n的3次方的母函数
母函数
母函数(生成函数)(发生函数)(发生函数)英文:generating function我们已知道了解决组合的计数问题的几种方法,从基本的加法原理和乘法原理开始,导出了排列与组合的各种公式,证明了容斥原理,并且已用它来解决某些计数问题。
这里将论证一种方法是属于Eular 的生成函数法。
(对工程师来说,数列的母函数通称为z-变换)§1 母函数利用生成函数可以说是研究计数问题的一个最主要的一般方法:其基本思想很简单:为了获得一个数列{} 210,,0:a a a k a k=≥的知识,我们用一个母函数+++=∑=≥22100)(x a x a a xa x g kk k这里x k 是指数函数来整体地表示这个数列,称g (x )是数列{}0:kx a k 的普通母函数,这样原数列就转记为成函数。
假如能求得这个函数,则不仅原则上已确定了原数列,还可以通过对函数的运算和分析得到这个数列的许多性质。
这里如果把x k 提成)(x k μ亦称普通母函数指数函数通常选来使得没有两个不同的序列令产生同一个母函数,故序列的母函数仅只是序列的另一种表示。
如1,cos x ,cos2x ,…为指数函数,序列{}2,,1ωω的母函数为+++++=rx x x x F rcos 2cos cos1)(2ωωω另一方面,用,1,1+x ,1-x ,1+x 2,1-x 2,…,1+x r ,1-x r …作为指数函数,序列(3,2,6,0,0)的普通母函数是3+2(1+x )+6(1-x )=11-4x ,而序列(1,3,7,6,0)和(1,2,6,1,1)会产生同一母函数即,1+3(1+x )+7(1-x )=11-4x ,xx x x x 411)1()1()1(6)1(2122-=-+++-+++故函数 ,1,1,1,1,122x x x x -+-+不应做为指数函数,)(x r μ的最近常用的是r x ,以下我们仅讨论这种情况的指数函数。
母函数的概念和使用
母函数的概念和使用
母函数是组合数学中的一种重要工具,用于描述序列的生成函数。
它可以将序列转化为形式简单的多项式,从而方便地进行计算和推导。
形式上,对于序列$\{a_n\}$,它的母函数可以定义为:
$A(x)=\sum_{n=0}^{\infty}a_nx^n=a_0+a_1x+a_2x^2+...$
母函数$A(x)$通常被视为$x$的函数,可以进行各种计算操作,比如加法、乘法、求导等。
母函数的使用有以下几个方面:
1. 求序列的常用操作:对于给定的序列,可以通过母函数求导、乘法、加法等操作得到新的序列。
例如,序列的微分对应于母函数的求导,序列的乘法对应于母函数的乘法,序列的加法对应于母函数的加法。
2. 求序列的递推关系:通过构造序列的母函数,可以得到序列的递推关系。
递推关系描述了序列相邻项之间的关系,是解决组合计数问题的关键。
通过求解递推关系,可以得到序列的通项公式,从而得到更深入的结论。
3. 求序列的生成函数:母函数可以将序列转化为一个形式简单的多项式。
通过对母函数进行逆变换,可以得到序列的生成函数,从而用多项式的形式来表示序列。
生成函数是分析序列性
质的一种强有力的工具,可以进行各种计算和推导。
母函数在组合计数、离散数学和概率等领域中具有广泛的应用,可以解决各种组合计数问题,如排列组合、图论、走迷宫等问题。
同时,母函数也是解决一些难题的关键,在一些具有复杂递推关系的序列中起到了重要作用。
母函数(生成函数)
母函数(⽣成函数)介绍母函数是组合数学中相当重要的⼀个知识点,可以⽤来解决⼀些排列组合问题,还有所有的常系数线性齐次递推问题。
如果系数不是常数,需要根据具体情况进⾏处理。
具体的内容可以看组合数学相关书籍或者,由于⼤佬总是想当然地把别⼈当成⼤佬,⼀些内容对(像我这种)蒟蒻来说不是很友好,在这⾥讲⼀下母函数的基础。
(研究母函数时,钦定|x|<1),这样,由等⽐数列求和公式有:11−x=∑∞i=0x i=1+x+ (x)11−kx=∑∞i=0k i x i=1+kx+...+k∞x∞1.普通型母函数。
假设有⼀个数列a,那么它的母函数其实就是⼀个关于x的多项式,x n的系数为a n,对于已知通项的数列,其母函数可以直接写出来。
⽽对于未知的数列,主要分为两类:递推型和组合型。
递推型就是利⽤错位相消,举个栗⼦:a n=3a n−1+10a n−2,a0=1,a1=2移项,得a n−3a n−1−10a n−2=0,设a n的母函数为G(x)G(x)=a0+a1x+a2x2+a3x3...−3xG(x)=−3a0x+(−3)a1x2+(−3)a2x3...−10x2G(x)=−10a0x2+(−10)a1x3三⾏相加,可以发现等式右侧除了第⼀⾏的第1,2项和第⼆⾏的第1项外全消掉了。
所以我们可以得到(1−3x−10x2)G(x)=a0+a1x−3a0x=1−x,即G(x)=1−x1−3x−10x2,⽣成函数就求出来了,那如果我们还要求an的通项呢?对于这种东西,我们可以把他化成k1x−A+k2x−B这种形式,其中A和B由分母的因式分解唯⼀确定,然后k1,k2可由待定系数法解得。
然后对于kx−A,总可以化成k′∗11−Nx,就是k′∑∞i=0N i x i,找出x k的系数就是a n,如果母函数拆开成多个该类分式的话各部分相加就好。
具体计算就不算了。
PS:⼀部分⾮齐次线性递推其实也可以这样解,⽐如a n−3a n−1−10a n−2=f(n),按照上述⽅法错项后会剩下⼀个等⽐数列和前⼏项余项。
母函数与指数型母函数
比较等式两端的常数项,可以得到恒等式:
C(m n, m) C (n, 0)C (m, 0) C (n,1)C (m,1) C(n, m)C(m, m).
又如在等式 (1 x)n C(n,0) C(n,1)x C(n, n)xn
注意到,出现1,5有两种选法,出现2,4也有两 种选法,而出现3,3只有一种选法,按加法法则, 共有2+2+1=5种不同选法。
或者,第一个骰子除了6以外都可选,有5种选法, 一旦第一个选定,第二个骰子就只有一种可能的选 法,按乘法法则有5×1=5种。
但碰到用三个或四个骰子掷出n点,上述两方法就 不胜其烦了。
a1 a3 a5 a7 0, a0 1, a2 C(8, 2) 28,
a4 C(8, 4) 70, a6 C(8, 6) 28, a8 1. 因此序列a1,a2,…,a8对应的母函数为:
A( x) 1 28x2 70x4 28x6 x8 .
类似可得女同志的允许组合数对应的母函数为
1: b0 a0 x: b1 a0 a1 x2: b2 a0 a1 a2
__+_)___x_k:_b_k _a_0 __a1__a_2 ____ak________
B( x) a0 /(1 x) a1 x /(1 x) a2 x2 /(1 x)
[a0 a1 x a2 x2 ] /(1 x) A( x) /(1 x).
中令x=1 可得 C(n, 0) C(n,1) C(n, 2) C(n, n) 2n.
两端对x求导可得:
n(1 x)n1 C(n,1) 2C(n,2)x nC(n,n)xn1,
3次幂的运算公式
3次幂的运算公式咱先来说说这 3 次幂的运算公式哈。
这 3 次幂的运算,就像一场有趣的数字游戏。
比如说,一个数的 3 次方,就是这个数自己乘自己再乘自己。
打个比方,2 的 3 次幂,那就是 2×2×2 = 8 。
这就好像你有 2 个同样大小的盒子,每个盒子里又有 2 排同样多的小物件,每排又有 2 个小物件,那总的小物件数量就是 8 个。
咱再深入点儿,要是遇到了一个负数的 3 次幂呢?比如说 -2 的 3 次幂。
这时候,可别迷糊,负数的奇次幂还是负数,所以 -2 的 3 次幂就是 -(2×2×2)= -8 。
还记得我之前教过的一个学生小明不?有一次上课,我就问大家 3 的 3 次幂是多少。
大家都在埋头苦算,就小明高高地举起了手,自信满满地说:“老师,我知道,是 27 !”我就让他给大家讲讲怎么算的。
他站得笔直,声音响亮地说:“3×3×3 嘛,先算 3×3 得 9,再乘以 3 ,不就 27 嘛。
”看着他那一脸骄傲的样子,其他同学也都恍然大悟。
在做 3 次幂运算的时候,有个小技巧得记住。
如果底数是 0 ,那 0 的 3 次幂还是 0 。
这就好比一个空盒子,不管你怎么把它复制三次,里面还是啥都没有。
还有啊,要是遇到了带分数或者小数的 3 次幂,别慌。
先把它们化成假分数或者整数,再去算。
比如说 1.5 的 3 次幂,咱先把它变成 3/2 的 3 次幂,那就是(3×3×3)/(2×2×2)= 27/8 。
咱学习 3 次幂的运算公式,可不光是为了考试能得分,在生活中也有用处呢。
就像装修房子的时候,要算一个正方体形状的储物箱能装多少东西,这就得用到 3 次幂的运算啦。
总之,这 3 次幂的运算公式虽然看起来简单,但是里面的门道可不少。
得认真琢磨,多做练习,才能真正掌握好,让它成为咱们解决数学问题的有力武器。
母函数详解——精选推荐
母函数详解在数学中,某个序列的母函数(Generating function,⼜称⽣成函数)是⼀种形式幂级数,其每⼀项的系数可以提供关于这个序列的信息。
使⽤母函数解决问题的⽅法称为母函数⽅法。
母函数———把组合问题的加法法则和幂级数的的乘幂的相加对应起来我们从经典的砝码的例⼦讲起题⽬:有1g 2g 3g 4g的砝码各⼀枚,能称出多少种重量?每种重量的可能组合砝码是什么穷举的话,很容易得出结果,单数时间复杂的度为n的四次⽅,较⼤,不能采取所以,我么可以采⽤⼀个类似离散数学的逻辑式⼦表⽰前两种砝码组合产⽣的情况这⾥ ||代表或 &&代表与(使⽤1g||不使⽤1g)&&(使⽤2g||不适⽤2g)=使⽤1g&&使⽤2g||不使⽤1g&&使⽤2g||使⽤1g&&不使⽤2g||不使⽤1g&&不使⽤2g思考:⼤家可以发现这个表达式和⼀种表达式很像,没错,如果把“||”看成加法,“&&”看成乘法,和多项式的乘法⼀模⼀样。
那么我们直觉的想到,有没有可能⽤多项式乘法来表⽰组合的情况呢?我们再来看题⽬,题⽬需要的是⼏种砝码组合后的重量,是⼀个加法关系,但是在上式中“&&”是⼀种类似于乘法的运算关系,这怎么办呢?有没有什么这样⼀种运算关系,以乘法的形式运算,但是结果表现出类似于加法的关系呢?正好有⼀个,那就是幂运算。
Xm 乘上Xn结果是Xm+n,他完美的符合了我们的要求。
那么以次数表⽰砝码的质量,就可以以多项式的形式表⽰砝码组合的所有⽅案。
还是以前俩个砝码为例说明。
表⽰1g砝码的两种多项式就是(x^0+x^1),表⽰2g砝码的两种多项式就是(x^0+x^2),x的0次⽅表⽰没有使⽤该砝码,当然x的0次⽅等于1,所以写成1也是对的。
注意,砝码的重量是⽤次数表⽰的,⽽不是⽤下标表⽰的 (x^0+x^1)*(x^0+x^2) =x^0*x^0+x^1*x^1+x^0*x^1+x^1*x^2 =x^0+x^1+x^2+x^3 结果很显然,有四个⽅案;0g 1g 2g 3g 再试试四个砝码加⼀起的结果 ⼀个1g 2g 3g 4g (x^0+x^1)* (x^0+x^2) * (x^0+x^3)* (x^0+x^4) =x^0 + x^1 + x^2 + 2x^3 + 2x^4 + 2x^5 + 2x^6 + 2x^7 + x^8+ x^9 + x^10 结果就是0g 1g 2g 2个3g 2个4g 2个5g 2个6g 2个7g ⼀个8g ⼀个9g ⼀个10g ⾄此也就得出了答案。
组合数学 第四章2母函数的性质
§4.3 在选优法上的应用
可见做两次试验,至少可把区间缩至原来区
间的2/3,比如
f (,x1)进一f 步(x2在)
(a, x区2 ) 间上找极值点。若继续用三等分法,
将面对着这一实事即其中 点的x1 试验没发挥其
作用。为此设想在 区间(0的,1)两个对称点
分别x做,l 试 x验。
0 lx x 1
§4.3 在选优法上的应用
__________ __________ ____ ) Fn2 Fn(Fn1 Fn1) FnFn1 Fn1Fn
F12 F 22 Fn2 Fn Fn1
§4.3 在选优法上的应用
设函数 y f (x) 在区间 (a,b) 上有一单峰
极值点,假定为极大点。
所谓单峰极值,即只有一个极值点 ,而且
设保留(0, x) 区间,继续在 (0, x) 区间的下面 两个点 x2, (1 x)x 处做试验,若
x2 1 x
则前一次1 x 的点的试验,这一次可继续使
用可节省一次试验。
x2 x 1 0
x 1 5 0.618 2
0 0.382 (0.618)2 0.618
1
§4.3 在选优法上的应用
______________
F2n F2n2
F1 F3 F5 F2n1 F2n
§4.3 若干等式
3) 证明:
F12
F
2 2
F12 F2F1
Fn2 Fn Fn1
F22 F2 (F3 F1) F2F3 F2F1
F32 F3 (F4 F2 ) F3F4 F2F3
§4.2 母函数的性质
例. A(x) sin x x x3 x5 3! 5!
算法合集之《母函数的性质及应用》
x 取 f ( x ) e , x 0 0 ,得 e x 1 x
x 2 x3 x 4 G ( x) , 2! 3! 4!
也就是说序列 1,1,1,1, 的指数型母函数的闭形式为 e x 。 同样运用 Taylor 公式,我们可以得到: 序列 1,1,1,1,1,1, 的指数型母函数为 e x 。 序列 0,1,0,1,0,1, 的指数型母函数为
m1 学归纳法同样可以得到结果 g n Cm n1 。
1 1 1 ,之后运用数 m 1 x (1 x) m1 (1 x)
那么闭形式
1 m1 m1 m1 对应的序列为 1, Cm , Cm 1 , Cm 2 , 。 (1 x) m
1 1 , 我们可以把 x 看成一个整体后来展开, 参考 的 1 x 1 x
关键字
母函数 递推 排列组合
§1.母函数的性质
§1.1. 定义
母函数是用于对应一个无穷序列的幂级数,一般来说母函数有形式:
G ( x) g 0 g1 x g 2 x 2 g n x n
n0
我们称 G( x) 是序列 g 0 , g1 , g 2 , 的母函数,下文表示为:
(1 x) m
§1.4. 指数型母函数
有时候序列 g n 所具有的母函数的性质十分复杂, 而序列
gn 所具有的母函数的 n!
性质十分简单,那我们宁愿选择
gn 来研究,然后再乘以 n! 。 n!
我们称:
G ( x) g n
n0
xn 为序列 g 0 , g1 , g 2 , 的指数型母函数。 n!
G( x) g 0 , g1 , g 2 ,
组合数学(第二版)母函数及其应用
考虑座位号),其中,甲、乙两 班最少1张,甲班最多5张,乙班最
多6张;丙班最少2张,最多7张;丁班最少4张,最 多10张.可有多
少种不同的分配方案?
母函数及其应用
母函数及其应用
【例 2.1.5】 从n 双互相不同的鞋中取出r 只(r≤n),要求
其中没有任何两只是成对 的,共有多少种不同的取法?
母函数及其应用
(1+x)n .
【例 2.1.2】 无限数列{1,1,…,1,…}的普母函数是
母函数及其应用
说明
(1)an 的非零值可以为有限个或无限个;
(2)数列{an}与母函数一一对应,即给定数列便得知它的
母函数;反之,求得母函数则数列也随之而定;
(3)这里将母函数只看作一个形式函数,目的是利用其有
关运算性质完成计数问题, 故不考虑“收敛问题”,即始终认
红红、黄黄、蓝蓝、红黄、黄红、红蓝、蓝红、黄蓝、 蓝
黄.其它情形依此类推.
母函数及其应用
这里需要说明的是:
(1)在例2.1.3中,利用普母函数可以将组合的每一种情况
都枚举出来,但是对排列问 题,指母函数却做不到,只能对排列
进行分类枚举.正如例2.3.1这样,项ryb 的系数6说 明红、蓝、
黄球各取一个时,有6种排列方案,但每一种方案具体是什么,
(每个数字可重复出现), 要求其中3,7出现的次数为偶数,1,5,9
出现的次数不加限制.
母函数及其应用
【例 2.3.4】 把上例的条件改为要求1、3、7出现的次数
一样多,5和9出现的次数不 加限制.求这样的n 位数的个数.
解 设满足条件的数有bn 个,与例2.1.6的分配问题类似,即
将n 个不同的球放入标号 为1、3、5、7、9的5个盒子,其中
卢开澄《组合数学》习题答案第二章
2.1 求序列{0,1,8,27,…3n …}的母函数。
解:()()++++++=++++++=nn n x n x x x x G x a x a x a x a a x G 3323322102780()046414321313=+-+--==-----n n n n n n n a a a a a n a n a左右同乘再连加:464:0464:0464:0464:4321543211123455012344=+-+-=+-+-=+-+-=+-+-----------n n n n n n n n n n n n a a a a a x a a a a a x a a a a a x a a a a a x母函数:()()42162036-+-=x x x x G2.2 已知序列()()3433{,,……()33,,n +……},求母函数。
解:1(1)nx -的第k 项为:11()k n n +-- ,对于本题,n=4, ∴母函数为:41(1)x - 2.3 已知母函数G (X )= 25431783x x x--+,求序列{ n a }解:G (X )=)61)(91(783x x x +-+=)61()91(x Bx A ++-从而有: ⎩⎨⎧-==⇒⎩⎨⎧=-=+4778963B A B A B AG (X )=)61(4)91(7x x +-+-G (X )=7)999x (13322 ++++x x -4))6((-6)(-6)x (13322 +-+++x xn a =7*n )6(*49n -- 2.4.已知母函数239156xx x---,求对应的序列{}n a 。
解:母函数为239()156x G x x x -=--39(17)(18)xx x -=+- A BG(x)17x 18xA(18x)B(17x)39x=++--++=-令 A B 38A +7B =9+=⎧⎨--⎩解得:A=2 B=1所以 ii i 0i 021G(x)2*(7x)(8x)17x 18x ∞∞===+=-++-∑∑n n n a 2*(7)8=-+2.5 设n n F G 2=,其中F n 是第n 个Fibonacci 数。
母函数
比较等式两端的常数项,即得公式(2-1-3)
又如等式: n 2 (1 x ) C ( n, 0) C (n,1) x C (n, 2) x
C ( n, n) x n
令x=1 可得
C (n,0) C (n,1) C (n,2) C (n, n) 2 (2 - 1 - 4)
我们也可以从另一角度来看,要使两个色 子掷出6点,第一个色子除了6以外的都 可选,这有5种选法,一旦第一个选定, 第二个色子就只有一种可能的选法 按乘法法则有5*1=5种
但碰到用三个或四个色子掷出n点,上述两方法 就不胜其烦了。——这就需要引进新的方法。设 想把色子的出现的点数1,2,…6和t到t 6 对应起 来,则第一个色子可能出现的点数就与
[C(n,0) C(n,1)x C(n, n)x n ] [C(m,0) C(m,1)x C(m,m)x ] C(m n,0) C(m n,1)x
m
C(m n,m n)x m n
比较等号两端项对应系数,可得一等式
C (m n, r ) C (m,0)C (n, r ) C (m,1)C (n, r 1) C (m, r )C (n,0)
2 6
• 母函数的思想很简单—就是把离散数列 和幂级数一一对应起来,把离散数列间 的相互结合关系对应成为幂级数间的运 算关系,最后由幂级数形式来确定离散 数列的构造. 看下面的例子.
(1 a1 x)(1 a 2 x) (1 anx) 1 (a1 a 2 an) x (a1a 2 a1a 3 an 1an) x a1a 2 anx n (2 - 1 - 1)
组合数学(西安电子科技大学(第二版))第二章母函数
1080x 4 7380x 5 x 20
2.1母函数
2.1母函数
例 甲、乙、丙3人把n(n≥3)本相同的书搬到办公室,要求甲 和乙搬的本数一样多,问共有多少种分配的方法? 解: ( x) 1 x 2 x 4 x 2k 1 x x 2 x k G
= (1+x2+x4)2(1+x)2x15 = (1 +x +x2 +x3 +x4 +x5)2x15 只需要多项式(1 +x +x2 +x3 +x4 +x5)2展开式中x5的系数就等于x20 的系数,由多项式定理:C20=6.
2.1母函数
例 求不定方程3k1+4k2+2k3+5k4=n的非负整数解的个数。
2.3指数型母函数
例、求1,3,5,7,9五个数字组成的n位数的个数(每个数 字可重复出现),要求其中3,7出现的次数为偶数,1, 5,9出现的次数不加限制。
2.3指数型母函数
例、求1,3,5,7,9五个数字组成的n位数的个数(每个数 字可重复出现),要求1、3、7出现的次数一样多,5和9 出现的次数不加限制。求这样的n位数的个数。
2.1母函数
5 5 i 6 6 i 9 9 i G ( x ) x x x i i i i 1 i 1 i 2
2.2母函数的性质
2.2母函数的性质
2.2母函数的性质
2.2母函数的性质
2.2母函数的性质
2.2母函数的性质
2.2母函数的性质
2.2母函数的性质
组合数学讲义及答案 2章 母函数
x1 x 1 x 3
1 x
6x
4
1 x
ex
-ln(1- a x)
《组合数学》
第二章
母函数
ak ak
k 1 = 2k ! k 1 =
cos x
ak =
2k 1!
1k
1 sin x x
2k 1
1 arctan x x
n
n r r r 2 x r 0
n
n r 即不同的取法共有 a r r 2 种。 n 由于每类元素最多只能出现一次, 故 G(x)= 1 2 x 中不能
有 x 2 项,再由同双的两只鞋子有区别知,x 的系数应为 2。 解法二:用排列组合。先从 n 双鞋中选取 r 双,共有 r 种 r 选法,再从此 r 双中每双抽取一只,有 2 种取法,由乘法原理, 即得结果同上。 解法三: 仍用排列组合。 先取出 k 只左脚的鞋, 再在其余 n k
r 组合数为 x r 之系数 C n 。
r
(2.1.2)
为
推论2 S e1 , e2 ,, en ,则 r 无限可重组合的母函数
j 1 G(x)= x 1 x n j0
3/49
n
(2.1.3)
《组合数学》
第二章
母函数
5 i 6 i 7 i 10 i G1(x)= x x x x i 0 i 0 i 0 i 0 4 28 = 1 4 x 35 x x
与
6/49
《组合数学》
第二章
母函数
0 , 当r n为奇数 ar rn r n , 当r n为偶数 C n 2 1 , 2
六大母函数
六大母函数母函数是数学中一个常见的概念,其定义是指,给定一类函数,任一个函数都可以表示成由母函数和一个或多个参数组成的函数。
母函数实际上是一类函数的共性,它们把不同的函数分类了起来,也就是说,母函数可以把不同的函数映射到一个共同的函数。
其中,六大母函数是比较常用的数学函数,它们分别是指数函数、对数函数、幂函数、正弦函数、余弦函数和正切函数。
下面我们就分别来讨论它们的特征和用途。
首先,指数函数,它的公式为y = a^x,其中a是一个大于零的常数,x表示指数函数的指数项;指数函数的图像是一条以原点为拐点的曲线,它的导数为y = a^x *ln(a),指数函数主要用于求解定积分和求解某些不定积分。
其次,对数函数,它的公式为y = ln(x),其中x表示底数,表示元函数的自变量;对数函数的图像是一条折线,折线上的点根据自变量变化而变化;对数函数的导数为y = 1/x,对数函数主要用于求解对数函数的积分、求解某些不定积分,还可以用于求解重极值点、及求解极限。
第三,幂函数,它的公式为y = c^x,其中c是任意的实数,x 表示幂函数的指数;幂函数的图像也是一条以原点为拐点的曲线,它的导数为y = c^x * ln(c),幂函数主要用于求解定积分和求解某些不定积分。
接下来,正弦函数,它的公式为y = sin(x),其中x表示正弦函数的自变量;正弦函数的图像是一条周期性的曲线,它的导数为y = cos(x),正弦函数主要用于求解定积分和求解某些不定积分。
再次,余弦函数,它的公式为y =cos(x),其中x表示余弦函数的自变量;余弦函数的图像也是一条周期性的曲线,它的导数为y = -sin(x),余弦函数主要用于求解定积分和求解某些不定积分。
最后,正切函数,它的公式为y = tanx,其中x表示正切函数的自变量;正切函数的图像是一条周期性的折线,它的导数为y = sec2x,正切函数主要用于求解定积分和求解某些不定积分。
母函数
母函数母函数思想的起源可以追溯到18世纪Jacob B的《猜度术》一书。
这本书是在作者去世8年后的1713年出版的,它是早期概率论中最重要的著作。
《猜度术》一书共分四个部分,其中在第二部分中,作者讨论了组合论问题。
主要是运用伯努利数通过完全归纳法证明了n 为正整数时的二项式定理。
在第三部分中,作者把排列和组合的理论运用到概率论中,给出了24种有关在各种赌博情形中利益预测的例子。
在第四部分中作者给出了著名的伯努利大数定律:若P是事件发生一次的概率,q是该事件不发生的概率,则在n次实验中该事件至少出现m次的概率等于的展开式中从项到包括为止的各项之和。
母函数是组合数学的一个重要理论。
Jacob B考虑掷n粒骰子时所得点数总和等于m,这种场合的数目等于的展开式中这一项的系数,开了母函数研究的先河。
在18世纪,Euler L对组合方法的发展做出了重大贡献。
他关于自然数的分解与合成的研究为母函数方法奠定了基础。
1812年,法国数学家Laplace P.S. 出版了《概率的分析理论》一书。
这本书第一部分的小标题为“母函数的计算”,这一部分致力于母函数计算的数学方法及其一般数学理论,这是对Euler L所提出的母函数理论的发展。
所以现代学术界认为母函数方法是由Euler L和Laplace P.S. 共同发现的。
由此,组合数学中的母函数理论基本建立起来了。
在当代组合学理论中,母函数是解决计数问题的重要方法。
一方面,母函数可以看成是代数对象,其形式上的处理使得人们可以通过代数手段计算一个问题的可能性的数目;另一个方面,母函数是无限可微分函数的Taylor级数。
如果能够找到函数和它的Talor级数,那么Taylor级数的系数则给出了问题的解。
本章主要介绍母函数的两种形式:普通型母函数和指数型母函数。
然后通过一些典型问题的分析,帮助读者加深对这一方法的理解。
并且在分析中,有的问题采用多种方法求解。
通过对比,读者可以明显地看到用母函数的方法解决问题具有较高的效率,并且程序具有非常规范的形式,易于实现。
第四章 母函数及应用
14:28
12
一般地,由于
故从n个不同物体中不重复取k个的方法数即为xk的系数。 ⑵从n个不同物体中允许重复选取k个物体的方法数
1+x:可象征性地表示一个物体都不选,或只选取一次,即至多选取一次; 1+x+x2:可象征性地表示一个物体都不选,或只选取一次,或选取两次,
即至多选取两次; 1+x+x2+x3+….:可象征性地表示一个物体都不选,或只选取一次,或选取
例3 现有无穷多个字母A、B、C,求从中取n个字母但必须含有偶数个 A的方式数。
例4 现有2n个A,2n个B和2n个C,求从它们中选取3n个字母的不同方 式数。
14:28
15
三、指数母函数在排列计数问题中的应用
已知
(1
x)n
n k 0
n k
xk
,
kn
f (x) (x x2 x3)( x x3 x5 ...)(1 x x2 ...)
(2)因为第1、2个盒子装相同个糖果,故装入这两个盒子的糖果 总数应为偶数。所以先取2i个糖果,现将它们一分为二分别装 入第1、2个盒子。又因为糖果无区别,故每次一分为二的方法 仅一种。所以普通母函数为
为序列{a0,a1,a2,…,an,…}的普通母函数. n0
14:28
1
注:
①普通母函数从形式上看是一个无穷级数(幂级数),但 没有必要讨论它的收敛性,它实质上是序列的记号,x
为形式变元。对该级数可把它看成形式幂级数,从
而可进行加法、乘法及形式微分等运算,从而构成 一个代数体系。
②一个序列和它的普通母函数是一一对应的。
f (x) (1 x2 x4 ...)(1 x x2 ...)
六大母函数
六大母函数函数是数学中重要的概念,它可以将一个输入变量映射到另一个输出变量,通常我们把输入变量称作自变量,把输出变量称作因变量。
有时候,函数可以用曲线或公式来表示,所以它也被称为曲线函数或公式函数。
六大母函数是指六种常见的曲线函数,分别是线性函数、幂函数、指数函数、对数函数、三角函数和反三角函数。
线性函数是最简单的函数,形式为y=ax+b。
它属于一元一次函数,只有一个自变量,因变量的值和自变量的值之间的关系是线性的。
在一元一次函数中,a叫做斜率,b叫做y轴截距,两者有各自的性质和特点。
幂函数是一类二元函数,它们以幂函数的形式来表现,通常可以写成y=axn,其中a和n都是常数,n是幂函数的指数,它们决定了函数的形状。
当n>1时,函数图象是一条开口向上的抛物线;当n<0时,函数图象是一条开口向下的抛物线;当n=1时,函数图象是一条直线;当n=0时,函数图象是一条水平的直线。
此外,幂函数的斜率与指数n的正负值有关,当n>1时,斜率增加;当n<1时,斜率减小;当n=1时,斜率为常数。
指数函数是一类二元函数,可以写成y=aem,其中a和m都是常数,m是指数函数的指数,它决定了函数的形状及斜率。
指数函数的图像是一条开口向上的曲线,其斜率不断增加,m的正负值不影响指数函数的图像形状,但影响函数的上下移动及其斜率的大小。
对数函数也是一类二元函数,可以写成y=alnx,其中a和m都是常数,m是对数函数的底数,它决定了函数的形状及斜率。
对数函数的图像是一条开口向上的曲线,其斜率不断增加,底数m的正负值不影响该函数的图像形状,但影响函数的上下移动及其斜率的大小。
三角函数是一种函数,它以三角函数的形式来表现,用符号表示可以为y=sinθ、y=cosθ、y=tanθ、y=cotθ。
在三角函数的图像中,x表示角度,而y表示每一个角度对应的三角函数值。
反三角函数也是一种函数,用符号表示可以为y=sin-1θ、y=cos-1θ、y=tan-1θ、y=cot-1θ。
母函数与递推关系
2 3 4 5 6 7
母函数与递推关系
例 求用1元和2元的钞票支付n元的不同方式数。 解:设所求不同方式数为an,则由题设可得{an}的 母函数为 f ( x ) [1 x x 2 ][1 x 2 ( x 2 )2 ( x 2 )3 ] 1 1 1 x 1 x2 1 (1 x )(1 x ) 2
1 2
1 (a b c ) x ( a ab ac b bc c ) x
2 3 2 2 2 2 2 2 2
( a a b ab a c ac abc b b c bc c ) x ...
3 2 2 3 3
母函数与递推关系
母函数与递推关系
算法复杂度为:
h(n) 2h(n 1) 1, h(1) 1
2 3
(*)
H ( x ) h(1) x h(2) x h(3) x ,(**) H(x)是序列 h(1), h(2), h(3), 的母函数。给
定了序列,对应的母函数也确定了。反过来也 一样,求得了母函数,对应的序列也就可得而 知了。当然,利用递推关系(*)式也可以依次求 得 h(2), h(3), ,这样的连锁反应关系,叫做递 推关系。
所以
5 4 1 an , n 1, 2,... 4
n n
母函数与递推关系
§2 递推关系
定义:设(a0,a1,…,an,…)是一个序列,把该序列 中 an 与它前面几个ai(0≤i<n)关联起来的方程称 为递推关系。序列中的一些已知条件称为初始 条件。 例如
an an1 nan2 , an 3an1 n 1
用母函数求解排列问题
用母函数求解排列问题作者:***来源:《数学教学通讯·高中版》2024年第06期[摘要]母函数是组合数学中的一个重要概念,用母函数来处理中学数学中的一些排列问题,其可操作性强,学生容易理解. 文章先介绍指数型母函数的相关内容和定理,然后结合实例给出其应用.[关键词]排列问题;母函数;指数型母函数;理解;应用计数问题在日常生活、生产中普遍存在. 计数问题属于组合问题,而组合中有一个重要概念——母函数(也叫发生函数、生成函数)[1]. 指数型母函数(简称指母函数)正是将复杂的计数问题简单化的一个工具,利用指母函数可以轻松求解排列问题.预备知识定义1 设a,a,…,a,…是一个给定的数列,我们称形式幂级数f(x)=xn=a+ax+x2+x3+…+xn+…①为这个数列的指数型母函数,简称指母函数[2].例如,数列1,1,1,…,1,…的指母函数是f(x)=xn=1+x++…++…. 这个指母函数非常重要,我們专门用f(x)=ex来记它,即f(x)=ex=1+x++…++….规定:在进行这些运算时,把形式幂级数看成幂级数,然后按照幂级数的运算法则去运算.定义2 设f(x)=xn和g(x)=xn是两个形式幂级数,则f(x)±g(x)=xn,f(x)·g(x)=xn(其中c=Cakbn-k).定理1 ex·ey=ex+y.在定理1中,取y=x,则(ex)2=e2x,即=xn.推论1 (ex)m=emx,即=xn.在定理1中,取y=-x,则ex·e-x=1,即=e-x. 由ex=1+x++…++…,e-x=1-x+-…+(-1)n+…,得到:推论2 ex+e-x=21+++…++…,ex-e-x=2x+++…++….注:对于指数幂ax(a>0,且a≠1),显然ax·ay=ax+y. 从定理1可以看出,ex·ey=ex+y具有指数幂的运算性质. 这就是称式①为指母函数的原因.用指母函数求解排列问题排列问题,困难在于对问题背景的理解,这是一个数学化过程,需要通过不同情境加强训练、加深理解.我们先来看看下列三类排列问题.问题1 (不许重复的排列)从n个不同的物体中,任意取出r个作排列,不许重复,问有多少种不同的排法?问题2 (允许无限重复的排列)从n个不同的物体中,任意取出r个作排列,允许重复,问有多少种不同的排法?问题3 (允许有限重复的排列)设n个物体中,有n个物体A,n个物体A,…,n个物体A,n+n+…+n=n,现从中任取r个作排列,问有多少种不同的排法?[3]分析问题1的解答很简单,不同的排列的总数为A=n(n-1)…(n-r+1). 特别地,当r=n 时,不同的排列的总数为A=n(n-1)…3×2×1=n!. 这在中学课本上已经很熟悉了.问题2的解答也不困难.因为允许重复,所以每个排列的r个位置上都有可能放n个不同物体中的任何一个,即每个位置都有n种可能,因此不同的排列的总数为nr[4].解答困难的是问题3,因为每个物体重复的次数是有限的,这给问题带来了复杂性.但如果考虑r=n的情形,问题还不算太难.定理2 设n个物体中,有n个物体A,n个物体A,…,n个物体A,n+n+…+n=n,则这n个物体不同的排列的总数为.证明由于对每个排列来说,n个物体A,n个物体A,…,n个物体A都出现在排列中,因此n个物体排列的总数为n!,而在这n!个排列中有很多的排列是一样的,例如n个物体A任意交换位置,若其他物体不动,这样得到的排列全是一样的,这种相同的排列有n!个. 同理,对物体A,A,…,A,也会有同类情况. 去掉这些相同的排列后,真正不同的排列的总数为.注:这是问题3中当r=n时的解答.最困难的是r<n的情形,这没有一般公式,而指母函数是解决这类问题的有力工具.定理3 设n个物体中,有n个物体A,n个物体A,…,n个物体A,n+n+…+n=n,从这n个物体中任取r(r<n)个物体,不同的排列的总数记为a,则数列{a}的指母函数为f(x)=1+x++…+1+x++…+…1+x++…+②.证明让第i个括号代表第i个物体A(i=1,2,…,k).从第一个括号中取出项,解释为“取出3个物体A”;从第二个括号中取出项,解释为“取出4个物体A”;其余类似.现在研究式②的展开式中的系数.合并同类项前,式②的展开式中的是由各个括号中的项相乘而来的:··…·=,这里0≤m≤n,0≤m≤n,…,0≤m≤n,而且m+m+…+m=r. 故··…·=·. 由此可知,的系数是③,而且m+m+…+m=r.根据定理2可知,式③恰好就是这r个物体不同的排列的总数:在这r个物体中有m个A,m个A,…,m个A,这说明乘积··…·就对应一种排列. 由于m(i=1,2,…,k)可以取遍0,1,2,…,n(i=1,2,…,k)中的所有整数,因此合并同类项后,的系数就表示从这n个物体中取出r个物体的不同的排列的总数.这就证明了式②就是数列{a}的指母函数.在此我们可以把定理3推广到更一般的情形:定理4 设A={a,a,…,a},M,M,…,M均为非负整数集的子集,从A中可重复地选取r个元素作排列. 如果a可重复选取的全部次数为M(k=1,2,…,n),记所有可能的排列数为er,则数列{er}(r≥0)的指母函数为f(x)=…. 将指母函数解析式展开,的系数就是所求的排列数e.证明留给读者完成.指母函数应用举例题1 将8个不同的球分发给4个不同的班级,要求每个班至少分得一个球,问有多少种不同的分法?解析将8个不同的球排成一列,4个班依次编号为1,2,3,4.对于一个满足条件的分法,若把某个球分给编号为i的班,就在该球所排的位置上填上i,则得到{1,2,3,4}的一个“8可重”排列(即从集合{1,2,3,4}中可重复地选取8个元素作成排列). 由于每个班至少分得一个球,所以每个数至少出现一次,即每个数出现的次数都属于集合{1,2,3,…}. 将n个不同的球分给4个不同的班且每个班至少分得一个球的分法数记为a,由定理4可知数列{a}(n≥1)的指母函数为f(x)=x+++…=(ex-1)4=e4x-4e3x+6e2x-4ex+1=xn-4xn+6xn-4xn+1=(4n-4×3n+6×2n-4)+1. 由此可得,的系數a=48-4×38+6×28-4=40824. 所以,共有40824种不同的分法.题2 用数字1,2,3,4作六位数,每个数字在六位数中出现的次数不得大于2,问可作出多少个不同的六位数?解析这是排列问题,每个数字出现的次数都属于集合{0,1,2}. 设所求为N,由定理4可知,N是指母函数f(x)=1+x+的展开式中的系数,而1+x+=[x2+(2x+2)]4=[x8+4x6(2x+2)+6x4(2x+2)2+4x2(2x+2)3+(2x+2)4],所以N=(4×2+6×22)=1440.题3 把n(n≥1)个彼此不同的球放到4个不同的盒子A,A,A,A中,要求A有奇数个球,A有偶数个球,问不同的放球方法有多少种?解析设不同的放球方法有a种.因为要求A有奇数个球,A有偶数个球,A,A中球的个数没有限制,所以A盒子出现的球的个数属于集合{1,3,5,…},A盒子出现的球的个数属于集合{0,2,4,…},A,A盒子出现的球的个数都属于集合{0,1,2,3,…}.由定理4可知,数列{a}的指母函数是f(x)=x+++…1+++…1+x+++….由推论1和推论2可得f(x)=··(ex)2=(e4x-1)=·=. 比较(n≥1)的系数,得a=4n-1.结束语母函数分为普通型母函数(简称普母函数)和指数型母函数(简称指母函数).普母函数主要应用于求解组合问题,而指母函数则主要应用于求解排列问题.高中阶段的排列问题,有些是难以处理的,这时可借助指母函数来求解. 利用指母函数求解排列问题,学生容易理解,而且可操作性强,是处理排列问题的好方法.参考文献:[1]李鸿昌,徐章韬. 用母函数理解组合问题[J]. 数学通讯,2023(10):59-61+66.[2]曹汝成. 组合数学[M]. 广州:华南理工大学出版社,2000.[3]刘会科. 母函数在组合计数中的应用[J]. 数理化解题研究,2016(13):16-17.[4]高仕学. 用母函数法统一解决三类排列与组合问题[J]. 课程教育研究,2017(07):161.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n的3次方的母函数
母函数是组合数学中的一种重要工具,它可以将一个数列转化为一个函数,从而方便地进行计算。
在本文中,我们将探讨n的3次方的母函数及其应用。
一、母函数的定义
母函数是一个形如F(x)=a0+a1x+a2x^2+...的函数,其中ai表示数列中第i个元素的系数。
母函数的作用在于将数列转化为一个函数,从而方便地进行计算。
二、n的3次方的母函数可以表示为F(x)=1/(1-x)^4。
这个母函数的系数可以用二项式定理展开得到,即F(x)=∑(n>=0) (n+3)C3 x^n。
三、应用
n的3次方的母函数在组合数学中有着广泛的应用。
例如,我们可以用它来计算n个球放入4个盒子中,每个盒子至少放一个球的方案数。
这个问题可以转化为求F(x)的第n项系数,即(n+3)C3。
此外,n的3次方的母函数还可以用于求解一些组合恒等式。
例如,我们可以用它来证明∑(k>=0) (2k+1)Ck = 4^n。
四、结论
n的3次方的母函数是组合数学中一个重要的工具,它可以方便地计算一些组合问题的方案数,同时也可以用于证明一些组合恒等式。
在实际应用中,我们可以根据具体问题选择不同的母函数,以便更加高效地解决问题。