多路复用器和模拟开关.pdf

合集下载

模拟开关和多路复用器基本知识

模拟开关和多路复用器基本知识

PMOS NMOSALTERNATE SYMBOLS图1:MOSFET开关导通电阻与信号电压之间的关系工艺(CMOS)可以产出优异的P沟道和N沟道MOSFET。

并联连接器件,结果会形成如图2所示的基本双向CMOS开关。

这种组合有利于减少导通电阻,同时也可能产生随信号电压变化小得多的电阻。

SWITCHDRIVERSWITCH图2:基础CMOS 开关用互补对来减少信号摆幅引起的R ON 变化COMBINED TRANSFERFUNCTION图3:CMOS 开关导通电阻与信号电压之间的关系展示的是N 型和P 型器件的导通电阻随通道电压的变化。

这种非线性电阻可能给直流精度和交流失真带来误差。

双向CMOS 开关可以解决这个问题。

导通电阻大幅降低,线性度也得到了提升。

图3底部曲线展示的是改进后的开关导通电阻特性的平坦度。

ADG8xx 系列CMOS 开关是专门针对导通电阻低于0.5 Ω的应用而设计的,采用亚微米工艺制成。

这些器件可以传导最高400 mA 的电流,采用1.8 V 至5.5 V 单电源供电(具体视器件而定),额定扩展工作温度范围为–40°C 至+125°C 。

典型的导通电阻与温度和输入信号电平之间的关系如图4所示。

图5:两个相邻CMOS开关的等效电路:影响导通开关条件下直流性能的因素:RON 、RLOADLeakage current creates error voltage at V OUT equal to: V OUT= I LKG×R LOAD图7:影响关断开关条件下直流性能的因素:ILKG 和R当开关断开时,漏电流可能引起误差,如图7所示。

流过负载电阻的漏电流会在输出端产生一个对应的电压误差。

图8:动态性能考虑:传输精度与频率的关系会在传递函数A(s)的分子中形成一个零点。

该零通常出现在高频下,因在等效电路中,CDS和负载电容的函数。

该频率极点为开关导通电阻很小。

第3章 模拟多路开关

第3章 模拟多路开关

图3.12 漏电流电路
3.4 多路开关的电路特性
通道数增加或信号源内阻很大时,分级 结合电路能够改善漏电流的情况
1 2 n 1 2 n 1 2 n . . . C ③ . . . B ② 输出 . . . ① A
图3.13 多路开关的分级组合
3.4 多路开关的电路特性
动态响应
开关的切换时间 开关闭合后系统的带宽
多路开关动态响应的等效电路
Rs RON
Us ~
CI
CT
RL
3.4 多路开关的电路特性
时间常数TC
Tc ( Rs RON ) CT
设定时间tS
带宽f3dB
100 t s Tc ln 误差
1 2 ( Rs RON )CT
f 3dB
3.4 多路开关的电路特性
例3.1 设RON=100Ω,COUT=100pF,CL=20pF, RL=10M Ω,CI=5pF,精度0.1%,求设定时间 ts 。 100 t s Tc ln 误差
数据采集与处理技术
第3章 模拟多路开关
第3章 模拟多路开关
模拟多路开关的工作原理 模拟多路开关的主要技术指标 模拟多路开关的电路特性 模拟多路开关的应用
3.1 概述
模拟多路开关的作用
在多路模拟信号中选择模拟信号 常用于多路信号共用后续电路(通常为A/D 转换器)的情况
集成场效应管 多路开关、地址 计数器、译码器 及控制电路 体积小,使用 方便
Ui1 Ui2 Ui3 . . . Ui15 ...... Ui16 1 2 3 ...... 15 . . . T1 T2 T3 T15 T16 16 U0
四-十六线译码器计数源自四位计数器23

用模拟开关实现信号复用

用模拟开关实现信号复用

用模拟开关实现信号复用请注意模拟开关和多路复用器,它们是信号通道的关键元件。

设计人员应当了解这些重要模拟部件的应用和规格。

要点模拟开关的主要规格是电压、导通电阻、电容、电荷注入、速度和封装。

介质绝缘工艺可防止一些开关的闩锁。

开关的工作范围从直流到 400 MHz ,甚至更高。

MEMS(微机电系统)开关在高频下运行良好,但存在可靠性问题,并且封装费用昂贵。

如果您是在仿真一个模拟开关,要确保对全部寄生成分的建模。

没有哪个 IC 原理图符号能比模拟开关的符号更简单(图 1a )。

一个基本开关仅包括输入、输出、控制脚和一对电源脚。

然而,在这简单的外观(图 1b )后面,隐藏着极其复杂的东西。

很多规格,包括电源电压和导通电阻,都对部件运行非常重要。

模拟开关也有许多交流规格,如带宽和开关时间。

所有这些规格(包括泄漏电流)都会随温度而变化,有时是彻底改变。

与其它所有模拟部件一样,开关也有相互作用并有一组连续值的规格。

这些规格并非白或黑,而是灰色梯度(参考文献 1 )。

一个模拟开关是复杂的,但要把它们联结成组,或者把它们集成到一个 IC 里以提供 DPDT (双刀双掷)功能或多路复用器,就会更加复杂。

例如,一个为ADC送入信号的多路复用器应当是一种先开后合的器件——也就是说,在接通之前,它应当断开触点,防止输入信号相互短路。

但是一个音频输出上的多路复用器可能需要先合后开器件——也就是说,它必须先接通,然后再断开,以防止音频信号中出现令人不快的卡嗒声和爆破音。

如所有模拟部件一样,事情要比第一眼看上去更复杂。

寻找新用途模拟开关总是在仪器和工业市场中占有一席之地。

数据采集卡重定模拟输入的路径,为接至 ADC 的测量提供多个通道,并把模拟输出传递到连接器或内部电路节点。

这些卡中的模拟开关和多路复用器传统上是高压部件,以保持它们的工业、军用和医用传统。

这些有几十年历史的应用将永远存在,但是几项新的技术进展正在使模拟开关的使用发生巨大的变化。

第五章 模拟多路开关

第五章 模拟多路开关

中国科学技术大学电子工程与信息科学系 中国科学技术大学电子工程与信息科学系
4
主要技术指标:
RON:导通电阻,指开关闭合后,开关两端的等效电阻 阻值。理想开关的RON=0。 ROFF:断开电阻,指开关断开后,开关两端的电阻等效 电阻阻值。理想开关的ROFF ∞。 tON、 tOFF:接通(延迟)时间和断开(延迟)时间, 指从控制信号到达最终值的50%时,到开关输出到达 最终稳定值的90%之间的时延。
(2) 绝缘栅场效应晶体管(Isolated Gate FET )
IGFET的栅极与源极之间、栅极与漏极之间均有一层 绝缘层(多为二氧化硅SiO2) ,“绝缘栅”故而得名。 又因其栅极上沉积了一层金属(原多为铝,现也有铜) 作为引线,其分层结构为金属-氧化物-半导体,所以 IGFET更多地被称为“MOSFET”或MOS晶体管。与 JFET相比,MOSFET的温度稳定性好、IC工艺简单, 因而广泛应用于LSI和VLSI制造。也是目前使用最为广 泛的电子式模拟多路开关。
电磁继电器的驱动
需要较大的驱动,一般用OC门或三 极管进行驱动(如图)。为防止三 极管截至时,因电感中的电流突变 在线圈两端产生过高的感生电动 势,利用D和C进行保护和吸能。
中国科学技术大学电子工程与信息科学系 中国科学技术大学电子工程与信息科学系
12
二、电子式模拟多路开关
1)双极型晶体管
利用三极管的开关特性 Ti饱和导通/截至,第i路 开关闭合/断开。 ☺ 接通时延小,速度快。 泄漏电流大,导通电阻 RON大,断开电阻ROFF 小,通道串扰大。 属于电流控制器件,功 耗大,集成度低,并且 只能单向传输。
JFET分为N沟道和P沟道两种,两者工作原理相同,都 是通过控制导电沟道两侧PN结上的电压,使导电沟道 “宽窄” 发生变化。如果PN结上的电压足够高(或者为 零),使导电沟道彻底关闭(或沟道宽度达到最大而电 阻最小),这就是JFET开关管的工作原理。 JFET具有导通电阻RON小(可以做到小于100Ω),并 且RON不随信号电压和电源电压变化,接通时延小(可 小于100ns),可双向传输等优点。但需注意,在断电 时JFET的开关处于“导通”状态(即所谓常闭型)。

模拟开关与多路转换器

模拟开关与多路转换器

模拟开关与多路转换器问:ADI公司不给出ADG系列模拟开关和多路转换器的带宽,这是为什么?答:ADG系列模拟开关和多路转换器的输入带宽虽然高达数百兆赫,但是其带宽指标本身不是很有意义的。

因为在高频情况下,关断隔离和关扰指标都明显变坏。

例如,在1MHz情况下,开关的关断隔离典型值为70dB,串扰典型值为-85dB。

由于这两项指标都按20dB/+倍频下降,所以在10MHz时,关断隔离降为50dB,串扰增加为-65dB;在100MHz时,关断隔离降为30dB,而串扰增加为-45dB。

所以,仅仅考虑带宽是不够的,必须考虑在所要求的高频工作条件下这两项指标下降是否能满足应用的要求。

(关断隔离是指当开关断开时,对耦合无用信号的一种度量——译者注。

)问:哪种模拟开关和多路转换器在电源电压低于产品说明中的规定值情况下仍能正常工作?答:ADG系列全部模开关和多路转换器在电源电压降到+5V或±5V情况下都能正常工作。

受电源电压影响的技术指标有响应时间、导通电阻、电源电流和漏电流。

降低电源电压会降低电源电流和漏电流。

例如,在125°C,±15V时,ADG411关断状态源极漏电流IS(OFF)和漏极漏电流ID(OFF)都为±20nA,导通状态漏极漏电流ID(ON)为±40nA;在同样温度下,当电源电压降为±5V,IS(OFF)和ID(OFF)降为,ID(ON)降为±5nA。

在+125°C,±15V 时,电源电流I DD ,I SS 和IL最大为5μA;在±5V时,电源电流,最大值降为1μA。

导通电阻和响应时间随电源电压降低而增加。

图1和图2分别示出了ADG408的导通电阻和响应时间随电源电压变化的关系曲线。

此主题相关图片如下:图1 导通电阻与电源电压的关系曲线问:有些ADG系列模拟开关是用DI工艺制造的,DI是怎么回事?答:DI是英文Dielectric Isolation介质隔离的缩写,按照DI工艺要求,每个CMOS开关的NMOS管和PMOS管之间都有一层绝缘层(沟道)。

模拟开关和多路复用器基本知识

模拟开关和多路复用器基本知识

PMOS NMOSALTERNATE SYMBOLS图1:MOSFET开关导通电阻与信号电压之间的关系工艺(CMOS)可以产出优异的P沟道和N沟道MOSFET。

并联连接器件,结果会形成如图2所示的基本双向CMOS开关。

这种组合有利于减少导通电阻,同时也可能产生随信号电压变化小得多的电阻。

SWITCHDRIVERSWITCH图2:基础CMOS 开关用互补对来减少信号摆幅引起的R ON 变化COMBINED TRANSFERFUNCTION图3:CMOS 开关导通电阻与信号电压之间的关系展示的是N 型和P 型器件的导通电阻随通道电压的变化。

这种非线性电阻可能给直流精度和交流失真带来误差。

双向CMOS 开关可以解决这个问题。

导通电阻大幅降低,线性度也得到了提升。

图3底部曲线展示的是改进后的开关导通电阻特性的平坦度。

ADG8xx 系列CMOS 开关是专门针对导通电阻低于0.5 Ω的应用而设计的,采用亚微米工艺制成。

这些器件可以传导最高400 mA 的电流,采用1.8 V 至5.5 V 单电源供电(具体视器件而定),额定扩展工作温度范围为–40°C 至+125°C 。

典型的导通电阻与温度和输入信号电平之间的关系如图4所示。

图5:两个相邻CMOS开关的等效电路:影响导通开关条件下直流性能的因素:RON 、RLOADLeakage current creates error voltage at V OUT equal to: V OUT= I LKG×R LOAD图7:影响关断开关条件下直流性能的因素:ILKG 和R当开关断开时,漏电流可能引起误差,如图7所示。

流过负载电阻的漏电流会在输出端产生一个对应的电压误差。

图8:动态性能考虑:传输精度与频率的关系会在传递函数A(s)的分子中形成一个零点。

该零通常出现在高频下,因在等效电路中,CDS和负载电容的函数。

该频率极点为开关导通电阻很小。

模拟开关和多路复用器常见问题解答

模拟开关和多路复用器常见问题解答

模拟开关和多路复用器常见问题解答声明Analog Devices公司拥有本文档及本文档中描述内容的完整知识产权(IP)。

Analog Devices公司有权在不通知读者的情况下更改本文档中的任何描述。

如果读者需要任何技术帮助,请通过china.support@或免费热线电话4006-100-006联系亚洲技术支持中心团队。

其他技术支持资料以及相关活动请访问以下技术支持中心网页/zh/content/ADI_CIC_index/fca.html.Analog Devices, Inc.版本历史版本日期作者描述1.0 2013/9/7 CAC(XS)文档新建目录版本历史 (II)目录 (III)第1章简介 (4)1.1产品简介 (4)1.2参考资料 (5)第2章模拟开关基础 (6)第3章常见应用问题解答 (8)3.1 使用模拟开关时,会带来哪些直流误差? (8)3.2使用模拟开关时,会带来哪些交流误差? (9)3.3模拟开关的建立时间和开关时间代表什么? (14)3.4在使用电子开关设置运放增益时,怎样减小模拟开关的导通电阻所带来的误差? (14)3.5什么条件会导致模拟开关的闩锁? (17)3.6模拟开关可以驱动的电容大小是多少,或者说其输出端的走线长度有要求吗? (20)3.7当数字控制口悬空时,电子开关的输入处在什么状态,会切换到固定的通道吗? (20)3.8模拟电子开关可否用来传输4-20mA电流信号? (20)3.9模拟电子开关的输入信号大小怎么确定? (20)3.10模拟电子开关在没有上电的情况下其输入输出通道是什么状态? (21)3.11模拟电子开关有没有大电流导通能力的,可以应用在切断电源上的电子开关? (21)3.12电子开关是不是都是双向导通的? (21)第1章简介1.1 产品简介在要求针对模拟信号控制和选择指定传输路径的电子系统的设计中,模拟开关和多路复用器已成为必要元件之一。

多路复用器和模拟开关

多路复用器和模拟开关

多路复用器和模拟开关多路复用器(MULTIPLEXER 也称为数据选择器)是用来选择数字信号通路的;模拟开关是传递模拟信号的,因为数字信号也是由高低两个模拟电压组成的, 所以模拟开关也能传递数字信号。

在CMOS多路复用器中,因为其数据通道也是模拟开关结构,所以也能用于选择多路模拟信号。

但是TTL的多路复用器就不能选择模拟信号.。

用CMOS的多路复用器或模拟开关传递模拟信号时要注意:模拟信号的变化值必须在正负电源电压之间,譬如要传递有正负半周的正弦波时,必须使用正负电源且电源电压大于传递的模拟信号峰值,这时其控制或地址信号必须以负电源电压为0,而以正电源电压为1;或者用单电源供电,而使模拟信号的变化中值在 1/2 电源电压上, 传递之后再恢复到原来的值。

1、常用CMOS模拟开关引脚功能和工作原理1.四双向模拟开关CD4066CD4066的引脚功能如下图所示。

每个封装内部有4个独立的模拟开关,每个模拟开关有输入、输出、控制三个端子,其中输入端和输出端可互换。

当控制端加高电平时,开关导通;当控制端加低电平时开关截止。

模拟开关导通时,导通电阻为几十欧姆;模拟开关截止时,呈现很高的阻抗,可以看成为开路。

模拟开关可传输数字信号和模拟信号,可传输的模拟信号的上限频率为40MHz。

各开关间的串扰很小,典型值为-50dB。

2.单八路模拟开关CD4051CD4051引脚功能如下图所示。

CD4051相当于一个单刀八掷开关,开关接通哪一通道,由输入的3位地址码ABC来决定。

“INH”是禁止端,当“INH”=1时,各通道均不接通。

此外,CD4051还设有另外一个电源端VEE,以作为电平位移时使用,从而使得通常在单组电源供电条件下工作的CMOS电路所提供的数字信号能直接控制这种多路开关,并使这种多路开关可传输峰-峰值达15V的交流信号。

例如,若模拟开关的供电电源VDD=+5V,VSS=0V,当VEE=-5V时,只要对此模拟开关施加0~5V的数字控制信号,就可控制幅度范围为-5V~+5V的模拟信号。

模拟开关和多路复用器基本知识

模拟开关和多路复用器基本知识

模拟开关和多路复用器基本知识目录一、模拟开关基本知识 (1)1.1 模拟开关的定义与分类 (2)1.2 模拟开关的工作原理 (3)1.3 模拟开关的应用场景 (4)1.4 模拟开关的性能指标 (5)1.5 模拟开关的选购与使用注意事项 (7)二、多路复用器基本知识 (8)2.1 多路复用器的定义与分类 (9)2.2 多路复用器的工作原理 (10)2.3 多路复用器的应用场景 (11)2.4 多路复用器的性能指标 (13)2.5 多路复用器的选购与使用注意事项 (14)三、模拟开关与多路复用器的比较与应用 (15)3.1 模拟开关与多路复用器的相同点与不同点 (16)3.2 模拟开关与多路复用器在电路设计中的应用 (18)3.3 模拟开关与多路复用器在数据采集系统中的应用 (19)3.4 模拟开关与多路复用器在通信系统中的应用 (21)一、模拟开关基本知识模拟开关是一种将模拟信号转换为数字信号的设备,它在数字通信系统中扮演着重要的角色。

模拟开关的主要功能是将输入的模拟信号进行采样、量化和编码,以便在数字通信系统中进行传输和处理。

模拟开关的基本组成部分包括:采样电阻、量化器、编码器和解码器。

采样电阻:采样电阻的作用是在输入信号发生变化时,将其转换为电位差信号,从而产生一个电流变化的电压信号。

这个电压信号就是模拟信号在时间上的离散表示。

量化器:量化器的作用是将采样电阻产生的电压信号进行量化,即将其转换为一定范围内的数字信号。

量化器的输出通常是一个二进制数,表示输入信号的强度。

编码器:编码器的作用是将量化后的数字信号进行编码,使其能够在数字通信系统中传输。

编码器的输出通常是一个二进制码,表示输入信号的具体信息。

解码器:解码器的作用是将接收到的数字信号进行解码,还原成原始的模拟信号。

解码器的输出通常是一个新的采样电阻值,用于驱动后续的模拟开关电路。

模拟开关是一种将模拟信号转换为数字信号的设备,它通过采样、量化、编码和解码等过程,实现了模拟信号与数字信号之间的相互转换。

请注意模拟开关和多路复用器,它很重要

请注意模拟开关和多路复用器,它很重要

请注意模拟开关和多路复用器,它很重要
请注意模拟开关和多路复用器,它们是信号通道的关键元件。

设计人
员应当了解这些重要模拟部件的应用和规格。

要点
模拟开关的主要规格是电压、导通电阻、电容、电荷注入、速度和封装。

介质绝缘工艺可防止一些开关的闩锁。

开关的工作范围从直流到400 MHz ,甚至更高。

MEMS (微机电系统)开关在高频下运行良好,但存在可靠性问题,并且
封装费用昂贵。

如果您是在仿真一个模拟开关,要确保对全部寄生成分的建模。

没有哪个IC 原理模拟开关总是在仪器和工业市场中占有一席之地。


据采集卡重定模拟输入的路径,为接至ADC 的测量提供多个通道,并把模拟
输出传递到连接器或内部电路节点。

这些卡中的模拟开关和多路复用器传统上
是高压部件,以保持它们的工业、军用和医用传统。

这些有几十年历史的应用
将永远存在,但是几项新的技术进展正在使模拟开关的使用发生巨大的变化。

模拟开关最大规模用途之一是手机和其它的手提消费设备。

Fairchild Semiconductor 的开关产品生产线总监Jerry Johnston 称:“我不知道哪款手机里一个开关也没有。

”大小和功能是电话中使用模拟开关的推动因素。

手机外壳
中只有很小的空间放置连接器,这意味着模拟开关必须将信号从多个IC 传递
到一个USB 端口、视频端口、音频端口或电源连接器。

这些开关也有多种功能,这更增加了在手机中的应用。

一款手机通常包括一只基带IC 和RF 信号链。

一款全功能手机也可能要带有数码相机和摄像头,两者都有相关的闪存系。

ADG1206YRUZ模拟开关多路复用

ADG1206YRUZ模拟开关多路复用
REVISION HISTORY
3/09—Rev. 0 to Rev. A Change to IDD Parameter (Table 1) ................................................. 4 Change to IDD Parameter (Table 2) ................................................. 6 Updated Outline Dimensions ....................................................... 19 Change to Ordering Guide............................................................ 19 7/06—Revision 0: Initial Version
FUNCTIONAL BLOCK DIAGRAMS
ADG1206
S1
ADG1207
S1A DA
S8A
D
S1B DB
S16
S8B
1-OF-16 DECODER
1-OF-8 DECODER
A0 A1 A2 A3 EN
A0 A1 A2 EN
Figure 1.
06119-001
The ultralow capacitance and exceptionally low charge injection of these multiplexers make them ideal solutions for data acquisition and sample-and-hold applications, where low glitch and fast settling are required. Figure 2 shows that there is minimum charge injection over the entire signal range of the device. iCMOS construction also ensures ultralow power dissipation, making the parts ideally suited for portable and battery-powered instruments.

4通道多路复用、双向、精密模拟开关

4通道多路复用、双向、精密模拟开关
通过在输入端串联一个 1kΩ的电阻,逻辑输入很容易被保护(见图 7)。电阻限制了输入电流,使其 保持在引起永久破坏的门限之下,次微安输入电流在正常工作下产生一个无关紧要的电压降。
该方法不适用于信号通道的输入。给开关输入增加一个串联电阻阻扰了使用一个低RON开关的目的, 为此,将两个小信号二极管与电源脚串联,来为所有管脚提供过压保护(见图 7)。这些附加的二极管使模 拟信号的值限制在比V+低 1V,比GND高 1V之间。低漏放电流性能不受这一方法的影响,但开关电阻可 能会增加,特别是在低电源电压下。
引脚图
注:1. 所示开关为逻辑“0”输入
真值表
注:逻辑“0” ≤ 0.8V,逻辑“1” ≥ 2.4V,Vs 在 3.3V 和 11V 之间。
2

武汉力源信息技术有限公司
免费电话:800-880-8051
引脚描述
数据手册 DS-107-00023CN
订购信息
注:Intersil无铅产品采用特殊的无铅材料制成,模塑料/晶片的附属材料和100%无光泽锡盘引脚符合 RoHS标准,兼容SnPb和无铅低温焊接操作。Intersil无铅产品在无铅峰值回流温度中属于MSL级别分类, 完全满足和超过IPC/GEDEC JSTD-020的无铅要求。
武汉力源信息技术有限公司
免费电话:800-880-8051
数据手册 DS-107-00023CN
低电压,单电源,4合1多路复用器,高性能模拟开关
概述
Intersil ISL43640 是精密,双向模拟开关,配有 4 通道多路复用器/多路信号分离器。ISL43640 工作在 +2V 到+12V 的单电源下。它设有抑制管脚,可同时打开所有的信号通道。
电源供电考虑

电路中的多路复用器与解复用器了解多路复用器与解复用器的原理和应用

电路中的多路复用器与解复用器了解多路复用器与解复用器的原理和应用

电路中的多路复用器与解复用器了解多路复用器与解复用器的原理和应用电路中的多路复用器与解复用器多路复用器(Multiplexer)和解复用器(Demultiplexer)是电子电路中常用的数字信号处理器件,它们在数据通信中起到了重要的作用。

本文将介绍多路复用器与解复用器的原理和应用。

一、多路复用器的原理和应用多路复用器是一种将多个输入信号合成为一个输出信号的器件,它根据控制信号的不同将输入信号选择性地转发到输出端。

多路复用器的原理基于数字电路的开关原理,通过开关的打开和闭合来选择输入信号的转发路径。

多路复用器常见的应用场景是在通信系统中,用于将多个信号同时传输到共享的传输介质上,从而提高传输效率。

例如,在电话系统中,多个用户的语音信号可以通过一条电话线路同时传输,听话者通过解复用器将特定的信号解析出来。

二、解复用器的原理和应用解复用器是多路复用器的逆过程,它将一个输入信号按照特定的规则分解为多个输出信号,从而实现信号的分发。

解复用器根据控制信号的不同将输入信号按照预定的方式分配到各个输出端。

解复用器的应用与多路复用器相反,常见的应用场景是在通信系统中,用于将共享传输介质上的多个信号分发给不同的接收端。

例如,在电视广播中,多个电视频道的信号可以通过一条电视信号传输线路,接收端通过解复用器选择并接收特定的电视频道。

三、多路复用器和解复用器的区别和联系多路复用器和解复用器是互为逆过程的器件,它们是对称的。

多路复用器将多个输入信号合成为一个输出信号,而解复用器则将一个输入信号分解为多个输出信号。

多路复用器和解复用器之间的联系在于它们通常作为一个组合来应用在数据通信系统中。

多路复用器用于将多个信号合成为一个信号传输,而解复用器用于将传输线路上的信号分解为多个信号接收。

通过多路复用器和解复用器的组合,可以实现多个信号的同时传输和接收,提高通信效率。

四、总结多路复用器和解复用器是电子电路中常用的数字信号处理器件,它们在数据通信系统中发挥重要的作用。

模拟开关和多路复用器的性能与应用

模拟开关和多路复用器的性能与应用

模拟开关和多路复用器的性能与应用数据采集系统通常利用模拟开关和多路复用器将来自真实世界传感器和传感器子组件的信号路由到电路板上的电子信号调理和转换阶段。

我们试图将电路板布置得尽可能有效地从频繁边缘安装的连接器获取信号到处理电路。

但是,当我们在电路板的不同边缘有多个连接器的传感器时,我们可以烧掉整个PCB层,只需路由模拟信号和模拟地,以防止噪声消失。

与此相关的是我们可能还想与传感器阵列共享电路。

例如,我们可能希望监控和测量机器设计的几个位置的温度。

这将需要在设计周围散布许多温度传感器或热敏电阻。

由于我们的micro可能在任何时候只将一个模拟信号转换为数字信号,而不是复制信号调理,缩放,偏移和增益级,因此将许多信号切换或多路复用可能更具空间和成本效益。

单点指出A/D的条件和路线。

通过不使用多条冗余A/D线,这也可以节省引脚受限处理器上的I/O.本文介绍了模拟开关和多路复用器,这些模拟开关和多路复用器可供工程师在布线和将模拟信号传递到调理电路时在电路板上使用。

基础知识模拟开关,也称为双向开关,通常在矩阵配置中使用低“导通电阻”FET,一旦晶体管导通至完全饱和,电流就会流过预定义的路径(图1)。

您可以将模拟开关视为机械继电器,除了不使用干触点,硅结(PMOS和NMOS)以电子方式启用或禁用无机械运动部件的传导。

图1:隔离使能P和N MOSFET进入低导通电阻导通。

请注意由电源轨夹住的内部保护二极管。

因为晶体管是电子的,所以它们不是电子隔离的,因为它们在继电器中。

这意味着存在电压和电流限制,并且信号范围必须在模拟开关或多路复用器的正和可能的负电源轨内。

对于隔离的高功率或高压开关应用,模拟开关可能不是最佳选择。

但是,对于低电平模拟开关,易于使用且成本低廉的模拟开关和多路复用器可以提供很多好处。

模拟开关与多路复用器基础

模拟开关与多路复用器基础

MT-088TUTORIAL Analog Switches and Multiplexers Basics INTRODUCTIONSolid-state analog switches and multiplexers have become an essential component in the design of electronic systems which require the ability to control and select a specified transmission path for an analog signal. These devices are used in a wide variety of applications including multi-channel data acquisition systems, process control, instrumentation, video systems, etc. Switches and multiplexers of the late 1960s were designed with discrete MOSFET devices and were manufactured in small PC boards or modules. With the development of CMOS processes (yielding good PMOS and NMOS transistors on the same substrate), switches and multiplexers rapidly gravitated to integrated circuit form in the mid-1970s, with product introductions such as the Analog Devices' popular AD7500-series (introduced in 1973). A dielectrically-isolated family of these parts introduced in 1976 allowed input overvoltages of ± 25 V (beyond the supply rails) and was insensitive to latch-up.These early CMOS switches and multiplexers were typically designed to handle signal levels up to ±10 V while operating on ±15-V supplies. In 1979, Analog Devices introduced the popular ADG200-series of switches and multiplexers, and in 1988 the ADG201-series was introduced which was fabricated on a proprietary linear-compatible CMOS process (LC2MOS). These devices allowed input signals to ±15 V when operating on ±15-V supplies.A large number of switches and multiplexers were introduced in the 1980s and 1990s, with the trend toward lower on-resistance, faster switching, lower supply voltages, lower cost, lower power, and smaller surface-mount packages.Today, analog switches and multiplexers are available in a wide variety of configurations, options, etc., to suit nearly all applications. On-resistances less than 0.5 Ω, picoampere leakage currents, signal bandwidths greater than 1 GHz, and single 1.8-V supply operation are now possible with modern CMOS technology. Industrial products are also available which operate on ±15 V supplies using Analog Devices' i CMOS® (industrial CMOS) process.Although CMOS is by far the most popular IC process today for switches and multiplexers, bipolar processes (with JFETs) and complementary bipolar processes (also with JFET capability) are often used for special applications such as video switching and multiplexing where the high performance characteristics required are not attainable with CMOS. Traditional CMOS switches and multiplexers suffer from several disadvantages at video frequencies. Their switching time is generally not fast enough, and they require external buffering in order to drive typical video loads. In addition, the small variation of the CMOS switch on-resistance with signal level (R ON modulation) can introduce unwanted distortion in differential gain and phase. Multiplexers based on complementary bipolar technology offer better solutions at video frequencies—with obvious power and cost increases above CMOS devices.CMOS SWITCH BASICSThe ideal analog switch has no on-resistance, infinite off-impedance and zero time delay, and can handle large signal and common-mode voltages. Real CMOS analog switches meet none of these criteria, but if we understand the limitations of analog switches, most of these limitations can be overcome.CMOS switches have an excellent combination of attributes. In its most basic form, the MOSFET transistor is a voltage-controlled resistor. In the "on" state, its resistance can be less than 1 Ω, while in the "off" state, the resistance increases to several hundreds of megohms, with picoampere leakage currents. CMOS technology is compatible with logic circuitry and can be densely packed in an IC. Its fast switching characteristics are well controlled with minimum circuit parasitics.MOSFET transistors are bilateral. That is, they can switch positive and negative voltages and conduct positive and negative currents with equal ease. A MOSFET transistor has a voltagecontrolled resistance which varies nonlinearly with signal voltage as shown in Figure 1.ALTERNATE SYMBOLS NMOSFigure 1: MOSFET Switch ON-Resistance Versus Signal VoltageThe complementary-MOS process (CMOS) yields good P-channel and N-channel MOSFETs. Connecting the PMOS and NMOS devices in parallel forms the basic bilateral CMOS switch of Figure 2. This combination reduces the on-resistance, and also produces a resistance which varies much less with signal voltage.SWITCHSWITCHDRIVERFigure 2: Basic CMOS Switch Uses Complementary Pair toMinimize R ON Variation due to Signal SwingsFigure 3 shows the on-resistance changing with channel voltage for both N-type and P-type devices. This nonlinear resistance can causes errors in dc accuracy as well as ac distortion. The bilateral CMOS switch solves this problem. On-resistance is minimized, and linearity is also improved. The bottom curve of Figure 3 shows the improved flatness of the on-resistanceCOMBINED TRANSFERFUNCTIONFigure 3: CMOS Switch ON-Resistance Versus Signal VoltageThe ADG8xx-series of CMOS switches are specifically designed for less than 0.5 Ω on- resistance and are fabricated on a sub-micron process. These devices can carry currents up to 400 mA, operate on a single 1.8 V to 5.5 V supply (depending on the particular device), and are rated over an extended temperature range of –40°C to +125°C. Typical on-resistance over temperature and input signal level is shown in Figure 4.INPUT SIGNAL LEVEL -VFigure 4: ON-Resistance Versus Input Signal forADG801/ADG802 CMOS Switch, V DD = +5 VERROR SOURCES IN THE BASIC CMOS SWITCHIt is important to understand the error sources in an analog switch. Many affect ac and dc performance, while others only affect ac. Figure 5 shows the equivalent circuit of two adjacent CMOS switches. The model includes leakage currents and junction capacitances.Figure 5: Equivalent Circuit of Two Adjacent CMOS SwitchesDC errors associated with a single CMOS switch in the on state are shown in Figure 6. When the switch is on, dc performance is affected mainly by the switch on-resistance (R ON ) and leakage current (I LKG ). A resistive attenuator is created by the R G -R ON -R LOAD combination which produces a gain error. The leakage current, I LKG , flows through the equivalent resistance of R LOAD in parallel with the sum of R G and R ON .Not only can R ON cause gain errors—which can be calibrated using a system gain trim—but its variation with applied signal voltage (R ON modulation) can introduce distortion—for which there is no calibration. Low resistance circuits are more subject to errors due to R ON , while high resistance circuits are affected by leakage currents. Figure 6 also gives equations that show howthese parameters affect dc performance.Figure 6: Factors Affecting DC Performance forON Switch Condition: R ON , R LOAD , and I LKGWhen the switch is OFF, leakage current can introduce errors as shown in Figure 7. The leakage current flowing through the load resistance develops a corresponding voltage error at the output.Leakage current creates error voltage at V OUT equal to:V OUT = I LKG ×R LOAD Figure 7: Factors Affecting DC Performance forOFF Switch Condition: I LKG and R LOADFigure 8 illustrates the parasitic components that affect the ac performance of CMOS switches. Additional external capacitances will further degrade performance. These capacitances affect feedthrough, crosstalk and system bandwidth. C DS (drain-to-source capacitance), C D (drain-to-ground capacitance), and C LOAD all work in conjunction with R ON and R LOAD to form the overall transfer function.Figure 8: Dynamic Performance Considerations:Transfer Accuracy Versus FrequencyIn the equivalent circuit, C DS creates a frequency zero in the numerator of the transfer function A(s). This zero usually occurs at high frequencies because the switch on-resistance is small. The bandwidth is also a function of the switch output capacitance in combination with C DS and the load capacitance. This frequency pole appears in the denominator of the equation.The composite frequency domain transfer function may be re-written as shown in Figure 9 which shows the overall Bode plot for the switch in the on state. In most cases, the pole breakpoint frequency occurs first because of the dominant effect of the output capacitance C D. Thus, to maximize bandwidth, a switch should have low input and output capacitance and low on-resistance.The series-pass capacitance, C DS, not only creates a zero in the response in the ON-state, it degrades the feedthrough performance of the switch during its OFF state. When the switch is off, C DS couples the input signal to the output load as shown in Figure 10.Figure 9: Bode Plot of CMOS Switch TransferFunction in the ON StateFigure 9: Bode Plot of CMOS Switch TransferFunction in the ON StateOFF Isolation is Affectedby External R and C LoadFigure 10: Dynamic Performance Considerations: Off IsolationLarge values of C DS will produce large values of feedthrough, proportional to the input frequency. Figure 11 illustrates the drop in OFF-isolation as a function of frequency. The simplest way to maximize the OFF-isolation is to choose a switch that has as small a C DS as possible.Figure 11: Off Isolation Versus FrequencyFigure 12 shows typical CMOS analog switch OFF-isolation as a function of frequency for the ADG708 8-channel multiplexer. From dc to several kilohertz, the multiplexer has nearly 90-dB isolation. As the frequency increases, an increasing amount of signal reaches the output.However, even at 10 MHz, the switch shown still has nearly 60 dB of isolation.ADG708 8-Channel MultiplexerAnother lace .Figure 13: Dynamic Performance Considerations:st change in oltage injects a charge into the switch output through the gate-drain capacitance C Q . The Figure 14. T Q INJ L .ac parameter that affects system performance is the charge injection that takes p during switching. Figure 13 shows the equivalent circuit of the charge injection mechanismCharge Injection ModelWhen the switch control input is asserted, it causes the control circuit to apply a large voltage change (from V DD to V SS , or vice versa) at the gate of the CMOS switch. This fa v amount of charge coupled depends on the magnitude of the gate-drain capacitance.The charge injection introduces a step change in output voltage when switching as shown in he change in output voltage, ΔV OU (which is in turn a function of the gate-drain C Q ) and the load capacitance, C T , is a function of the amount of charge injected, capacitance,Figure 14: Effects of Charge Injection on OutputStep waveforms of ±(V DD SS ) are applied to C Q ,the gate capacitance of the output switches.–V V DD V SS0VAnother problem caused by switch capacitance is the retained charge when switching channels. This charge can cause transients in the switch output, and Figure 15 illustrates the phenomenon. Assume that initially S2 is closed and S1 open. C S1 and C S2 are charged to –5 V. As S2 opens, the –5 V remains on C S1 and C S2, as S1 closes. Thus, the output of Amplifier A sees a –5V transient. The output will not stabilize until Amplifier A's output fully discharges C S1 and C S2 and settles to 0 V. The scope photo in Figure 16 depicts this transient. The amplifier's transient ad settling characteristics will therefore be an important consideration when choosing the right input buffer.Figure 15: Charge Coupling Causes Dynamic Settling TimeFigure 16: Output of Amplifier Shows Dynamic Settling TimeTransient Due to Charge Couplinglo –5VTransient When Multiplexing SignalsCrosstalk is related to the capacitances between two switches. This is modeled as the C SS capacitance shown in Figure 17.Figure 17: Channel-to-Channel Crosstalk EquivalentCircuit for Adjacent SwitchesFigure 18 shows typical crosstalk performance of the ADG708 8-channel CMOS multiplexer.Figure 18: Crosstalk Versus Frequency for ADG708 8-Channel Multiplexer Finally, the switch itself has a settling time that must be considered. Figure 19 shows the dynamic transfer function. The settling time can be calculated, because the response is a function of the switch and circuit resistances and capacitances. One can assume that this is a single-polesystem and calculate the number of time constants required to settle to the desired system accuracy as shown in Figure 20.Settling time is the time required for the switch output to settle within a given error band of the final value.Figure 19: Multiplexer Settling TimeRESOLUTION,# OF BITSLSB (%FS)# OF TIME CONSTANTS 61.563 4.1680.391 5.55100.0977 6.93120.02448.32140.00619.70160.0015311.09180.0003812.48200.00009513.86220.00002415.25Figure 20: Number of Time Constants Required to Settle to1 LSB Accuracy for a Single-Pole SystemAPPLYING THE ANALOG SWITCHSwitching time is an important consideration in applying analog switches, but switching time should not be confused with settling time. ON and OFF times are simply a measure of the propagation delay from the control input to the toggling of the switch, and are largely caused by time delays in the drive and level-shift circuits (see Figure 21). The t ON and t OFF values are generally measured from the 50% point of the control input leading edge to the 90% point of the output signal level.t ON and t OFF should not be confused with settling time.t ON and t OFF are simply a measure of the propagation delay from control input to operation of the analog switch. It is caused by time delays in the drive / level-shifter logic circuitry.t ON and t OFF are measured from the 50% point of the control input to the 90% point of the output signal level.t ON, t OFFFigure 21: Applying the Analog Switch: DynamicPerformance ConsiderationsWe will next consider the issues involved in buffering a CMOS switch or multiplexer output using an op amp. When a CMOS multiplexer switches inputs to an inverting summing amplifier, it should be noted that the on-resistance, and its nonlinear change as a function of input voltage, will cause gain and distortion errors as shown in Figure 22. If the resistors are large, the switch leakage current may introduce error. Small resistors minimize leakage current error but increase the error due to the finite value of R ON.ΔR ON caused by ΔV IN , degrades linearity of V OUT relative to V IN .ΔR ON causes overall gain error in V OUT relative to V IN .ΔV SWITCH = ±10V10k Ω10k ΩFigure 22: Applying the Analog Switch: UnityGain Inverter with Switched Input To minimize the effect of R ON change due to the change in input voltage, it is advisable to put the multiplexing switches at the op amp summing junction as shown in Figure 23. This ensures the switches are only modulated with about ±100 mV rather than the full ±10 V—but a separate resistor is required for each input leg.Switch drives a virtual ground.Switch sees only ±100mV, not ±10V, minimizes ΔR ON .ΔV SWITCH = ±100mV10k Ω10k Ω10k Ω10k Ω10k ΩFigure 23: Applying the Analog Switch:Minimizing the Influence of ΔR ONIt is important to know how much parasitic capacitance has been added to the summing junction as a result of adding a multiplexer, because any capacitance added to that node introduces phase shift to the amplifier closed loop response. If the capacitance is too large, the amplifier may become unstable and oscillate. A small capacitance, C1, across the feedback resistor may be required to stabilize the circuit.The finite value of R ON can be a significant error source in the circuit shown in Figure 24. The gain-setting resistors should be at least 1,000 times larger than the switch on-resistance to guarantee 0.1% gain accuracy. Higher values yield greater accuracy but lower bandwidth and greater sensitivity to leakage and bias current.A better method of compensating for R ON is to place one of the switches in series with the feedback resistor of the inverting amplifier as shown in Figure 25. It is a safe assumption that the multiple switches, fabricated on a single chip, are well-matched in absolute characteristics and tracking over temperature. Therefore, the amplifier is closed-loop gain stable at unity gain, since the total feedforward and feedback resistors are matched.ΔR ON is small compared to 1MΩswitch load.Effect on transfer accuracy is minimized.Bias current and leakage current effects are now very important. Circuit bandwidth degrades.1MΩ1MΩFigure 24: Applying the Analog Switch: Minimizing Effects of ΔR ON Using Large Resistor Values10k±10V ±10V ±10VR F Ω10k Ω10k Ω10k ΩFigure 25: Applying the Analog Switch:Using "Dummy" Switchin Feedback to Minimize Gain Error Due to ΔR ONThe best multiplexer design drives the non-inverting input of the amplifier as shown in Figure26. The high input impedance of the non-inverting input eliminates the errors due to R ON .Figure 26: Applying the Analog Switch: Minimizing the Influence of ΔR ONUsing Non-Inverting ConfigurationCMOS switches and multiplexers are often used with op amps to make programmable gain amplifiers (PGAs). To understand R ON 's effect on their performance, consider Figure 27, a poor PGA design. A non-inverting op amp has 4 different gain-set resistors, each grounded by a switch, with an R ON of 100-500 Ω. Even with R ON as low as 25 Ω, the gain of 16 error would be2.4%, worse than 8-bit accuracy! R ON also changes over temperature, and from switch-to-switch.V OUTON ON R ON typically 1 -500Ωfor CMOS or JFET switchFor R ON = 25Ω, there is a 2.4% gain error for G = 16R ON drift over temperature limits accuracyMust use very low R ON switchesFigure 27: A Poorly Designed PGA Using CMOS SwitchesTo attempt "fixing" this design, the resistors might be increased, but noise and offset could then be a problem. The only way to improve accuracy with this circuit is to use relays, with virtually no R ON . Only then will the few m Ω of relay R ON be a small error vis-à-vis 625 Ω.It is much better to use a circuit insensitive to R ON ! In Figure 28, the switch is placed in series with the inverting input of an op amp. Since the op amp input impedance is very large, the switch R ON is now irrelevant, and gain is now determined solely by the external resistors. Note—R ON may add a small offset error if op amp bias current is high. If this is the case, it can readily beV IN V OUTR ON is not in series with gain setting resistors R ON is small compared to input impedance Only slight offset errors occur due to bias current flowing through the switches Figure 28: Alternate PGA Configuration Minimizes the Effects of R ON1-GHz CMOS SWITCHESThe ADG918/ADG919 are the first switches using a CMOS process to provide high isolation and low insertion loss up to and exceeding 1 GHz. The switches exhibit low insertion loss (0.8 dB) and relatively high off isolation (37 dB) when transmitting a 1-GHz signal. In high frequency applications with throughput power of +18 dBm or less at 25°C, they are a cost-effective alternative to gallium arsenide (GaAs) switches. A block diagram of the devices are shown in Figure 29 along with isolation and loss versus frequency plots given in Figure 30.ABSORPTIVE SWITCH REFLECTIVE SWITCHFigure 29: 1-GHz CMOS 1.65-V to 2.75-V 2:1 Mux/SPDT SwitchesISOLATION (dB) VS. FREQUENCYLOSS (dB)VS. FREQUENCYFigure 30: Isolation and Frequency Response ofAD918/AD919 1-GHz SwitchThe ADG918 is an absorptive switch with 50-Ω terminated shunt legs that allow impedance matching with the application circuit, while the ADG919 is a reflective switch designed for use where the terminations are external to the chip. Both offer low power consumption (<1 µA), tiny packages (8-lead MSOP and 3 mm × 3 mm lead frame chip scale package), single-pin control voltage levels that are CMOS/LVTTL compatible, making the switches ideal for wireless applications and general-purpose RF switching.PARASITIC LATCHUP IN CMOS SWITCHES AND MUXESBecause multiplexers are often at the front-end of a data acquisition system, their inputs generally come from remote locations—hence, they are often subjected to overvoltage conditions. An understanding of the problem as it relates to CMOS devices is particularly important. Although this discussion centers around multiplexers, it is germane to nearly all types of CMOS parts.Most CMOS analog switches are built using junction-isolated CMOS processes. A cross-sectional view of a single switch cell is shown in Figure 31. Parasitic SCR (silicon controlled rectifier) latchup can occur if the analog switch terminal has voltages more positive than V DD or more negative than V SS. Even a transient situation, such as power-on with an input voltage present, can trigger a parasitic latchup. If the conduction current is too great (several hundred milliamperes or more), it can damage the switch.–V SS+V DDFigure 31: Cross-Section of a Junction-Isolation CMOS SwitchThe parasitic SCR mechanism is shown in Figure 32. SCR action takes place when either terminal of the switch (source or the drain) is either one diode drop more positive than V DD or one diode drop more negative than V SS. In the former case, the V DD terminal becomes the SCR gate input and provides the current to trigger SCR action. In the case where the voltage is more negative than V SS, the V SS terminal becomes the SCR gate input and provides the gate current. In either case, high current will flow between the supplies. The amount of current depends on the collector resistances of the two transistors, which can be fairly small.+V DD–V SSFigure 32: Bipolar Transistor Equivalent Circuit for CMOSSwitch Shows Parasitic SCR LatchIn general, to prevent the latchup condition, the inputs to CMOS devices should never be allowed to be more than 0.3 V above the positive supply or 0.3 V below the negative supply. Note that this restriction also applies when the power supplies are off (V DD = V SS = 0 V), and therefore devices can latchup if power is applied to a part when signals are present on the inputs. Manuracturers of CMOS devices invariably place this restriction in the data sheet table of absolute maximum ratings. In addition, the input current under overvoltage conditions should be restricted to 5-30 mA, depending upon the particular device.In order to prevent this type of SCR latchup, a series diode can be inserted into the V DD and V SS terminals as shown in Figure 33. The diodes block the SCR gate current. Normally the parasitic transistors Q1 and Q2 have low beta (usually less than 10) and require a comparatively large gate current to fire the SCR. The diodes limit the reverse gate current so that the SCR is not triggered.CR1+V DDCR2–V SSDiodes CR1 and CR2 block base current drive to Q1 and Q2in the event of overvoltage at S or D.Figure 33: Diode Protection Scheme for CMOS SwitchIf diode protection is used, the analog voltage range of the switch will be reduced by one V BE drop at each rail, and this can be inconvenient when using low supply voltages.As noted, CMOS switches and multiplexers can also be protected from possible overcurrent by inserting a series resistor to limit the current to a safe level as shown in Figure 34, generally less than 5-30 mA. Because of the resitive attenuator formed by R LOAD and R LIMIT , this method works only if the switch drives a relatively high impedance load.INPUT R LOADFigure 34: Overcurrent Protection Using External ResistorA common method for input protection is shown in Figure 35 where Schottky diodes are connected from the input terminal to each supply voltage as shown. The diodes effectively prevent the inputs from exceeding the supply voltage by more than 0.3-0.4 V, thereby preventing latchup conditions. In addition, if the input voltage exceeds the supply voltage, the input current flows through the external diodes to the supplies, not the device. Schottky diodes can easily handle 50-100 mA of transient current, therefore the R LIMITresistor can be quite low.INPUT R LOADFigure 35: Input Protection Using External Schottky DiodesMost CMOS devices have internal ESD-protection diodes connected from the inputs to the supply rails, making the devices less susceptible to latchup. However, the internal diodes begin conduction at 0.6 V, and have limited current-handling capability, thus adding the external Schottky diodes offers an added degree of protection. However, the effects of the diode leakage and capacitance must be considered.Note that latchup protection does not provide overcurrent protection, and vice versa. If both fault conditions can exist in a system, then both protective diodes and resistors should be used. Analog Devices uses trench-isolation technology to produce its LC2MOS analog switches. The process reduces the latchup susceptibility of the device, the junction capacitances, increases switching time and leakage current, and extends the analog voltage range to the supply rails.Figure 36 shows the cross-sectional view of the trench-isolated CMOS structure. The buried oxide layer and the side walls completely isolate the substrate from each transistor junction. Therefore, no reverse-biased PN junction is formed. Consequently the bandwidth-reducing capacitances and the possibility of SCR latchup are greatly reduced.Figure 36: Trench-Isolation LC2MOS StructureThe ADG508F, ADG509F, ADG528F, ADG438F, and ADG439F are ±15V trench-isolated LC2MOS multiplexers which offer "fault protection" for input and output overvoltagesbetween –40 V and + 55 V. These devices use a series structure of three MOSFETS in the signal path: an N-channel, followed by a P-channel, followed by an N-channel. In addition, the signal path becomes a high impedance when the power supplies are turned off. Thisstructure offers a high degree of latchup and overvoltage protection—at the expense ofhigher R ON (~300 Ω), and more R ON variation with signal level. For more details of thisprotection method, refer to the individual product data sheets.REFERENCES:1.Hank Zumbahlen, Basic Linear Design, Analog Devices, 2006, ISBN: 0-915550-28-1. Also available asLinear Circuit Design Handbook, Elsevier-Newnes, 2008, ISBN-10: 0750687037, ISBN-13: 978-0750687034. Chapter 7.2.Walt Kester, Analog-Digital Conversion, Analog Devices, 2004, ISBN 0-916550-27-3, Chapter 7. Alsoavailable as The Data Conversion Handbook, Elsevier/Newnes, 2005, ISBN 0-7506-7841-0, Chapter 7. Copyright 2009, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of their respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Tutorials.。

19 模拟开关与多路转换器

19 模拟开关与多路转换器

19 模拟开关与多路转换器问:ADI公司不给出ADG系列模拟开关和多路转换器的带宽,这是为什么?答:ADG系列模拟开关和多路转换器的输入带宽虽然高达数百兆赫,但是其带宽指标本身不是很有意义的。

因为在高频情况下,关断隔离(off isolation)和关扰指标都明显变坏。

例如,在1MHz情况下,开关的关断隔离典型值为70dB,串扰典型值为-85dB。

由于这两项指标都按20dB/+倍频下降,所以在10MHz时,关断隔离降为50dB,串扰增加为-65dB;在100MHz时,关断隔离降为30dB,而串扰增加为-45dB。

所以,仅仅考虑带宽是不够的,必须考虑在所要求的高频工作条件下这两项指标下降是否能满足应用的要求。

(关断隔离是指当开关断开时,对耦合无用信号的一种度量——译者注。

)问:哪种模拟开关和多路转换器在电源电压低于产品说明中的规定值情况下仍能正常工作?答:ADG系列全部模开关和多路转换器在电源电压降到+5V或±5V情况下都能正常工作。

受电源电压影响的技术指标有响应时间、导通电阻、电源电流和漏电流。

降低电源电压会降低电源电流和漏电流。

例如,在125°C,±15V时,ADG411关断状态源极漏电流IS(OFF)和漏极漏电流ID(OFF)都为±20nA,导通状态漏极漏电流ID(ON)为±40nA;在同样温度下,当电源电压降为±5V,IS(OFF)和ID(OFF)降为±25nA,ID(ON)降为±5nA。

在+125°C,±15V时,电源电流I DD ,I SS 和IL最大为5μA;在±5V时,电源电流,最大值降为1μA。

导通电阻和响应时间随电源电压降低而增加。

图1和图2分别示出了ADG408的导通电阻和响应时间随电源电压变化的关系曲线。

图1 导通电阻与电源电压的关系曲线问:有些ADG系列模拟开关是用DI工艺制造的,DI是怎么回事?答:DI是英文Dielectric Isolation介质隔离的缩写,按照DI工艺要求,每个CMOS开关的NMOS管和PMOS管之间都有一层绝缘层(沟道)。

第4讲多路模拟开关

第4讲多路模拟开关
分类: ➢ 二极管桥开关 ➢ J-FET ➢ N(P)-MOS ➢ C-MOS
一、二极管桥开关
1、原理图 2、原理简介
Vc:交流控制电压 Tp:变压器 信号接在二极管桥的 3端,输出接在4端。
前提:若桥平衡的,则控制电压不会引入信号回路; 在Vc正半周,所有二极管正偏,信号由二极管传输; 在Vc负半周,所有二极管截止,阻止信号通过。
ts TC ln%1误00差
设定时间:
当RS≈Ron 且 CI << CT 时, 时间常数 TC=(RS+Ron)×CT
当RS << Ron 时, 时间常数 TC=Ron × CT
当RS >> Ron 时, 时间常数 TC=RS ×(CI+CT)
例:设Ron=100Ω,COT=100PF,CL=20PF, RL=10MΩ,CI=5PF,要求精度0.1%,
3、驱动电路
4、干簧继电器主要参数
换线速率:200~500ch/s 激励时间:700~1000μs 释放时间:50~700μs 接通电阻:10~150mΩ 断开电阻:500 GΩ 触头定额:1mA,10V 寿命:>10 亿次动作 开关噪声:起始→ 100μv;50μs后→ 1μv
5、湿簧继电器
(1)特点:触头功率较大,但速度较低。 (2)结构:与干簧相似,但底部加有水银。
目的:下触头会漫浸一层水银,有利 于消除触头闭合时的跳动从而减少触 头磨损,使触点负载能力加大。
加水银后,动作速率稍下降,且 安装要求垂直,使用不便。
应用:永磁铁代替线圈;
计数传感器 转速测量(德国、俄罗斯、国产) 采水器开关 触底开关
缺点:只能依次顺序接通各通道;不能接到任意通道上。

模拟多路开关

模拟多路开关
D0 D1 D2 D3 A1 A2 四选一多路开关 Y
数据采集与处理技术
模拟多路开关
3.1 概述
多路开关: 多路开关:
类型: 类型:
机电式:用于大电流、高电压, 机电式:用于大电流、高电压,低 速切换场所; 速切换场所; 电子式:用于小电流、低电压, 电子式:用于小电流、低电压,高 速切换场所。 速切换场所。
. . .
Ui8 模拟信号8 模拟信号8 R28 UC8 通道选择8 R18 T8
+15V
T8
……
双极型晶体管开关电路
数据采集与处理技术
模拟多路开关
3.2 多路开关的工作原理及主要技术指标 1. 多路开关工作原理
双极型晶体管开关
模拟信号1 模拟信号1 Ui1 T1 R21 UC1 通道选择1 R11 T1
+15V VDD
Uo
注意: 在控制信号 C1~ UC8 注意: 在控制信号U 中不能同时有两个或 两个以上为0。 两个以上为 。 优点: 开关速度快。 优点: 开关速度快。
. . .
Ui8 模拟信号8 模拟信号8 T8 R28 UC8 通道选择8 R18 T8
+15V
缺点: 缺点:
漏电流大, 漏电流大,开路电 阻小,导通电阻大。 阻小,导通电阻大。 电流控制器件, 电流控制器件,功 耗大,集成度低, 耗大,集成度低,一 个方向传送信号。 个方向传送信号。
场效应管开关 ② 绝缘栅场效应管开关 其工作原理与结型场效 应管多路开关类似。 应管多路开关类似。
开关切换速度快, 开关切换速度快,导通电 优点: 优点: 阻小, 阻小,且随信号电压变化 波动小; 波动小;易于和驱动电路 集成。 集成。 衬底要有保护电压, 沟 衬底要有保护电压,P沟 缺点: 缺点: 道加正电压, 沟道加负 道加正电压,N沟道加负 电压。 电压。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学海无涯
3.双四路模拟开关 CD4052 CD4052 的引脚功能如下图所示。CD4052 相当于一个双刀四掷开关,具体接通哪一通
道,由输入地址码 AB 来决定。
4.三组二路模拟开关 CD4053 CD4053 的引脚功能如下图所示。CD4053 内部含有 3 组单刀双掷开关,3 组开关具体接
通哪一通道,由输入地址码 ABC 来决定。
学海无涯
经二极管整流不断给电容充电,使 3.3μF 电容上电压迅速达到转换电压,F2 输出变低,F3 输出变高,模拟开关 S1 导通,给电容充电,音量变小。由此,利用一只按钮开关,实现了 对音量的大小控。
2.四路视频信号切换器 四路视频信号切换器电路如下图所示。“与非”门 YF3、YF4 组成脉冲振荡器,振荡频
学海无涯
多路复用器和模拟开关
多路复用器(MULTIPLEXER 也称为数据选择器)是用来选择数字信号通路的;模拟 开关是传递模拟信号的,因为数字信号也是由高低两个模拟电压组成的, 所以模拟开关也能 传递数字信号。
在 CMOS 多路复用器中,因为其数据通道也是模拟开关结构,所以也能用于选择多 路模拟信号。但是 TTL 的多路复用器就不能关 CD4067 CD4067 的引脚功能如图所示。CD4067 相当于一个单刀十六掷开关,具体接通哪一通
道,由输入地址码 ABCD 来决定。
二、CMOS 模拟开关典型应用举例 1.单按钮音量控制器
单按钮音量控制器电路如下图所示。VMOS 管 VT1 作为一个可变电阻并接在音响装置 的音量电位器输出端与地之间。VT1 的 D 极和 S 极之间的电阻随 VGS 成反比变化,因此控 制 VGS 就可实现对音量大小的控制。VT1 的 G 极接有 3 个模拟开关 S1~S3 和一个 100μF 的电容,其中 100μF 电容起电压保持作用。由于 VMOS 管的 G 极和 S 极之间的电阻极高, 故 100μF 电容上的电压可长时间基本保持不变。模拟开关 S1 为电容提供充电回路,当 S1 导通时,电源通过 S1 给电容充电,电容上电压不断增高,使 VT1 导通电阻越来越小,使音 量也越来越小。模拟开关 S2 为电容提供放电回路,当 S2 导通时,电容通过 S2 放电,电容 上电压不断下降,使音量越来越大。模拟开关 S3 起开机音量复位作用,开机时,电源在 S3 控制端产生一短暂的正脉冲,使 S3 导通,由于与 S3 连接的电阻较小,故使电容很快充到 一定的电压,使起始音量处于较小的状态。F1~F6 及其外围元件组成长短脉冲识别电路。 静态时,F1、F2 输入为高电平,当较长时间按压按钮开关 AN 时,F4 输出变高,经 100k 电阻给 3.3μF 电容充电,当充电电压超过 CMOS 门转换电压时,F5 输出由高变低,F6 输 出由低变高,模拟开关 S2 导通,100μF 电容放电,音量变大。与此同时,F1 输出也变高, 也给电容充电,但 F1 输出的一次正跳变不足以使电容上电压超过转换电压,故 F2 输出仍 为高电平,F3 输出低电平,模拟开关 S1 保持截止。当连续按动按钮开关 AN 时,F4 输出 也不断变化,输出为高时,给电容充电,而输出变低时,电容又很快通过二极管 VD3 放电, 故电容上电压总是达不到转换电压,因此 F6 输出一直为低。而此时 F1 输出连续高低变化,
3.数控电阻网络 数字控制电阻网络电阻值大小的电路如下图所示。图中,CD4066 的四个独立开关分别
并接在四个串接电阻上,电阻的值是按二进制位权关系选择的。当某个开关接通时,并接在 该开关上的电阻被短路,此处假设该电阻阻值 R�RON(RON 为模拟开关的导通电阻);当 某个开关断开时,电阻两端阻值仍保持原阻值不变,此处假设该电阻阻值 R�ROFF(ROFF
一、常用 CMOS 模拟开关引脚功能和工作原理
1.四双向模拟开关 CD4066 CD4066 的引脚功能如下图所示。每个封装内部有 4 个独立的模拟开关,每个模拟开关
有输入、输出、控制三个端子,其中输入端和输出端可互换。当控制端加高电平时,开关导 通;当控制端加低电平时开关截止。模拟开关导通时,导通电阻为几十欧姆;模拟开关截止 时,呈现很高的阻抗,可以看成为开路。模拟开关可传输数字信号和模拟信号,可传输的模 拟信号的上限频率为 40MHz。各开关间的串扰很小,典型值为-50dB。
R1~R10 构成的加/减电阻网络。CD40192 为十进制加/减计数器,“与非”门 YF3、YF4 构成低频振荡器,“与非”门 YF1、YF2 分别为加计数端 CPU 和减计数端 CPD 的计数闸门。
当 D1 端为高电平时,闸门 YF1 开通,低频脉冲经 YF1 加到 CD40192 的 CPU 端,使 其作加法计数,输出端 Q0~Q3 数据增大,使 16 路模拟开关的刀向低端转换,顺序接通 R1~ R10,接通的电阻增大,经与 R11 分压后,使输出音频信号 Vo 增大;当 D2 端为高电平时, 闸门 YF2 开通,低频脉冲经 YF2 加到 CD40192 的 CPD 端,使其作减法计数,输出端 Q0~ Q3 数据减小,使 16 路模拟开关的刀向高端转换,顺序接通 R10~R1,接通的电阻减小, 经与 R11 分压后,使输出音频信号 Vo 减小
用 CMOS 的多路复用器或模拟开关传递模拟信号时要注意:模拟信号的变化值必须在 正负电源电压之间,譬如要传递有正负半周的正弦波时,必须使用正负电源且电源电压大 于传递的模拟信号峰值,这时其控制或地址信号必须以负电源电压为 0,而以正电源电压为 1;或者用单电源供电,而使模拟信号的变化中值在 1/2 电源电压上, 传递之后再恢复到原 来的值。
率由 100k 电位器调节。若嫌调节范围不够,可适当更换 0.47μF 电容和 100k 电阻。脉冲振 荡器受 YF1、YF2 组成的双稳态电路的控制,按 S1 时,YF1 输出低电平,脉冲振荡器停振; 按 S2 时,YF1 输出高电平,脉冲振荡器开始振荡。脉冲振荡器的输出作为 CD4017 十进制 计数器的时钟,使 Y0~Y3 依次出现高电平,相应的四个模拟开关依次导通,由 Vi1~Vi4 输入的视频信号被依次切换至输出端,完成了四路视频信号的切换。显然,增加一片 CD4066 可做成八路视频信号切换器,相应地,由 Y0~Y7 进行模拟开关控制,Y8 连至 Cr。依此类 推,可做成更多路数的视频信号切换器。而且,输入、输出也可以是其它形式的信号。如要 求视频、音频信号同传,则并接上相应数量的模拟开关即可。
2.单八路模拟开关 CD4051 CD4051 引脚功能如下图所示。CD4051 相当于一个单刀八掷开关,开关接通哪一通道,
由输入的 3 位地址码 ABC 来决定。“INH”是禁止端,当“INH”=1 时,各通道均不接通。 此外,CD4051 还设有另外一个电源端 VEE,以作为电平位移时使用,从而使得通常在单组 电源供电条件下工作的 CMOS 电路所提供的数字信号能直接控制这种多路开关,并使这种 多路开关可传输峰-峰值达 15V 的交流信号。例如,若模拟开关的供电电源 VDD=+5V, VSS=0V,当 VEE=-5V 时,只要对此模拟开关施加 0~5V 的数字控制信号,就可控制幅 度范围为-5V~+5V 的模拟信号。
学海无涯
为模拟开关断开时的电阻)。四个开关的控制端由四位二进制数 A、B、C、D 控制,因此, 在 A、B、C、D 端输入不同的四位二进制数,可控制电阻网络的电阻变化,并从其上获得 2~ 16 种不同的电阻值。
4.音量调节电路 音量调节电路如下图所示。音频信号由 Vi 端输入,经分压电阻 R11 和隔直电容加到由
相关文档
最新文档