分式的乘除法练习题
分式乘除法加减法练习题(打印版)
分式乘除法加减法练习题(打印版)### 分式乘除法加减法练习题练习一:分式乘法1. \( \frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd} \)求 \( \frac{3}{4} \times \frac{5}{6} \)。
2. \( \frac{m}{n} \times \frac{p}{q} \)如果 \( m = 2 \), \( n = 3 \), \( p = 4 \), \( q = 5 \),计算结果。
3. 计算 \( \frac{2x}{3y} \times \frac{4y^2}{5x^2} \)。
练习二:分式除法1. \( \frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times\frac{d}{c} \)求 \( \frac{3}{4} \div \frac{5}{6} \)。
2. \( \frac{m}{n} \div \frac{p}{q} \)如果 \( m = 2 \), \( n = 3 \), \( p = 4 \), \( q = 5 \),计算结果。
3. 计算 \( \frac{2x^2}{3y} \div \frac{4y^3}{5x} \)。
练习三:分式加减法1. \( \frac{a}{b} + \frac{c}{b} = \frac{a+c}{b} \)求 \( \frac{1}{2} + \frac{3}{2} \)。
2. \( \frac{m}{n} - \frac{p}{n} \)如果 \( m = 4 \), \( n = 5 \), \( p = 3 \),计算结果。
3. 计算 \( \frac{2x}{3y} + \frac{4y}{3x} \)。
练习四:混合运算1. 计算 \( \frac{1}{2} \times \frac{3}{4} + \frac{5}{6} \)。
六年级分式乘除法练习题
六年级分式乘除法练习题一、分式乘法练习题1. 将1/3 与 2/5 相乘,写出结果的分数形式和小数形式。
2. 将2/7 与 3/4 相乘,写出结果的分数形式和小数形式。
3. 将5/8 与 4/9 相乘,写出结果的分数形式和小数形式。
4. 将3/5 与 1/2 相乘,写出结果的分数形式和小数形式。
5. 将7/9 与 6/7 相乘,写出结果的分数形式和小数形式。
二、分式除法练习题1. 将1/2 除以 1/4,写出结果的分数形式和小数形式。
2. 将2/3 除以 2/5,写出结果的分数形式和小数形式。
3. 将3/7 除以 1/6,写出结果的分数形式和小数形式。
4. 将4/5 除以 2/3,写出结果的分数形式和小数形式。
5. 将5/6 除以 3/4,写出结果的分数形式和小数形式。
三、混合运算练习题1. 计算:2/3 × 4/5 ÷ 1/10,写出结果的分数形式和小数形式。
2. 计算:3/7 × 5/8 ÷ 4/9,写出结果的分数形式和小数形式。
3. 计算:4/5 × 1/2 ÷ 2/3,写出结果的分数形式和小数形式。
4. 计算:5/6 × 2/3 ÷ 3/4,写出结果的分数形式和小数形式。
5. 计算:1/2 × 3/4 ÷ 1/8,写出结果的分数形式和小数形式。
四、应用题1. 小明买了3/5 公斤的鱼,他用了1/2 公斤来做菜,剩下多少公斤?2. 小明拿着1 条绳子,他把绳子的1/2 给了小花,又把剩下的1/3给了小刚,他还剩下多少?3. 一桶牛奶有5/8 剩下的分给了小明,如果小明得到了3/4,那么原来有多少牛奶?4. 一块布长1/2 米,裁剪掉了1/4 米,剩下多少米?5. 销售员一共有40 个手机,他卖出的1/4 给了小刚,又卖出的2/5给了小明,他还剩下多少手机?以上是六年级关于分式乘除法的练习题,希望能够帮助你巩固知识。
(完整版)分式的乘除运算专题练习
分式的乘除乘方专题练习例1、下列分式abc 1215,a b b a --2)(3,)(222b a b a ++,b a b a +-22中最简分式的个数是( ). A.1 B.2 C.3 D.4例23234)1(x y y x • aa a a 2122)2(2+⋅-+ x y xy 2263)3(÷ 41441)4(222--÷+--a a a a a1.约分把一个分式的分子与分母的公因式约去,叫做约分.约分的依据是分式的基本性质. 若分式的分子、分母是多项式,必须先把分子、分母分解因式,然后才能约去公因式. 分子与分母没有公因式的分式,叫做最简分式,又叫做既约分式.分式的运算结果一定要化为最简分式.2.分式的乘法3.分式的除法 例3、 若432z y x ==,求222z y x zx yz xy ++++的值.例4、计算(1)3322)(cb a - (2)43222)()()(x y x y y x -÷-⋅-(3)2332)3()2(c b a bc a -÷- (4)232222)()()(x y xy xy x y y x -⋅+÷-分式的乘方求n 个相同分式的积的运算就是分式的乘方,用式子表示就是(ba )n .分式的乘方,是把分子、分母各自乘方.)56(3)1(122ab cd c b a -÷-、计算: (2)432643xy y x ÷-(3)(xy -x 2)÷x y xy -(4)2223ba a ab -+÷b a b a -+3 (5)3224)3()12(y x y x -÷-(6)322223322322)2()2()34(cb ab ac b a b a ab c +-÷-⋅2、如果32=b a ,且a ≠2,求51-++-b a b a 的值、 计算(1))22(2222a b ab b a a b ab ab a -÷-÷+-- (2)(2334b a )2·(223a b -)3·(a b 3-)2(3)(22932x x x --+)3·(-xx --13)22、先化简,再求值:(b a ab 22+)3÷2223)b a ab (-·[)(21b a -]2,其中a=-21,b=323、(1)先化简后求值:2(5)(1)5a a a a-+-÷(a 2+a ),其中a=-13.(2)先化简,再求值:21x x x -+÷1x x +,其中x=1.4.已知m+1m=2,计算4221m m m ++的值.7.(宁夏)计算:(9a 2b -6ab 2)÷(3ab )=_______.8.(北京)已知x -3y=0,求2222x y x x y +-+·(x -y )的值. 9.(杭州)给定下面一列分式:3x y ,-52x y ,73x y ,-94x y,…(其中x ≠0). (1)把任意一个分式除以前面一个分式,你发现了什么规律?(2)根据你发现的规律,试写出给定的那列分式中的第7个分式..11.(结论开放题)请你先化简,再选取一个使原式有意义而你又喜爱的数代入求值:322m m m m --÷211m m -+.12.(阅读理解题)请阅读下列解题过程并回答问题:计算:22644x x x--+÷(x+3)·263x x x +-+. 解:22644x x x --+÷(x+3)·263x x x +-+ =22644x x x--+·(x 2+x -6)① =22(3)(2)x x --·(x+3)(x -2)② =22182x x -- ③ 上述解题过程是否正确?如果解题过程有误,请给出正确解答.13.已知a 2+10a+25=-│b -3│,求代数式42()b a b -·32232a ab a b b +-÷222b a ab b -+的值.(一)、填空题1.把一个分式的分子与分母的 约去,叫做分式的约分.2.在分式xyxy y x 222+中,分子与分母的公因式是 . 3.将下列分式约分: (1)258x x = (2)22357mn n m -= (3)22)()(a b b a --= 4.计算2223362c ab b c b a ÷= . 5.计算42222ab a a ab ab a b a --÷+-= . 6.计算(-y x )2·(-32yx )3÷(-y x )4= . (二)、解答题7.计算下列各题316412446222+⋅-+-÷+--x x x x x x x y x y xy x -+-24422 ÷(4x 2-y 2)(3) 4344516652222+-÷-++⋅-+-a a a a a a a a (4)22222xa bx x ax a ax -÷+-8、某厂每天能生产甲种零件a 个或乙种零件b 个,且a ∶b=2∶3.甲、乙两种零件各一个配成一套产品,30天内能生产的产品的最多套数为多少?1、已知x 2+4y 2-4x+4y+5=0,求22442y xy x y x -+-·22y xy y x --÷(y y x 22+)2的值.2、已知a b c =1,求a a ba b b cb c a c c ++++++++111的值。
初二分式乘除练习题50道
初二分式乘除练习题50道1. 计算下列分式的乘积:a) $\frac{2}{3} \times \frac{4}{5}$b) $\frac{3}{4} \times \frac{5}{6}$c) $\frac{1}{2} \times \frac{3}{4}$d) $\frac{5}{6} \times \frac{7}{8}$e) $\frac{2}{5} \times \frac{3}{7}$2. 计算下列分式的商:a) $\frac{2}{3} ÷ \frac{4}{5}$b) $\frac{3}{4} ÷ \frac{5}{6}$c) $\frac{1}{2} ÷ \frac{3}{4}$d) $\frac{5}{6} ÷ \frac{7}{8}$e) $\frac{2}{5} ÷ \frac{3}{7}$3. 计算下列分式的乘积或商:a) $\frac{2}{3} \times \frac{4}{5} ÷ \frac{1}{2}$b) $\frac{3}{4} ÷ \frac{5}{6} \times \frac{4}{5}$c) $\frac{1}{2} \times \frac{3}{4} \div \frac{2}{3}$d) $\frac{5}{6} \div \frac{7}{8} \times \frac{6}{7}$e) $\frac{2}{5} \times \frac{3}{7} \div \frac{4}{5}$4. 将下列分式化简,使分母为正数:a) $\frac{-2}{3}$b) $\frac{3}{-4}$c) $\frac{-5}{-6}$d) $\frac{4}{-7}$e) $\frac{-6}{8}$5. 计算下列表达式的值:a) $3 \times \left(\frac{2}{5} - \frac{1}{3}\right)$b) $\frac{2}{9} + \frac{3}{7} - \frac{5}{21}$c) $\frac{3}{4} \div \left(\frac{2}{5} + \frac{1}{3}\right)$d) $\left(\frac{4}{5} + \frac{1}{6}\right) \div \left(\frac{2}{3} -\frac{1}{4}\right)$e) $\frac{2}{3} \times \left(\frac{3}{4} - \frac{1}{6}\right) +\frac{1}{2}$6. 用分式表示下列问题,并计算:a) Tom做了$\frac{2}{5}$小时的作业,占他学习时间的$\frac{3}{4}$,他学习了多久?b) 如果$\frac{1}{8}$块蛋糕可以给一个人吃,那么12个人可以吃多少块蛋糕?c) 一个学生做数学作业花费$\frac{4}{9}$小时,然后又花费$\frac{5}{8}$小时做英语作业,一共花了多久?d) $\frac{3}{4}$米绳子被剪成了$\frac{2}{3}$米和剩下的部分,剩下的部分有多长?e) 如果一个邮箱的容量是$\frac{7}{10}$倍于另一个邮箱,容量较大的邮箱可以放几个较小邮箱的邮件?7. 将下列百分数转换为分数或小数:a) $50\%$b) $75\%$c) $25\%$d) $20\%$e) $80\%$8. 将下列分数转换为百分数或小数:a) $\frac{3}{5}$b) $\frac{2}{10}$c) $\frac{1}{4}$d) $\frac{3}{8}$e) $\frac{5}{6}$9. 在下列方程中解出未知数的值:b) $\frac{5}{2}y + \frac{1}{4} = \frac{11}{4}$c) $\frac{1}{3}z - \frac{4}{5} = -\frac{11}{15}$d) $\frac{3}{4}w + \frac{2}{3} = \frac{17}{12}$e) $4a - \frac{1}{5} = 5$10. 解下列方程组,给出未知数的值:a)$\begin{cases}2x - y = 5 \\x + 3y = 1\end{cases}$b)$\begin{cases}3x - 2y = 8 \\2x + y = 4\end{cases}$c)$\begin{cases}5x - 4y = 6 \\\end{cases}$d)$\begin{cases}\frac{x}{2} - \frac{y}{3} = 1 \\\frac{x}{4} + \frac{y}{5} = \frac{3}{10}\end{cases}$e)$\begin{cases}2x + 3y = 7 \\4x - 5y = 1\end{cases}$通过以上50道分式乘除练习题,相信你对初二阶段的分式乘除运算有了更深入的理解。
分式乘除法计算练习题及答案
分式乘除法计算练习题及答案x?2x2?6x?93xy28z2问题1 计算:.; 2x?3x?44zy名师指导这道例题就是直接应用分式的乘法法则进行运算.值得注意的是运算结果应约分到不好约分为止,同时还应注意在计算时跟整式运算一样,先确定符号,再进行相关计算,求出结果.这道例题中分式的分子、分母是多项式,应先把分子、分母中的多项式分解因式,再进行约分.解题示范3xy28z224xy2z2解:6xy;z2y4yz2x?2x2?6x?9x?222x?3. 2x?3x?4x?3x?2归纳提炼类比分数的乘法运算不难理解,分式的乘法运算就是根据分式乘法法则,将各式分子、分母分别相乘后再进行约分运算,值得注意的地方有三点:一是要确定好运算结果的符号;二是计算结果中分子和分母能约分则要约分;三是有时计算结果的分母不一定是单一的多项式,而是多个多项式相乘,这时也不必把它们展开. a2b?2axa?2a2?4??问题计算:;. a?3a2?6a?93cd6cd名师指导分式除法运算,根据分式除法法则,将分式除法变为分式乘法运算,注意点同分式乘法.解题示范a2b?2axa2b6cd6a2bcdab;解:3cd6cd3cd2ax6acdxxa?2a2?4a?222a?3. ?2a?3a?6a?9a?3a?2a3b?a2b2a2?ab?2问题已知:a?2b?2?2的值.2a?2ab?ba?b名师指导完成这类求值题时,如果把已知条件直接代入,计算将会较为繁杂,容易导致错误产生.解决这种问题,一般应先将代数式进行化简运算,然后再把已知条件代入化简后的式子中进行计算,这样的处理方式可以使运算量少很多.解题示范解:化简代数式得,a3b?a2b2a2?ab?222a?2ab?ba?ba2b ?2aa2b2 ?2aab.把a?2b?2ab,所以原式?·2xy. x?y2y22.计算:?3xy?.x33.计算:?9ab____. b3x2yxy?..计算:a3am2?4m?3?25.若m等于它的倒数,则分式的值为m?2m?3mA.-1B.3C.-1或D.?6.计算?21 x?y的结果是 xA.2B.x2?yC.x2D.x7.计算32的结果是A.3a2-1 B.3a2-C.3a2+6a+ D.a2+2a+1 8.已知x等于它的倒数,则x2?x?6x?3x?3x2?5x?6的值是A.- B.-C.-1 D.09.计算a2?1a2?aa2?2a?1÷a?1.10.观察下列各式:x?1x2?x?1x3?x2?x?1x4?x3?x2?x?1你能得到一般情况下?的结果吗?根据这一结果计算:1?2?22?23??22006?22007.) xn?1?n?2?x?1,22008ax??17.B.A分数乘除法计算题专项练习1一、直接写出得数57?34=79?97=5?43=7?152=?354=1= 191591120?38= 10?32==7×1= 1+17= 1953×0=?778=3?9= 134?5 =4÷34=10÷10%= 12÷23=1.8×15926=?10?5= 1715×60=二、看谁算得又对又快58?167?141135248?6?351926?3855?511 12?35?32533545×4÷×48?3+8?458÷71521÷ 10 ÷×姓名:6÷310-310÷ 13353×4÷[523713133-]÷314÷ 16718×14+34×7114×57÷14×5 736× ×9+2312×3.2+5.6×0.5+1.2×50%211?3?2?5955711[2-]×12三、解方程78x=218239x?4=15x+215x=23 56x=308x-113=6x+5×4.4=40÷x =5122x+215x=20四、求下面各比的比值1052:8467:46.7106345:0.610:140 19:12五、化简下面各比65:1 123: 1.1:114.9:0.152:15:0.12六、列式计算1.4个131的和除以8,商是多少?.112减去2乘23的积,差是多少?3.一个数的比它的34多,求这个数。
分式的乘除练习题及答案
分式的乘除练习题及答案问题1计算:(1)22238()4xy zz y-;(2)2226934x x xx x+-+--.名师指导(1)这道例题就是直接应用分式的乘法法则进行运算.值得注意的是运算结果应约分到不好约分为止,同时还应注意在计算时跟整式运算一样,先确定符号,再进行相关计算,求出结果.(2)这道例题中分式的分子、分母是多项式,应先把分子、分母中的多项式分解因式,再进行约分.解题示范解:(1)2222223824()644xy z xy zxy z y yz-=-=-;(2)22222692(3)(2)(3)3 343(2)(2)(3)(2)(2)2x x x x x x x xx x x x x x x x x+-++-+--===---+--+--.归纳提炼类比分数的乘法运算不难理解,分式的乘法运算就是根据分式乘法法则,将各式分子、分母分别相乘后再进行约分运算,值得注意的地方有三点:一是要确定好运算结果的符号;二是计算结果中分子和分母能约分则要约分;三是有时计算结果的分母不一定是单一的多项式,而是多个多项式相乘,这时也不必把它们展开.问题2计算:(1)2236a b axcd cd-÷;(2)2224369a aa a a--÷+++.名师指导分式除法运算,根据分式除法法则,将分式除法变为分式乘法运算,注意点同分式乘法.解题示范解:(1)22226636326a b ax a b cd a bcd ab cd cd cd ax acdx x -÷=-=-=-;(2)2222242(3)(2)(3)33693(2)(2)(3)(2)(2)2a a a a a a a a a a a a a a a a a ---+-++÷===+++++-++-+.问题3 已知:2a =2b =+322222222a b a b a ab a ab b a b+-÷++-的值. 名师指导完成这类求值题时,如果把已知条件直接代入,计算将会较为繁杂,容易导致错误产生.解决这种问题,一般应先将代数式进行化简运算,然后再把已知条件代入化简后的式子中进行计算,这样的处理方式可以使运算量少很多.解题示范解:化简代数式得,322222222a b a b a ab a ab b a b +-÷++- 22()()()()()a b a b a b a b a b a a b ++-=+- 222()()()()a b a b a b a a b a b +-=+- ab =.把2a =2b =ab ,所以原式22(222==-=.归纳提炼许多化简求值题,有的在题目中会明确要求先化简,再求值,这时必须按要求的步骤进行解题.但有的在题目中未必会给出明确的要求或指示,与整式中的求代数式值的问题一样,分式中的求值题一般也是先化简,然后再代入已知条件,这样可以简化运算过程.【自主检测】1.计算:2()xy x -·xy x y-=___ _____.2.计算:23233y xy x -÷____ ____.3.计算:3()9aab b -÷=____ ____.4.计算:233x yxya a ÷=____ ____.5.若m 等于它的倒数,则分式m m m m m 332422--÷--的值为( ) A .-1 B .3 C .-1或3 D .41-6.计算2()x yx xy x ++÷的结果是( ) A .2()x y + B .y x +2 C .2x D .x7.计算2(1)(2)3(1)(1)(2)a a a a a -++++的结果是( ) A .3a 2-1 B .3a 2-3 C .3a 2+6a +3 D .a 2+2a +18.已知x 等于它的倒数,则263x x x ---÷2356x x x --+的值是( )A .-3B .-2C .-1D .09.计算22121a a a -++÷21a aa -+.10.观察下列各式:2324325432(1)(1)1(1)(1)1(1)(1)1(1)(1)1x x x x x x x x x x x x x x x x x x -÷-=+-÷-=++-÷-=+++-÷-=++++(1)你能得到一般情况下(1)(1)n x x -÷-的结果吗?(2)根据这一结果计算:2320062007122222++++++.【自主评价】一、自主检测提示8.因为x 等于它的倒数,所以1x =±,2263356x x x x x x ---÷--+ (3)(2)(2)(3)33x x x x x x -+--=--(2)(2)x x =+-224(1)43x =-=±-=-. 10.根据所给一组式子可以归纳出:122(1)(1)1n n n x x x x x x ---÷-=+++++. 所以232006200720082008122222(21)(21)21++++++=--=-.二、自我反思1.错因分析2.矫正错误3.检测体会4.拓展延伸参考答案1.2x y - 2. 292x y - 3. 213b - 4.9x 5.C 6.C 7.B 8.A 9.1a 10.(1)121n n xx x --++++,(2)200821-。
分式乘除法专项练习60题含答案
分式乘除法专项练习60题含答案1.将第一题的“.”改为“=”。
2.删除第二题。
3.将第三题的“=•=”改为“=”,并在最后加上“故答案为”。
4.将第四题的“==”改为“=”。
5.将第五题的“==”改为“=”。
6.将第六题的“=÷=”改为“=”,并在最后注明“(答案不唯一)”。
7.将第七题的“==”改为“=”,并在后面给出一个可能的答案。
8.将第八题的“=”改为“=÷=”。
9.将第九题的“=•=”改为“=”,并在后面给出一个可能的答案。
10.将第十题的“==”改为“=”。
11.将第十一题的“=”改为“=•=”。
12.将第十二题的“=”改为“=”,并在后面给出一个可能的答案。
13.将第十三题的“=•=”改为“=”,并在后面给出一个可能的答案。
14.将第十四题的“==”改为“=”。
15.将第十五题的“=••=”改为“=”,并在后面给出一个可能的答案。
16.将第十六题的“=”改为“=a÷a•=”,并在后面给出一个可能的答案。
17.删除第十七题。
18.删除第十八题。
19.将第十九题的“=•=”改为“=”,并在后面给出一个可能的答案。
20.将第二十题的“÷=”改为“=÷=”。
21.将第二十一题的“=••=”改为“=”,并在后面给出两个答案。
22.将第二十二题的“=”改为“=”,并在后面给出一个答案。
23.将第二十三题的“==”改为“=”。
24.将第二十四题的“÷”改为“÷,”,并在后面给出两个答案。
25.将第二十五题的“÷(﹣xy4)”改为“÷(﹣)÷y4)”。
26.将第二十六题的“=;”改为“=”,并在后面给出两个答案。
27.将第二十七题的“×÷=”改为“=×÷”。
28.将第二十八题的“=•=”改为“=”,并在后面给出两个答案。
29.将第二十九题的“÷÷”改为“=••”,并在后面给出一个答案。
5.2《分式的乘除法》习题含解析北师大八年级下初二数学试题试卷
《分式的乘除法》习题一、填空题1.将下列分式约分:(1)258x x = ; (2)22357mn n m -= ;(3)22)()(a b b a --= . 2.计算:①224ba a 8bc ⋅=________;②22x 14y 2y ÷= .3.计算42222a b a a ab ab a b a --÷+-= .4.计算4312x (15ax )ab ÷= .二、选择题1.计算2322n mm n m n ÷÷-的结果为( )A .22n mB .32n m- C .4m n- D .n -2.下列各式成立的是 () A.44b b a a = B. 2222b b c a a c +=+ C. 222)(b a b a b a b a +-=+- D.a 3aa b 3a b =++3.化简÷的结果是 ( )A.-a-1B.-a+1C.-ab+1D.-ab+b4.下列计算结果正确的有( ) ①24x x1x 4x x ∙=;②6a 2b 322a 3b ⎛⎫- ⎪⎝⎭=-4a 3;③111222-=+÷-a a a a a a ;④b ÷a ·1a =b ⑤abb a a b b a 12222=÷⎪⎪⎭⎫ ⎝⎛-∙⎪⎪⎭⎫ ⎝⎛-.A.1个B.2个C.3个D.4个5.化简422222m(m )(m )m m n n n n n m -+÷∙-的结果是( )A. 2m m n- B.2m m n + C.4n m n + D. 4n m n - 6.已知223x 1M x y x y÷=--,则M 等于( ) A.3x x y + B.x y 3x + C.3x x y - D.x y 3x- 三、解答题1.计算.(1))2224ab a a b +-÷a 4b a b +-; (2)22(14)41292341y y y y y -++∙+-;(3)244x (16x y)()y -÷-2. 化简:222x 6x 92x 69x x 3x-+-÷-+3.先化简,再求值:22(x 6)(x 1)(x )6-+÷+-x x x ,其中x = -124. 某厂每天能生产甲种零件a 个或乙种零件b 个,且a ∶b=2∶3.甲、乙两种零件各一个配成一套产品,30天内能生产的产品的最多套数为多少?参考答案一、选择题1. 答案:(1)3x 8,(2)m 5n -,(3)1. 解析:【解答】(1)532x x 8x 8==; (2)22357mn n m -=m 5n - ;(3)22)()(a b b a --=1. 【分析】运用分式乘除的运算法则计算即可.2. 答案:①bca 2,②2x y 2; 解析:【解答】①224b a a 8bc ⋅=224a b a 8ab c 2bc =;②22x 14y 2y÷=222x x y 2y 4y 2⨯=. 【分析】运用分式乘除的运算法则计算即可.3. 答案:.a-b 解析:【解答】42222a b a a ab ab a b a --÷+-=2222a b a (b a )a b a (a b)(a b)a b a(a b)a(b a)a(a b)a(a b)---+-⨯=⨯=-+-+- 【分析】运用分式乘除的运算法则计算即可.4. 答案:24x 5a b; 解析:【解答】4312x (15ax )ab ÷=43212x 14x ab 15ax 5a b⨯=. 【分析】运用分式乘除的运算法则计算即可.二、选择题1. 答案:D ; 解析:【解答】2322nm m n m n ÷÷-=3222n m n n m n m -⨯⨯=-,故选D. 【分析】根据分式乘除的运算法则计算出结果即可.2. 答案:C ;解析:【解答】A 选项44b b a a ≠,此选项错误; B 选项2222b b c a a c+≠+,此选项错误;C 选项222a b (a b)(a b)a b a b (a b)(a b)(a b)--⨯+-==++⨯++,此选项正确; D 选项a 3a a b 3a b≠++ ,此选项错误;故选C.【分析】根据分式乘除的运算法则分析各选项即可.3. 答案:B.解析:【解答】÷=×(a 1)a b-=1-a 【分析】根据分式乘除的运算法则计算出结果即可.4. 答案:C ; 解析:【解答】①24x x 1x 4x x ∙=,结果正确;②6a 2b 322a 3b ⎛⎫- ⎪⎝⎭=-4a 3b ,结果错误;③111222-=+÷-a a a a a a,结果正确;④b ÷a ·1a =211b b a a a ⨯⨯=,结果错误a ; ⑤22222222a b a b 11a b b a b a a bab ⎛⎫⎛⎫⎛⎫⎛⎫-∙-÷=--= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ,结果正确. 【分析】根据分式乘除的运算法则计算各选项结果即可.5. 答案:D ; 解析:【解答】422222m(m )(m )m m n b n n n m -+÷∙-=22242(m )(m )(m )m(m )m n n n n n n b m m n+-⋅⋅=-+-,故选D.【分析】根据分式乘除的运算法则计算出结果即可.6. 答案:A ; 解析:【解答】∵223x 1M x y x y ÷=--;∴M=222x 13x 3x (x y)x y x y (x y)(x y)x y ÷=⨯-=--+-+,故选A.【分析】根据分式乘除的运算法则计算出结果即可.三、解答题1.答案:(1)a (a b)+. (2)8y 2+10y -3. (3)4x 2y 2 解析:【解答】(1)2224ab a a b +-÷a 4b a b +-=a(a 4b)(a b)(a b)++-×a b a 4b -+=a (a b)+; (2)22(14)41292341y y y y y -++∙+-= 2(14y)(14y)(2y 3)(14y)(2y 3)2y 34y 1+-+∙=+++-=8y 2+10y -3. (3)244x (16x y)()y -÷- =4222y (16x y)()4x y 4x -⨯-= 【分析】运用分式乘除的运算法则计算即可.2. 答案:22 (x3) (x3)--+解析:【解答】222x6x92x69x x3x-+-÷-+=222(x3)2(x3)(x3)(x3)(x3)x(x3)(x3)----⨯=-+-++【分析】先因式分解,然后运用分式乘除的运算法则计算即可.3. 答案:4.解析:【解答】解:原式=(x6)(x1)x(x6)-+-·1x(x1)+=21x,当x= -12时,原式=2112⎛⎫- ⎪⎝⎭=4.【分析】先化简,然后把x的值代入即可.4. 答案:8a或12b套产品解析:【解答】设x天做甲种零件,(30-x)天做乙种零件,要使零件配套,则:xa=(30-x)b,把a=(2:3)/b代入方程解得x=18,30-x=12.也就是说,生产甲种零件花18天,生产乙种零件花12天能使零件配套.所以11月份该车间最多能生产18a或12b套产品.(18a=12b)【分析】根据题意设出未知数,列出相应的方程,求解即可.。
分式的乘除运算专题练习(供参考)
分式的乘除乘方专题练习1.约分把一个分式的分子与分母的公因式约去,叫做约分.约分的依据是分式的基本性质.若分式的分子、分母是多项式,必须先把分子、分母分解因式,然后才能约去公因式.分子与分母没有公因式的分式,叫做最简分式,又叫做既约分式.分式的运算结果一定要化为最简分式.2.分式的乘法3.分式的除法4.分式的乘方 求n 个相同分式的积的运算就是分式的乘方,用式子表示就是(b a )n . 分式的乘方,是把分子、分母各自乘方.用式子表示为:例1、下列分式abc 1215,a b b a --2)(3,)(222b a b a ++,b a b a +-22中最简分式的个数是( ). A.1 B.2 C.3 D.4例2.计算:3234)1(x y y x • a a a a 2122)2(2+⋅-+ x y xy 2263)3(÷ 41441)4(222--÷+--a a a a a例3、 若432z y x ==,求222z y x zx yz xy ++++的值.例4、计算(1)3322)(cb a - (2)43222)()()(x y x y y x -÷-⋅-(3)2332)3()2(c b a bc a -÷- (4)232222)()()(x y xy xy x y y x -⋅+÷-)56(3)1(122ab cd c b a -÷-、计算: (2)432643xy yx ÷-(3)(xy -x 2)÷x y xy - (4)(广州中考题)2223b a a ab -+÷b a b a -+3 (5)3224)3()12(y x y x -÷- (6)322223322322)2()2()34(c b ab a c b a b a ab c +-÷-⋅2、 (浙江中考题)如果32=b a ,且a ≠2,那么51-++-b a b a = . 3、已知x 2+4y 2-4x+4y+5=0,求22442yxy x y x -+-·22y xy y x --÷(y y x 22+)2的值.1、 计算(1))22(2222a b ab b a a b ab ab a -÷-÷+-- (长沙中考题) (2)(2334b a )2·(223ab -)3·(a b 3-)2(3)(22932x x x --+)3·(-xx --13)2 (南昌中考题)2、先化简,再求值:(b a ab 22+)3÷2223)b a ab (-·[)(21b a -]2,其中a=-21,b=323、(1)先化简后求值:2(5)(1)5a a a a-+-÷(a 2+a ),其中a=-13.(2)先化简,再求值:21x x x -+÷1x x +,其中.4.已知m+1m=2,计算4221m m m ++的值.5、(科外交叉题)•已知两块大小相同的正方体铜块和正方体铁块的重量分别为x 牛和y 牛,当把它们放在同一水平桌面上时,•铁块对桌面的压强是铜块对桌面的压强的多少倍?(提示:物体的压强公式为压强=压力面积,即P=F S )6、一艘轮船从甲地顺流行至乙地,然后再从乙地逆流返回甲地,已知水流速度为3km/h ,去时所需时间是回来所需时间的34,求轮船在静水中的速度.(•只列方程不必求解) 7.(宁夏)计算:(9a 2b -6ab 2)÷(3ab )=_______.8.(北京)已知x -3y=0,求2222x y x x y+-+·(x -y )的值.9.(杭州)给定下面一列分式:3x y ,-52x y ,73x y ,-94x y,…(其中x ≠0). (1)把任意一个分式除以前面一个分式,你发现了什么规律?(2)根据你发现的规律,试写出给定的那列分式中的第7个分式.10.(规律探究题)计算:222200420032004200220042004+.11.(结论开放题)请你先化简,再选取一个使原式有意义而你又喜爱的数代入求值:322m m m m --÷211m m -+.12.(阅读理解题)请阅读下列解题过程并回答问题:计算:22644x x x --+÷(x+3)·263x x x +-+. 解:22644x x x--+÷(x+3)·263x x x +-+ =22644x x x --+·(x 2+x -6)① =22(3)(2)x x --·(x+3)(x -2)② =22182x x -- ③ 上述解题过程是否正确?如果解题过程有误,请给出正确解答.13.已知a 2+10a+25=-│b -3│,求代数式42()b a b -·32232a ab a b b +-÷222b a ab b-+的值.(一)、填空题1.把一个分式的分子与分母的 约去,叫做分式的约分.2.在分式xyxy y x 222+中,分子与分母的公因式是 . 3.将下列分式约分:(1)258x x = (2)22357mn n m -= (3)22)()(a b b a --= 4.计算2223362cab b c b a ÷= . 5.计算42222a b a a ab ab a b a --÷+-= . 6.计算(-y x )2·(-32yx )3÷(-y x )4= . (二)、解答题7.计算下列各题(1)316412446222+⋅-+-÷+--x x x x x x x (2)y x y xy x -+-24422÷(4x 2-y 2)(3)4344516652222+-÷-++⋅-+-a a a a a a a a (4)22222x a bx x ax a ax -÷+-8.当x=-3时,求xx x x x x 43342323-++-的值9.已知x+y 1=1,y+z 1=1,求证z+x1=1.10、某厂每天能生产甲种零件a 个或乙种零件b 个,且a ∶b=2∶3.甲、乙两种零件各一个配成一套产品,30天内能生产的产品的最多套数为多少?1、已知a b c =1,求a a ba b b cb c a c c ++++++++111的值。
15.2.1分式的乘除法练习题
分式乘除法一、选择题1. 下列变形错误的是( )A. 46323224y y x y x -=-B. 1)()(33-=--x y y x C. 9)(4)(27)(12323b a x b a b a x -=-- D. y x a xy a y x 3)1(9)1(32222-=-- 2. cd ax cd ab 4322-÷等于( ) A. -x b 322 B. 23 b 2x C. x b 322 D. -222283d c xb a 3. 已知分式)3)(1()3)(1(-++-x x x x 有意义,则x 的取值为( ) A. x ≠-1 B. x ≠3 C. x ≠-1且x ≠3 D. x ≠-1或x ≠34. 下列分式,对于任意的x 值总有意义的是( )A. 152--x xB. 112+-x xC. xx 812+ D. 232+x x5. 若分式m m m --21||的值为零,则m 取值为( ) A. m =±1 B . m =-1 C. m =1 D. m 的值不存在6. 每千克m 元的糖果x 千克与每千克n 元的糖果y 千克混合成杂拌糖,这样混合后的杂拌糖果每千克的价格为( )元 A.y x m y nx ++ B. yx ny m x ++ C. y x nm ++ D. 21(n y m x +)7. 小马虎在下面的计算题中只做对了一道题,你认为他做对的题目是( )A.11326b a a ⨯=B.22()b a b a a b ÷=-- B. C.111x y x y ÷=+- D .2211()()x y y x y x ⨯=--- 8. 下列式子:,,1,1,32,32πn m b a a b a x x --++ 中是分式的有( )个A 、5B 、4C 、3D 、29. 下列分式中是最简分式的是( )A 、a 24B 、112+-m m C 、122+m D 、m m --11二、填空题1. 计算:c b a a b 2242⋅=________. 2. 计算:abx 415÷(-18a x 3)=________.3. 化简分式22yx abyabx -+得________. 4. 若b a =5,则abb a 22+=________.5. 下列各式:π3,32,4,52,21222-++x x y x xy b a a 中,是分式的为________.(注意:π是数字,不是字母)6. 当x =________时,分式121+-x x 的值为1. 三、解答题1. x 取何值时,下列分式有意义: (1)322-+x x (2)12||)3(6-+x x (3)162++x x四.、计算: (1)(x y -x 2)÷xy y x -(2)24244422223-+-÷+-+-x x x x x x x x(3)22329ab x xa b -⋅ (4)2233b ab a -÷(5)22122a a a a +⋅-+ (6)22222x y x xy x y x y -+÷++(7)2224414111m m m m m -+-÷+-(8)222244(4)2x xy y x y x y -+-÷-五、 先化简,再求值xx x x x x x 39396922322-+⋅++-,其中x =-31.。
分式乘除运算(习题及答案).
分式乘除运算(习题)复习巩固1.下列各式:①115x -;②43x π-;③222x y -;④m n m n -+;⑤25x x.其中属于分式的是______________.(填序号)2.下列运算正确的是()A .11b b a a +-+-=B .2x y x y x+=+C .x y y x x y y x--=++D .1x y x y --=-+3.下列各分式中,属于最简分式的是()A .34()85()x y x y -+B .22y x x y -+C .2222x y x y xy ++D .222()x y x y -+4.下列结论:①无论x 取何值,分式221x x +都有意义;②当1x =-时,分式2121x x x +++的值为0;③若使1121x x x x ++÷--有意义,则x 的取值范围是x ≠2且x ≠1.其中正确的是_______.(填序号)5.若分式211x x --的值为0,则x =___________.6.化简下列分式:(1)22214ac a bc -;(2)2242a a a --;(3)2324x x x x+-;(4)222x x y xy --;(5)222612633x xy y xy y -+-.7.计算:(1)22322358154m ab m b a -÷;(2)22225593x y xy x y x y -⋅-;(3)2224123a b a b a ab a b --÷++;(4)222692693x x x x x x-+-÷-+;(5)2222222xy x y x xy y xy x y-⋅-+-;(6)22244442824a a a a a a a a -++÷⋅--+.8.把分式222xy x y +中x ,y 的值都扩大为原来的2倍,则分式的值()A .不变B .扩大为原来的2倍C .扩大为原来的4倍D .缩小为原来的129.甲、乙两个工程队合修一条公路,已知甲工程队每天修2(1)a -米(其中a >1),乙工程队每天修2(1)a -米,则甲工程队修900米所用时间是乙工程修600米所用时间的_____倍.复习巩固1.①④⑤2.D 3.C 4.①5.-16.(1)7c ab -;(2)2a a +-;(3)12x -;(4)x y -;(5)22x y y -.7.(1)76a m -;(2)215y x xy +;(3)4a b a +;(4)2x -;(5)2()x y x y +--;(6)22(2)a a -+.8.A 9.3322a a -+。
分式的乘除练习题及答案初二
分式的乘除练习题及答案初二乘法练习题:1. 计算下列分式相乘的结果:(答案在括号中)a) $\frac{3}{4} \cdot \frac{2}{3}$ ($\frac{1}{2}$)b) $\frac{5}{6} \cdot \frac{3}{10}$ ($\frac{1}{4}$)c) $\frac{7}{8} \cdot \frac{9}{12}$ ($\frac{21}{32}$)2. 将下列混合数转化为带分数形式,并进行相乘:(答案在括号中)a) $2\frac{2}{3} \cdot 3\frac{1}{4}$ ($8\frac{1}{4}$)b) $5\frac{3}{4} \cdot 2\frac{1}{2}$ ($14\frac{3}{8}$)c) $7\frac{5}{6} \cdot 1\frac{2}{3}$ ($13\frac{5}{12}$)3. 将分式约简并相乘:(答案在括号中)a) $\frac{12}{15} \cdot \frac{9}{12}$ ($\frac{3}{5}$)b) $\frac{18}{24} \cdot \frac{8}{9}$ ($\frac{4}{3}$)c) $\frac{14}{21} \cdot \frac{5}{6}$ ($\frac{5}{9}$)除法练习题:1. 计算下列分式相除的结果:(答案在括号中)a) $\frac{2}{3} \div \frac{1}{4}$ ($\frac{8}{3}$)b) $\frac{5}{6} \div \frac{2}{5}$ ($\frac{25}{12}$)c) $\frac{7}{9} \div \frac{3}{8}$ ($\frac{56}{27}$)2. 将带分数转化为假分数,并进行相除:(答案在括号中)a) $3\frac{1}{2} \div 2\frac{3}{4}$ ($\frac{7}{8}$)b) $7\frac{2}{5} \div 1\frac{1}{3}$ ($\frac{53}{40}$)c) $6\frac{3}{4} \div 1\frac{1}{2}$ ($4\frac{7}{24}$)3. 将分式约简并相除:(答案在括号中)a) $\frac{15}{18} \div \frac{9}{12}$ ($\frac{4}{3}$)b) $\frac{16}{24} \div \frac{4}{9}$ ($\frac{3}{2}$)c) $\frac{20}{28} \div \frac{5}{6}$ ($\frac{12}{7}$)总结:通过以上乘除法的练习题,我们可以巩固和加深对分式乘除的理解和掌握。
数学八上10.3《分式的乘除法》练习题
10.3 分式的乘除法基础能力训练◆分式的乘除运算1.计算:=+-•-+aa a a a 22222_______. 2.d d c cb b a 1112⨯÷⨯÷⨯÷等于( ) A.2a B.2222d cb a C.bcd a 2 D.其他结果 3.计算dd c c b b a 111•÷•÷•÷.4.计算41441222--÷+--a a a a a . 5.计算123)1(212232+++•+÷-+-x x x x x x x x . ◆分式的乘方运算 6.3)32(ba . 7.332)2(cb a -. ◆分式的乘除、乘方混合运算 8.43222)()()(xy x y y x -÷-•-. 9.)()(632c b acb -÷. 10.42232)()()(abc ab c c b a ÷-•-. 11.2222)()()(ba mnb a n m ÷•. 综合创新训练◆综合运用12.已知a =1,b =1 001,求ba ab a b a b a ab a -÷-+•+-22)(的值.13.已知31=+x x ,求221x x +的值.14.已知a x =3,则x x xx a a a a ----22的值是多少?15.已知2x -3y+z =0且3x -2y -6z =0,求2222222z y x z y x -+++的值.参考答案1答案:a 1解析:原式aa a a a a a a a a a 1)2)(2()2)(2()2(222=+--+=+-•-+=. 2答案:B 解析:同级运算应遵循从左到右的顺序进行. 3答案:解析:原式222111111d cb a d dc c b b a =••••••=. 4答案:解析:原式)2)(1(2)1)(1()2)(2()2(12-++=-+-+•--=a a a a a a a a a . 5答案:解析:原式xx x x x x x x x x 11)2)(1()1(1)1)(2()1)(1(=+++•+•-+-+=. 6答案:解析:333278)32(b a b a =. 7答案:解析:9363328)2(cb ac b a -=-. 8答案:解析:原式5443624x yx x y y x -=••-=. 9答案:解析:原式63363411b a c b c a c=-⋅=-. 10答案:解析:原式338444224336cb ac b a b a c c b a -=••-= 11答案:解析:原式44222222224ab m a b n m b a n m =••=. 12答案:解析:2222()()()()a ab a b a a a b a b a b a b a b a b a b a b a b a-+-+-⋅÷=⋅⋅=++--+- ∵a=1,b =1 001,∴原式=1+1 001=1 002. 13答案:解析:∵31=+x x ∴9)1(2=+x x , 即71,9212222=+∴=++x x x x . 14答案:解析:∵x x x x x x x x x x a a a a a a a a aa 1112222+=--=----.∵a x =3,∴311=x a , ∴原式310313=+=.15答案:解析:由⎩⎨⎧=--=+-0623032z y x z y x 得⎩⎨⎧==z y z x 34,所以,原式2013)3()4(2)3()4(222222=-+++=z z z z z z。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式乘除法一、选择题1. 下列等式正确的是( )A. (-1)0=-1 B. (-1)-1=1 C. 2x -2=221xD. x -2y 2=22x y2. 下列变形错误的是( )A. 46323224y y x y x -=- B. 1)()(33-=--x y y x C. 9)(4)(27)(12323b a x b a b a x -=--D. y xa xy a y x 3)1(9)1(32222-=--3. cd ax cdab 4322-÷等于( ) A. -x b 322B. 23 b 2xC. x b 322D. -222283dc xb a 4. 若2a =3b ,则2232b a 等于( )A. 1B.32C.23 D. 69 5. 使分式22222)(y x ayax y a x a y x ++⋅--的值等于5的a 的值是( )A. 5B. -5C. 51D. -516. 已知分式)3)(1()3)(1(-++-x x x x 有意义,则x 的取值为( )A. x ≠-1B. x ≠3C. x ≠-1且x ≠3D. x ≠-1或x ≠37. 下列分式,对于任意的x 值总有意义的是( )A. 152--x xB. 112+-x xC. x x 812+ D. 232+x x8. 若分式m m m --21||的值为零,则m 取值为( )A. m =±1B. m =-1C. m =1D. m 的值不存在 9. 当x =2时,下列分式中,值为零的是( )A.2322+--x x x B. 942--x x C.21-x D.12++x x 10. 每千克m 元的糖果x 千克与每千克n 元的糖果y 千克混合成杂拌糖,这样混合后的杂拌糖果每千克的价格为( )A.y x mynx ++元 B. yx ny mx ++元C.y x nm ++元 D. 21(ny m x +)元 11. 下列各式的约分正确的是( )A. 2()23()3a c a c -=+-B. 2232abc c a b cab=C. 2212a b ab a ba b=----D. 222142a c a c c a=+--+12. 在等式22211a a a a a M +++=+中,M 的值为 ( ) A. a B. 1a +C. a -D. 21a -13. 小马虎在下面的计算题中只做对了一道题,你认为他做对的题目是( )A.11326b a a ⨯= B.22()b a ba ab ÷=--C.111x y x y ÷=+-D.2211()()x y y x y x ⨯=---14. 下列式子:,,1,1,32,32πn m b a a b a x x --++ 中是分式的有( )个A 、5B 、4C 、3D 、215. 下列等式从左到右的变形正确的是( )A 、11++=a b a bB 、22a b a b =C 、b a b ab =2D 、am bma b =16. 下列分式中是最简分式的是( )A 、a 24B 、112+-m mC 、122+m D 、m m --1117. 下列计算正确的是( )A 、m n n m =∙÷1 B 、111=÷∙÷m m m m C 、1134=÷÷m m m D 、n n m n 1=∙÷18. 计算32)32()23(m n nm ∙-的结果是( ) A 、m n3B 、m n3-C 、m n32D 、m n 32-19. 计算y x yy x x ---的结果是( )A 、1B 、0C 、y x xy-D 、y x y x -+20. 化简n m m n m --+2的结果是( ) A 、n mB 、n m m --2 C 、n m n --2D 、m n -21. 下列计算正确的是( )A 、1)1(0-=-B 、1)1(1=-- C 、2233a a =- D 、235)()(a a a =-÷--22. 如果关于x 的方程8778=----x kx x 无解,那么k 的值应为( )A 、1B 、-1C 、1±D 、923. 甲、乙两人做某一工程,如果两人合作,6天可以完成,如果单独工作,甲比乙少用5天,两人单独工作各需多少天完成?设乙单独工作x 天完成,则根据题意列出的方程是( )A 、61511=++x xB 、61511=-+x xC 、61511=--x xD 、61511=+-x x二、填空题1. 计算:cb a a b 2242⋅=________. 2. 计算:abx 415÷(-18a x 3)=________.3. 若代数式4321++÷++x x x x 有意义,则x 的取值范围是________.4. 化简分式22yx abyabx -+得________. 5. 若ba =5,则ab b a 22+=________.6. 下列各式:π3,32,4,52,21222-++x x y x xy b a a 中,是分式的为________. 7. 当x ________时,分式812+-x x 有意义. 8. 当x =________时,分式121+-x x 的值为1. 9. 若分式yx yx --2=-1,则x 与y 的关系是________.10. 当a =8,b =11时,分式ba a 22++的值为________.11、分式aa-2,当a__ ___时,分式的值为0;当a___ ___时,分式无意义,当a__ ____时,分式有意义12、()22y x -x yx -=.13、96,91,39222+----a a aa a a 的最简公分母是_ _ ___________.14、=-÷-b a ab a 11_____________. 15、=-+-a b b b a a _____________. 16、=--2)21(_____________.18、一轮船在顺水中航行100千米与在逆水中航行60千米所用的时间相等,已知水流速度为3千米/时,求该轮船在静水中的速度?设该轮船在静水中的速度为x 千米/时,则所列方程为___________________19. 将分式22x x x +化简得1x x +,则x 满足的条件是_____________。
三、解答题1. x 取何值时,下列分式有意义: (1)322-+x x (2)12||)3(6-+x x(3)162++x x2. (1)已知分式2822--x x ,x 取什么值时,分式的值为零?(2)x 为何值时,分式9322-+x x 的值为正数?3. x 为何值时,分式121-x 与232+x 的值相等?并求出此时分式的值.4. 求下列分式的值: (1)811+a a其中a =3. (2)2yx yx +- 其中x =2,y =-1.5. 计算:(1)423223423ba d c cd ab ⋅(2)m m m m m --⋅-+-32496226. 计算:(1)(x y -x 2)÷xyyx -(2)24244422223-+-÷+-+-x x x x x x x x(3)22329ab x xa b -⋅ (4)2233b ab a -÷(4)22122a a a a +⋅-+(5)22222x y x xyx y x y -+÷++(6)2224414111m m m m m -+-÷+- (7)222244(4)2x xy y x y x y -+-÷-(8)222()xx y y ÷-(9)2544()()()m n mn n m -⋅-÷-(10)21)2(11+-∙+÷-x x x x (11)32232)()2(b a c ab ---÷(12)0142)3()101()2()21(-++-----π (13)(3103124π--⎛⎫⎛⎫-⋅-÷ ⎪ ⎪⎝⎭⎝⎭(14)2211y x xy y x y x -÷⎪⎪⎭⎫ ⎝⎛++-7. 先化简,再求值(1)x x x x x x x 39396922322-+⋅++-,其中x =-31.(2)22441y x y x y x +÷-+,其中x =8,y =11.(3) )1121(1222+---÷--x x x x x x ,其中31-=x。