人教版高中数学A版必修1课后习题及答案(全)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修1课后习题答案
第一章 集合与函数概念
1.1集合
1.1.1集合的含义与表示
练习(第5页)
1.(1)中国∈A ,美国∉A ,印度∈A ,英国∉A ;
中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.
(2)1-∉A 2
{|}{0,1}A x x x ===.
(3)3∉B 2{|60}{3,2}B x x x =+-==-.
(4)8∈C ,9.1∉C 9.1N ∉.
2.解:(1)因为方程290x -=的实数根为123,3x x =-=,
所以由方程290x -=的所有实数根组成的集合为{3,3}-;
(2)因为小于8的素数为2,3,5,7,
所以由小于8的所有素数组成的集合为{2,3,5,7}; (3)由326y x y x =+⎧⎨=-+⎩,得14
x y =⎧⎨=⎩,
即一次函数3y x =+与26y x =-+的图象的交点为(1,4),
所以一次函数3y x =+与26y x =-+的图象的交点组成的集合为{(1,4)};
(4)由453x -<,得2x <,
所以不等式453x -<的解集为{|2}x x <.
1.1.2集合间的基本关系
练习(第7页)
1.解:按子集元素个数来分类,不取任何元素,得∅;
取一个元素,得{},{},{}a b c ;
取两个元素,得{,},{,},{,}a b a c b c ;
取三个元素,得{,,}a b c ,
即集合{,,}a b c 的所有子集为,{},{},{},{,},{,},{,},{,,}a b c a b a c b c a b c ∅.
2.(1){,,}a a b c ∈ a 是集合{,,}a b c 中的一个元素;
(2)20{|0}x x ∈= 2
{|0}{0}x x ==;
(3)2{|10}x R x ∅=∈+= 方程210x +=无实数根,2{|10}x R x ∈+==∅;
(4){0,1}
N (或{0,1}N ⊆) {0,1}是自然数集合N 的子集,也是真子集; (5){0}2{|}x x x = (或2{0}{|}x x x ⊆=) 2{|}{0,1}x x x ==;
(6)2{2,1}{|320}x x x =-+= 方程2320x x -+=两根为121,2x x ==.
3.解:(1)因为{|8}{1,2,4,8}B x x ==是的约数,所以A B ;
(2)当2k z =时,36k z =;当21k z =+时,363k z =+,
即B 是A 的真子集,B A ;
(3)因为4与10的最小公倍数是20,所以A B =.
1.1.3集合的基本运算
练习(第11页)
1.解:{3,5,6,8}{4,5,7,8}{5,8}A B ==,
{3,5,6,8}{4,5,7,8}{3,4,5,6,7,8}A B ==.
2.解:方程2450x x --=的两根为121,5x x =-=,
方程210x -=的两根为121,1x x =-=,
得{1,5},{1,1}A B =-=-,
即{1},{1,1,5}A B A B =-=-.
3.解:{|}A
B x x =是等腰直角三角形, {|}A
B x x =是等腰三角形或直角三角形. 4.解:显然
{2,4,6}U B =,{1,3,6,7}U A =, 则(){2,4}U A B =,()(){6}U U A B =.
1.1集合
习题1.1 (第11页) A 组
1.(1)237Q ∈ 237
是有理数; (2)23N ∈ 239=是个自然数; (3)Q π∉
π是个无理数,不是有理数; (42R 2是实数; (59Z 93=是个整数; (6)25)N ∈ 2(5)5=是个自然数.
2.(1)5A ∈; (2)7A ∉; (3)10A -∈.
当2k =时,315k -=;当3k =-时,3110k -=-;
3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;
(2)方程(1)(2)0x x -+=的两个实根为122,1x x =-=,即{2,1}-为所求;
(3)由不等式3213x -<-≤,得12x -<≤,且x Z ∈,即{0,1,2}为所求.
4.解:(1)显然有20x ≥,得244x -≥-,即4y ≥-,
得二次函数2
4y x =-的函数值组成的集合为{|4}y y ≥-; (2)显然有0x ≠,得反比例函数2y x =
的自变量的值组成的集合为{|0}x x ≠; (3)由不等式342x x ≥-,得45x ≥,即不等式342x x ≥-的解集为4{|}5x x ≥. 5.(1)4B -∉; 3A -∉; {2}B ; B A ;
2333x x x -<⇒>-,即{|3},{|2}A x x B x x =>-=≥;
(2)1A ∈; {1}
-A ; ∅A ; {1,1}-=A ; 2{|10}{1,1}A x x =-==-;
(3){|}x x 是菱形{|}x x 是平行四边形;
菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;
{|}x x 是等边三角形{|}x x 是等腰三角形. 等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.
6.解:3782x x -≥-,即3x ≥,得{|24},{|3}A x x B x x =≤<=≥, 则{|2}A B x x =≥,{|34}A B x x =≤<.
7.解:{|9}{1,2,3,4,5,6,7,8}A x x ==是小于的正整数,
则{1,2,3}A
B =,{3,4,5,6}A
C =, 而{1,2,3,4,5,6}B
C =,{3}B C =, 则(){1,2,3,4,5,6}A B C =,
(){1,2,3,4,5,6,7,8}A B C =.
8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项,
即为()A B C =∅.
(1){|}A B x x =是参加一百米跑或参加二百米跑的同学; (2){|}A C x x =是既参加一百米跑又参加四百米跑的同学.
9.解:同时满足菱形和矩形特征的是正方形,即{|}B
C x x =是正方形, 平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形, 即
{|}A B x x =是邻边不相等的平行四边形, {|}S A x x =是梯形.