三相异步电动机调速方法有几种

合集下载

三相异步电动机调速原理

三相异步电动机调速原理

三相异步电动机调速原理
三相异步电动机的调速原理主要基于对转差率的控制。

三相异步电动机的转速公式为n=60f/p(1-s),其中f代表电源频率,p为极对数,n代表电机转速,s代表转差率。

当电动机的三相定子绕组通入三相对称交流电后,将产生一个旋转磁场,该旋转磁场切割转子绕组,从而在转子绕组中产生感应电流(转子绕组是闭合通路),载流的转子导体在定子旋转磁场作用下将产生电磁力,从而在电机转轴上形成电磁转矩,驱动电动机旋转,并且电机旋转方向与旋转磁场方向相同。

当导体在磁场内切割磁力线时,在导体内产生感应电流,“感应电机”的名称由此而来。

感应电流和磁场的联合作用向电机转子施加驱动力。

三相异步电动机的调速方法包括:
1. 改变电源频率:通过改变电源频率可以改变电动机的转速。

2. 改变电动机极数:通过增加或减少电动机的极数可以改变电动机的转速。

3. 改变转差率:通过改变转差率可以改变电动机的转速。

请注意,在具体应用时需要根据实际需求和情况选择适当的调速方法。

同时,也要注意遵守相关的安全操作规程,确保电动机的正常运行和延长其使用寿命。

三相异步电动机的变极调速控制

三相异步电动机的变极调速控制

SB3常闭触头 先断开,切断 KM1线圈电路
SB2常开触头 后闭合
KM1自锁触头复位断开
KM1主触 头断开
电动机因惯 性继续旋转
KM1互锁触头复位闭合
KM2、KM3 线圈都得电
●按钮控制的双速电动机变极调速工作过程
2)高速运转
需要高速运转时,也需要先按下低速启动按钮SB2,把定子 绕组接成△,让电动机低速启动。 启动结束,再按下高速启动按钮SB3,把定子绕组换接成YY, 实现电动机高速运行。
KT常开延时闭合
KM1失电 拆除△接线,切除电动机正序电源
定子绕组尾端接反序电源
KM2得电 KM3得电
电动机YY连接, 定子绕组首端 高速运转 短接于一点
变极调速安装接线注意事项: 1)正确识别电动机定子绕组的9个接线端子。 2)交换任意两相电源的相序。
2)按钮控制的双速电动机变极调速
注意控制电路的线号
三、变极调速原理
把定子每相绕组都看成两个完全对称的“半相绕组”。
以U相为例,设相电流从绕组的头部U1流进,尾部U2流出。 当U相两个“半相绕组”头尾相串联时(顺串),根据右手 螺旋法则,可判断出定子绕组产生4极磁场。 若U相两个“半相绕组” 尾尾相串联(反串)或者头尾相并 联(反并),定子绕组产生2极磁场。
●按钮控制的双速电动机变极调速工作过程
1)低速运转
需要低速运转时,按下低速启动按钮SB2,把定子绕组接成 △,让电动机低速启动,并连续运转。
合上QS,M3线圈电路
SB2常开触头后 闭合,KM1线圈
通电
KM1电气互锁触头断开, 对KM2、KM3互锁
KM1主触 头闭合
相关知识——三相异步电动机的电气调速
• 什么叫恒转矩调速?

三相异步电动机的调速公式

三相异步电动机的调速公式

三相异步电动机的调速公式三相异步电动机的调速公式是:
N = (120*f)/(P * NS)
其中,
N是电动机的转速(单位:转/分钟),
f是电源的频率(单位:赫兹),
P是电动机的极数,
NS是电动机的同步转速(单位:转/分钟)。

这个调速公式适用于没有电动机负载参与的情况下,即理论上的转速。

实际情况中,电动机调速会受到负载的影响,因此需要在调整电动机负载的同时进行调速。

在实际调速过程中,常用的方法有电压调制、频率调制、极数变换及串并联调速等。

这些方法中,电压调制是最常见的方法,通过改变电源电压的幅值来调整电动机的转速。

频率调制方法利用变频器对
电源频率进行调整,从而实现电动机的调速。

极数变换方法是通过改变电动机的极数来调整转速,适用于一些特殊场合。

串并联调速是通过改变电动机的绕组实现不同的转速,串联是将绕组连成串联电路,并联是将绕组连成并联电路,实现电动机的调速。

除了上述调速方法,还可以通过使用反馈控制的技术,例如闭环控制和矢量控制,来实现更精确的调速效果。

在工业环境中,通常会使用变频器等电力驱动设备来实现对三相异步电动机的精确调速。

浅谈三相异步电动机的几种调速方法

浅谈三相异步电动机的几种调速方法

浅谈三相异步电动机的几种调速方法发表时间:2015-09-22T14:17:24.733Z 来源:《电力设备》第01期供稿作者:秦为惠[导读] 中国神华神东煤炭集团公司在调速的过程中,涉及到一定的能耗问题。

其中高效调速和低效调速方式是两种比较常见的调速形式,但是二者之间的差异相对较大。

秦为惠(中国神华神东煤炭集团公司 719315)摘要:在电动机机器设备应用的过程中,三相异步电动机是比较常见的机械类型。

但是从使用的过程中可以看出,三相异步电动机只有不断进行调速,才能够保证电动机运行的高效性。

三相异步电动机在应用的过程中,如果调速方式得到了改进和完善,通常情况下就可以直接达到省电的标准,符合可持续发展的基本要求。

本文中,笔者主要对三相异步电动机的调速方式进行深入介绍和分析,仅供参考。

关键词:三相异步电动机;调速方法;变频器在电动机应用的过程中,变频器调速设备是比较常见的辅助设备类型。

在使用的过程中,可以有效地提升三相异步电动机的使用性能,可见,这两种设备共同应用极大地提升了三相异步电动机的发展前景。

在对三相异步电动机进行调速的过程中,在提升电动机工作性能的基础上,也存在着一定的缺陷性。

接下来,笔者就对这一电动机类型进行深入介绍和分析,希望能够给相关的电动机应用工作人员提供借鉴和参考。

1.常用三相异步电动机的调速方法研究在使用三相异步电动机的过程中,必然会涉及到各种不同类型的调速方式,其中比较典型的就是变极对数,定子调压,定子变频等等。

在调速的过程中,涉及到一定的能耗问题。

其中高效调速和低效调速方式是两种比较常见的调速形式,但是二者之间的差异相对较大。

对于高效调速来说,指针的转差率保持不变,并不会出现损耗。

对于多速电动机以及变频调速来说,主要采用的是串级调速的形式。

在调速的过程中,如果出现了转差损耗的现象,则说明采用的是低效调速的形式。

其中,比较典型的就是转子串电阻调速方法,能量的消耗量相对较低。

另外,电磁离合器,液力耦合器等设备都需要进行调速。

三相异步电动机的7种转速方式

三相异步电动机的7种转速方式

三相异步电动机的7种转速方式三相异步电动机转速公式为:n=60f/p(1-s)从上式可见,改变供电频率f、电动机的极对数p及转差率s均可太到改变转速的目的。

从调速的本质来看,不同的调速方式无非是改变交流电动机的同步转速或不改变同步转两种。

在生产机械中广泛使用不改变同步转速的调速方法有绕线式电动机的转子串电阻调速、斩波调速、串级调速以及应用电磁转差离合器、液力偶合器、油膜离合器等调速。

改变同步转速的有改变定子极对数的多速电动机,改变定子电压、频率的变频调速有能无换向电动机调速等。

从调速时的能耗观点来看,有高效调速方法与低效调速方法两种:高效调速指时转差率不变,因此无转差损耗,如多速电动机、变频调速以及能将转差损耗回收的调速方法(如串级调速等)。

有转差损耗的调速方法属低效调速,如转子串电阻调速方法,能量就损耗在转子回路中;电磁离合器的调速方法,能量损耗在离合器线圈中;液力偶合器调速,能量损耗在液力偶合器的油中。

一般来说转差损耗随调速范围扩大而增加,如果调速范围不大,能量损耗是很小的。

一、变极对数调速方法这种调速方法是用改变定子绕组的接红方式来改变笼型电动机定子极对数达到调速目的,特点如下:具有较硬的机械特性,稳定性良好;无转差损耗,效率高;接线简单、控制方便、价格低;有级调速,级差较大,不能获得平滑调速;可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。

本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。

二、变频调速方法变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。

变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。

其特点:效率高,调速过程中没有附加损耗;应用范围广,可用于笼型异步电动机;调速范围大,特性硬,精度高;技术复杂,造价高,维护检修困难。

三相异步电动机的变频调速方法(精)

三相异步电动机的变频调速方法(精)

三相异步电动机的变频调速方法一、串级调速方法串级调速是指绕线式电动机转子回路中串入可调节的附加电势来改变电动机的转差,达到调速的目的。

大部分转差功率被串入的附加电势所吸收,再利用产生附加的装置,把吸收的转差功率返回电网或转换能量加以利用。

根据转差功率吸收利用方式,串级调速可分为电机串级调速、机械串级调速及晶闸管串级调速形式,多采用晶闸管串级调速,其特点为:1、可将调速过程中的转差损耗回馈到电网或生产机械上,效率较高;2、装置容量与调速范围成正比,投资省,适用于调速范围在额定转速 70%-90%的生产机械上;3、调速装置故障时可以切换至全速运行,避免停产;4、晶闸管串级调速功率因数偏低,谐波影响较大。

本方法适合于风机、水泵及轧钢机、矿井提升机、挤压机上使用。

四、绕线式电动机转子串电阻调速方法绕线式异步电动机转子串入附加电阻,使电动机的转差率加大,电动机在较低的转速下运行。

串入的电阻越大,电动机的转速越低。

此方法设备简单,控制方便,但转差功率以发热的形式消耗在电阻上。

属有级调速,机械特性较软。

二、变极对数调速方法这种调速方法是用改变定子绕组的接线方式来改变笼型电动机定子极对数达到调速目的,特点如下:1、具有较硬的机械特性,稳定性良好;2、无转差损耗,效率高;3、接线简单、控制方便、价格低;4、有级调速,级差较大,不能获得平滑调速;5、可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。

本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。

三、变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。

变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。

其特点:1、效率高,调速过程中没有附加损耗;2、应用范围广,可用于笼型异步电动机;3、调速范围大,特性硬,精度高;4、技术复杂,造价高,维护检修困难。

三相异步电机的调速

三相异步电机的调速

一.基频以下变频调速 A),保持 为常数
上式对s求导,即 有最大转矩和临界转差率为
一.基频以下变频调速 B),保持 为常数 为防止磁路的饱和,当降低定子电源频率时,保持 为常数,使气 隙每极磁通 为常数,应使电压和频率按比例的配合调节。这时,电动 机的电磁转矩为 上式对s求导,即 有最大转矩和临界转差率为
当某一瞬间电势的极性 与 或同相时,有转子回路电流为
反相
式中“–”号表示 与 反相,“+”号表示 与 同相。异步电动机的电磁 转矩为
当电动机定子电压及负载转矩都保持不变时,转子电流可看成常数;同时考虑到电 动机正常运行时s很小,sx2《 r2 忽略sx2 则: 在负载转矩 一定的条件下,若 转子串入 与 反相,则
变频调速原理及其机械特性
改变异步电动机定子绕组供电电源的频率 ,可以改变同步 转速n 1 ,从而改变转速。如果频率 连续可调,则可平滑的调 节转速,此为变频调速原理。
三相异步电动机运行时,忽略定子阻抗压降时,定子每相电 压为 如果降低频率 ,且保持定子电源电压 不变,则气隙每 极磁通 将增大,会引起电动机铁芯磁路饱和,从而导致过大 的励磁电流,严重时会因绕组过热而损坏电机,这是不允许的。 因此,降低电源频率 时,必须同时降低电源电压 ,以达到控 制磁通 的目的。对此,需要考虑基频(额定频率)以下的调 速和基频以上调速两种情况
三相异步电动机的调速
根据三相异步电动机的转速公式为
通过上式可知,改变交流电机转速的方 法有三种 1.变转差率调速:改变s实现调速; 2.变极调速:改变p来实现调速 3.变频调速:改变f1实现调速
三相异步电动机的调速
改变转差率的方法很多,常用的方案有改变异步电动机的定子 电压调速,采用电磁转差(或滑差)离合器调速,转子回路串电 阻调速以及串极调速。前两种方法适用于鼠笼式异步电动机,后 者适合于绕线式异步电动机。这些方案都能使异步电动机实现平 滑调速,但共同的缺点是在调速过程中存在转差损耗,即在调节 过程中转子绕组均产生大量的钢损耗( )(又称转差功 率),使转子发热,系统效率降低;主要存在调速范围窄、效率低, 对电网污染较大,不能满足交流调速应用的广泛需求; 改变电机的极数的调速,无法实现连续调速,并且接线麻烦, 应用的场合少;但价格便宜; 改变频率进行调速是最理想的,但这个梦想经历了百年之久, 直至20世纪70年代,大功率晶体管(GTR)的开发成功,才实现 变频调速,随着电子技术和计算机技术的日益发展变频调速技术 日益成熟,应用得越来越广泛了

相异步电动机的七种调速方法及特点:

相异步电动机的七种调速方法及特点:

三相异步电动机分类特点以及调速方法三相异步电动机分类:1、从调速的本质来看,不同的调速方式无非是改变交流电动机的同步转速或不改变同步转两种。

不改变同步转速的调速方法有1)绕线式电动机的转子串电阻调速、2)斩波调速、3)串级调速以及应用电磁转差离合器、4)液力偶合器、5)油膜离合器等调速。

不改变同步转速的调速方法在生产机械中广泛使用。

2、改变同步转速的有改变定子极对数的多速电动机,改变定子电压、频率的变频调速有能无换向电动机调速等。

3、从调速时的能耗观点来看,有1)高效调速方法与2)低效调速方法两种:高效调速指时转差率不变,因此无转差损耗,如多速电动机、变频调速以及能将转差损耗回收的调速方法(如串级调速等)。

有转差损耗的调速方法属低效调速,如转子串电阻调速方法,能量就损耗在转子回路中;电磁离合器的调速方法,能量损耗在离合器线圈中;液力偶合器调速,能量损耗在液力偶合器的油中。

一般来说转差损耗随调速范围扩大而增加,如果调速范围不大,能量损耗是很小的。

我们清楚三相异步电动机转速公式为:n=60f/p(1-s)从上式可见,改变供电频率f、电动机的极对数p及转差率s均可太到改变转速的目的,下面松文机电具体介绍其七种调速方法。

一、变极对数调速方法:这种调速方法是用改变定子绕组的接红方式来改变笼型电动机定子极对数达到调速目的。

本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。

特点如下:1、具有较硬的机械特性,稳定性良好;2、无转差损耗,效率高;3、接线简单、控制方便、价格低;4、有级调速,级差较大,不能获得平滑调速;5、可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。

二、变频调速方法:变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。

变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。

三相异步电动机的调速方法与特性

三相异步电动机的调速方法与特性

里仅就其原理做简要介绍。
变极调速的电动机往往
被称为多极电动机,其定子
绕组的接线方式很多,其中 常见的一种是角接/双星接, 即△/YY,如图所示。
图变极调速定子接线图
由定子绕组展开图知: 只要改变一相绕组中一半元 件的电流方向即可改变磁极 对数。当T1、T2、T3外接三 相交流电源,而T4、T5、T6 对外断开时,电动机的定子 绕组接法为△,极对数为2P, 当T4、T5、T6外接三相交流 电源,而T1、T2、T3连接在 一起时,电动机定子绕组的 接法为YY,极对数为P,从 而实现调速,其控制电路图 如所示。
1.定子调压调速
图为定子调压的机械特性曲线, 由图可知对恒转矩负载而言,其调 速范围很窄,实用价值不大,但对 于随转通速风的机变负化载而而变言化,,其如负图载中转虚矩线TL 所示。可见其调速范围很宽,所以 目前大多数的风扇采用此法。
但是这种调速方法在电动机转 速较低时,转子电阻上的损耗较大, 使电动机发热较严重,所以这种调 速方法一般不宜在低速下长时间运 图 行。
定子调压调速 机械特性曲线
2.转子串接电阻调速
该方法仅适用于绕线形异步
电动机,其机械特性如图所示。
图中曲线是一Βιβλιοθήκη 电源电压不变,而转子电路所串电阻值不同的机
械特性曲线。从图中不难看出,
当串入电阻越大时,稳定运行速 度越低,且稳定性也越差。
转子串电阻调速的优点是方
法简单,设备投资不高,工作可
靠。但调速范围不大,稳定较差,
em
L
实现降速的调速。
当附加电动势的相位与转子电动势相位相同时,

E
正值,使串电动势后的转子电流大于原来的电流,
f

>Tem , TL

三相异步电动机调速方法有几种

三相异步电动机调速方法有几种

三相异步电动机调速方法有几种
三相异步电动机调速方法主要有以下几种:
1. 转子电阻调速法:通过改变转子回路电阻,来改变电动机的转矩和转速。

2. 感应电压调速法:通过改变电网和电动机之间的感应电压,来改变电动机的转矩和转速。

3. 给定电压调速法:通过改变电动机的供电电压,来改变电动机的转矩和转速。

4. 变频调速法:通过改变电动机的供电频率和电压,来实现电动机的平滑调速。

5. 磁阻调速法:通过改变电动机的定子磁阻,来改变电动机的转矩和转速。

6. 矢量控制调速法:通过对电动机的电流和电压进行控制,来实现电动机的精确调速。

三相异步电动机启动、调速、正反转的常用方法

三相异步电动机启动、调速、正反转的常用方法

三相异步电动机启动、调速、正反转的常用方法
三相异步电动机是工业中常见的一种电动机类型,常用于驱动各种设备和机械。

下面介绍三相异步电动机的启动、调速、正反转的常用方法。

1. 启动方法:
(1) 直接启动:将电动机直接接通电源,并通过起动器启动,使电动机正常运转。

(2) 降压启动:采用降压起动器,通过降低电动机起动时的供电电压,减小启动电流,实现平稳起动。

(3) 自耦变压器启动:使用自耦变压器,先将电动机通过变压器接通降压启动,然后再切换到全压运行。

2. 调速方法:
(1) 换向极调速:在电机的定子绕组上安装两个或多个绕组,通过选择并联或串联不同的绕组,改变定子磁通路径,实现调速。

(2) 变频调速:通过改变电源的频率,控制电动机的转速。

常用的方法包括整流变频调速、逆变变频调速等。

3. 正反转方法:
(1) 切换反向起动器:在启动过程中,根据需要切换反向起动器,使电动机按照相反的方向旋转。

(2) 通过控制电源的相序:调整电源的相序,使电动机启动时的旋转方向相反。

总结起来,三相异步电动机的常用启动方法包括直接启动、降
压启动和自耦变压器启动;常用调速方法包括换向极调速和变频调速;常用正反转方法包括切换反向起动器和控制电源相序。

这些方法可以根据具体的工业应用需求进行选择和组合使用。

三相异步电动机的调速控制-变极调速

三相异步电动机的调速控制-变极调速

三相异步电动机的调速控制-变极调速变极调速一般仅适用于笼型异步电动机。

变极电动机一般有双速、三速、四速之分,双速电动机定子装有一套绕组,而三速、四速电动机为两套绕组。

变极调速的原理和控制方法基本相同,这里以双速异步电动机为例进行分析。

1.双速异步电动机定子绕组的联结方式双速异步电动机是靠改变定子绕组的连接,形成两种不同的极对数,获得两种不同的转速。

双速异步电动机定子绕组常见的接法有△/YY和Y/YY两种。

双速电动机定子绕组接线图如图所示,通过改变定子绕组上每个线圈两端抽头的联结,图(a)由三角形改为双星形,图(b)由星形改为双星形,两种接线方式变换成双星形均使极对数减少一半,转速增加一倍。

双速异步电动机调速的优点是可以适应不同负载性质的要求,如需要恒功率调速时可采用三角形→双星形转换接法,需要恒转矩调速时采用星形→双星形转换接法,且线路简单、维修方便;缺点是只能有级调速且价格较高,通常使用时与机械变速配合使用,以扩大其调速范围。

注意:当定子绕组由三角形联结(各相绕组互为240°电角度)改变为双星形联结(各相绕组互为120°电角度)时,为保持变速前后电动机转向不变,在改变极对数的同时必须改变电源相序。

2.双速异步电动机控制线路下图所示为时间继电器控制的双速异步电动机自动控制线路。

图中SA为选择开关,选择电动机低速运行或高速运行。

当SA置于“低速”位置时,接通KM1线圈电路,电动机直接启动低速运行。

当 SA 置于“高速”位置时,时间继电器的瞬时触头闭合,同样先接通KM1线圈电路,电动机绕组三角形接法低速启动,当时间继电器延时时间到时,其延时断开的常闭触头KT断开,切断KM1线圈回路,同时其延时接通的常开触头KT闭合,接通接触器 KM2、KM3 线圈并使其自锁,电动机定子绕组换接成双星形接法,改为高速运行。

此时KM3的常闭触头断开使时间继电器线圈失电停止工作。

所以该控制线路具有使电动机转速自动由低速切换至高速的功能,以降低启动电流,适用于较大功率的电动机。

三相异步电动机的七种调速方式

三相异步电动机的七种调速方式

三相异步电动机的七种调速方式三相异步电动机转速公式为:n=60f/p(1-s)从上式可见,改变供电频率f、电动机的极对数p及转差率s均可太到改变转速的目的。

从调速的本质来看,不同的调速方式无非是改变交流电动机的同步转速或不改变同步转两种。

在生产机械中广泛使用不改变同步转速的调速方法有绕线式电动机的转子串电阻调速、斩波调速、串级调速以及应用电磁转差离合器、液力偶合器、油膜离合器等调速。

改变同步转速的有改变定子极对数的多速电动机,改变定子电压、频率的变频调速有能无换向电动机调速等。

从调速时的能耗观点来看,有高效调速方法与低效调速方法两种:高效调速指时转差率不变,因此无转差损耗,如多速电动机、变频调速以及能将转差损耗回收的调速方法(如串级调速等)。

有转差损耗的调速方法属低效调速,如转子串电阻调速方法,能量就损耗在转子回路中;电磁离合器的调速方法,能量损耗在离合器线圈中;液力偶合器调速,能量损耗在液力偶合器的油中。

一般来说转差损耗随调速范围扩大而增加,如果调速范围不大,能量损耗是很小的。

一、变极对数调速方法这种调速方法是用改变定子绕组的接红方式来改变笼型电动机定子极对数达到调速目的,特点如下:具有较硬的机械特性,稳定性良好;无转差损耗,效率高;接线简单、控制方便、价格低;有级调速,级差较大,不能获得平滑调速;可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。

本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。

二、变频调速方法变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。

变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。

其特点:效率高,调速过程中没有附加损耗;应用范围广,可用于笼型异步电动机;调速范围大,特性硬,精度高;技术复杂,造价高,维护检修困难。

三相异步电动机改变转差率的调速

三相异步电动机改变转差率的调速

三相异步电动机改变转差率的调速
电动机运行时,在同步转速以及负载转矩均不变的情况下,当电动机机械特性曲线硬度变化时,其转速也将随之改变,因而转差率也就不同。

由此可见,改变转差率的调速,其实质就是通过改变电动机机械特性曲线硬度进行调速。

具体的方法为:
(1)转子串电阻调速
这种方法只适用于绕线式异步电动机。

当转子串电阻后,电动机的最大转矩T…不变,而临界转差率sm增大,因而特性曲线变软。

在同样的负载转矩T下,转子电路串人电阻值不同,电动机的转速也就不同,由此达到调速的目的。

转子串电阻调速方法简单,可实现多级调速;但在轻载或空载时调速范围小,调速效果不明显。

(2)改变定子电压的调速
当改变电动机定子电压时(从额定电压往下调),机械特性如图2-47(b)所示。

对于通风机性质负载,调速范围较大;而对于恒转矩性质的负载,变压调速所得到的调速范围很小。

(3)转子串电阻异步电动机调压调整
如果对恒转矩负载进行变压调速时,同时增加异步电动机的转子电阻(绕线式异步电动机串电阻;或采用转子电阻较大的高转差率笼型转子异步电动机),以便使改变定子电压可得到较宽的调速范围。

但是此时机械特性太软,而且低压时的过载能力较低,负载的波动稍大,电动机就有可能停转,即转速的稳定性较差。

简述三相笼型异步电动机的调速方法

简述三相笼型异步电动机的调速方法

简述三相笼型异步电动机的调速方法简述三相笼型异步电动机的调速1. 异步电动机简介异步电动机是一种常见的电动机类型,广泛应用于工业领域中。

它的优点包括结构简单、价格低廉、可靠性高等特点,因此被广泛使用。

2. 三相笼型异步电动机的基本结构三相笼型异步电动机主要由定子、转子和端盖等部分组成。

定子部分由绕组和铁芯构成,绕组环绕在铁芯上,用于产生磁场。

转子部分由铸铁芯和导体条组成,导体条用于传递电流。

3. 三相笼型异步电动机的调速方法3.1 常见的调速方法包括:•电压调制:通过控制电压的大小来改变电动机的转速。

电压越高,转速越快,电压越低,转速越慢。

•频率调制:通过控制电源的频率来改变电动机的转速。

频率越高,转速越快,频率越低,转速越慢。

•转子电流调制:通过改变转子电流的大小来调节电动机的转速。

转子电流越大,转速越快,转子电流越小,转速越慢。

•极对数调制:通过改变电动机的极对数来调整转速。

极对数越大,转速越快,极对数越小,转速越慢。

3.2 其他调速方法包括:•电枢电流反馈控制:通过测量电枢电流的大小来控制电动机的转速。

根据电枢电流的反馈信号,调整电压或频率,以达到调速的目的。

•电压源反馈控制:通过测量电动机的转速,然后将反馈信号与设定的转速进行比较,通过调整输入电压来实现转速的调节。

总结三相笼型异步电动机的调速方法有多种,可以通过电压调制、频率调制、转子电流调制等方式来改变电动机的转速。

此外,还可以采用电枢电流反馈控制和电压源反馈控制等方法来实现调速。

根据具体的应用需求,选择合适的调速方法,可以满足不同场景下的转速要求。

3.3 电压调制电压调制是一种常见的电动机调速方法。

通过改变电动机的输入电压来调整转速。

具体来说,当电压增加时,电动机的转速也会增加,反之亦然。

为了实现电压调制,可以使用可调整的电压控制器或变频器来控制电动机的输入电压。

3.4 频率调制频率调制是通过改变电源的频率来调节电动机的转速。

一般而言,电源的频率与电动机的转速成正比关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三相异步电动机调速方法有几种
三相异步电动机调速方法有以下几种:
1. 变频调速:变频调速是最常见的方法之一,通过控制变频器的输出频率,改变电机的转速。

变频器将电源频率转换为可调的高频交流电,然后供电给电动机,通过改变输出频率,可以使电机的转速达到所需的速度。

2. 电压调节:电压调节是通过改变电机的供电电压来调整其转速。

通过降低或增加电机的供电电压,可以改变电机的转速。

这种调速方法简单、成本低,但是变压器的过载能力有限,不能实现大范围的调速。

3. 电阻调速:电阻调速是通过在电机起动电路中串联电阻器来改变电机的供电电压,进而改变其转速。

通过改变电阻的大小来改变电压降,从而实现调速。

但是这种方法存在能量损耗较大、效率低的问题。

4. 转子电流反馈调速:通过在电机转子绕组上安装传感器,实时测量转子电流,并根据电流大小调整电压信号,控制转速。

这种调速方法适用于小功率电机,具有调速精度高、响应速度快的优点。

5. 励磁调速:励磁调速是通过改变电动机的励磁电流来控制转速。

通过调节励磁电流的大小,可以改变转子感应电动势的大小,从而实现调速。

这种方法适用于大功率电机,但励磁系统较为复杂。

6. 双电源调速:双电源调速是将电机连接到两个不同的电源,通过切换电源来改变电机的供电电压,从而实现调速。

这种调速方法比较灵活,可以实现宽范围的调速,但设计和安装要求较高。

7. 直接耦合调速:直接耦合调速是将电动机与可变载荷直接耦合,在负载端通过改变负载的机械特性来改变电动机的转速。

这种方法在某些特定场合下适用,但对机械系统的设计和操作要求较高。

综上所述,三相异步电动机的调速方法包括:变频调速、电压调节、电阻调速、转子电流反馈调速、励磁调速、双电源调速和直接耦合调速。

每种调速方法都有其适用的场合和优缺点,根据具体的需求和条件选择合适的调速方法。

相关文档
最新文档