解线性方程组的直接方法
数值分析--解线性方程组的直接方法
值 为A的特征值,x为A对应的特征向量,A的全体特征值
分 析
称为A的谱,计作 ( A),即 ( A) {i ,i 1,2,, n}, 则称
》
( A)
max
1in
|
i
|
为矩阵A的谱 半 径.
三、特殊矩阵
第5章 解线性方程组的直接方法
1) 对角矩阵
2) 三对角矩阵
3) 上三角矩阵
4) 上海森伯(Hessenberg)阵
分 析
1.00x 1.00y 2.00
》 解法1: 1.00105 x 1.00 y 1.00
(1.00 1.00105) y (2.00 1.00105)
1.00105 x 1.00 y 1.00
1.00
105
y
1.00
105
x 0.00,
y 1.00
第5章 解线性方程组的直接方法
1
Ly b y 3,Ux y x 1.
2
1
第5章 解线性方程组的直接方法
§3 高斯主元素消去法
若ak(kk) 0,或ak(kk)很接近于0,会导致其他元素数量级严重 增长和舍入误差的扩散,使得计算结果不可靠.
《例3’采用3位十进制,用消元法求解
数 值
1.00105 x 1.00y 1.00
L21L1 U2U11
L21L1
U
U 1
21
I
(因为上式右边为上三角矩阵,左边为单位下三角矩阵
从而上式两边都必须等于单位矩阵)
《 数
L1 L2 , U1 U2
1 1 1
值分例2
析
.例1中,A
0
4
-1,将A作LU分解。
数值分析第三章线性方程组解法
数值分析第三章线性方程组解法在数值分析中,线性方程组解法是一个重要的主题。
线性方程组是由一组线性方程组成的方程组,其中未知数的次数只为一次。
线性方程组的解法包括直接解法和迭代解法两种方法。
一、直接解法1.1矩阵消元法矩阵消元法是求解线性方程组的一种常用方法。
这种方法将方程组转化为上三角矩阵,然后通过回代求解得到方程组的解。
1.2LU分解法LU分解法是将系数矩阵A分解为一个下三角矩阵L和一个上三角矩阵U的乘积,然后通过解两个三角方程组求解线性方程组。
这种方法可以减少计算量,提高计算效率。
1.3 Cholesky分解法Cholesky分解法是对称正定矩阵进行分解的一种方法。
它将系数矩阵A分解为一个下三角矩阵L和它的转置的乘积,然后通过解两个三角方程组求解线性方程组。
Cholesky分解法适用于对称正定矩阵的求解,具有较高的精度和稳定性。
二、迭代解法2.1 Jacobi迭代法Jacobi迭代法是一种迭代求解线性方程组的方法。
它通过分解系数矩阵A为一个对角矩阵D和一个余项矩阵R,然后通过迭代更新未知数的值,直至达到一定精度要求为止。
Jacobi迭代法简单易懂,容易实现,但收敛速度较慢。
2.2 Gauss-Seidel迭代法Gauss-Seidel迭代法是一种改进的Jacobi迭代法。
它通过使用新计算出的未知数值代替旧的未知数值,达到加快收敛速度的目的。
Gauss-Seidel迭代法是一种逐步逼近法,每次更新的未知数值都会被用于下一次的计算,因此收敛速度较快。
2.3SOR迭代法SOR迭代法是一种相对于Jacobi和Gauss-Seidel迭代法更加快速的方法。
它引入了一个松弛因子,可以根据迭代的结果动态地调整未知数的值。
SOR迭代法在理论上可以收敛到线性方程组的解,而且收敛速度相对较快。
三、总结线性方程组解法是数值分析中的一个重要内容。
直接解法包括矩阵消元法、LU分解法和Cholesky分解法,可以得到线性方程组的精确解。
解线性方程组的直接方法主元素方法
17
设方程组
Ax b 的系数矩阵A的顺序主子式不为零
Ak
a11 a21
a12 a22
a1k a2 k akk
0, k 1,2,
, n 1,
ak1 ak 2
在Gauss消去法中,第一次消元时等价于用单位下三角阵
18
第二章 解线性方程组的直接方法
1 l 21 L1 l 31 l n1
(3)
等价于用矩阵
0 1 l32 ln 2
0 0 1 0
(i 3,4,, n)
(2) (2)
20
于是有
[ A , b ] L2 [ A , b ]
(3)
第二章 解线性方程组的直接方法
一般地,第k次消元等价于用矩阵
Lk 1 1 O lk 1 k lnk 1 O O 1
(2-13)
(k ) (k ) 左乘矩阵 [ A( k ) , b(k ) ], 其中 lik aik / akk (i k 1,, n)
经过
n 1
次消元后得到
21
21
第二章 解线性方程组的直接方法
(1) a11 [ A( n ) , b ( n ) ] 0
再用Gauss消去法求解,消元后得同解方程
(2 10b)
5.0 x1 0.96x 2 6.5 x3 0.96 4.12x 2 2.24x3 0.364 2.99x3 5.99
4
第二章 解线性方程组的直接方法
回代得解
x3 2.00, x2 1.00, x1 2.60
与准确解相同. 产生上述现象的原因在于舍入误差.因为按式(2-10)的 方程顺序进行消元时,主元
数值分析小论文线性方程组的直接解法
数值分析小论文线性方程组的直接解法线性方程组的直接解法是指通过一系列的代数运算直接求解线性方程组的解。
线性方程组是数值分析中非常重要的问题,广泛应用于工程、科学、计算机图形学等领域。
在线性方程组的直接解法中,最常用的方法是高斯消元法,它是一种基于矩阵变换的方法。
高斯消元法将线性方程组表示为增广矩阵,并通过一系列的行变换将增广矩阵转化为行阶梯形矩阵,从而得到方程组的解。
高斯消元法的主要步骤包括消元、回代和得到方程组的解。
消元是高斯消元法的第一步,通过一系列的行变换将增广矩阵的元素转化为上三角形式。
在消元过程中,我们首先找到主元素,即矩阵的对角线元素,然后将其它行的元素通过消元操作转化为0,从而使得矩阵逐步变成上三角形矩阵。
回代是高斯消元法的第二步,通过一系列的回代操作求解线性方程组。
回代操作是从上三角形矩阵的最后一行开始,通过依次求解每个未知数的值,最终得到方程组的解。
高斯消元法的优点是算法简单易于实现,可以在有限的步骤内求解线性方程组,适用于一般的线性方程组问题。
但是高斯消元法也存在一些问题,例如当矩阵的主元素为0时,无法进行消元操作,此时需要通过行交换操作来避免这种情况。
另外,高斯消元法对病态矩阵的求解效果较差,容易引起舍入误差累积,导致解的精度下降。
在实际应用中,为了提高求解线性方程组的效率和精度,人们常常使用一些改进的直接解法,例如列主元高斯消元法和LU分解法。
列主元高斯消元法通过选择最大主元来避免主元为0的情况,进一步提高了求解线性方程组的精度。
LU分解法将矩阵表示为两个矩阵的乘积,从而将线性方程组的求解问题转化为两个三角形矩阵的求解问题,提高了求解效率。
综上所述,线性方程组的直接解法是一种基于矩阵变换的方法,通过一系列的代数运算求解线性方程组的解。
高斯消元法是最常用的直接解法之一,它简单易于实现,适用于一般的线性方程组问题。
在实际应用中,可以通过改进的直接解法来进一步提高求解效率和精度。
数值分析第二章解线性方程组的直接方法
a2(22) x2 ... a2(2n) xn b2(2) ,
..............
an(nn) xn bn(n) .
对此方程组进行回代,就可求出方程组的解.
xn
xiΒιβλιοθήκη bn(n) (bi(i )
an(nn) ,
n
ai(ji ) x
j i 1
j
)
ai(ii ) ,
i n 1,n 2,,1.
x3 x3
1 1
4x1 2x2 2x3 3
消去后两个方程中的x1得
x1
2 x2 5 x2
x3 1 2x3 2
6x2 6x3 1
再消去最后一个方程的x2得
x1
2 x2 5 x2
x3 1 2x3 2
42 5
x3
7 5
消元结束.
x1
1 2
经过回代得解:
x2
1 3
互换, 因而程序比较复杂, 计算时间较长.
• 列主元素法的精度虽然稍低于全主元素法, 但其
计算简单, 工作量大为减少, 且计算经验与理论实
践均表明, 它与全主元素法同样具有良好的数值稳
定性.
• 列主元素法是求解中小型稠密线性方程组的最好
方法之一.
27
§2 直接三角分解法
Gauss消元法的矩阵表示
a12
a13
a 1 0 a21 a22 a23 a21 aa11 a22 aa12 a23 aa13
b 0 1 a31 a32 a33 a31 ba11 a32 ba12 a33 ba13
28
n=3时Gauss消元法的矩阵表示
a11 a12 a13 A a21 a22 a23
线性方程组的直接解法
线性方程组的直接解法
线性方程组(linear equation system)是一类几何问题,也是解决线性系统和代数问题的重要方法,线性方程组由多个联立方程组成,这些方程中也可能含有未知量。
直接解法是把数学模型转换为数值模型,并给出实现其解题步骤的算法,它不同于间接求解的方法,既不做任何假设,也不处理不确定性问题,只是简单地直接求解线性方程组。
解线性方程组的直接解法主要分为三种,分别是高斯消元法、列主元消去法和列坐标变换法。
高斯消元法是一种比较常用的方法,主要是把线性方程组的未知量从左到右一步步求出来,其中用到的主要技术是把矩阵中部分元素消去为零,以便求解不定线性方程组的未知量。
而列主元消去法则是以一列为主元,去消除其他联立方程中出现的此列中的变量,从而最终求出其他未知变量的值。
最后,列坐标变换法是将线性方程组转换为一个更有利于求解的矩阵,其中未知量可以直接求得解答。
除了这三种常见方法外,还有一些更特殊的直接解法,比如要解常微分方程的未知函数,可以用拉格朗日方法和分部积分方法,再比如求解雅各比方程的根,可以通过主副方程互解求解,这种方法也叫作特征根法。
综上,解线性方程组的直接解法有高斯消元法、列主元消去法、列坐标变换法等;特殊问题可以采用拉格朗日方法、分部积
分法和特征根法等。
每种方法都有自己的优势,因此在使用时,可以根据问题的特点,选择适合的方法来解决。
第三章 解线性方程组的直接法
第三章 解线性方程组的直接法3.1 引言许多科学技术问题要归结为解含有多个未知量x 1, x 2, …, x n 的线性方程组。
例如,用最小二乘法求实验数据的曲线拟合问题,三次样条函数问题,解非线性方程组的问题,用差分法或有限元法解常微分方程、偏微分方程的边值等,最后都归结为求解线性代数方程组。
关于线性方程组的数值解法一般有两类:直接法和迭代法。
1. 直接法直接法就是经过有限步算术运算,可求得线性方程组精确解的方法(假设计算过程中没有舍 入误差)。
但实际计算中由于舍入误差的存在和影响,这种方法也只能求得线性方程组的近似解。
本章将阐述这类算法中最基本的高斯消去法及其某些变形。
2. 迭代法迭代法就是用某种极限过程去逐步逼近线性方程组精确解的方法,迭代法需要的计算机存储 单元少、程序设计简单、原始系数矩阵在计算过程中不变,这些都是迭代法的优点;但是存在收敛性和收敛速度的问题。
迭代法适用于解大型的稀疏矩阵方程组。
为了讨论线性方程组的数值解法,需要复习一些基本的矩阵代数知识。
3.1.1 向量和矩阵 用nm ⨯R表示全部n m ⨯实矩阵的向量空间,nm C⨯表示全部n m ⨯复矩阵的向量空间。
()⎪⎪⎪⎪⎪⎭⎫⎝⎛==⇔∈⨯nn n n n n ij nm a a aa a aa a a a212222111211A R A 此实数排成的矩形表,称为m 行n 列矩阵。
⎪⎪⎪⎪⎪⎭⎫⎝⎛=⇔∈n n x x x 21x R x x 称为n 维列向量矩阵A 也可以写成)(n 21a ,,a ,a A = 其中 a i 为A 的第i 列。
同理⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=T T T n 21b b b A其中T i b 为A 的第i 行。
矩阵的基本运算:(1) 矩阵加法 )( ,n m n m R C ,R B ,R A B A C ⨯⨯⨯∈∈∈+=+=n m ij ij ij b a c . (2) 矩阵与标量的乘法 ij j a ci αα== ,A C (3) 矩阵与矩阵乘法 p nk kjik b acij ⨯⨯⨯=∈∈∈==∑m p n n m R C ,R B ,R A AB C ( ,1(4) 转置矩阵 ji ij T nm a c ==∈⨯ , ,A C RA(5) 单位矩阵 ()n n ⨯∈=R e ,,e ,e I n 21 ,其中 ()Tk e 0,0,1,0,0 = k=1,2,…,n(6) 非奇异矩阵 设nn ⨯∈RA ,nn ⨯∈RB 。
数值分析_第七章_解线性方程组的直接解方法.
因‖R0‖<1,故lim‖R0‖k→∞2k=0.则2k‖Rk‖≤‖R0‖→0(k→∞),-1即Rk→0(k→∞).Rk=I-ACk,故当Rk→0时,Ck→A.四、习题1畅用Gauss消去法解方程组2x1+x2+x3=4,3x1+x2+2x3=6,x1+2x2+2x3=5.2畅(1)设A是对称矩阵且a11≠0,经过Gauss消去法一步后,A约化为a110证明A2是对称矩阵.(2)用Gauss消去法解对称方程组0畅6428x1+0畅3475x2-0畅8468x3=0畅4127,0畅3475x1+1畅8423x2+0畅4759x3=1畅7321,-0畅8468x1+0畅4759x2+1畅2147x3=-0畅86.3畅(1)用表达式(7畅4)证明其中aij=aij.(1)a1TA2.aij=aij-li1a1j-li2a2j-…-li,k-1ak-1,j,i,j≥k,(k)(1)(1)(2)(k-1)(r)(2)使Gauss消去法中arj=urj(j≥r),利用(1)证明urj=arj-k∑lrkukj(j=r,r+1,…,n),=1lir=(air-k∑likukr)/urr(i=r+1,…,n).=14畅设方程组x1+2x2+3x3=1,5x1+4x2+10x3=0,3x1-0.1x2+x3=2.r-1r-1318(1)试用Gauss全主元消去法求解.(2)试用Gauss列主元消去法求解.5畅设A为n阶非奇异矩阵且有分解式A=LU,其中L为单位下三角阵,U为上三角阵,求证A的所有顺序主子式均不为零.2,…,n-1)时,则有6畅由Gauss消去法证明:当Δi≠0(i=1,A=LU,其中L为单位下三角阵,U为上三角阵.7畅设A为n阶矩阵,若|aii|>j∑|aij|(i=1,2,…,n),则称A=1j≠in为对角优势矩阵.试证明:设A是对角优势矩阵,又设经过Gauss消去法一步后,A具有形式a110α1TA2,则A2是对角优势矩阵.且由此推断:对于对称的对角优势矩阵,用Gauss消去法和部分(列)主元Gauss 消去法可得到同样的结论.8畅设Lk为指标是k的初等下三角矩阵,即1筹Lk=1mk+1,k…mnk1筹1.(除第k列对角元下元素外,Lk与单位阵I相同)求证当i,j>k时,L珟k=IijLkIij也是一个指标为k的初等下三角矩阵,其中Iij 为初等排列矩阵.9畅试推导矩阵A的Crout分解的计算公式:A=LU,其中L为下三角矩阵,U 为单位上三角矩阵.10畅设UX=b,其中U为三角矩阵.(1)就U为上及下三角矩阵推导一般的求解公式.(2)计算解三角形方程组UX=b的乘除法次数.319(3)设U为非奇异矩阵,试推导求U323T-1的计算公式.11畅用平方根法(Cholesky分解)解方程组2203591-2103012591701-21-2A=-4-64182x1x2x3x1x2x3001-28-16.-20,b=5=3.710=16.30110-1-112畅用LDL分解法解方程组335-2A=10013畅用追赶法解三对角方程组AX=b,其中.14畅求矩阵A的LU分解,并利用分解结果计算A.15畅下述矩阵能否分解为A=LU,其中L为单位下三角矩阵,U为上三角矩阵.若能分解,那么分解是否唯一?1A=24246370.60.10.50.31312311162515615.461,B=21,C=216畅设A=F唱范数.17畅求证:,计算A的行范数、列范数、2唱范数及(1)‖X‖∞≤‖X‖1≤n‖X‖∞,320(2)‖A‖F≤‖A‖2≤‖A‖F.n×n18畅设P∈R范数.定义且为非奇异矩阵,又设‖X‖为R上一向量‖X‖P=‖PX‖.n试证明‖X‖P是R上向量的一种范数.19畅设X∈R,X=(x1,x2,…,xn),求证:p→∞nTn20畅证明:当且仅当与Y线性相关且XY≥0时,才有Tlim(i∑|xi|=1np)1=1max|xi|=‖X‖∞.≤i≤n‖X+Y‖2=‖X‖2+‖Y‖2.21畅设A∈Rn×n,求证特征值相等λ(AA)=λ(AA).TT22畅证明:如果A=(α1,α2,…,αn)是按列分块的,则‖A‖2F=‖α1‖2+‖α2‖2+…+‖αn‖2.222-123畅证明:如果‖B‖<1,则‖I-(I-B)‖≤‖B‖.24畅证明:对任何矩阵算子范数有‖I‖=1(其中I是单位矩阵),‖A‖‖A-1‖≥1.nj≠i25畅(1)如果A是对角优势矩阵,即|aii|>j∑|aij|(i=1,2,=1…,n),证明aii≠0(i=1,2,…,n).(2)设A为对角优势矩阵,使A=DB,其中D=diag(aii),证明B=I-C,其中‖C‖∞<1,因此由定理(7畅16),A是非奇异阵.(3)证明:如果应用Gauss消去法解对角优势方程组,则所有元素akk≠0.(k)26畅设‖A‖s、‖A‖t为任意两种R明存在常数c1、c2>0,使n×n上矩阵算子范数,证n×nc1‖A‖s≤‖A‖t≤c2‖A‖s(对一切A∈R).32127畅设A=100999998,计算A的条件数cond(A)ν(ν=2,∞).28畅证明:如果A是正交阵,则Cond(A)2=1.29畅设A,B∈Rn×n且‖·‖为Rn×n上矩阵的算子范数,证明TT30畅设A为对称正定矩阵,且其分解为A=LDL=WW,其中W=L,求证:T1Cond(A·B)≤Cond(A)·Cond(B).(1)cond(A)2=(cond(W)2).2(2)cond(A)2=cond(W)2·cond(W)2.31畅设对称正定矩阵A=试计算‖A-1T2-1-12,λ2,且找出b1‖2=1/λ,‖A‖2=λ2及cond2(A)=(常数)及扰动δb,使‖δb‖2‖δX‖2=cond2(A).2232畅求下面两个方程组的解,并利用矩阵的条件数估计‖δX‖.240-179240-179畅5-319240240x1x2=x1x234=,即AX=b,34,即(A+δA)(X+δX)=b.-319畅533畅已知Hilbert矩阵3221H3=11T1=b时,若H3及b有微小误‖δX‖∞.∞7畅0003-7T.(1)计算H3的条件数cond∞(H).111347(2)解方程H3X=差(取3位有效数字),估计解X的误差34畅设A=2畅0001-2-11,b=,已知方程组AX=b的精确解为X=(3,-1).(1)计算条件数cond∞(A).计算剩余r=b-AX珚.(2)若近似解X珚=(2.97,-1.01),(3)利用定理7畅20计算不等式右端,并与不等式左端比较,此结果说明什么?35畅填空题(1)X=(2,3,-4),则‖X‖1=,‖X‖2=,‖X‖∞TT=.1-32-10201,则‖A‖1=,ρ(A)=.0-1则cond2(A)=.20a,为使A可分解为A=LL,其中L为323T(2)A=-12-112(3)A=(4)设A=10a2对角线元素为正的下三角形矩阵,a的取值范围,取a=1,则L=.五、习题解答1畅解为消去第2、3两个方程中的x1,取l21=,l31=.将第2个方程减去-l21倍的第1个方程,第3个方程减去-l31倍的第1个方程,得2x1+x2+x3-=4,x2+x3=0,x2+x3=3.为消去第3个方程中的x2,取l32=-3.将第3个方程减去-l32倍的第2个方程,得三角方程组2x1+x2+x3=4,-11x2+x3=0,3x3=3.回代,算出方程组的解x3=3/3=1,x2=0-1x3(1)-1=1,x1=(4-x2-x3)/2=1.2畅解(1)记A=(aij)=(aij).经Gauss消元一步后,A2的元素为a(2)ij(1)=a(1)ij(1)i1(1)-a1j.11(1)(1)(1)因A是对称的,所以有aij=aji,ai1=aj1,于是有324a故A2是对称的.(2)ij=a(1)jij1(1)(2)-a1i=aji.11(1)(2)用Gauss消去法求解所给对称方程组,得X=(4畅586035,-0畅6315228,2畅735199).倡T 3畅解(1)因aij=aij(k)(k-1)-li,k-1ak-1,j,(k-1)而故aij=aij(k)(k-2)(1)aij(k-1)=aij(k-2)-li,k-2ak-2,j,(k-2)(k-1)-li,k-2ak-2,j-li,k-1ak-1,j=…(k-2)(1)(2)(k-2)(k-1)=aij-li1a1j-li2a2j-…-li,k-2ak-2,j-li,k-1ak-1,j,i,j≥k.(2)由(1)有urj=a又0=air由此解出(r+1)(r)rj=arj-k∑lrkakj(j=r,r+1,…,n).=1(k)r-1=air-li1u1r-li2u2r-…-lirurr.lir=likukrair-k∑=1rrr-1.4畅解(1)选主元为10,将第一行与第二行交换,第1列与第3列交换,得10x3+4x2+5x1=0,3x3+2x2+x1=1,x3-0.1x2+3x1=2.消去第2、3方程中的x3,得10x3+4x2+5x1=0,0畅8x2-0.5x1=1,-0.5x2+2.5x1=1.第2次选的主元为2畅5.将上述第2个方程与第3个方程交325换,第2列与第3列交换,得10x3+5x12畅5x1消去第3方程中的未知数x1,得10x3+5x1+4x2=0,2畅5x1-0.5x2=2,0.7x2=1.4.回代求得,x2=2,x1=1.2,x3=-1.4.得(2)列主元为5,将第1行与第2行交换,再消去x1,5x1+4x2+10x3=0,1畅2x2+x3=1,-2.5x2-5x3=2.列主元为-2.5,将第2行与第3行交换,再消去x2,得5x1+4x2+10x3=0,-2畅5x2-5x3回代求得x3=-1.4,x2=2,x1=1.2.5畅证设A、L、U的k阶顺序主子矩阵分别为Ak、Lk、Uk(k=1,2,…,n),显然Ak=LkUk.由A=LU分解的定义可知,L1U的各阶顺序主子式均不为零,即故det(Lk)=1,det(Uk)≠0.det(Ak)=det(Lk)det(Uk)≠0,k=1,…,n,=2,-1畅4x3=1畅96.+4x2=0,-0.5x2=2,-0.5x1+0.8x2=1.即A的各阶顺序主子式均不为零.(i)6畅证因Δi≠0,(i=1,2,…,n-1)(Δi是i阶顺序主子式),所以aii≠0(i=1,2,…,n-1),则Gauss消去法可进行到底,即存326在指标为i的初等下三角阵Li,使Ln-1Ln-2…L1A=U,故A=L1其中L=L1-1-1-1(2)-1…Ln-2Ln-1U=LU,-1-1…Ln-2Ln-1为下单位三角阵,U是上三角阵.aij=aij-(2)7畅证记A2=(aij),则有i1a1j.11nj≠in又A是对角优势矩阵,可知|aii|>j∑|aij|,i=1,2,…,n.故=1∑|a|=j∑j=2=2(2)ijj≠innnj≠ii1aij-a1j11≤j∑|aij|+j∑=2=2j≠i|ai1||a1j|11j≠in|aij|n∑|a1j|=j∑|aij|-|ai1|+=111j=2j≠ij≠i≤|aii|-=|aii|-≤|aii|-≤aii-ni1(|a11|-j∑|a1j|)=211j≠ini1(|a11|-j∑|a1j|+|a1i|)=211ni1|a1i|(|a11|-j∑|a1j|>0.)=211i1(2)a1i=|aii|(i=2,…,n).11即A2也是对角优势矩阵.若A是对角优势矩阵,经Gauss消元一步后.A→A(2)=a110αTA2.由上述证明及第2题结论知,A2仍是对角优势矩阵,即|a|>j∑|aij|(i=2,…,n).=2(2)ii(2)j≠in由对称性也有327|a|>i∑|a|=i∑|aij|,(j=2,…,n).=2=2(2)jj(2)ji(2)i≠ji≠jnn这正好与Gauss顺序消去而第二步消元前所选列主元应为a22,(k)法的主元相同.以此类推第k次所选主元就是akk,所以用Gauss (2)顺序消去法和列主元消去法得到同样的结果.8畅证因1筹Lk=1mk+1,k…mnk0,1,0,…,0).故ek=(0,…,T第k列=I-lkek.筹1TT其中I是单位阵,lk=(0,…,0,-mk+1,k,…,-mik,…,-mn,k),L珟k=IijLkIij=Iij(I-lkek)Iij=IijIIij-(Iijlk)(ekIij)=I-lkek′TTT仍是指标为k的初等下三角阵,其中lk=(0,…,0,-mk+1,k,…,mjk,…,-mik,…,-mnk).′T9畅解设A=LU,即a11a12…a1na21a22…a2n…………an1an2…ann根据矩阵乘法,有ai1=li1u11=li1,i=1,…,n,a1j=l11u1j,得u1j=328a1j,j=2,…,n.11=l11l21l22……筹ln1ln2…lnn1u121…u23筹……筹筹u1nu2n…un-1,n1.现设L的前k-1列与U的前k-1行已算好,因akk-1ik=r∑=1lirurk=r∑=1lirurk+likukk(i=k,…,n,ukk=1),k-1所以lik=aik-r∑=1lirurk(i=k,…,n).同样akk-1kj=r∑=1lkrurj=r∑=1lkrurj+lkkukj(j=k+1,…,n),k-1kj所以u-r∑=1lkrurjkj=akk,j=k+1,…,n.综上,Crout分解公式li1=ai1,i=1,2,…,n,u1j=a1j/l11,j=2,…,n,lk-1ik=aik-r∑=1lirurk,i=k,…,n,uk-1kj=(akj-r∑=1lkrurj)/lkk,j=k+1,…,n.10畅解(1)设U为上三角阵,则有u11……u1nx1b1u22…u2nx2筹……=b2….unnxnbn由unnxn=bn,得xn=bn/unn.一般地,由uiixi+ui,i+1xi+1+…+uinxn=bi,得nxbi-j=∑ijxji=ui+1ii(i=n-1,n-2,…,1).当U是下三角矩阵时,有329u11u21…un1u22…un2筹…unnx1x2 (x)n=b1b2…bn.由u11x1=b1,得x1=b1/u11.一般地,由ui1x1+ui2x2+…+uiixi=bi,i=2,…,n,得xi=(bi-j∑uijxj)/uii,i=2,…,n.=1(2)乘法次数,对固定的i有n-i次,i从1到n,所以总乘法次数R (n-i)=i∑i=R=i∑=1=1除法次数D,D=n.+n故总的乘除法次数=+n=.2nn-1i-1.(3)设Uu11…筹-1=V,这里V也是上三角阵,即u1n…unnv11…筹v1n (v)nnj1=UV=1筹1.V按行计算,i=n-1,…,1,vij=-k=i+1∑uikvkjii,j=i+1,…,n.vii=,i=1,2,…,n.ii223=2>0,Δ3=232203012>0.11畅解因系数矩阵顺序主子式Δ1=3>0,Δ2=32且系数矩阵对称,故为正定方程组.按照算法(7畅9)得330l11=,l21=2/,l31=,l22=则有3232203012由2/得再由2/y1=-y1y2y35=3,7=2/-2/-.,l32=-,l33=.511,y2=-,y3=.x1x2x3=5/-1/,1/-得x3=11,x2=,x1=1.12畅解此方程组的系数矩阵为对称正定矩阵,因此可用改进的平方根法,用算式(7畅11)得到d1=a11=3,t21=a21=3,l21=d2=a22-t21l21=5-3=2,t32=a32-t31l21=9-1=8,l32=t213==1,1315=,1t31=a31=5,l31=3282==4,d3=a33-t31l31-t32l32=.23311则A=LDL=T3121115/32.15/3212/31由LY=b,即1y11011y2=16,5/321y330得y1=10,y2=6,y3=4/3.再解DLTX=Y,得x3=2,x2=-1,x1=1.13畅解设-21001u1d11-210l21u2d201-21=l 31u3001-2l41由分解公式(7畅15)计算得d1=1,d2=1,d3=1,u1=-2,l2=-1,u2=-3,l3=-2,u3=-4,l4=-3,u4=-5.由公式(7畅16)解1y11-11LY=b=痴y21-21y=30,-1y4-1得y1=1,y2=3,y3=1,y4=-1.再由公式(7畅17)解332d3.u4-2UX=Y痴1-x11-41-x2x3=131,1-x41376得x4=,x3=-,x2=-,x1=-.14畅解由矩阵的三角分解公式(7畅6),计算得1-248A=LU=21010-32.3-1100-76100-0.50畅2-0畅1369-1-1L=-210,U=0畅1-0畅04211.-511-0畅01316所以-0畅21550畅0631-0畅1369-1-1-1A=UL=0畅010550畅05789-0畅04211.0畅0653-0畅01316-0畅0131615畅解设A能分解,则有1A=LU=l21l3101l32001u1100u12u220u13u33u331=2424631.7由分解公式(7畅6)知,u11=1,u12=2,u13=3,l21=2,l31=4,u22=0,而a32=l32u22+l31u12=0+4×2=8与a32=6矛盾,故A的LU分解不能进行.但A为非奇异阵,所以存在排列阵P,使PA=LU.即将A的1行与2行交换,则可分解为LU.设B=LU,则12312311=11l21l3101l32001u1100u12u220u13u23u33333.由分解公式(7畅6)知,u11=u12=u13=1,l21=2,l31=3,u22=0.而由3=l31u12+l32u22,得3=3+l32u22.故l32可任选,即B的三角分解存在且不唯一.因C的各阶顺序主子均不为0,故由定理7畅4知,C的三角分解存在且唯一.16畅解A的行范数6+0.5,0.1+0.3}=1.1.‖A‖∞=max{0.A的列范数6+0.1,0.5+0.3}=0.8.‖A‖1=max{0.‖A‖F=(0.36+0.25+0.01+0.09)AA=T1/2=0.8426.0畅330畅34.0畅60畅50畅10畅30畅60畅10畅60畅3=20畅370畅33|λI-AA|=TTλ-0畅37-0畅33-0畅33λ-0畅34=λ-0.71λ+0.0169=0.所以λmax(AA)=0.685,则‖A‖2=17畅证(1)由定义知,‖X‖∞≈0畅83.n=1max|xi|≤i∑|xi|≤i≤n=1=‖X‖1≤i∑max|xi|=n‖X‖∞,=11≤i≤n∞n从而‖X‖2∞≤‖X‖1≤n·‖X‖TT.(2)由范数定义有‖A‖2=λmax(AA)≤λ1(AA)+λ2(AA)+…+λn(AA)TT=AA的对角元之和=i∑a+i∑a+…+i∑ani=1=1=1T21i222i2nnn=j∑∑a=i∑∑aij=‖A‖F.=1i=1=1j=12ji2nnnn又‖A‖2=λmax(AA)2T334≥=从而TTT[λ1(AA)+λ2(AA)+…+λn(AA)]12‖A‖F.‖A‖F≤‖A‖2≤‖A‖F.注:此处用到了矩阵的特征值之和等于其对角线上元素之和的概念.从所证不等式也知道,矩阵的2唱范数可由F唱范数得到控制;矩阵的2唱范数与F唱范数是等价的.18畅证只要证明‖X‖P=‖PX‖满足范数定义的(1),(2),(3).(1)因P非奇异,故对任意X≠0,PX≠0,则‖X‖P=‖PX‖>0;当X=0时,PX =0,则‖X‖(2)对任意实数α,‖αX‖P=‖PαX‖=‖αPX‖=|α|‖PX‖=|α|‖X‖(3)‖X+Y‖PPP=‖PX‖=0;当‖X‖P=‖PX‖=0时,则PX=0,即X=0..=‖P(X+Y)‖=‖PX+PY‖≤‖PX‖+‖PY‖=‖X‖P+‖Y‖P.综上所述,‖X‖P是R上的一种向量范数.19畅证因‖X‖p∞n=1max|xi|≤i∑|xi|≤n·1max|xi|=n·‖X‖≤i≤n≤i≤n=1‖X‖∞≤(i∑|xi|)=1np1/ppnppp∞,两边开p次方有≤n‖X‖∞.1而plim=1,故→∞20畅证由Cauchy不等式,有|(X,Y)|≤‖X‖2‖Y‖2,且当且仅当X、Y线性相关时,有335lim(i∑|xi|)p→∞=1pn1/p1=‖X‖∞.|(X,Y)|=‖X‖2‖Y‖2;又当且仅当XY≥0时,有|(X,Y)|=(X,Y).T故(X,Y)=‖X‖2‖Y‖2当且仅当X、Y线性相关,且XYT≥0时,所以‖X+Y‖2=(X+Y,X+Y)=(X,X)+2(X,Y)+(Y,Y)2=‖X‖2+2‖X‖2‖Y‖2+‖Y‖222=(‖X‖2+‖Y‖2)2当且仅当X、Y线性相关,且X,Y≥0时,即‖X+Y‖2=‖X‖2+‖Y‖2迟痴X,Y线性相关,且XY≥0.T21畅证由于I-A及记B=μIATTOμI-AIμIAATTAμIAμI==μIO22AμI-AATT,.(7畅26)(7畅27)μIOAμIμIμI-AAATOμI.对(7畅26)、(7畅27)两式两边取行列式得μdet(B)=μdet(μI-AA),nnnn22T记λ=μ≠0,故2μdet(B)=μdet(μI-AA).TTT22畅证设A=(α1α2…αn)按列分块,即αj=(α1j,α2j,…,αnj)(j =1,2,…,n),则‖αj‖=i∑αij.而=1222Tndet(λI-AA)=det(λI-AA).‖α1‖+‖α2‖22nn2ij22+…+‖αn‖=j∑‖αj‖2=1222nn22n=j∑(∑α)=j∑∑αij=‖A‖F.=1i=1=1i=123畅证因‖B‖<1,由定理7畅16知I-B可逆且‖(I-B)-1‖≤,所以336‖I-(I-B)-1‖=‖(I-B)≤‖(I-B)≤-1-1(I-B-I)‖‖‖B‖‖B‖.24畅证由矩阵算子范数定义有‖I‖=maxX≠O由矩阵范数的相容性有‖A‖‖A优势矩阵,则j=1j≠i0-1‖IX‖‖X‖=max=1.X≠O‖≥‖AA-1‖=‖I‖=1.25畅证(1)用反证法.若有某个i0使ai0i0=0,因A是对角∑|ai0j|<|ai0j0|=0.n这是不可能的.得证.(2)因A=DB,即a11A=a21…an1而1B=a2122…n1nn12111………………1n11a2n22…1=1111337…………a1na2n…anna11a22筹ann12122…n1nn a12111………………a1n112n22…1=DB.=0---a2122n1nn-12110…………-1n11=I-C.a2n220‖C‖∞=maxi∑j=1nj≠iaijii=max∑ij=1n|aij|<1iij≠in|aij|<|aii|).所以由定理(这是因为A是对角优势矩阵,则j∑=1j≠i7畅16知,B=I-C为非奇异阵.由(1)aii≠0,故D非奇异.因此A=DB 非奇异.2,…,n.而a11(3)设A为对角优势阵,由(1)知aii≠0,i=1,=a 11,所以a11≠0.又设经Gauss消元一步后A具有形式:(1)(1)a110(2)(k)α1TA2.(2)由习题7知,A2也是对角优势矩阵.又由(1)知aii≠0,i=2,…,n,即有a22≠0.如此类推akk≠0.26畅证因‖A‖s=maxX≠O‖AX‖s.s对一切X都有由定理7畅10知,存在a1,a2>0,b1,b2>0,a1‖AX‖s≤‖AX‖t≤a2‖AX‖s,与b1‖X‖s≤‖X‖t≤b2‖X‖s.于是1‖AX‖s‖AX‖t2‖AX‖s≤≤.1st2s令12=c1=c2,故有12c1‖AX‖s‖AX‖t‖AX‖s≤≤c2.sts338c1maxX≠0即‖AX‖s‖AX‖t‖AX‖s2max≤max≤c.X≠0X≠0stsc1‖AX‖s≤‖AX‖t≤c2‖AX‖s.10099A-127畅解A=9998=,则-9899‖A-199-100.‖A‖∞=199,‖A-1‖∞=199,所以∞因A是对称矩阵,故cond(A)∞=‖A‖‖∞=199×199=39601.λmax(A).min=λ-198λ-1=0,2cond(A)2=由det(λI-A)=得即λ-100-99-99λ-98λ1=198畅0050503,λ2=-0畅00505035.cond(A)2=λ1=39206.2T-128畅证因A是正交阵,故A=Acond(A)2=max=min,则max=1.minmax=min-1-129畅证由条件数的定义及矩阵范数的相容性,有cond(AB)=‖AB‖‖(AB)=‖A‖‖AT-1‖‖‖A-1-1≤‖A‖‖B‖‖B‖‖‖‖B‖‖B=cond(A)cond(B).30畅证(1)因A=WW,所以cond(A)2=‖A‖2‖A 2-1-1T‖2=‖WW‖2‖(WW)TT-1‖2=‖W‖2‖W‖2=(cond(W)2).22T(2)由习题21知,λ(WW)=λ(WW),则339‖W‖2=TTTmax=-T故由(1)得,cond(W)2=‖W‖2‖Wmax=‖W‖2.-1‖2=‖W‖2‖W2T‖2=cond(W)2.31畅解由cond(A)2=[cond(W)2]=cond(W)2cond(W)2.|λI-A|=λ-211λ-2=λ-4λ+3=0,2解得所以‖A设b=-1λ1=1,λ2=3.‖2=1,‖A‖2=3,cond(A)2=,δb=11,这时有λ2=3.11-1‖δX‖2‖δb‖2=cond(A)2.22事实上,设X+δX=Y,则A(X+δX)=b+δb,即2-1解得y1=又解得x1=所以δX=11‖δX‖2=2-12y1y2=20,42,y2=.2-111,x2=-.-12x1x2=1-1,+==3.而cond(A)2=340‖δb‖2=cond(A)22=cond(A)2=3,故‖δX‖2‖δb‖2=cond(X)2.2232畅解记A=T240-179-319240T,δA=0-0畅5-0畅50则AX=b的解X=(4,3),而(A+δA)(X+δX)=b的解(X+δX)=(8,6).故‖X‖而A-1∞=4,‖δX‖=240179-1-1∞=4.,∞∞319240‖A‖‖δA‖‖δA‖cond∞(A)=‖A∞‖‖∞∞=626畅2,=0畅56012.=0畅5,‖A由推论7畅19畅2得‖δX‖∞∞‖δA‖∞∞0畅56012≤=≤1畅274,∞1-cond∞(A)∞∞‖δX‖∞≤1畅274‖X‖∞≤5畅10,表明估计‖δX‖∞=4略大,是符合实际的.933畅解(1)H3-1-36192-18030-180;180=-3630‖H3‖∞=所以c ond∞(H3)=748.-1,‖H3‖∞=408,(2)方程组在H3及b有微小变化时为1畅000畅5000畅3330畅5000畅3330畅2500畅3330畅2500畅200x1+δx1x2+δx2x3+δx31畅83=1畅080畅783341简记为(H3+δH3)(X+δX)=b+δb,它的精确解为X+δX=(1畅089512538,0畅487967062,1畅491002798).T而H3X=b的精确解X=(1,1,1),于是δX=(0畅0895,-0畅5120,0畅4910).‖δH3‖∞‖δb‖∞-3≈0畅18×10<0畅02%,≈0畅182%3∞∞而‖δX‖∞≈51畅2%.∞这表明H3及b的相对误差不超过0畅3%,而引起解的相对误差超过50%.由推论7畅19畅2,可得‖δX‖∞≤∞≤3∞1-cond∞(H3)3∞‖δb‖∞‖δH3‖∞+3∞∞TT408((0畅0002)+0畅00182)≤0畅8974=89畅74%.这个估计结果比实际误差大是合理的.34畅解(1)先算出A于是cond∞(A)=‖A(2)r=b-AX珚==7畅0003-7-1=‖∞1000020000‖A‖-∞10000200012畅0001-2=,-1=40001×3畅0001≈120012.-110畅05-0畅05.2畅97-1畅017畅0003-7-6畅9503-6畅95∞∞(3)依定理7畅20,右端为cond∞(A)而左端为342‖r‖=120012×0畅05≤857畅192,‖X-X珚‖∞0畅03==0畅01.∞这表明当A为病态矩阵时,尽管剩余‖r‖很小,误差估计仍然较大,因此,当A病态时用‖r‖大小作为检验解的准确度是不可靠的.35畅解(1)‖X‖1=9,‖X‖2=2(3)由1120a>0,得a<3,故a的取值范围-<a<2,‖X‖∞=5.2(2)‖A‖1=4,ρ(A)=1(|λI-A|=(λ-1),λ1,2=1).0a2,取a=1时,L=10000.2343。
计算方法第三章线性方程组的直接解法
5 3
3 1
r3
r1 6
6 1 18 2
1 0
4 5 1 3
3 1
r3 r225
1 0
4 1
5 3
3 1
0 25 48 16
0 0 27 9
林龙
计算方法
6
化原方程组为三角方程组的过程为消元过程. 解三角方程组的过程为回代过程.
也可将上边的增广矩阵进一步化简.
1 4 5 3
1 0 7 1
xi
Di D
(i
1, 2,3,
),由于方程含有n 1个
行列式.如对每个行列式按展开定理来计算.
用克莱姆法则求解,所需要的乘除运算量为
n!(n2 1) n次,若n 20用每秒一千万次的
计算机要三百万年,所以并不是凡直接法都
可以用来做实际运算.
林龙
计算方法
4
设有
§3.1直接法
a11x1 a12 x2 a21x1 a22 x2
解 : 10
7
0
7
r1 r2
5 1 5 6
林龙
计算方法
16
10 3 5
7 2 1
0 6 5
7 4 6
r2
3 10
r1
r3
5 10
r1
10
0
0
7 0.1 2.5
0 7 6 6.1 5 2.5
r2 r3
r3
1 25
r2
10 7 0 7 x3 1
0
2.5
5
2.5
x2
2.5 5x
nn
a11 a12 .... a1n 1 0 0
a21
a22
第三章 解线性方程组的直接法
相等.
定理 线性方程组 AX = b 可以用简单高斯消元法求解的
充要条件是
系数矩阵
A的
k
阶顺序主子式
∆k
≠
0
(k
=1, 2, , n).
8
如果主对角元素 ak(kk) 的绝对值很小, 由第一章的误差分 析可知计算时将会产生很大的计算误差.
例 用简单高斯消元法求解方程组(用四位浮点数计算)
0.012x1 + 0.01x2 + 0.167 x3 = 0.6781,
a(2) 2n
b1(1) b2( 2 )
→
An
= 0
0
a(3) 33
a(3) 3n
b3( 3 )
.
0
0
0
a(n) nn
bn(n)
对应的同解上三角形方程组为
a(1) 11
x1
+
a(1) 12
x2
a(2) 22
x2
+
+
a(1) 1n
b
0.6781
12.10
981.0
r1 ↔ r3
14
例 用高斯全主元消元法求解方程组(用四位浮点数计算)
0.012x1 + 0.01x2 + 0.167 x3 = 0.6781,
x1
+
0.8334 x2
+
5.91x3
= 12.1,
3200
x1
+
1200 x2
+
第二章 解线性代数方程组的直接法(DOC)
第二章 解线性方程组的直接法本章研究的对象是n 阶线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a .........22112222212111212111 (2.1)其矩阵形式为b AX = (2.1)′其中,)(ij a A =是方程组的系数矩阵,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n x x x X ...21,⎪⎪⎪⎪⎪⎭⎫⎝⎛=n b b b b ...21分别为方程组的未知向量和常数向量。
所谓直接法,就是在不计舍入误差时,经过有限步运算能求得方程组精确解的方法。
下面介绍几种较实用的直接法。
2.1 Gauss 消去法 2.1.1 Gauss 顺序消去法高斯(Gauss )消去法实质是消元法,只是步骤规范,便于编程。
它的基本做法是把方程组(2.1)转化成一个等价的三角方程组⎪⎪⎩⎪⎪⎨⎧==++=+++n n nn n n n n g x b g x b x b g x b x b x b 2222211212111 (2.2) 这个过程称为消元。
然后,逐个求出11,,,x x x n n -,这个过程称为回代。
(一) 高斯消去法的计算过程为了符号统一,把方程组(2.1)改写成下面形式⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++)1()1(2)1(1)1()1()1(2)1(1)1()1()1(2)1(1)1( (212)22221111211n nn n n n n b x a x a x a b x a x a x a b x a x a x a n n n(2.3)用矩阵表示为)1()1(b X A = (2.3)′其中⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=)1()1(2)1(1)1(2)1(22)1(21)1(1)1(12)1(11)1(nn n n nn a a a a aa a aa A, ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=)1()1()1()1(...21n b b b b 若0)1(11≠a ,用第二个方程减去第一个方程的)1(11)1(21/a a 倍,第三个方程减去第一个方程的)1(11)1(31/a a 倍,等等。
数值计算方法-第5章_解线性方程组的直接法
本章讲解直接法
5.1 消元法
我们知道,下面有3种方程的解我们可以直接求出:
①
n次运算
A
diag(a11, a22 ,
, ann )
xi
bi aii
,i
1,
,n
②
(n+1)n/2次运算
l11
A
l21 ln1
l22 ln2
(aik
k 1
liklkr ) r 1 lkk
,i k 1, , n
因此不常用
又 l11
1
l11
l21 l22
ln1
ln2
lnn
l '21 l 'n1
1 l'n2
1
l22
lnn
则有
A L~D~D~T L~T LDLT
L~
D~
1
L
l21 ln1
lnn
xi
bi
i 1
lij x j
j 1
lii
,i
1,
,n
③
(n+1)n/2次运算
u11
A
u12 u22
u1n
u2n unn
xi
bi
n
uij x j
j i 1
uii
,i
n,
,1
对方程组,作如下的变换,解不变 ①交换两个方程的次序 ②一个方程的两边同时乘以一个非0的数 ③一个方程的两边同时乘以一个非0数,加到另一个方程
1 ln2
1
d1
D
d2
dn
a11 a12
a21 a22
数值分析第五章解线性方程组的直接法
数值分析第五章解线性方程组的直接法解线性方程组是数值分析中的一个重要问题,对于大规模的线性方程组来说,直接法是一种常用的求解方法。
本文将介绍解线性方程组的直接法,包括高斯消元法和LU分解法,并对其稳定性和计算复杂度进行讨论。
高斯消元法是一种常用的直接法,用于求解非奇异线性方程组。
其基本思想是通过初等行变换将线性方程组转化为上三角方程组,然后通过回代求解得到方程的解。
高斯消元法的步骤如下:1.将线性方程组表示为增广矩阵[A,b],其中A是系数矩阵,b是常数向量。
2.从第一行开始,选择一个非零元素作为主元,通过行变换将主元下方的元素全部消为零。
3.重复第2步,直到矩阵变为上三角矩阵。
4.通过回代求解上三角矩阵,得到方程组的解。
高斯消元法的主要优点是简单直接,容易实现,但存在一些问题。
首先,如果系数矩阵A是奇异矩阵,即行列式为零,那么高斯消元法无法得到方程组的解。
其次,如果系数矩阵A的其中一行或几行接近于线性相关,那么在消元过程中会引入大量的舍入误差,导致计算结果不准确。
这也说明了高斯消元法的稳定性较差。
为了提高稳定性,可以使用LU分解法来解线性方程组。
LU分解法将系数矩阵A分解为两个矩阵L和U的乘积,其中L是下三角矩阵,U是上三角矩阵。
这样,原始的线性方程组可以表示为LUx=b,进而可以通过两个步骤来求解方程组:1.进行LU分解,将系数矩阵A分解为L和U。
2.分别用前代和回代的方法求解方程组Ly=b和Ux=y。
LU分解法相对于高斯消元法的优点是,可以在求解多个右端向量时,避免重复计算LU分解,从而提高计算效率。
同时,LU分解法的稳定性也较高,对于多个右端向量求解时,舍入误差的累积相对较小。
然而,LU分解法也存在一些问题。
首先,LU分解法的计算复杂度较高,需要进行两次矩阵乘法和一次矩阵向量乘法,而且LU分解过程中需要对系数矩阵A进行大量的行变换,增加了计算量。
其次,当系数矩阵A的一些元素非常小或非常大时,LU分解法容易出现数值不稳定的情况,即舍入误差的累积较大,导致计算结果不准确。
解线性方程组的直接方法
解线性方程组的直接方法一、高斯消元法高斯消元法是解线性方程组的一种常用且直接的方法。
它的基本思想是通过一系列的代数运算,将方程组化为一个三角方程组,然后从最后一行开始,逐步回代求解未知数。
下面以一个二元一次方程组为例,说明高斯消元法的具体步骤:例如,给定方程组:a₁₁x₁+a₁₂x₂=b₁a₂₁x₁+a₂₂x₂=b₂其中,a₁₁,a₁₂,a₂₁,a₂₂,b₁,b₂为已知系数。
1.检查a₁₁的值是否为0,若为0则交换第一行与非零行。
2.将第一行的每个元素除以a₁₁,使a₁₁成为13.将第一行乘以(-a₂₁)并加到第二行上,使第二行的第一个元素变为0。
4.引入一个新的未知数y₂=a₂₁x₁+a₂₂x₂,并代入第二行,化简方程组。
5.使用回代法求解方程组。
高斯消元法的优势在于其直接的解题思路和较高的计算精度,但是其缺点是计算复杂度较高,对于大规模的方程组不太适用。
二、逆矩阵法逆矩阵法是解线性方程组的另一种直接方法,它通过求解方程组的系数矩阵的逆矩阵,并将其与方程组的常数向量相乘,得到方程组的解向量。
下面以一个三元一次方程组为例,说明逆矩阵法的具体步骤:例如,给定方程组:a₁₁x₁+a₁₂x₂+a₁₃x₃=b₁a₂₁x₁+a₂₂x₂+a₂₃x₃=b₂a₃₁x₁+a₃₂x₂+a₃₃x₃=b₃其中,a₁₁,a₁₂,a₁₃,a₂₁,a₂₂,a₂₃,a₃₁,a₃₂,a₃₃,b₁,b₂,b₃为已知系数。
1.计算系数矩阵A的行列式D=,A。
2. 求解系数矩阵A的伴随矩阵Adj(A)。
3. 计算逆矩阵A⁻¹=Adj(A)/D。
4.将常数向量b用列向量表示。
5.计算解向量x=A⁻¹b。
逆矩阵法的优势在于其求解过程相对简单,计算量较小,并且不需要对系数矩阵进行消元操作。
但是逆矩阵法的限制在于当系数矩阵不可逆时无法使用。
三、克莱姆法则克莱姆法则是解线性方程组的另一种直接方法,它通过定义克莱姆行列式和克莱姆向量,利用行列式的性质求解方程组的解向量。
计算方法实验:解线性方程组的直接法
实验二解线性方程组的直接法一、实验目的用列主元素高斯消去法和三角分解法解线性方程组Ax=b。
式中,A为n阶非奇异方阵,x,b是n阶列向量,并分析选主元素的重要性。
二、实验方法(1)列主元素高斯消去法通过变换,将系数矩阵换成等价的上三角矩阵,在每步消元过程中,选列主元素。
对k=1,2,……n-1,逐次计算l ik=a ik(k-1)/a kk(k-1) (i=k+1,k+2,……,n)a ij(k)=a ij(k-1)-l ik a kj(k-1) (i,j=k+1,k+2,……,n)b i(k)=b i(k-1)-l ik b k(k-1) (i=k+1,k+2,……,n)逐步回代气的原方程组的解X n=b i(n-1)/a nn(n-1)X k=(b k(k-1)_a kj(k-1)x j)/a kk(k-1) (k=n-1,n-2, (1)(2)直接三角分解法由于两个矩阵相等就是它们的对应元素相等,因此通过比较A与LU的对应元素,即可得到直接计算L,U的元素的公式。
设A=L×U,其中U的第一行、L的第一列的元素分别为对(依次:U的第二行,L的第二列,U的第三行,L的第三列……),有由上述两种方法得到矩阵A的LU分解后,求解Ly=b与Ux=y的计算公式为∑+=n1kj三、实验内容解下列方程组·=四、实验程序(1)列主元素高斯消去法(2)直接三角分解法0147.06721.109998.42371.13142.17643.89217.44129.35435.15330.27875.15301.04017.31651.18326.31348.14321xxxx9237.164231.183941.65342.9五、实验结果(仅供参考)精确解为:(1,1,1,1)T六、结果分析实验的数学原理很容易理解,也容易上手。
把运算的结果带入原方程组,可以发现符合的还是比较好。
这说明列主元消去法计算这类方程的有效性。
第5章 解线性方程组的直接方法
第5章
解线性方程组的直接方法
定理3 若A∈Rnⅹn 为对称矩阵.如果det(Ak) >0(k=1,2,…,n),
或A得特征值λi>0(i=1,2, …,n ).则A为对称正定矩阵。
《 数 值 分 析 》
有重特征值的矩阵不一定相似于对角矩阵,那么一般n阶 矩阵A在相似变换下能简化到什么形状?
定理4(若尔当(Jordan)标准型) 设A为n阶矩阵,则 存在一个非奇异矩阵P使得
a1(1) x1 b1(1) n ( 2) ( 2) a2 n x2 b2 ( k ) . (2.8) (k ) akn xk bk (k ) (k ) ann xn bn
(2.12 )
(2.7)
简记为
A(2)X=b(2) ,
( ( ( aij2) aij1) mi1 a11) , j
其中A(2),b(2)的元素计算公式为
(i, j 2,3,, n),
bi( 2) bi(1) mi1 b1(1) , (i 2,3,, n).
第k步:若
(k akk ) 0,
a11 ... ... Ak ak1 ... ... , akk
《 数 值 分 析 》
a
1k
k 1,2, n.
(3)A的特征值λi>0(i=1,2, …,n ). (4)A的顺序主子式都大于零,即det(Ak) >0(k=1,2,…,n)
(1))=(a
), b(1)=b. ij
第5章 解线性方程组的直接方法 (1)消元过程 1 (1 第1步:设 a (1) 0,首先计算乘数 mi1 ai(1 ) / a11) , i 2,3n, 11 用-mi1乘(2.1)的第1个方程组,加到第i个中,消去方程组(2.1)的从 第2个方程到第n个方程中的未知数X1,得到与方程组(2.1)等价的线性方 程组 《 数 值 分 析 》
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解线性方程组的直接方法
一、高斯消元法
高斯消元法是解线性方程组最常用的方法之一、它通过一系列的消元
操作,将线性方程组转化为阶梯型方程组,从而求解未知数的值。
1.确定线性方程组的阶数和未知数的个数。
设线性方程组中有n个未
知数。
2.将线性方程组写成增广矩阵的形式。
增广矩阵是一个n行n+1列的
矩阵,其中前n列是线性方程组的系数矩阵,第n+1列是等号右边的常数。
3.通过初等行变换(交换行、数乘行、行加行)将增广矩阵化为阶梯
型矩阵。
具体步骤如下:
a.首先,找到第一个非零元素所在的列,将它所在的行视为第一行。
b.将第一行的第一个非零元素(主元)变成1,称为主元素。
c.将主元所在列的其他元素(次元素)变为0,使得主元所在列的其
他元素只有主元素是非零的。
d.再找到第一个非零元素所在的列,将它所在的行视为第二行,并重
复上述步骤,直到将增广矩阵化为阶梯型矩阵。
4.根据阶梯型矩阵求解未知数的值。
具体步骤如下:
a.从最后一行开始,依次求解每个未知数。
首先,将最后一行中非零
元素所在的列作为含有该未知数的方程,将该未知数的系数设为1
b.将含有该未知数的方程中其他未知数的系数设为0,并对其他方程
进行相应的变换,使得该未知数所在列的其他元素都为0。
c.重复上述步骤,直到求解出所有未知数的值。
高斯消元法的优点是简单易懂、容易实现,但当线性方程组的系数矩阵接近奇异矩阵时,计算精度可能会降低。
二、矩阵求逆法
矩阵求逆法是解线性方程组的另一种直接方法。
它通过对系数矩阵求逆,然后与常数矩阵相乘,得到未知数的值。
1.确定线性方程组的阶数和未知数的个数。
设线性方程组中有n个未知数。
2.将线性方程组写成矩阵方程的形式,即Ax=b,其中A是一个n阶方阵,x和b分别是n维列向量。
3.求系数矩阵A的逆矩阵A^-1
a. 首先,计算系数矩阵A的行列式det(A)。
b. 判断det(A)是否为0,如果det(A)=0,则该线性方程组无解或有无穷多解;如果det(A)≠0,则系数矩阵A可逆。
c.若系数矩阵A可逆,求出其逆矩阵A^-1
4.解方程组。
用逆矩阵A^-1乘以常数矩阵b,即x=A^-1b,得到未知数的值。
矩阵求逆法的优点是精度高、计算相对快速,但当线性方程组的系数矩阵接近奇异矩阵时,计算量可能会增加,并且当阶数较高时,求矩阵的逆矩阵可能耗费较多的时间和计算资源。
总结:
高斯消元法和矩阵求逆法是解线性方程组的两种常用直接方法。
高斯消元法通过一系列的消元操作将线性方程组化为阶梯型方程组,并求解未知数的值;矩阵求逆法通过系数矩阵的逆矩阵与常数矩阵相乘,得到未知数的值。
两种方法各有优缺点,在具体问题中可以根据需要选择合适的方法进行求解。