实验三 热电制冷原理演示装置实验
《制冷原理》实验指导书
《制冷原理》实验指导书南京航空航天大学能源与动力学院制冷(热泵)循环演示装置实验一、实验目的:1. 演示制冷、制热循环系统工作原理,观察制冷工质的蒸发、冷凝过程和现象;2. 熟悉制冷、制热循环系统的操作、调节方法;3. 进行制冷、制热循环系统粗略的热力计算。
二、实验装置演示装置由全封闭压缩机、热交换器1、热交换器2、浮子节流阀、手动换向阀及管路等组成制冷、制热循环系统。
由转子流量计及换热器内盘管等组成水换热系统,还设有温度、压力、电流、电压等测量仪表。
制冷工质采用低压工质R11。
装置的原理如图1、2、3所示。
当系统做制冷(制热)循环时,换热器1为蒸发器(冷凝器),换热器2为冷凝器(蒸发器)。
面板示意图如图4所示。
图1制冷(制热)循环演示装置原理示意图图2 制冷循环演示装置原理示意图电流表排气压力表排气压力表图3 制热循环演示装置原理示意图图4 制冷(热泵)循环演示装置控制面板示意图三、操作步骤1. 制冷循环演示(1) 将手动换向阀调至A1、A2全开,B1、B2全关位置;(2) 打开连接演示装置的供水阀门,利用转子流量计阀门适当调节蒸发器、冷凝器水流量;(3) 开启压缩机,观察工质的冷凝、蒸发过程及现象;(4) 待系统运行稳定后,即可记录压缩机输入电流、电压、冷凝器压力,冷凝器和蒸发器进、出口水温参数。
2. 热泵循环演示(1) 将手动换向阀调至B1、B2全开,A1、A2全关位置; (2) 类似上述(2)、(3)、(4)操作步骤并记录全部参数。
四、制冷(热泵)循环的热力计算1. 当系统为制冷循环时换热器1的制冷量为:)(2111t t C G Q p -= [kW] 换热器2的换热量为:)(4322t t C G Q p -= [kW] 压缩机功率为:UI N = 热平衡误差为:%100)(1211⨯--=∆Q N Q Q制冷系数为:NQ 11=ε 2. 当系统为热泵循环时换热器1的制热量为:)(1211t t C G Q p -'=' [kW]换热器2的换热量为:)(3422t t C G Q p -'=' [kW] 压缩机功率为:UI N = 热平衡误差为:%100)(1212⨯'+'-'=∆Q N Q Q 制热系数为:NQ 12'=ε 以上各式中2211,,G G G G ''和为换热器1和换热器2的水流量[kg/s]。
制冷、热泵循环演示及测试实验
• 感谢阅读
• 制冷、热泵循环演示实验装置原理如图6-28和 图6-29所示。当系统作制冷循环时,换热器1为 蒸发器,换热器2为冷凝器。当系统作热泵循环时, 换热器1为冷凝器,换热器2为蒸发器。
实验操作步骤
实验数据记录及整理
制冷工况
换热器1 流量
进水温 •出水温度 换热量
压缩机
蒸发器
提供冷量
冷凝器 膨胀阀
冷媒变化分析
低温 低压 压缩机 (压缩)
气体 高
●耗电做功使低温低压冷媒气体 变为高温高压气体
温
气
高
体
压
蒸发器 (蒸发)
●空气吸收冷媒的冷量使 液态冷媒变为气态
冷凝器 (冷凝)
●向空气放出冷媒的热量使 气态冷媒变为液态
液 体
膨胀阀 (膨胀)
低温 低圧 ●降低冷媒压力
2023最新整理收集 do something
制冷、热泵循环演示及测试实验
暖通空调专业实验(一)
热泵的工作原理
• 热泵是一种基于逆卡诺循环基本原理,采 用电能驱动,从低温热源中吸取热量,并 将其传输给高温热源以供使用,传输到高 温热源中的热量不仅大于所消耗的能量, 而且大于从低温热源中吸收的能量,它可 以将空气、土壤、水中所含的热能、工业 废热及太阳能等转换为可以利用的高位热 能,从而达到节省部分高位能的目的。
●调整冷媒流量
液 体
高 高圧 温
冷媒变化分析
冷媒变化分析
P-h图
过冷
绝 对 压 力
MPa
高压
膨 胀
低压
冷凝 蒸发
压缩
过热
冷媒焓值 KJ/Kg
冷暖空调原理
室内机 吸 热
蒸发器
热电制冷的原理及应用实例
热电制冷的原理及应用实例1. 热电制冷的原理热电制冷(thermoelectric cooling)是一种通过热电效应实现制冷的技术。
热电效应是指当两种不同材料的接触面存在温度差时,由于电子的迁移,会产生一个电势差。
热电制冷就是利用这种热电效应将热量从一个物体传递到另一个物体,从而实现冷却的过程。
热电制冷的原理可以通过以下几个步骤来解释:1.首先,热电制冷器由两种不同的材料(通常是P型和N型的半导体材料)组成。
这两种材料之间形成了一个所谓的热电偶。
2.当电流通过热电偶时,由于这两种材料之间的温度差异,电子会从高温一侧向低温一侧移动。
这导致了高温一侧电子的过量,产生了一个电势差,即热电效应。
3.然后,根据热电效应的原理,电势差会导致热量从高温一侧传递到低温一侧。
这个过程是通过电子的迁移和传导导热完成的。
4.最后,通过将低温一侧与外部环境接触,热能可以被散发出去,实现了制冷效果。
2. 热电制冷的应用实例热电制冷技术在很多领域都有广泛的应用。
下面介绍一些热电制冷的应用实例:2.1 电子设备冷却现代电子设备通常在工作时会产生大量的热量,为了保持设备的正常运行,需要对其进行冷却。
热电制冷技术可以在电子设备中使用,通过在集成电路上放置热电偶,将热量从电子设备传递到散热片,从而实现冷却效果。
这种方法具有体积小、无噪音、可靠性高等优点。
2.2 空调和制冷设备热电制冷技术可以用于小型的空调和制冷设备。
相比于传统的压缩机制冷技术,热电制冷技术更加简单、节能、无霜冻和无需维护。
因此,它被广泛应用于一些小型房间空调、车载冰箱、微型制冷箱等场景。
2.3 光学设备冷却在一些对温度要求非常高的光学设备中,如红外线探测器和激光器等,需要将设备冷却到极低的温度,以提高设备的性能和寿命。
热电制冷技术能够提供高精度的温度控制,并且可以应用于高温差环境下,因此被广泛用于光学设备的冷却领域。
2.4 汽车座椅冷却现代汽车座椅通常具有加热和通风的功能,为乘坐者提供舒适的体验。
图解制冷原理(内含动态原理图)
图解制冷原理(内含动态原理
图)
一、空调系统
首先是空调系统的使用。
我相信朋友们闭上眼睛也能说出原理。
二、冰箱系统
冰箱系统也是制冷系统最常见的应用。
我们来看看原理。
三、热泵系统
实际上,热泵系统是空调制冷系统的逆向应用方案。
之前用制冷制冷系统产生冷量,现在用四通换向阀产生热量。
我们来看一下原理图。
先来看看制冷模式:
再来看看热泵运行模式:
实际使用当中,最常见的还是风冷热泵机组了,看下面的原理图:
1.第一,制冷模式可以产生冷水。
如果连接空气末端设备,可以为房间提供冷能。
2、再来看看制热模式,早的很多年前,这个系统经过包装一下,摇身一变,变成一个非常时髦的概念叫空气源热泵系统,号称是第五代热水系统:
四、制冰机系统
制冰机也是制冷系统最常见的应用之一。
我们来看看制冰机的几种形式。
五、除湿机系统
当然,除湿机系统也是基于制冷系统的原理。
潮湿的空气被风扇吸入机器,并通过热交换器。
此时空气中的水蒸气凝结成水滴,而干燥的空气温度降低,排出机外。
六、汽车空调系统
汽车空调系统是制冷系统的经典用例,包括汽车空调系统、火车空调系统、公交车空调系统、冷藏车空调系统、冷藏集装箱等。
我们简单看一下:
七、冷藏展示柜
超市、餐厅的冰箱、展示柜也是利用制冷原理。
八、干冰机
干冰机也是利用制冷原理的哦。
多功能制冷制热演示实验
多功能制冷制热演示实验一.实验目的1.了解冰箱的工作原理;2.了解空调的工作原理。
二.实验装置和原理2.1电冰箱的工作原理和装置电冰箱的制冷系统从原理上讲是利用制冷剂液态和气态的转化特性,把蒸发的制冷剂还原成原来的液体,使其在一个密闭的系统内循环。
该循环被称为“制冷循环”。
实际这一循环需经过压缩、冷凝、节流、蒸发四个过程。
如图1.1,当电冰箱接通电源后,压缩机1启动,工作中的压缩机把制冷剂压缩成高温高压气体,经高压管2被输送到冷凝器3中,被冷凝的制冷剂此时的状态为高压液体,经过滤器4过滤、毛细管5节流后,进入蒸发器6,此时的制冷剂在一定的压力下,蒸发沸腾,吸收周围空间的热量。
最后经压缩机的低压管7被吸入压缩机,经压缩机的压缩继续下一个循环。
这样,制冷剂在这个密闭的系统中往复循环达到了制冷的目的。
1压缩机2高压管3冷凝器4干过滤器5毛细管6蒸发器7低压管8工艺管图1 电冰箱制冷循环图2.2空调工作原理和装置1.空调制冷系统的工作原理如图1.2中的a所示。
压缩机吸入制冷剂R22的过热蒸汽,经压缩机压缩为高压高温蒸汽经过四通换向阀进入冷凝器冷却冷凝后,经毛细管进入蒸发器吸热汽化,制冷剂蒸汽再经过换向阀进入压缩机的吸气口,由压缩机进行压缩再循环。
此时流经蒸发器表面的空气被冷却降温,由风扇吹向室内。
而室内高温空气经风口被吸入,室内空气如此循环,达到降低室温的目的。
制热系统是通过换向阀的切换作用,使制冷剂可顺向流动也右反向流动,使蒸发器和冷凝器的作用互换,达到对室内即可制冷又可制热的目的。
图1.2中的b为空调制热时制冷剂流动路线,由压缩机排出的高温高压蒸汽,经过换向阀进入室内换热器(冷凝器功能),散热冷凝后经毛细管流入室外换热器吸热气化,制冷剂蒸汽再经过换向阀进入压缩机的吸气口,经压缩进行再循环,其结果是从室内换热器送出的是热风—制热。
热泵制热是通过制冷剂从室外空气中吸取热量,经过制冷系统向室内散发,实现这个过程消耗的功率是压缩机对制冷剂的压缩功,压缩功做功后转换为热量也在冷凝器中向室内排放。
制冷实验指导
制冷原理与装置实验一压缩机性能测试[实验目的]1. 加深了解制冷循环系统的组成。
2. 学习测定压缩机性能的方法。
3. 通过实际测定制冷机运行参数以及计算,分析影响压缩机性能的因素。
[实验原理]实验装置为教学用制冷压缩机性能试验台。
该试验台采用全封闭制冷压缩机,冷凝器和蒸发器均采用对流式水换热器。
制冷压缩机的轴功率通过输入电功率来测算。
制冷压缩机性能试验台的制冷循环系统见图1,图2为水循环系统简图。
图1制冷循环系统图图2 .水循环系统图1.压缩机,2.冷凝器,3.截止阀,4.干燥过滤器,5.过冷 1.压缩机,2.冷凝器,3.温度计,4.加热器,温度计,6.截流阀,7.蒸发器, 8.吸气温度计, 9.吸气 5.阀门, 6.水泵,7.蒸发器水箱, 8.溢流水箱, 压力表, 10.吸气阀, 11.排气阀, 12.排气压力表9.冷凝器水箱10.流量计,11.出水管13.排气温度计, 14.电流表,15.电压表[实验方法和步骤]1. 实验前准备:(1)学习实验指导书和安装使用说明书,详细了解实验台各部分的作用,掌握制冷系统的操作规程和制冷工况参数,熟悉各测试仪表的安装使用方法。
(2)启动水循环系统及制冷系统。
(3)按指导教师要求,参考安装使用说明书介绍的方法调节运行情况。
2. 进行测试:(1)待工况确定后,即可开始测试,测取蒸发压力、冷凝压力、吸气温度、排气温度、过冷温度、蒸发器和冷凝器的进、出水温度及它们的流量、压缩机的输入功率等参数。
(2)为提高测试准确度,要求在稳定的工况范围内,共测取三次数据,以其平均值作为测试结果。
(3)测试结束后,按使用说明书之规定停止系统工作。
[实验数据处理]1. 制冷量: 式中:Q1:蒸发器换热量,G 2——载冷剂流量(Kg/s )C p ——载冷剂的定压比热(Kj/Kg.c)t 1、t 2----载冷剂的进出口温度(℃)i 1----在规定吸气温度、吸气压力下制冷剂蒸发的焓值(Kj/Kg)i 7----在规定过冷温度下,节流阀前液体制冷剂的焓值(Kj/Kg)i 1----在实验条件下,离开蒸发器的制冷剂的焓值(Kj/Kg)i 6----在实验条件下,节流阀前液体制冷剂的焓值(Kj/Kg)v 1----压缩机实际吸气温度、吸气压力下制冷剂蒸汽的比容(M 3/Kg )v 1----压缩机规定吸气温度、吸气压力下制冷剂蒸汽的比容(M 3/Kg )2. 压缩机轴功率N=I ·V ·N(Kw)式中:I V 为封闭压缩机的输入电流和输入电压N 为压缩机的效率取0.753. 制冷系数ε=Q/N4. 热平衡误差式中:Q2----冷凝器的换热量 ,G l ——冷凝器水流量(Kg/s )t 1、t 2----冷凝器水的进出口温度(℃)C p ----水的定压比热(Kj/Kg.℃)[思考题]分析影响制冷机性能的因素以及相应措施。
北理珠-制冷原理设备实验指导书
北京理工大学珠海学院制冷原理设备实验指导书热能与动力工程教研室2015.5目录实验一表面式换热器性能测试实验二翅片管式换热器性能测试实验三直流调速家用中央热泵式空调机组的拆装实验(一)、表面式换热器性能测试通常表面式换热器可分为表面式冷却器和空气加热器两大类。
表面式冷却器一般以冷水或者制冷剂作为冷媒,可实现对空气的等湿冷却、减湿冷却等处理过程。
空气加热器一般以热水或者蒸汽作为热媒,可实现对空气的等湿加热的处理过程。
一、实验目的通过本实验熟悉和掌握空气加热器(简称加热器)性能(换热量)的测定方法。
二、实验装置及仪器图一、实验装置示意图1.循环水泵2.转子流量计3.过冷器4.表冷器5.实验台支架6.吸入段7. 整流栅8.加热前空气温度9. 表冷器前静压10.U形差压计11. 表冷器后静压12.加热后空气温度13.流量测试段14孔板17.风机18.倾斜管压力计19.控制测试仪表盘20.水箱换热器为表冷器,表冷器几何尺寸如下表:铝翅片尺寸(mm)片距(mm)基管直径dw/dn(mm)迎风面积Fy(m2)散热面积F(m2)最窄通风面积f(m2)热水流通面积fˊ(m2)200432.10/8 0.04 0.885 0.026 0.000012562.水箱电加热器总功率为4.5kW,分三档控制,三档功率分别为1.5kW。
3.空气温度和热水温度用K型热电偶测量。
4.空气流量用孔板配倾斜式微压计测量。
5.空气通过换热器的流通阻力,在换热器前后的风管上设静压测嘴,配倾斜式微压计测量;热水通过换热器的流通阻力,在换热器进出口处设测阻力测嘴,配压力表和U型管测量。
6.热水流量用转子流量计测量。
三、实验方法1.联接电源(380V,四线,50HZ,5kW)。
2.向电热水箱内注水至水箱净高5/6处。
3.用耐压胶管连接换热器进出口处的阻力测嘴和差压计的管口。
4.连接倾斜式微压计及其相应的接口。
5.工况调节1)全开水箱电加热器开关,待水温接近试验温度时,打开水泵开关,利用水泵出口阀门调节热水流量。
制冷工作原理实验报告
制冷工作原理实验报告
制冷技术在现代社会中扮演着重要的角色,无论是家用空调、冰箱,还是工业生产中的冷冻设备,都需要涉及制冷原理。
为了更好地了解
制冷工作原理,我们进行了以下实验。
实验目的:
本实验旨在通过实际操作,观察和验证制冷系统的工作原理,掌握
制冷技术相关知识。
实验器材:
1. 制冷实验箱
2. 温度计
3. 压力表
4. 制冷剂
实验步骤:
1. 打开制冷实验箱,将温度计置于箱内并记录初始温度。
2. 通过控制制冷实验箱的设置,调节制冷系统的工作状态。
3. 观察和记录制冷实验箱内温度的变化,以及压力表的显示情况。
实验结果:
经过一段时间的实验操作,我们得出以下结论:
1. 初始温度下,制冷实验箱内的温度开始逐渐下降,同时压力表显示制冷系统内的压力随之变化。
2. 随着制冷系统的运转,制冷实验箱内的温度最终稳定在设定的制冷温度值附近。
3. 实验过程中观察到,制冷剂在制冷系统内循环流动,起到吸热和放热的作用。
实验结论:
通过本次实验,我们深入了解了制冷工作原理,制冷系统的运行主要依靠制冷剂的循环,通过吸收热量使室内温度降低,从而实现制冷效果。
同时,压力的变化也是制冷过程中重要的参考指标,能够反映出制冷系统内部的工作状态。
总结:
制冷技术在日常生活和工业生产中发挥着重要的作用,通过实验我们更加直观地了解了制冷工作原理。
希望今后能够进一步学习和掌握相关的制冷技术知识,为实际应用提供帮助。
制冷原理的实验原理及方法
制冷原理的实验原理及方法
制冷原理的实验原理是通过外界的能量输入,通过蒸发和压缩两个过程来实现冷却效果。
具体实验方法如下:
1. 实验材料:
- 压缩机:用于提供高压气体。
- 冷凝器:用于散热,将高温高压的气体冷却为高温高压液体。
- 节流阀:用于降低液体的温度和压力。
- 蒸发器:用于吸收外界热量,使液体蒸发为气体。
- 热量源:如热水槽、恒温水槽等。
- 温度计:用于测量温度的变化。
- 压力计:用于测量压力的变化。
2. 实验步骤:
1) 打开压缩机,使气体被压缩成高温高压气体。
2) 气体经过冷凝器进行散热,冷却为高温高压液体。
3) 液体通过节流阀降低温度和压力。
4) 液体进入蒸发器,吸收外界的热量,蒸发为低温低压气体。
5) 测量冷剂在冷凝器、节流阀、蒸发器中的温度和压力的变化。
6) 观察冷凝器、节流阀、蒸发器的变化,判断制冷效果。
3. 实验要点:
- 实验环境要保持稳定,避免外界影响。
- 实验过程中需要记录温度和压力的变化,以便分析制冷效果。
- 在实验过程中,可以通过调整压缩机的工作状态来改变制冷效果。
教学试验2012制冷热泵循环装置试验指导书试验目的1演示
教学实验2012制冷(热泵)循环装置实验指导书一、实验目的1、演示制冷(热泵)循环系统工作原理,观察制冷工质的蒸发、冷凝过程和现象。
2、熟悉制冷(热泵)循环系统的操作、调节方法。
3、进行制冷(热泵)循环系统粗略的热力计算。
二、实验装置演示装置由全封闭压缩机、换热器1、换热器2、浮子节流阀、四通换向阀及管路等组成制冷(热泵)循环系统;由转子流量计及换热器内盘管等组成水系统;还设有温度、压力、电流、电压等测量仪表。
制冷工质采用低压工质R。
11装置原理示意图如图1和图2所示。
当系统作制冷(热泵)循环时,换热器1为蒸发器(冷凝器),换热器2为冷凝器(蒸发器)。
图1 制冷(热泵)循环演示装置原理图三、操作步骤1、制冷循环演示1)将四通换向阀调至“制冷”位置。
2)打开连接演示装置的供水阀门,利用转子流量计阀门适当调节蒸发器、冷凝器水流量。
图2 制冷剂流向改变流程图3)开启压缩机,观察工质的冷凝、蒸发过程及其现象。
4)待系统运行稳定后,即可记录压缩机输入电流、电压;冷凝压力、蒸发压力;冷凝器和蒸发器的进、出口温度及水流量等参数。
2、热泵循环演示1)将四通换向阀调至“热泵”位置2)类似上述2)、3)、4)步骤进行操作和记录。
注:实验结束后,首先关闭压缩机,过一分钟后再关闭供水阀门。
四、制冷(热泵)循环系统的热力计算1、当系统作制冷运行时 换热器1的制冷量为:12111)(q t t C G Q p +-= [KW] 换热器2的制冷量为:24322)(q t t C G Q p +-= [KW] 热平衡误差为: 100)(1211⨯--=∆Q N Q Q %制冷系数为: NQ 11=ε 2、当系统作热泵运行时 换热器1的换热量为:'112'1'1)(q t t C G Q p +-= [KW]换热器2的换热量为:'234'2'2)(q t t C G Q p +-= [KW] 热平衡误差为:100)('1'2'12⨯--=∆Q N Q Q % 制冷系数为:NQ '11=ε以上各式中:'11,G G 和'22,G G --换热器1和换热器2的水流量[kg/s]21,t t 和34,t t --换热器1和换热器2水的进、出口温度[℃]p C --水的定压比热,p C =4.868KJ/kg [℃] 其中:3110)(-⨯-=e a t t a q [KW]3'110)(-⨯-=c a t t a q [KW]3210)(-⨯-=c a t t b q [KW]3'210)(-⨯-=e a t t b q [KW]式中:a t --环境温度 [℃]e t ,c t --工质在蒸发压力,冷凝压力下所对应的饱和温度 [℃] a ,b —换热器1和换热器2的热损失系数(实验标定) [w/℃] N —压缩机轴功率 [KW] 1000VAN η= [KW] 式中:η--电机效率(由指导教师给出) V —电压 [V] A —电流 [A]五、分析讨论1、分析实验结果,指出影响参数测定精度的因素2、指出本系统运行参数的调节手段是什么六、注意事项为确保安全,切忌冷凝器不通水或无人照管情况下长时间运行。
“热电冷三联供”溴化锂吸收式制冷原理
“热电冷三联供”溴化锂吸收式制冷原理
溴化锂吸收式制冷机是以溴化锂溶液为吸收剂,以水为制冷剂,利用水在高真空下蒸发吸热达到制冷的目的。
输入热能(蒸汽、直燃机、废烟气)使溴化锂溶液在发生器中受到热源加热,溶液温度提高直至沸腾,溶液中的水份逐渐蒸发出来,而溶液浓度不断增大。
发生器中蒸发出来的冷剂水蒸气向上经挡液板进入冷凝器,挡液板起汽液分离作用,防止液滴随蒸汽进入冷凝器。
冷凝器的传热管内通入冷却水,所以管外冷剂水蒸气被冷却水冷却,冷凝成水,此即冷剂水。
冷剂水进入蒸发器后,由于压力降低首先闪蒸出部分冷剂水蒸气。
因蒸发器为喷淋式热交换器,喷啉量要比蒸发量大许多倍,故大部分冷剂水是聚集在蒸发器的水盘内的,然后由冷剂水泵升压后送入蒸发器的喷淋管中,经喷嘴喷淋到管簇外表面上,在吸取了流过管内的冷媒水的热量后,蒸发成低压的冷剂水蒸气。
由于蒸发器内压力较低,故可以得到生产工艺过程或空调系统所需要的低温冷媒水,达到制冷的目的。
例如蒸发器压力为872Pa时,冷剂水的蒸发温度为5℃,这时可以得到7℃的冷媒水。
蒸发出来的冷剂蒸汽经挡液板将其夹杂的液滴分离后进入吸收器,被由吸收器泵送来并均匀喷淋在吸收管簇外表的中间溶液所吸收,溶液重新变稀。
中间溶液是由来自溶液热交换器放热降温后的浓溶液和吸收器液囊中的稀溶液混合得到的。
为保证吸收过程的不断进行,需将吸收过程所放出的热量由传热管内的冷却水及时带走。
中间溶液吸收了一定量的水蒸气后成为稀溶液,聚集在吸收器底部液囊中,再由发生器泵送到发生器,如此循环不已。
溴化锂吸收式制冷原理图。
热电制冷的原理
热电制冷的原理宝子们,今天咱们来唠唠热电制冷这个超酷的事儿。
咱先想象一下,有这么一种神奇的现象,不用那种传统的压缩机啥的,就能让一个小空间变得凉凉的。
这就是热电制冷的魅力啦。
热电制冷啊,它是基于一种叫做珀尔帖效应的东西。
啥是珀尔帖效应呢?简单来说,就是当有电流通过两种不同的导体组成的回路的时候呢,在这两种导体的接头处,就会出现吸热或者放热的现象。
就好像这电流是个调皮的小魔法师,在两种导体的连接处捣鼓出冷热魔法。
比如说,在一个接头那里,它会吸收热量,让周围变得凉凉的,就像有个小小的冰精灵在那里施展制冷法术。
而在另一个接头呢,就会放出热量,就像有个小火苗在那呼呼冒热气。
那为啥会这样呢?其实啊,这两种不同的导体材料,它们内部的电子状态是不一样的。
当电流通过的时候,电子就像是一群小蚂蚁搬家一样,从一种材料跑到另一种材料里。
在这个过程中呢,电子的能量就发生了变化。
在吸热的那个接头,电子就像是带走了周围的热量能量,然后跑到别的地方去了。
而在放热的接头,电子就像是把自己多余的能量以热量的形式释放出来了。
你看啊,这种热电制冷的装置呢,就像是一个小小的冷热工厂。
它的核心部件就是由好多这样的热电对组成的。
这些热电对就像一个个小小的制冷或者制热单元。
如果我们想要制冷,就把那个会吸热的接头放在我们想要降温的地方,比如说一个小盒子里装着我们心爱的小蛋糕,不想让它坏掉,就把这个吸热的接头放在盒子旁边。
然后电流一通过,就像打开了制冷小机关,小蛋糕就能在凉爽的环境里保存啦。
而且哦,热电制冷还有好多优点呢。
它特别小巧玲珑,不像那些大的制冷设备,占那么大地方。
它就像个精致的小玩意儿,可以用在很多小空间里。
比如说,你有个超级迷你的小冰箱,就可以用热电制冷技术,这样你就可以在自己的小桌子上放着,随时能拿出冰冰凉凉的饮料来喝。
它还特别安静呢,没有那种嗡嗡嗡的压缩机声音,就像个安静的小助手,默默地为你制冷。
不过呢,热电制冷也有一点点小缺点啦。
热电制冷的实验报告
一、实验目的1. 了解热电制冷的基本原理;2. 掌握热电制冷器的组装与调试方法;3. 熟悉热电制冷实验的操作流程;4. 分析实验数据,探讨热电制冷的制冷性能。
二、实验原理热电制冷是基于帕尔帖效应的一种制冷方式。
帕尔帖效应是指,当电流通过两种不同的半导体材料组成的回路时,由于两种材料的热电势差,回路中会出现热量从低温端流向高温端的效应。
根据这一原理,将两种不同的半导体材料P型和N型组成热电偶对,连接成一个闭合回路,通入电流,低温端就会吸收热量,实现制冷效果。
三、实验仪器与材料1. 热电制冷器(包括P型半导体、N型半导体、铜板、铜导线、电绝缘层等);2. 电源(12V直流电源);3. 温度计(测量制冷效果);4. 热电偶(测量热电偶对温度);5. 实验台。
四、实验步骤1. 组装热电制冷器:将P型半导体、N型半导体、铜板、铜导线、电绝缘层等元件按照电路图连接成闭合回路;2. 调试:将电源连接到热电制冷器,开启电源,观察制冷效果;3. 测量数据:使用温度计测量制冷器低温端的温度,记录数据;4. 改变电流大小:调整电源输出电流,观察制冷效果的变化,记录数据;5. 分析数据:对实验数据进行整理和分析,探讨热电制冷的制冷性能。
五、实验结果与分析1. 实验结果(1)在12V直流电源下,热电制冷器低温端温度为5℃;(2)随着电流的增加,制冷效果逐渐增强,低温端温度逐渐降低;(3)当电流达到一定值时,制冷效果达到最佳,低温端温度为2℃。
2. 分析(1)根据帕尔帖效应,电流通过热电偶对时,低温端会吸收热量,实现制冷效果;(2)随着电流的增加,热电偶对产生的热电势差增大,制冷效果增强;(3)实验结果表明,热电制冷具有较好的制冷性能,在低温端温度达到2℃时,制冷效果最佳。
六、实验结论1. 热电制冷是基于帕尔帖效应的一种制冷方式,具有无污染、无噪音、结构简单等优点;2. 热电制冷器的制冷性能受电流大小和材料性能的影响,通过调整电流和选用合适的热电材料,可以提高制冷效果;3. 本实验验证了热电制冷的制冷性能,为热电制冷技术的应用提供了实验依据。
制冷实验课件
实验时严禁触摸电加热管及其接线,以免发生触电事故。 实验过程中严禁触摸制冷剂管路,以免发生烫伤。
15
实验要求及注意事项
完成实验后需要记录如下数据,表格如下图:
标准工况下运行参数 低蒸发工况下运行参数 高蒸发工况下运行参数 低冷凝温度工况运行参数
图7、数据记录表
16
实验要求及注意事项
完成实验后需要对实验数据进行如下处理:
在坐标纸上绘制出压缩机在冷凝温度一定的情况下,其制冷量与蒸发温度 之间变化曲线。
在坐标纸上绘制出压缩机在蒸发温度一定的情况下,其功率与冷凝温度之 间变化曲线。
试说明压缩机制冷量与冷凝温度、蒸发温度之间有哪些关联。 试说明压缩机运行频率与电子膨胀阀开度对制冷量、制热量的影响。 试说明过冷度与过热度变化对制冷性能系数与制热能效比的影响。
制冷系统综合性能测试
制冷与低温专业 2017.9
内容提要
1
目的和要求
2
原理和内容
3
仪器和设备
4
步骤和方法
5
要求及注意
2
实验目的和要求
掌握制冷系统工作的基本原理和相关参数的定义 掌握重要参数的变化对系统性能的影响 掌握测量制冷系统基本参数的仪器使用 了解实际的制冷设备及操作 了解制冷设备安装基本工艺知识
17
安全、迅速 合理、有效!
18
按钮”, 并依次关闭1#、2#电加热、1#、2#制冷机和1#、2#换向阀,面板上 的相关指示灯也会相应熄灭; 关闭空气开关,实验完毕。
图6、空气开关
图7、控制面板
14
实验要求及注意事项
实验过程中,需注意以下问题:
制冷循环演示实验
制冷(热泵)循环演示装置一、实验目的制冷循环演示装置可为“制冷原理与设备”的专业课程进行演示性实验。
通过本实验,让同学们加深对制冷(热泵)循环工作过程的理解,熟悉制冷(热泵)循环演示系统工作原理。
并进一步掌握制冷(热泵)循环系统的操作、调节方法,并能进行制冷(热泵)循环系统粗略的热力计算。
这套装置是采用玻璃作换热器的壳体,管路中有透明观察窗,因此,实验过程能让同学们清晰地观察到制冷工质的蒸发、冷凝过程及流后产生的“闪发”气体面形成的二相流,使之了解蒸汽压缩式制冷循环工质状态的变化及循环全过程的基本特征。
二、实验装置简图:制冷(热泵)循环演示装置原理图三、实验所用仪表、仪器设备:1.转子流量计2.温度计3.压力表4.电压表5 .电流表6. 蒸汽压缩式制冷机四、操作步骤:1.制冷循环演示的操作,先将制冷系统中的回通换向阀调至“制冷”位置上,然后打开冷却水阀门,利用转子流量计上面的阀门作适当调节蒸发器和冷凝器的供水流量,再开启压缩机、观察制冷工质的冷凝及蒸发过程与其现象,待制冷系统运行(约8分钟)稳定后,即可记录制冷压缩机输入电流、电压、冷凝压力、蒸发压力,以及冷凝器及蒸发器的进水温度、出水温度、水流量等有关的参数。
2.热泵循环演示:把制冷系统中的四通阀调整至“热泵”位置上,再打开冷却水阀门,利用转子流量计上面的阀门作适当调节蒸发器和冷凝器的供水流量,再开启压缩机、观察制冷工质的冷凝及蒸发过程与其现象,待制冷系统运行(约8分钟)稳定后,即可记录制冷压缩机输入电流、电压、冷凝压力、蒸发压力,以及冷凝器及蒸发器的进水温度、出水温度、水流量等有关的参数。
实验结束后,必须先按下停止压缩机的开关,切断压缩机的供给电源,然后再关闭供水阀门。
五、实验数据处理六、 制冷(热泵)循环系统的热力计算1. 当系统做制冷运行时:换热器1的制冷量为: 11121()P Q G C t t q =-+ (Kw )换热器1的制冷量为: 22342()P Q G C t t q =-+ (Kw ) 热平衡误差为: 1221()100%Q Q N Q --∆=⨯ 制冷系数:21Q N ε= 2. 当系统作热泵运行时:换热器1的制冷量为: '''11211()P Q G C t t q =-+ (Kw ) 换热器2的制冷量为: '''22432()P Q G C t t q =-+ (Kw )热平衡误差为: ''122'2()100%Q Q N Q -+∆=⨯ 制热系数:'11Q Nε= 上述各式中:G ——水流量,下标1、2分别表示为换热器1和换热器2。
热气融霜制冷系统实验
实验三热气融霜制冷系统实验一、实验目的通过本实验的学习和训练,使学生了解并熟悉采用热气融霜制冷装置的制冷系统、总体结构与运行特性;了解或掌握热气融霜制冷装置的系统设置、调节原理与实际操作,为今后在制冷系统设计与调控方面的学习奠定基础。
二、实验原理、方法和手段1.实验原理制冷剂热蒸气融霜是利用压缩机所排出的高温过热蒸气作为热源,去融化蒸发器表面的霜层。
在融霜时,蒸发器暂时作为冷凝器,压缩机的排气在其中放出热量后冷凝成为液体,而盘管外表面的霜层吸收了制冷剂放出的热量而融化。
本实验是一机两库制冷系统的热气融霜系统。
融霜时压缩机的排气从回气端进入到一组融霜操作的蒸发器中,被霜层冷却而凝结成制冷剂液体,凝结的液体从液体管排出,送入另一组正在制冷运行的蒸发器中去蒸发。
其工作原理如图1所示。
图1 制冷系统采用这种热气融霜方法,不需要额外提供融霜过程所需的热量,同时降低了冷却水的需求量,而且易于清除蒸发器内的润滑油。
是一种既节能又迅速有效地融霜方式。
具体操作方法是:如果1库的蒸发盘管需要融霜时,2库的蒸发器应正常制冷运行。
融霜的控制系统必须保证两个蒸发器不能同时融霜。
当1库融霜时,先关闭该库的供液电磁阀3和回气阀7,同时把压缩机通向冷凝器的阀A关闭,关闭阀C,再打开阀B和阀1,打开手动膨胀阀5,使压缩机的高压高温的排气进入1库的蒸发盘管中,凝结下来的制冷剂液体由电磁阀4,经膨胀阀节流后进入2库的蒸发盘管,制冷剂吸收了库内被冷却物体的热量而蒸发成气体,由阀8经回热器进入压缩机。
融霜结束后,按一定的顺序把阀门恢复到原来的状态。
这种融霜系统只需增加融霜热气管和一些控制阀门,因此增加的初投资少,系统简单,融霜效果好蒸发盘管中的润滑油可冲刷出来,很容易实现自动控制。
2.实验方法与手段本实验在热气融霜制冷装置实验台上进行,通过对实验装置系统的了解和熟悉,使学生能够进行实验装置的运行、调整;同时,还可以使用预埋的测量点读取所需的实验数据,完成制冷量、制冷剂流量等测量任务。
制冷装置结构实验报告
一、实验目的1. 了解制冷装置的基本结构和工作原理。
2. 掌握制冷装置各部件的功能和作用。
3. 分析制冷装置在实际工作过程中的性能表现。
二、实验原理制冷装置是利用制冷剂在液态和气态之间相互转化时吸收和释放热量来实现制冷的设备。
制冷剂在蒸发器中蒸发,吸收周围环境的热量,使环境温度降低;在冷凝器中冷凝,释放吸收的热量,达到制冷的目的。
三、实验仪器与材料1. 实验仪器:制冷装置实验台、温度计、压力表、流量计、万用表等。
2. 实验材料:制冷剂、压缩机、冷凝器、蒸发器、膨胀阀、过滤器等。
四、实验步骤1. 搭建制冷装置实验台,按照制冷装置的结构要求,将各部件连接好。
2. 在实验台上接入电源,启动制冷装置。
3. 观察制冷剂在制冷装置中的流动过程,记录蒸发器、冷凝器、膨胀阀等各部件的温度、压力、流量等参数。
4. 对制冷装置进行性能测试,记录制冷效果、制冷量、能耗等数据。
5. 关闭制冷装置,拆除实验装置,整理实验器材。
五、实验数据及分析1. 实验数据:(1)蒸发器进出口温度:进温度为5℃,出温度为0℃;(2)冷凝器进出口温度:进温度为40℃,出温度为35℃;(3)膨胀阀进出口压力:进压力为0.8MPa,出压力为0.4MPa;(4)制冷量:600W;(5)能耗:120W。
2. 实验分析:(1)蒸发器进出口温度差为5℃,说明制冷效果较好;(2)冷凝器进出口温度差为5℃,说明制冷剂在冷凝器中释放热量较为充分;(3)膨胀阀进出口压力差为0.4MPa,说明膨胀阀起到了调节制冷剂流量的作用;(4)制冷量为600W,符合实验要求;(5)能耗为120W,说明制冷装置具有较高的能效比。
六、实验结论1. 通过本次实验,掌握了制冷装置的基本结构和工作原理;2. 了解了制冷装置各部件的功能和作用;3. 分析了制冷装置在实际工作过程中的性能表现,为制冷装置的设计、优化和改进提供了理论依据。
七、实验注意事项1. 实验过程中,注意安全,防止触电、烫伤等事故发生;2. 实验数据要准确记录,避免因误差导致实验结果失真;3. 实验结束后,及时关闭电源,拆除实验装置,整理实验器材。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三热电制冷原理演示装置实验
一、实验目的和要求
通过本实验了解和掌握热电式(半导体)制冷装置的结构构成、工作过程、工作原理及特性。
掌握环境温度、冷却水(空气)对热电制冷过程的影响。
二、实验装置的组成和工作原理
1. 吸附实验装置的组成
本实验装置由热电堆、直流电源、热端铜板、冷端铜板、导线、冷却水泵及测试仪表等组成。
实验装置的系统原理如图1所示。
图1 热电制冷系统原理图
三、工作原理
热电制冷是一种以温差电现象为基础的制冷方法。
它利用珀尔帖效应原理达到制冷目的,即在两种不同金属组成的闭合线路中,通以直流电流,会产生一个接点热,另一个接点冷的现象,称做温差电现象。
半导体材料所产生的温差电现象较其他金属要显著得多,一般热电制冷都采用半导体材料,所以又称之为半导体制冷。
图2示出了由一块P型半导体材料和一块N型半导体材料连接成的电偶,通以直流电后制取冷量的情况。
由于P型半导体内载流子(空穴)和N型半导体内的载流子(电子)与金属片中所具有的载流子势能不同,必然会在半导体材料和金属片的结点上发生能量的传递与转换。
因为空穴在P 型半导体内具有的势能高于其在金属片内的势能,在外电场作用下当空穴通过接点a时,需要从金属片中吸取一定的热量,用以提高自身的势能才能进人P型半导体内。
因而a处温度就会降低形成冷接点。
当空穴通过b接点时,需要将多余的一部分势能留给接点,才能进人到金属片中,这时接点b处温度会升高,形成热结点。
图2 基本热电偶制冷回路
同理,在外电场作用下电子通过热电偶回路时,也将引起d接点降温形成冷接点,c接点升温形成热接点。
在回路中冷、热接点可以根据制冷或制热的需要得到利用。
而且将电源极性互换时,电偶对的制冷端和发热端也随之互换。
四、实验方法和步骤
在正式实验之前,先部分打开水阀,检查冷却水回路是否有泄漏或堵塞。
在确认无误后,将水阀开大,使冷却水回路开启。
然后,接通热电制冷器的电源。
观察热电制冷器冷端(铝制圆柱形容积)温度测点的变化,看是否有结露或结霜现象,同时观察冷却水进出口温度的变化,并作实验数据记录。
改变冷却水的温度,重复上述实验,看对制冷器的制冷性能(如制冷器冷端温降速率,最低制冷温度等)是否有影响。
五、实验记录及数据处理
班级姓名学号试验日期得分
序号测试
时间
冷却水进
口温度
(℃)
冷却水出
口温度
(℃)
环境温度
(℃)
制冷器冷
端起始温
度(℃)
制冷器冷
端制冷温
度(℃)
制冷器降
温速率
(℃/min)
1 2 3 4 5 6 7 8 9
10
11
六、思考题
1.试述热电制冷的基本原理。
2.热电制冷装置的特点及其应用领域有哪些?
3.试述热电制冷循环所采用的热电堆级有哪几种联结方式?
4.试通过实验,说出冷却水温度对热电制冷系统性能的影响关系。