子态为31,2,3D3=L 时,2,3,4=J 原子态为32,3,4F 4=L 时,3,4,5=J 原子态为33,4,5G5=L 时,4,5,6=J 原子态为34,5,6H因此,LS 耦合时共有20个可能状态. (2) jj 耦合.,...,.2527;2325;21212121j j j j j j J j j s l j s l j -++===-=+=或或或 将每个j 1、j 2 合成J 得:.1,2,3,42523.2,3,4,52723.0,1,2,3,4,52525.1,2,3,4,5,6272521212121============J j j J j j J j j J j j ,合成和,合成和,合成和,合成和4,3,2,15,4,3,25,4,3,2,1,06,5,4,3,2,1)25,23()27,23()25,25()27,25(共20个可能状态所以,无论是LS耦合还是jj耦合,都会给出20种可能状态.6.已知He原子的一个电子被激发到2p轨道,另一个电子还在1s轨道,试做出能级跃迁图来说明可能出现哪些光谱线跃迁.解:在1s2p组态的能级和1s1s基态之间存在中间激发态,电子组态为1s2s.利用LS耦合规则求出各电子组态的原子态如下:1s1s:1S01s2s:1S0、3S11s2p:1P1、3P0,1,2根据选择定则,这些原子态之间可以发生5条光谱线跃迁。

原子物理学第五章多电子原子

原子物理学第五章多电子原子

原子序数增加
能级双 分配(2)
j - j 耦合
Em Ee
轻元素,低激发态 重元素,基态
能级差主要是由 于静电作用
原子态: 2S+1LJ
重元素,高激发态
能级差主要是由 于磁效应
原子态: ( j1 j2 )J
第三节:泡利原理
泡利原理
我们知道,电子在原子核外是在不同轨道上 按一定规律排布的,从而形成了元素周期表。中 学阶段我们就知道,某一轨道上能够容纳的最多 电子数为2n2,为什么这样呢?
碳族元素在激发态时,PS电子各能级比较:
C Si Ge Sn Pb
2 p3s
3 p4s
4 p5s
5 p6s
6 p7s
31 ( 2 , 2)1
1 P1 3 P2 LS 耦合 3 P1 3 P0
(
3 2
,
1 2
)
2
j - j 耦合
(
1 2
,
1 2
)1
11
(2 , 2)0
能级单 分配(3)
LS 耦合
Ee Em
Mg 原子光谱和能级结构与He原子相似,也有差异。
5.2 具有两个价电子的原子态
一.电子组态 1.电子组态的表示
处于一定状态的若干个(价)电子的组合 n1 1n2 2n3 3.... Na : 基态电子组态: 1s2 2s22p63s1 简记:3s1
激发态电子组态: 1s2 2s22p63p1 1s2 2s2 2p6 4s1
根据原子的矢量模型 Ps1 , Ps2合成 Ps,Pl1 Pl2合成PL ; 最后Pl与Ps 合成 J,所以称其为 L S耦合。 L S 耦合通常记为:
(s1s2 )(l1l2 ) (PS , PL ) PJ

原子物理学5

原子物理学5

同一电子组态在j-j耦合中和L-S耦合中形成的原子 态的数目相同,代表原子态的J值也是相同的。
例题:
若某原子的两个价电子处于2s2p组态,利用j-j耦合, 求可得到其原子态的个数。
同一电子组态在j-j耦合中和L-S耦合中形成的原 子态对应的能级间隔不同。
1P 1
3 1 ( , )1 2 2 3 1 ( , )2 2 2
5
5 4
4 3
4
3 2
4 3
4
3
4
3
2 2
19.77eV
2
主线系 第二辅线系 第一辅线系 柏格曼线系
E 1
He原子能级图
He原子能级结构
两套结构: 单层:S=0,重数为1; 两套能级间不发生跃迁 三层:S=1,重数为3;
两个亚稳态:
21S0 和23S1
电离能和第一激发电势很大 在三层结构中没有(1s)对应的能级(?) 三重态能级低于相应的单一态能级
倒序排列:
3P > 3P > 3P 0 1 2
能级的形成:
基态:两个电子都处于最低的1s态 激发态:所有能级都是由一个电子处于1s态,另一 个电子被激发到较高能态形成的。
试计算一下如果两个电子都处于激发态至少 需要多少能量?
单层结构 n
7.62eV
1S 1P 0 1 1D 2 1F 3 3S 1 3P 2
不同的电子组态具有不同的能量 H: 2s↔2p; 能级间隔小 2s ↔1s 能级间隔大 He: 1s1s ↔1s2s 能级间隔大 Mg: 3s3s ↔3s3p 能级间隔小 原子态 每一种电子组态都对应相应的原子态 H: 基态1s ↔ 2S1/2,激发态3p ↔ 32P1/2, 32P3/2 多电子原子的原子态是怎样的呢?

原子物理学课件_5第五章

原子物理学课件_5第五章
7
3、氦的基态11S0与第一激发态23S1之间的能量差相对 于H原子而言要大的多,氦电离能(He+)为24.6eV,是 所有元素中最大的。 4、三层结构能级中没有来自两个电子都处在1s态的 能级。 除此之外,在氦能谱中, 除基态中两个电子都处在 最低的1s态外,其它能级 都是一个电子处在1s态,另 一个电子被激发到2s, 2p, 3s等态形成的,见右图:
把上述情况推广到更多的电子系统:
L-S耦合: ( s1 s 2 )( l 1 l 2 ) ( S , L ) J (25-1)
j-j耦合: ( s1 l1 )( s 2 l 2 )( s 3 l 3 ) ( j1 j 2 j 3 ) J (25-2)
20
例2 pp组态,按L-S 耦合:
s1 s2 1 / 2; l1 l2 1
所以S=0, 1; L=2, 1, 0; L, S 合成 J: S=0, L=0 时,J=0; S=0, L=1 时,J=1; S=0, L=2 时,J=2; S=1, L=2 时,J=3,2,1; S=1, L=1 时, J=2,1,0; S=1, L=0 时,J=1;从而得到的十个原子态分 别为:
12
通过给定的电子组态我们可以确定它的原子态。
在碱金属原子中只有一个价电子,我们曾讨论过这个价电 子的 与 l 合成总角 s与 s l 的相互作用,在那里我们看到 动量 j , j s l ;求得了 j 的可能值,就得到了原子 态的可能形式2Lj 以及能量的可能值Enlj;
21
把L-S耦合得出的原子态与相应的能级图对照,我们又发 现了一个新的问题: 根据L-S耦合,我们可以得出ss组态的原子态为:

第五章 多电子原子:泡利原理 26节 泡利不相容原理4

第五章 多电子原子:泡利原理 26节 泡利不相容原理4

金属的热学特征:加热过程中,能量几乎全由核得到,电子几乎不吸收能量。

解释:电子的若运动能量为kT 量级,其中k 为玻耳兹曼常数2310 。

激发电子所需能 量为eV 量级,而eV 1 → k 410。

在此温度下,金属晶格多数已解体。

4、原子核内独立核子的运动
原子核内的核子仍可以被看成费米气体。

解释:原子核内的密度虽然极高,但基态附近的一些状态被核子填满,基态以上的核 子间几乎无相互作用,核子表现为相当自由的运动。

5、核子内的有色夸克(quack )
核子有夸克(s d u ,,)组成,夸克自旋为 2
1。

为描述夸克的性质,又引入夸克的色:蓝、绿、红。

夸克的运动与原子核内核子的运动类似。

第五章多电子原子

第五章多电子原子
(W. Pauli,1900-1958)
§5.3 原子的壳层结构
一. 原子的电子组态
由于在中心力场近似下,原子的势能函数具有球对称性,所 以原子的能量与Z轴的取向无关。
电子的能量和整个原子的能量由量子数 (ni , li ) 确定
可以用主量子数和角量子数表示原子状态的主要差别。
电子组态: 原子中各个电子所处状态 (ni , li ) 的集合。 nL
能量最小原理
外壳层电子先填充能级低的支壳层,
能量最低原理填充原则: (1)n+l 相同,先填n小的; (2)n+l不同,n相同,先填l小的;
n不同,先填n大的
能级高低的经验公式n+0.7l
不同支壳层中电子结合能 随原子序数的变化p175
三. 元素周期表
1869年,门捷列夫首先提出元素周期表。指出把元素按原子量 的顺序排列起来,它们的性质显示出周期性的变化。后来,人 们发现正确的排列顺序是把元素按核电荷数排列成元素周期表, 其物理、化学性质将出现明显的周期性。同族元素的性质基本 相同。
ni li
§5.2 泡利不相容原理
一.全同粒子波函数对称性
全同粒子(Identical Particles):
具有完全相同的内禀性质(如静止质量、电荷、自旋和平均 寿命等)的粒子。
全同性原理: 全同粒子具有不可分辨性。
考虑由两个全同粒子组成的系统 (1,2) (r1, sz1 ; r2 , sz2 ) 由全同性原理 (1,2) 2 (2,1) 2
➢ 各壳层所能容纳的最大电子数
n, l 相同的次壳层: Nl 2(2l 1)
ni、li 、mi 和 msi
n 1
n 相同的主壳层 : Nn 2(2l 1) 2n2

多原子分子的结构和性质

多原子分子的结构和性质
第五章 多原子分子的 结构和性质
5.1 价电子对互斥理论
价电子对包括成键电子对(bp)和孤电子对(lp)。 原子周围各个价电子对之间由于互相排斥,在键长一 定的条件下,互相间距越远越稳定。
价电子对之间斥力的来源:静电排斥;Pauli斥力。
为使价电子对间互相远离,可将价电子对看作等距排 布在一个球面上,形成多面体。
于sp1,sp2,sp3杂化来说,上式等价于:
cosij pip jd (i j ) / (i j )
其中pi是杂化轨道i中的归一化的p轨道组合。
等性杂化轨道:以sp3杂化为例
每个杂化轨道中,有1/4是s轨道,3/4是p轨道
i
1s 2
3 2 pi;
i 1, 2, 3, 4
pi aipx px aipy p y aipz pz
由于是不等性杂化,杂化轨道的成分与等性杂化不 同,轨道间的夹角也不同,一般情况下,要么已知 轨道间夹角,求出轨道成分,要么已知轨道成分, 求出轨道夹角。以前一种情况为例。
水分子中,两根H-O键间的夹角为104.5°
首先建立坐标系,将其中一根H-O键的杂化轨道放 在x轴上,另一个在x-y平面,则
1 1s 1p1
1 1
cos104.5
0
11
0.2002 0.7998
不妨取 1 2 0.4474; 1 2 0.8943
夹角公式 cos104.5 p1p2d a2 px 0.2504
a2 py 1 a22px 0.9681(任意取其中一个)
结果: 每个H-O键中s轨道成分占20.02%,p轨道占79.98% 每对孤对电子中s轨道占(1-2×20.02%)/2=29.98%, p轨道占(3-2×79.98%)/2=70.02%

多电子原子的结构

多电子原子的结构

多电子原子的结构首先要了解的是,每个电子都有四个量子数,即主量子数(n)、角量子数(l)、磁量子数(ml)和自旋量子数(ms)。

主量子数决定了电子所处的能级,角量子数决定了电子轨道的形状和能量,磁量子数决定了电子轨道在空间中的取向,而自旋量子数表示电子自旋方向上的差异。

根据波尔的原子模型,多电子原子的结构可以用壳、亚壳、轨道来描述。

壳是由具有相同主量子数的电子的集合组成,亚壳是由具有相同主量子数和角量子数的电子的集合组成,而轨道则是由具有相同主量子数、角量子数和磁量子数的电子的集合组成。

每个壳包含的亚壳数目等于主量子数n的值,而每个亚壳包含的轨道数目等于2l+1,其中l是角量子数的值。

例如,当n=1时,只有一个壳,其中含有一个s亚壳,包含一个s轨道。

当n=2时,有两个壳,其中一个含有一个s亚壳和一个p亚壳,而另一个则只含有一个s亚壳,每个亚壳又包含一个s轨道和三个p轨道。

多电子原子的能级结构比氢原子更加复杂,这是因为电子之间的相互作用会引起能级的分裂。

这种相互作用包括库仑相互作用(电子之间的静电相互作用)和斯塔克效应(电子在外加电场中的行为)。

当电子之间的相互作用不考虑时,多电子原子的能级就是简并的,也就是说,拥有相同主量子数的能级具有相同的能量。

然而,这种简并可以通过考虑相互作用来取消。

由于库仑相互作用,主量子数相同但角量子数不同的亚壳之间的能级发生了分裂。

例如,在n=2的壳中,2s亚壳的能级低于2p亚壳的能级。

同样,角量子数相同但磁量子数不同的轨道之间的能级也发生了分裂。

最后,自旋量子数不同的电子具有不同的能量。

这种由于相互作用引起的能级分裂称为自旋-轨道相互作用。

要描述多电子原子的结构,可以使用一种方法称为Hartree-Fock方法。

在这种方法中,先假设每个电子都处于一个平均势场中,其它所有电子引起的平均势场。

然后,通过求解薛定谔方程来获得每个电子的波函数和能量。

然而,Hartree-Fock方法只能给出近似解,因为它没有考虑到电子之间的动态相关性。

原子物理 习题5

原子物理  习题5
(3)同一电子组态形成的原子态之间没有电偶极
辐射跃迁.
3.钙原子(Z=20)基态的电子组态是4s4s,若其中一个电 子被激发到5s态(中间有3d和4p态),当它由4s5s组态向 低能态直至基态跃迁时,可产生哪些光谱跃迁?画出能级 跃迁图(钙原子能级属L-S耦合,三重态为正常次序)。 解:: 可能的原子态: (4分) 4s4s: 1S0 ; 4s3d:1D2 、3D3,2,1 ; 4s4p:1P1 、 3P2,1,0; 4s5s: 1S0 、 3S1 。 能级跃迁图: (6分)
对L S耦合:S 0; L 0,1; J 0,1( J 0 J ' 0除外) J 0,1( J 0 J ' 0除外)
跃迁还需满足初末态宇 称相反, 对j j耦合:j 0,1; 即 li 奇数 l’ 偶数 i
同科电子:n和l二量子数相同的电子
B
3.二次电离的碳离子(C++)按其能级和光谱的特点,应属 于类 ________离子;其基态原子态是_______________; 2s2s1S0 氦 由2s3p3P2,1,0态向2s3s3S1 态跃迁可产生 ____条光谱线。 3
4.按照电子的壳层结构, 原子中 主量子数 相同的电子构 成一个壳层; 同一壳层中 角量子数(或轨道量子数) ___________相同的电 子构成一个支壳层。第一、三、五壳层分别用字母表示应 依次是 K;M; 、 O 。 、
三、计算题
1.给出电子态1s22s22p53p1在L-S耦合下形成的所有的原子态, 并用相应的原子态符号表示之。 解::由于2p5与2p1互补,故1s22s22p5形成的谱项与 1s22s22p1是相同的, 所以题中的电子组态转化为 1s22s22p13p1。 原子态由2p13p1决定,l1=l2=1, s1=s2=1/2, 在L-S耦合下有: L=2,1,0; S=1,0; 可形成的原子态为 3S , 3P , 3D3, 2, 1, 1 2, 1, 0 1S ,1P ,1D 0 1 2

第五章:多电子原子 泡利原理 《原子物理学》课堂课件

第五章:多电子原子 泡利原理 《原子物理学》课堂课件

能级



实验表明,氦原子的光谱也是由这些线系
电 构成的,与碱金属原子光谱不同的是:



氦原子光谱的上述四个线系都出现双份,
:
泡 即两个主线系,两个锐线系等。



首页
上一页
下一页
氦及周期系第二族元素的光谱和能级
➢ 第二族元素:铍、镁、钙、锶、钡、镭、锌、镉、汞。 (都具有两个价电子 光谱和化学性质) ➢ 氦及第二族元素的能级都分成两套,一套是单层的,另 一套是三层的;各自形成两套光谱。
Atomic Physics 原子物理学
第五章:多电子原子 :泡利原理
第一节 氦的光谱和能级 第二节 两个电子的耦合 第三节 泡利原理 第四节 元素周期表
H原子:
Tn
R n2
En
Rhc n2
类H离子:
Tn
Z2
R n2
En
Z 2
Rhc n2
碱金属原子:
Tnl
(n
R l)2
Enl
(n
Rhc l)2
能级



原子实+2个价电子。




子 由此可见,能级和光谱的形成都是二个价电子
: 泡
各种相互作用引起的.



首页
上一页
下一页
第二节:两个电子的耦合
电子的组态
1.定义: 两个价电子处在各种状态的组合,
称电子组态。
电子的组 态
比如,氦的两个电子都在1s态,那么氦的电
第 五
子组态是1s1s;
一个电子在1s,
若核(实)外有两个电子,由两个价电子跃迁而形 成的光谱如何?能级如何?原子态如何?

第五章 多电子原子

第五章 多电子原子
s s1 s2 , s1 s2 1, j l s, l s 1,
,| l1 l2 |
,| s1 s2 | ,| l s |
例题:两各价电子一个处于 p 态,一个处于
d 态,求 L-S 耦合后的量子数 l、s 和 j。
解:由题目知道 l1=1,l2=2, 可得:l=3、2、1 又因为 s1=1/2、s2=1/2 所以有 s=0、1 当 s=1,l=1 时,j=2、1、0
示了微观粒子遵从的一个重要规律。
一、确定电子状态的量子数
主量子数n:决定了原子能量的主要部分。
n=1、2、3、 4、 5、 6…
K、L、M、N、O、 P… 轨道角量子数l:决定了轨道的角动量,并由于 轨道形状的不同而影响能级,同一n分成不同l 的 能级。
l =0、1、2、3、4、5、6……
s、p、d、f、g、h……
一般来说, 同一电子组态形成的原子态
中,三重态能级低于单态能级,因为三重态
s=1,两个电子的自旋是同向的
1、氦原子光谱:两套(单线、多线)
氦原子光谱的线系可分成两组,其中一组 的几个系都是单线;
一组中的几个线系都是复杂结构,其中主 线系和第二辅线系的每一条谱线都分裂成靠 得很近的三条谱线,第一辅线系的每一条谱 线都分裂成靠得很近的六条谱线。
历史 上曾分 别把它 们叫做 正氦 (s=0)和 仲氦 (s=1), 后来得 知这是 同一种 氦原子 的两种 不同自 旋状态 。
2、氦原子能级:单重、三重
经光谱分析可得氦原子的能级有两 套,一套是单能级,另一套是三重能 级。两套能级之间没有跃迁,在两套 能级中各自内部的跃迁,就产生了两 组相互独立的谱线。
5.2 角动量耦合和对氦光谱的解释

结构化学 05第五章 多原子分子中的化学键

结构化学 05第五章 多原子分子中的化学键

O 原子的两个杂化轨道:
104.5o
a c1 cos52.25o px sin 52.25o py c2s
H
H
0.61c1px 0.79c1py c2s
b c1 cos52.25o px sin 52.25o py c2s
x
0.61c1px 0.79c1py c2s
( =0.30 , =0.70),夹角(=115.4o )
例2、NH3
实验测定 NH3 分子属C3v 点群。3个 N—H 键中 s ,p 成分相 同。∠HNH=107.3o。
按 H2O 的处理方法,N 原子杂化轨道中 s 轨道的成分:
(1) cos107.3o 0
0.23
形成 N—H 键的杂化轨道中:s 轨道占0.23,p 轨道占0.77,
用分子轨道理论(MO)处理多原子分子时,最一般的方 法是用非杂化的原子轨道进行线性组合,构成分子轨道,它们 是离域的,这些分子轨道中的电子并不定域在两个原子之间, 而是在几个原子之间离域运动。
◆ 离域分子轨道在讨论分子的激发态、电离能以及分子 的光谱性质等方面起很大作用。
◆ 理论分析所得的结果与实验数据符合。
2. 中心原子 A 与 m 个配位体 L 之间所形成的键可能是单键,也可 能是双键或叁键等多重键。双键和叁键可按一个键区计算原子间 互斥作用,但电子多空间大,斥力也大。
定性顺序为: 叁键—叁键 >叁键—双键 >双键—双键 >双键—单键 >单键—单键
3. 孤对电子对比成键电子对肥大,对相邻电子对的排斥作用较大。 ◆价电子对间排斥力大小次序: lp — lp >> lp — bp > bp — bp ◆孤电子对间排斥力随角度的增加而迅速地下降:

第五章泡利原理

第五章泡利原理

第五章多电子原子:泡利原理一、学习要点1. 氦原子和碱土金属原子:氦原子光谱和能级(正氦(三重态)、仲氦(单态))2. 重点掌握L-S耦合,了解j-j耦合3.洪特定则、朗德间隔定则、泡利不相容原理;4.两个价电子原子的电偶极辐射跃迁选择定则;5.元素周期律:元素周期表,玻尔解释.6.原子的电子壳层:主壳层:K LMNO P Q次壳层、次支壳层电子填充壳层的原则:泡利不相容原理、能量最小原理7.原子基态的电子组态(P228表27.2)1.选择题(2)氦原子由状态1s2p 3P2,1,0向1s2s 3S1跃迁,可产生的谱线条数为:A.0;B.2;C.3;D.1(4)氦原子有单态和三重态两套能级,从而它们产生的光谱特点是:A.单能级各线系皆为单线,三重能级各线皆为三线;B.单重能级各线系皆为双线,三重能级各线系皆为三线;C.单重能级各线系皆为单线,三重能级各线系皆为双线;D.单重能级各线系皆为单线,三重能级各线系较为复杂,不一定是三线.(5)下列原子状态中哪一个是氦原子的基态?A.1P1;B.3P1 ;C.3S1; D.1S0;(7)氦原子有单态和三重态,但1s1s3S1并不存在,其原因是:A.因为自旋为1/2,l 1=l2=0 故J=1/2 ;B.泡利不相容原理限制了1s1s3S1的存在;C..因为三重态能量最低的是1s2s3S1;D.因为1s1s3S1和 1s2s3S1是简并态(8)若某原子的两个价电子处于2s2p组态,利用L-S耦合可得到其原子态的个数是:A.1;B.3;C.4;D.6.(9)4D3/2 态的轨道角动量的平方值是:A.-3 2 ; B.6 2; C.-2 2; D.2 2(10)一个p电子与一个s电子在L-S耦合下可能有原子态为:A.3P0,1,2, 3S1 ;B.3P0,1,2 , 1S0;C.1P1, 3P0,1,2 ;D.3S1 ,1P1(11)设原子的两个价电子是p电子和d电子,在L-S耦合下可能的原子态有:A.4个;B.9个;C.12个;D.15个;(12)电子组态2p4d所形成的可能原子态有:A.1P 3P 1F 3F; B. 1P 1D 1F 3P 3D 3F;C.3F 1F; D.1S 1P 1D 3S 3P 3D.(13)铍(Be)原子若处于第一激发态,则其电子组态:A.2s2s;B.2s3p;C.1s2p;D.2s2p(14)若镁原子处于基态,它的电子组态应为:A.2s2s B.2s2p C.3s3s D.3s3p(15)电子组态1s2p所构成的原子态应为:A.1s2p1P1 , 1s2p3P2,1,0 B.1s2p1S0 ,1s2p3S1C.1s2p1S0, 1s2p1P1 , 1s2p3S1 , 1s2p3P2,1,0; D.1s2p1S0,1s2p1P1(16)判断下列各谱项中那个谱项不可能存在:A.3F2;B.4P5/2;C.2F7/2;D.3D1/2(18)在铍原子中,如果3D1,2,3对应的三能级可以分辨,当有2s3d3D1,2,3到2s2p3P2,1,0的跃迁中可产生几条光谱线?A.6 B.3 C.2 D.9(19)钙原子的能级应该有几重结构?A.双重; B.一、三重; C.二、四重; D.单重(20)元素周期表中:A.同周期各元素的性质和同族元素的性质基本相同;B.同周期各元素的性质不同,同族各元素的性质基本相同C.同周期各元素的性质基本相同,同族各元素的性质不同D.同周期的各元素和同族的各元素性质都不同(21)当主量子数n=1,2,3,4,5,6时,用字母表示壳层依次为:A.K LMONP;B.KLMNOP;C.KLMOPN;D.KMLNOP;(23)在原子壳层结构中,当l=0,1,2,3,…时,如果用符号表示各次壳层,依次用下列字母表示:A.s,p,d,g,f,h....B.s,p,d,f,h,g...C.s,p,d,f,g,h...D.s,p,d,h,f,g...(24)电子填充壳层时,下列说法不正确的是:A.一个被填充得支壳层,所有的角动量为零;B.一个支壳层被填满半数时,总轨道角动量为零;C.必须是填满一个支壳层以后再开始填充另一个新支壳层;D.一个壳层中按泡利原理容纳的电子数为2n2(25)实际周期表对K.L.M.N.O.P主壳层所能填充的最大电子数依次为:A.2,8,18,32,50,72;B.2,8,18,18,32,50;C.2,8,8,18,32,50;D.2,8,8,18,18,32.(26)按泡利原理,主量子数n确定后可有多少个状态?A.n2; B+1); C.2j+1; D.2n2(27)某个中性原子的电子组态是1s22s22p63s3p,此原子是:A.处于激发态的碱金属原子;B.处于基态的碱金属原子;C.处于基态的碱土金属原子;D.处于激发态的碱土金属原子;(28)氩(Z=18)原子基态的电子组态及原子态是:A.1s22s22p63p81S0; B.1s22s22p62p63d83P0C.1s22s22p6 3s23p61S0; D. 1s22s22p63p43d22D1/2(29)某个中性原子的电子组态是1s22s22p63s23p65g1,此原子是:A.处于激发态的碱土金属原子;B.处于基态的碱土金属原子;C.处于基态的碱金属原子;D.处于激发态的碱金属原子.(30)有一原子,n=1,2,3的壳层填满,4s支壳层也填满,4p支壳层填了一半,则该元素是:A.Br(Z=35); B.Rr(Z=36); C.V(Z=23); D.As(Z=33)(31)由电子壳层理论可知,不论有多少电子,只要它们都处在满壳层和满支壳层上,则其原子态就都是:A.3S0;B.1P1;C.2P1/2;D.1S0.(32)氖原子的电子组态为1s22s22p6,根据壳层结构可以判断氖原子基态为:A.1P1;B.3S1;C.1S0;D.3P0.2.简答题(1)简要解释下列概念:泡利不相容原理、洪特定则、朗德间隔定则、能量最小原理、莫塞莱定律.(2)L-S耦合的某原子的激发态电子组态是2p3p,可能形成哪些原子态?若相应的能级顺序符合一般规律,应如何排列?并画出此原子由电子组态2p3p向2p3s可能产生的跃迁.(首都师大1998)(3)写出铍原子基态、第一激发态电子组态及相应光谱项.(1991中山大学)3.计算题(1)已知氦原子基态的电子组态是1s1s,若其中一个电子被激发到3s态,问由此激发态向低能态跃迁时,可以产生几条光谱线?要求写出相关的电子组态及相应的原子态,并画出能级跃迁图。

第五章多电子原子

第五章多电子原子

uuv Pj1

uuv Pj2
合成
uuv PJ
,故称此种耦合过程
为 J − J 耦合。
①.原子态
每个电子合成的总角动量为
v Pl
+
v Ps
=
v Pj
j 可以去下列数值
j = l + s,K, l − s
因为每个电子的自旋量子数 s = 1 ,上式变为 2
j=l+1或 j=l−1。
2
2
最后每个电子的总角动量
作用比两个电子间的自旋和轨道运动相互作用强。这是每个电子的自旋角动量和
轨道角动量就要合成各自的总自旋角动量,即
uuv ps
+
uuv pl
=
uuv Pj
,每个电子的自旋角动
量和轨道角动量都绕着各自的总角动量旋进。然后两个电子的总角动量合成原子
的总角动量,即
uv P
j1
+
uuv Pj2
=
uuv PJ
。由于最后是
⎨ ⎪
J=1 2
⎪⎩J越小,能级越低,倒转次序,如
朗德间隔定则:在一个多重能级的结构中,ΔE1 ∝ J1 能级的间隔同有关的 J 值中较大的一个成正比。
如:
P3 0,1,2
中,
ΔE01 ΔE12
∝ ∝
=
1 2
,3D1,
中,ΔE12
2,3
ΔE23
=
2 等 。反过来再看氦和镁的能级图。 3
2). JJ耦合:即G3和G4比G1和G2强,也就是说电子的自旋同自己的轨道运动相互
①形成的原子态
pr s1 + pr s2 = pr s rr r Pl1 + Pl2 = PL rr r Ps + PL = PJ
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5第五章多电子原子
第五章多电子原子
一、学习要点
1.氦原子和碱土金属原子:
(1)氦原子光谱和能级(正氦(三重态)、仲氦(单态))(2)镁原子光谱和能级
2.重点掌握L-S耦合,了解j-j耦合
3.洪特定则、朗德间隔定则、泡利不相容原理;
4.两个价电子原子的电偶极辐射跃迁选择定则;
5.复杂原子光谱的一般规律:位移律、交替律、三个电子的角动量耦合、普用选择定则(电子组态的跃迁选择定则,又称宇称跃迁选择定则,或拉波特定则;L-S耦合选择定则等)
6.氦氖激光器
二、基本练习
1.褚书P168-169习题1.
2.
3.
4.6.7.
2.选择题
(1)关于氦原子光谱下列说法错误的是:
A.第一激发态不能自发的跃迁到基态;
B.1s2p 3P2,1,0能级是正常顺序;
C.基态与第一激发态能量相差很大;
D.三重态与单态之间没有跃迁
(2)氦原子由状态1s2p 3P2,1,0向1s2s 3S1跃迁,可产生的谱线条数为:
A.0;
B.2;
C.3;
D.1
(3)氦原子由状态1s3d 3D3,2,1向1s2p3P2,1,0跃迁时可产生的谱线条数为:
A.3;
B.4;
C.6;
D.5
(4)氦原子有单态和三重态两套能级,从而它们产生的光谱特点是:
A.单能级各线系皆为单线,三重能级各线皆为三线;
B.单重能级各线系皆为双线,三重能级各线系皆为三线;
C.单重能级各线系皆为单线,三重能级各线系皆为双线;
D.单重能级各线系皆为单线,三重能级各线系较为复杂,不一定是三线.
(5)下列原子状态中哪一个是氦原子的基态?
A.1P1;
B.3P1 ;
C.3S1; D.1S0;
(6)氦原子的电子组态为n1pn2s,则可能的原子态:
A.由于n不确定不能给出确定的J值,不能决定原子态;
B.为n1pn2s 3D2,1,0和n1pn2s 1D1;
C.由于违背泡利原理只存单态不存在三重态;
D.为n1pn2s 3P2,1,0和n1pn2s 1P1.
(7)C++离子由2s3p 3P2,1,0到2s3s 3S1两能级的跃迁,可产生几条光谱线?
A.6条;B.3条;C.2条;D.1条.
(8)氦原子有单态和三重态,但1s1s3S1并不存在,其原因是:
A.因为自旋为1/2,l1=l2=0 故J=1/2 ;
B.泡利不相容原理限制了1s1s3S1的存在;
C..因为三重态能量最低的是1s2s3S1;
D.因为1s1s3S1和1s2s3S1是简并态
(9)泡利不相容原理说:
A.自旋为整数的粒子不能处于同一量子态中;
B.自旋为整数的粒子能处于同一量子态中;
C.自旋为半整数的粒子能处于同一量子态中;
D.自旋为半整数的粒子不能处于同一量子态中.
(10)若某原子的两个价电子处于2s2p组态,利用L-S耦合可得到其原子态的个数是:
A.1;
B.3;
C.4;
D.6.
(11)4D 3/2 态的轨道角动量的平方值是:A.-3 2 ; B.6 2; C.-2 2;
D.2 2
(12)一个p 电子与一个 s 电子在L -S 耦合下可能有原子态为:
A.3P 0,1,2, 3S 1 ; B .3P 0,1,2 , 1S 0; C.1P 1 , 3P 0,1,2 ; D.3S 1 ,1P 1
(13)设原子的两个价电子是p 电子和d 电子,在L-S耦合下可能的原子态有:
A.4个;
B.9个;
C.12个;
D.15个;
(14)电子组态2p4d 所形成的可能原子态有:
A .1P 3P 1F 3F ; B. 1P 1D 1F 3P 3D 3F;
C .3F 1F; D.1S 1P 1
D 3S 3P 3D.
(15)硼(Z=5)的B +离子若处于第一激发态,则电子组态为:
A.2s2p
B.2s2s
C.1s2s
D.2p3s
(16)铍(Be )原子若处于第一激发态,则其电子组态:
A.2s2s ;
B.2s3p ;
C.1s2p;
D.2s2p
(17)若镁原子处于基态,它的电子组态应为:
A .2s2s B.2s2p C.3s3s D.3s3p
(18)今有电子组态1s2p,1s1p,2d3p,3p3s,试判断下列哪些电子组态是完全存在的:
A.1s2p ,1s1p
B.1s2p,2d3p C,2d3p,2p3s D.1s2p,2p3s
(19)电子组态1s2p 所构成的原子态应为:
A1s2p 1P 1 , 1s2p 3P 2,1,0 B.1s2p 1S 0 ,1s2p 3S 1
C1s2p 1S 0, 1s2p 1P 1 , 1s2p 3S 1 , 1s2p 3P 2,1,0; D.1s2p 1S 0,1s2p 1P 1
(20)判断下列各谱项中那个谱项不可能存在:
A.3F 2;
B.4P 5/2;
C.2F 7/2;
D.3D 1/2
(21)试判断原子态:1s1s 3S 1,1s2p 3P 2,1s2p 1D 1, 2s2p 3P 2中下列哪组是完全存在的?
A. 1s1s 3S 1 1s2p 3P 2 2s2p 3P 2 B .1s2p 3P 2 1s2p 1D 1
C. 1s2p 3P 2 2s2p 3P 2
D.1s1s 3S 1 2s2p 3P 2 1s2p 1D 1
(22)在铍原子中,如果3D 1,2,3对应的三能级可以分辨,当有2s3d 3D 1,2,3到2s2p 3P 2,1,0的跃迁中可产生几条光谱线?
A .6 B.3 C.2 D.9
(23)有状态2p3d 3P 2s3p 3P 的跃迁:
A.可产生9条谱线
B.可产生7条谱线
C 可产生6条谱线 D.不能发生
(24)已知Cl (Z=17)原子的电子组态是1s 22s 22p 63p 5,则其原子态是:
A.2P 1/2;
B.4P 1/2 ;
C.2P 3/2;
D.4P 3/2
(25) 原子处在多重性为5,J 的简并度为7的状态,试确定轨道角动量的最大值: A. 6; B.
12; C. 15; D. 30 (26)试确定D 3/2谱项可能的多重性:
A.1,3,5,7;
B.2,4,6,8; C .3,5,7; D.2,4,6.
(27)某系统中有三个电子分别处于s 态.p 态.d 态,该系统可能有的光谱项个数是:
A .7; B.17; C.8; D.18
(28)钙原子的能级应该有几重结构?
A .双重; B.一、三重; C.二、四重; D.单重
3.简答题
(1)简要解释下列概念:泡利不相容原理、洪特定则、朗德间隔定则.
(2)L-S耦合的某原子的激发态电子组态是2p3p,可能形成哪些原子态?若相应的能级顺序符合一般规律,应如何排列?并画出此原子由电子组态2p3p向2p3s可能产生的跃迁.(首都师大1998)(3)写出两个同科p电子形成的原子态,那一个能级最低?
(4)写出两个同科d电子形成的原子态,那一个能级最低?
(5)写出5个同科p电子形成的原子态,那一个能级最低?
(6)写出4个同科p电子形成的原子态,那一个能级最低?
(7)汞原子有两个价电子,基态电子组态为6s6s若其中一个电子被
激发到7s态(中间有6p态)由此形成的激发态向低能级跃迁时有多少种可能的光谱跃迁?画出能级跃迁图.
(8)某系统由一个d电子和一个2P3/2原子构成,求该系统可能的光谱项.
(9)某系统由spd电子构成,试写出它的光谱项.
(10)碳原子的一个价电子被激发到3d态,①写出该受激原子的电子组态以及它们在L—S耦合下形成的原子态; ②画出对应的能级图并说明这些能级间能否发生电偶极跃迁?为什么?。

相关文档
最新文档