研究生“应用数理统计”课程课外作业
《应用数理统计》吴翊李永乐第三章假设检验课后作业参考答案
第三章 假设检验课后作业参考答案某电器元件平均电阻值一直保持Ω,今测得采用新工艺生产36个元件的平均电阻值为Ω。
假设在正常条件下,电阻值服从正态分布,而且新工艺不改变电阻值的标准偏差。
已知改变工艺前的标准差为Ω,问新工艺对产品的电阻值是否有显著影响(01.0=α) 解:(1)提出假设64.2:64.2:10≠=μμH H ,(2)构造统计量36/06.064.261.2/u 00-=-=-=nX σμ(3)否定域⎭⎬⎫⎩⎨⎧>=⎭⎬⎫⎩⎨⎧>⋃⎭⎬⎫⎩⎨⎧<=--21212αααu u u u u u V(4)给定显著性水平01.0=α时,临界值575.2575.2212=-=-ααuu ,(5) 2αu u <,落入否定域,故拒绝原假设,认为新工艺对电阻值有显著性影响。
一种元件,要求其使用寿命不低于1000(小时),现在从一批这种元件中随机抽取25件,测得其寿命平均值为950(小时)。
已知这种元件寿命服从标准差100σ=(小时)的正态分布,试在显著水平下确定这批元件是否合格。
解:{}01001:1000, H :1000950 100 n=25 10002.5V=u 0.05H x u αμμσμα-≥<====->=提出假设:构造统计量:此问题情形属于u 检验,故用统计量:此题中:代入上式得:拒绝域:本题中:0.950.950u 1.64u 0.0u H =>∴即,拒绝原假设认为在置信水平5下这批元件不合格。
某厂生产的某种钢索的断裂强度服从正态分布()2,σμN ,其中()2/40cm kg =σ。
现从一批这种钢索的容量为9的一个子样测得断裂强度平均值为X ,与以往正常生产时的μ相比,X 较μ大20(2/cm kg )。
设总体方差不变,问在01.0=α下能否认为这批钢索质量显著提高 解:(1)提出假设0100::μμμμ>=H H ,(2)构造统计量5.13/4020/u 00==-=nX σμ (3)否定域{}α->=1u u V(4)给定显著性水平01.0=α时,临界值33.21=-αu(5) α-<1u u ,在否定域之外,故接受原假设,认为这批钢索质量没有显著提高。
应用数理统计课外作业设计
学号 20110813121 姓名卢丽丽学院资环学院专业安全技术及工程成绩实验数据处理中一元线性回归的应用摘要:我们处理实验数据时数理统计方法往往能帮助我们很好的处理,并且能得到很好的结果,回归分析主要是从大量反映某些变量间关系的观测值出发,分析变量问相关程度及相关关系,并建立回归模型去拟合变量间的关系,从而达到对变量之间关系的认识的方法。
其中一元线性回归模型在很多实验中能很好的帮我们预测未来数据和预测数据范围。
本文运用一元线性回归模型对试验中电流与时间的关系进行了分析,发现,试验中电流随时间逐渐减小,并呈线性递减关系。
通过求得的模型,我们进行了预测。
一、问题提出,问题分析在现代社会,随着科技的发展,人们生活水平提高,可是污染也越来愈严重,特别是重金属的污染,同时治理污染的方法也在改善。
重金属污染修复技术也得到发展,我们在做重金属的电动修复实验过程中,对其修复区的电流进行了观测,有观测值我们作出散点图,发现电流与时间有明显线性关系,我们用一元线性回归的方法分析这组数据,并预测未来电流的变化,以更好的掌握实验条件,为实验数据提供合理的解释。
二、数据描述下面是随着时间电流的变化数据,表中时间是指通电时间。
表1 电流随时间变化表根据数据,我们利用Excel作出散点图,如图1图1 电流随时间变化的散点图由图中点的趋势我们可以看出,电流随时间基本呈线性关系,我们求出其相关系数如下表:表2 电流与时间相关系数表三、模型建立(1)提出假设条件,明确概念,引进参数根据上面分析,我们知道,电流随时间基本呈线性关系,我们假设电流与时间是线性的,我们用一元线性回归模型进行拟合,并用F 检验法和t 检验法进行模型检验,各函数符号代表含义如下:x :电流; y :实验时间i x :各点电流值 i y :各点实验时间α:显著性水平,设α=0.05 (2)模型构建我们假定这组数据满足一元线性回归模型: 一元线性模型:⎩⎨⎧++=),0(~210σεεββN x y (3)模型求解先用最小二乘估计方法求出模型如下: 计算基本数据,如下表:表3 基本数据表6010600==x 49.49109.494==y 4.1002549.4960106.1966810101-=⨯⨯-=⋅-=∑=y x y x l i i i xy1188060104788010221012=⨯-=-=∑=x x l i i xx189.888149.491079.3337310221012=⨯-=-=∑=y y l i i yy8439.0118804.10025ˆ1-=-==xxxy l l β124.100ˆˆ10=-=x y ββ 6425.420ˆ21222=-=-=xx yy R T E l l S S S β 2512.786425.4202ˆ2==-=n S E σ回归直线为:x x y 8439.0124.100ˆˆˆ10-=+=ββ 该方程说明,在刚开始实验时,加的电流为100.124mA 。
“应用数理统计”课外作业设计
学号姓名学院专业成绩典型燃煤中汞的赋存规律摘要:近年来,燃煤引起的汞污染越来越受到人们关注。
中国能源结构以燃煤为主,但由于中国煤质地区差异较大,造成现有烟气脱汞技术对煤质适应性较差,因此针对中国典型煤种中汞的赋存规律进行研究,对促进烟气脱汞技术的发展和环境保护具有重要意义。
论文针对烟煤和无烟煤,通过总汞测定、X射线荧光光谱分析等手段,对15个典型煤样中汞的赋存状态和规律进行了实验研究。
随着煤炭变质程度的增高,煤中总汞含量有增高趋势,各地区煤总汞含量差别较大,在本实验范围内,汞含量大致呈现北低南高的特征。
α= 0. 05时,煤样中的总汞含量与硅含量、硫含量、氯含量的相关性系数分别为0.509、0.600和0.682,具有较好的相关性。
关键词:CO2;赋存规律;相关性1提出问题并分析问题大气中的汞有两种不同类型的排放源:天然源和人类源。
主要还是以人类活动排放为主。
在自然界中汞以各种形式存在,例如以硫化汞的形式存在于岩石中。
这些汞经过一系列的自然过程进入大气。
天然源释放到大气中的主要是Hg0,还有一些二甲基汞、挥发性无机汞化合物等。
煤中汞的赋存形式是影响汞排放的一个重要因素。
有学者提出煤中存在与有机煤岩组分结合的有机汞化合物,但主要还是以与无机物结合形式存在[1]。
对于煤中汞的存在形式,许多学者都进行了研究。
Finkelman在煤中发现了含汞的硫化物和硒化物,Cahill和Shiley发现煤中的方铅矿含汞,Dvornikov还提出煤中的汞主要以辰砂、金属汞和有机汞化合物的形式存在[1]。
煤在地质化学中被归为亲硫元素,因而,煤中的汞主要存在于黄铁矿(FeS2)和朱砂(HgS)中[2]。
文献[1]的研究证实了煤中大多数汞以固溶物形式分布于黄铁矿中,特别是后期成因的黄铁矿。
与煤中汞的含量分布研究相比,我国对煤中汞的赋存状态研究相对薄弱。
目前对煤中汞赋存状态的研究,采集的样品大多为我国西南地区的高硫煤或某些高汞煤,主要讨论煤中的汞与黄铁矿或硫分之间关系。
应用数理统计作业题及参考答案(第二章)(2)
应用数理统计作业题及参考答案(第二章)(2)第二章参数估计(续)P682.13 设总体X 服从几何分布:{}()11k P X k p p -==-,12k = ,,,01p <<,证明样本均值11ni i X X n==∑是()E X 的相合、无偏和有效估计量。
证明:总体X 服从几何分布,∴()1=E Xp,()21-=p D X p.1 ()()1111111=====??==∑∑ nn i i i i E XE X E X n E X nn n p p .∴样本均值11ni i X X n==∑是()E X 的无偏估计量。
2 ()22221111111==--===??=∑∑nn i i i i p p D XD X D X n nn np np . ()()()()1111ln ln 1ln 1ln 1-??=-=+--??;X f X p p p p X p .()111ln 111111fX p X X pppp p--=-=+?--;.()211222ln 111fX p X ppp ?-=-+-;.()()()()211122222ln 111111f X p X X I p E E E p p p p p --=-=--+=+--??????; ()()()()1222221111 111111111??-= +-=+-=+? ?---??pE X ppp p p p p p ()()() ()2221111111-+=+==---p ppp pp p pp .()()()222111111??'???? ???????===--n p pe p D X n I p n nppp .∴样本均值11ni i X X n==∑是()E X 的有效估计量。
3证法一:()21lim lim0→∞→∞-== n n p D X np,01p <<.∴样本均值11ni i X X n==∑是()E X 的相合估计量。
应用数理统计课后答案
t
2 i
11
t
2
3406
.681
.
i 1
i 1
所以
bˆ
lt z lt t
496 .583 3406 .681
0.146
;
Aˆ z bˆ t 0.532 .
得 zˆ 0.532 0.146 t .
换 yˆ ezˆ , aˆ e Aˆ 1.73 , x 1 t
(参考数据:)
6-2. 解:检验问题 H0 :1 2 3
工厂
寿命
Ti
Ti
2
或 i
n
i
S
2 i
甲
40 48 38 42 45 (1600 2304 1444 1764 2025
213
45369 42.6
63.2
乙
26 34 30 28 32 676 1156 900 784 1024
xi
150 160 170 180 190 200 210 220 230 240 250 260
yi
56.9 58.3 61.6 64.6 68.1 71.3 74.1 77.4 80.2 82.6 86.4 89.7
(1)求 对 x 的线性回归方程,并问:每立方米混凝土中增加 1kg 水泥时,可提高的
(4)当 x0 225 时,0 的预测值为 yˆ0 10.28 0.304 225 78.68
由于 0 的1 预测区间为: ( yˆ0 (x0) , yˆ0 (x0) )
(
yˆ0
ˆ
t 12
(n
2)
1
1 n
北航研究生数理统计答案完全版
n
令
ˆ 于是, 的极大似然估计
⑵ 似然函数
1 。 x x0
L( x0 ; x1 , x 2 , , x n ) n e
( xi x0 )
i 1
n
n e n ( x0 x ) , xi x0 0 ( i 1 , 2,, n )
当 已知时,为 x 0 的单调递增函数,于是由极大似然估计定义可知,
书后部分习题解答整理版
即 ~ t (n 1) .
5. (P35.28) 设 x1 , x 2 ,…, x m 和 y1 , y 2 ,…, y n 分别是从 N ( 1 , 2 ) 和 N ( 2 , 2 ) 总 体中抽取的独立样本, 和 是两个实数,试求
( x 1 ) ( y 2 )
北航研究生数理统计 课后答案完全版
北京航空航天大学
研究生应用数理统计
书后部分习题解答整理版
P{ xi2 1.44} P{ (
i 1
10
xi 2 1.44 ) } 0.09 i 1 0.3 10 x 1 P{ ( i ) 2 16} i 1 0.3 1 0.9 0.1
2 1m
2
2 (n 1) S 2 n
2
( x 1 ) ( y 2 )
2 (m 1) S12m (n 1) S 2 n mn2
2
m
2
n
~ t (m n 2) 。
6. ( P80.1)设总体 X 服从两点分布 B(1, ) , 0 1 , x1 , x 2 ,…, x n 为简单随机样 本,⑴ 求 q( ) Var ( x ) ;⑵ 求 q( ) 的频率估计。
研究生教材《应用数理统计》作业题及参考答案 李永乐
1第一章 数理统计的基本概念P261.2 设总体X 的分布函数为()F x ,密度函数为()f x ,1X ,2X ,…,n X 为X 的子样,求最大顺序统计量()n X 与最小顺序统计量()1X 的分布函数与密度函数。
解:(){}{}()12nn i n F x P X x P X x X x X x F x =≤=≤≤≤=⎡⎤⎣⎦L ,,,.()()()()1n n n f x F x n F x f x -'=⎡⎤=⎡⎤⎣⎦⎣⎦.(){}{}1121i n F x P X x P X x X x X x =≤=->>>L ,,,. {}{}{}121n P X x P X x P X x =->>>L{}{}{}121111n P X x P X x P X x =-⎡-≤⎤⎡-≤⎤⎡-≤⎤⎣⎦⎣⎦⎣⎦L ()11nF x =-⎡-⎤⎣⎦()()()()1111n f x F x n F x f x -'=⎡⎤=⎡-⎤⎣⎦⎣⎦.1.3 设总体X 服从正态分布()124N ,,今抽取容量为5的子样1X ,2X ,…,5X ,试问: (i )子样的平均值X 大于13的概率为多少?(ii )子样的极小值(最小顺序统计量)小于10的概率为多少? (iii )子样的极大值(最大顺序统计量)大于15的概率为多少?解:()~124X N Q ,,5n =,4~125X N ⎛⎫∴ ⎪⎝⎭,. (i ){}{}()13113111 1.1210.86860.1314P X P X P φφ⎧⎫⎛⎫⎪⎪⎪>=-≤=-=-=-=-=. (ii )令{}min 12345min X X X X X X =,,,,,{}max 12345max X X X X X X =,,,,.{}{}{}min min 125101*********P X P X P X X X <=->=->>>L ,,, {}{}{}5551111011101110i i i i P X P X P X ===->=-⎡-<⎤=-⎡-<⎤⎣⎦⎣⎦∏∏.()12~012X Y N -=Q ,, {}{}121012*********X X P X P P P Y ---⎧⎫⎧⎫∴<=<=<-=<-⎨⎬⎨⎬⎩⎭⎩⎭{}()111110.84130.1587P Y φ=-<=-=-=. {}[]5min 10110.158710.42150.5785P X ∴<=--≈-=.(iii ){}{}{}{}{}55max max 1251151151151515115115i i P X P X P X X X P X P X =>=-<=-<<<=-<=-⎡<⎤⎣⎦∏L ,,,.{}5max 1510.9331910.70770.2923P X ∴>=-≈-=.1.4 试证:(i )()()()22211nni i i i x a x x n x a ==-=-+-∑∑对任意实数a 成立。
吴代顶“应用数理统计”课外作业
学号 20111613210 姓名 吴代顶 学院 土木工程学院 专业 建筑与土木工程 成绩重庆大学土木工程学院2011届建工9班毕业生出生地农村或城市与毕业去向读研或工作的独立性假设检验摘要:文章通过对重庆大学土木工程学院2011届应届毕业的建筑工程9班学生调查,研究学生家庭出生地(城市或农村)与学生毕业去向(读研或工作)是否相互独立,来说明假设检验里独立性假设检验(非参数假设检验)所用方法的原理以及在实际中的应用。
文章对事件独立与否采用的是2χ检验法,通过实际数据计算其检验统计量2n χ并以显著性水平为05.001.0==αα和分别确定拒绝域,从而确定家庭出生地(城市或农村)与学生毕业去向(读研或工作)是否相互独立,最终完成一个数学方法在实际中的应用。
一、问题提出,问题分析重庆大学土木工程学院2011届应届毕业的建工9班共38人,通过对学生的出生地与毕业去向的调查,试以显著性水平为05.001.0==αα和分析该班学生的出生地(农村或城市)与毕业去向(读研或工作)是否相互独立?该问题旨在确定事件之间是否相互独立,是一个非参数的独立性假设检验问题,该问题宜采用2χ检验法。
二、数据描述重庆大学土木工程学院2011届应届毕业的建工9班学生信息表如下:表1该表格信息由重庆大学土木工程学院2011届应届毕业的建工9班班长李军谊提供,该表格为该班毕业时学生去向的统计表,真实可靠。
三、模型建立(1)提出假设条件,明确概念,引进参数设总体随机向量(X,Y ),X 表示学生毕业去向,取值为r a a a ,,,21 (此问题取值有读研和工作);Y 表示学生出生地,取值为s 21,,,a a a (此问题取值有农村和城市);现在对(X,Y )做n 次独立观测,得到事件},X {j i b Y a ==的频数),,2,1;,,2,1(n s j r i ij ==,此问题r=2,s=2。
则该问题统计假设为:0H :X 与Y 独立 1H :X 与Y 不独立 (2)模型构建检验的统计量为:∑∑=⋅⋅⋅⋅=-=ri ji j i ij n n nn n n 12s1j 2n )(nχ ,其中各数据根据以下列联表得到,列联表根据原始数据统计而来,列联表如下:(3)模型求解及模型检验 ①检验统计量为1451.018*20*22*16)11*711*9(38)(n )(n 2212122112221112s1j 2n =-=-=-=⋅⋅⋅⋅=⋅⋅⋅⋅=∑∑n n n n n n n n n n nn n n ri ji j i ij χ②0H 成立下统计量2n χ的极限分布为))1)(1((2--s r χ,则当01.0=α时,拒绝域为:}63.6)1())1)(1(({299.02120==-->=-χχχαs r K n 当05.0=α时,拒绝域为:}84.3)1())1)(1(({295.02120==-->=-χχχαs r K n四、计算方法设计和计算机实现假设(X,Y )的联合分布函数为F(X ,Y) ,边缘分布为)(),(F y F x Y X ,那么X 与Y 独立等价于+∞<<-∞=y x y F x F y x F Y X ,),()(),( 将抽样数据用s r ⨯表3表示),,2,1(1r i n n sk ik i ==∑=⋅ ,),,2,1(1s i n n r k kj j ==∑=⋅记),(j i ij b Y a X P p ===,∑=⋅=s k ik i p 1p ,),,2,1;,,2,1(p 1j s j r i p rk kj ===∑=⋅。
西安交大研究生课程之应用数理统计作业
研究生教材《应用数理统计》——课后习题答案详解学号:3113312042姓名:齐以年班级:硕3079班目录第一章数理统计的基本概念 (1)第二章参数估计 (18)第三章假设检验 (36)第四章方差分析与正交试验设计 (46)第五章回归分析 (51)第六章统计决策与贝叶斯推断 (56)对应书目:《应用数理统计》施雨编著西安交通大学出版第一章 数理统计的基本概念1.1 解:∵ 2~(,)X N μσ∴ 2~(,)n X N σμ∴~(0,1)N 分布∴(1)0.95P X P μ-<=<=又∵ 查表可得0.025 1.96u = ∴ 221.96n σ=1.2 解:(1) ∵ ~(0.0015)X Exp∴ 每个元件至800个小时没有失效的概率为:8000.001501.2(800)1(800)10.0015x P X P X e dxe -->==-<=-=⎰∴ 6个元件都没失效的概率为: 1.267.2()P e e --==(2) ∵ ~(0.0015)X Exp∴ 每个元件至3000个小时失效的概率为:30000.001504.5(3000)0.00151x P X e dxe--<===-⎰∴ 6个元件没失效的概率为: 4.56(1)P e -=-1.3解:(1) X ={(x 1,x 2,x 3)|x k =0,1,2,…,k =1,2,3},p (x 1,x 2,x 3)=λx 1+x 2+x 3x 1!x 2!x 3!e −3λ,x k =0,1,2,…;k =1,2,3(2) X ={(x 1,x 2,x 3)|x k ≥0;k =1,2,3},f (x 1,x 2,x 3)=λ3e −λ(x 1+x 2+x 3), x k ≥0;k =1,2,3(3) X ={(x 1,x 2,x 3)|a ≤x k ≤b;k =1,2,3},f (x 1,x 2,x 3)=1(b−a)3, a ≤x k ≤b;k =1,2,3(4) X ={(x 1,x 2,x 3)|−∞<x k <+∞;k =1,2,3}=R 3,f (x 1,x 2,x 3)=1(2π)3/2e −12∑(x k −μ)23k=1,−∞<x k <+∞;k =1,2,31.4 解:ini n x n x ex x x P ni i 122)(ln 2121)2(),.....,(122=--∏∑==πσμσ1.5证:21122)(na a x n x a x n i ni i i +-=-∑∑==∑∑∑===-+-=+-+-=ni i ni i n i i a x n x x na a x n x x x x 1222211)()(2221.6证明 (1) ∵22112211221()()()2()()()()()nnii i i nni i i i ni i XX X X X X X X X n X X X n X μμμμμ=====-=-+-=-+--+-=-+-∑∑∑∑∑(2) ∵2221112221221()22ii i nn ni i i i i ni ni XX X X X nX X nX nX X nX =====-=-+=-+=-∑∑∑∑∑1.7证明:a) 证:)(11111+=+++=∑n n i i n x x n x)(11)(1111n n n n n x x n x x x n n -++=++=++b )证:221111()1nn n i i S x x n ++==-+∑ 221112211121111[()]11121[()()()()]11(1)n n n i n i nn n n n n i i n n i i x x x x n n n x x x x x x x x n n n +=++++===---+++=----+-+++∑∑∑221112112[()()((1))111() ]1n n n n n n n n n nS x x x x nx x n x n n x x n ++++=+---+-+++-+22n122n 11[nS ()] 111[S ()]11n n n n n x x n n n x x n n ++=+-++=+-++ 1.8证明:显然: Zm+n ̅̅̅̅̅̅̅=nX ̅+mY ̅m+nS Z2=1m +n[∑(X i −Z m+n ̅̅̅̅̅̅̅)2n i=1+∑(Y i −Z m+n ̅̅̅̅̅̅̅)2mi=1] =1m +n[∑X i 2ni=1−2Zm+n ̅̅̅̅̅̅̅∗nX ̅+∑Y i 2−2Z m+n ̅̅̅̅̅̅̅∗mY ̅+(m +n)mi=1Zm+n ̅̅̅̅̅̅̅2] 因为: nS X 2=∑X i 2n i=1−nX ̅2 nS Y 2=∑Y i 2n i=1−nY ̅2所以:S Z2=nS X2+nS Y2m+n+1m+n[nX̅2+nY̅2−(nX̅+mY̅)2m+n] =nS X2+nS Y2m+n+m∗n(n+m)2(X̅−Y̅)21.10解:(1).∑∑====niiniixEnxnEXE11)(1)1()(=1n∙n∙mp=mpnpmpxDnxnDXDniinii)1()(1)1()(121-===∑∑==))(1()(122∑=-=niixxnESE)1(1)])1(1())1(([1)])()(())()(([1])()([1])([12222212212212p mp nn p m p mp n n p m p mp n n x E x D n x E x D n x nE x E n x x E n n i i i n i i n i i --=+--+-=+-+=-=-=∑∑∑=== 同理,(2).λ===∑∑==ni i n i i x E n x n E X E 11)(1)1()(λnx D n x n D X D ni ini i 1)(1)1()(121===∑∑==λnn x E x D n x E x D n x nE x E n S E n i i i n i i 1)])()(())()(([1])()([1)(2122122-=+-+=-=∑∑==(3).2)(1)1()(11ba x E n x n E X E n i i n i i +===∑∑==na b x D nx n D X D ni in i i 12)()(1)1()(2121-===∑∑==12)(1)])()(())()(([1])()([1)(22122122a b n n x E x D n x E x D n x nE x E n S E ni i i n i i -⋅-=+-+=-=∑∑==(4).λ===∑∑==ni i n i i x E n x n E X E 11)(1)1()(nx D nx n D X D ni in i i 2121)(1)1()(λ===∑∑==221221221)])()(())()(([1])()([1)(λnn x E x D n x E x D n x nE x E n S E n i i i n i i -=+-+=-=∑∑==(5).μ===∑∑==ni i n i i x E n x n E X E 11)(1)1()(nx D nx n D X D ni in i i 2121)(1)1()(σ===∑∑==221221221)])()(())()(([1])()([1)(σ⋅-=+-+=-=∑∑==nn x E x D n x E x D n x nE x E n S E n i i i n i i1.11 解:由统计量的定义知,1,3,4,5,6,7为统计量,5为顺序统计量 1.12 解:顺序统计量:-4,-2.1,-2.1,-0.1,-0.1,0,0,1.2,1.2,2.01,2.22,3.2,3.21中位数Me=0 极差R=(3.21+4)=7.21 再抽一个样本2.7,则顺序统计量变为:-4,-2.1,-2.1,-0.1,-0.1,0,0,1.2,1.2,2.01,2.22,2.7,3.2,3.21 此时,样本中位数Me=(0+1.2)/2=0.61.13解: F 20x={ 0 , x <0620, 0≪x <11320, 1≪x <21620, 2≪x <31820, 3≪x <41 , x ≫41.14解:利用伽马分布的可加性 X~Γ(α,λ) 则Y =∑X i ~Γ(nα,λ)n i=1X ̅=Y nf Y (y )=λnαy nα−1Γ(nα)e −λy,y >0根据随机变量函数的概率密度公式得:f X ̅(x )=λnα(nx)nα−1Γ(nα)e −λnx∗n =λnαn nαx nα−1Γ(nα)e −λnx ,x >01.15解:运用顺序统计量的概率密度公式 (1) f (m)(x )=n!(m−1)!(n−m )![F (x )]m−1[1−F (x )]n−m f(x) 1≪m ≪n (2) f (k)(j)(x )=n!(k−1)!(j−k−1)!(n−j )![F (x )]k−1[F (y )−F (x )]j−k−1[1−F (y )]n−j f(x)f(y) 1≪k<j ≪n (3) 样本极差R =X (n)−X (1), 其中X (n)和X (1)的概率密度可由(1)得到,再根据函数关系可推出R 的概率密度函数 1.16解:X i −μσ~N(0,1)(X i −μσ)2~χ2(1)故:∑(X i −μσ)2~ni=1χ2(n )1.17 证:),(~ λαΓXx ex x f λαααλ--Γ=∴1)()( 令kXY =ke ky kke ky yf ky ky⋅Γ=⋅Γ=∴----λαααλαααλαλ11)()( )()()(即 ),(~ky Y αΓ1.18 证:),(~ b a X β),()1()( 11b a B x xx f b a ---=∴),(),( ),()1()( 11b a B b k a B b a B x x x X E b a k k +=-=∴⎰∞+∞---),(),1()( b a B b a B X E +=∴ba a ab a b a b a a a a b a b a a a b b a b a b a +=Γ+Γ++ΓΓ=Γ++Γ+Γ+Γ=ΓΓ+Γ⋅++ΓΓ+Γ=)()()()()()()1()()1()()()()1()()1(),(),2()(2b a B b a B X E +=))(1()1()()()()2()()2(b a b a a a a b b a b a b a ++++=ΓΓ+Γ⋅++ΓΓ+Γ= 22)]([)()( X E X E X D -=∴2))(1())(1()1(b a b a ab ba ab a b a a a +++=+-++++=1.19 解:∵ ~(,)X F n m 分布2212(1)022()((1))()(1)()()()(1)()()n n m n mn m yn m y n mn nP Y y P X X y m myP X y n n n x x dx m m m++--+≤=+≤=<-Γ=+ΓΓ⎰2222122221122()()()1()(1)()()11(1)(1)(,)n n m n m n mn m n mf y P Y y y y y y y yy B ++----'=≤Γ=+ΓΓ----=∴ 22(1)(,)n mn n Y X X m mβ=+分布1.20 解:∵ ~()X t n 分布122212()()(()2)n n P Y y P X y P X xdxn ++-≤=≤=≤≤Γ=+112211221212122()()()(1)()1()(1)()()()n n n n n f y P Y y y y n y y n n n+++--+--'=≤Γ=+Γ=+ΓΓ∴ 2~(1,)2nY X F =分布1.21 解: (1) ∵ ~(8,4)X N 分布∴ 4~(8,)25X N 分布,即5(8)~(0,1)2X N - ∴ 样本均值落在7.8~8.2分钟之间的概率为:5(7.88)5(8)5(8.28)(7.88.2)()2220.383X P X P ---≤≤=≤≤=(2) 样本均值落在7.5~8分钟之间的概率为:5(7.58)5(8)5(88)(7.58)()2225(8)(0 1.25)20.3944X P X P X P ---≤≤=≤≤-=≤≤=若取100个样品,样本均值落在7.5~8分钟之间的概率为:10(7.88)10(8)10(8.28)(7.88.2)()2222*(0.84130.5)0.6826X P X P ---≤≤=≤≤=-= 单个样品大于11分钟的概率为:P 1=1−0.9333=0.0667 25个样品的均值大于9分钟的概率为: P 2=1−0.9938=0.0062 100个样品的均值大于8.6分钟的概率为P 3=1−0.9987=0.0013 所以第一种情况更有可能发生1.22 解:μ=2.5 2σ=36 n=5 (1)44302<<s ⇔)955,625(22∈σns 而)1(~222-n ns χσ即 )4(36522χ∈s通过查表可得 P =0.1929(2)样本方差落在30~40的概率为0.1929 样品均值-x 落在1.3~3.5的概率即:P{1.3<-x <3.5} ⇔P{-0.4472<σμ)(--x n <0.3727}又σμ)(--x n ~N(0,1)查标准正态分布表可得:P{1.3<-x <3.5}=0.3179 由于样本均值与样本方差相互独立,故:这样两者同时成立的概率为P =0.1929⨯0.3179=0.06131.23 解:(1) ∵2~(0,)X N σ分布 ∴ 2~(0,)X N nσ分布∴ 22()~(1)nXχσ∵ 22221()()ni i a X an X an σσ===∑∴ 21a n σ=同理 21b m σ= (2) ∵ 2~(0,)X N σ分布 ∴222~(1)X χσ分布由2χ分布是可加性得:2221~()ni i X n χσ=∑()nic X t m ==∑ ∴c =(3) 由(2)可知2221~()ni i X n χσ=∑ 2221122211~(,)nni ii i n mn mi ii n i n X d Xnn dF n m XmXmσσ==++=+=+=∑∑∑∑∴ m d n =1.24证明:X n+1~N(μ,σ2) X̅~N(μ,σ2/n) X n+1−X ̅~N(0,n +1n σ2)X n+1−X̅√n +1nσ2~N(0,1)(n −1)S n∗2σ2~χ2(n −1) 所以:Y =X n+1−X ̅S n ∗√n n +1~t(n −1) 1.25 证明:∵ 211~(,)X N μσ分布∴2211()~(1)i X μχσ-∴ 1221111()~()n i i X n μχσ=-∑同理 2222212()~()n i i Y n μχσ=-∑ 1122222112211111222221122112()()~(,)()()n n i i i i n n i i i i X n n X F n n Y n Y n μσμσμσμσ====--=--∑∑∑∑第二章 参数估计2.1 (1) ∵ ~()X Exp λ分布∴ ()1E X λ=令 ˆ1X λ= 解得λ的矩估计为:ˆ1X λ= (2) ∵ (,)X U a b 分布∴ ()2a bE X +=2()()12b a D X -=令 1ˆˆ2ab A X +==22221ˆˆˆˆ()()1124n i i b a a b A X n =-++==∑ (22211n i i X X S n =-=∑)解得a 和b 的矩估计为:ˆˆaX bX =-=(3) 110()1E X x x dx θθθθ-=*=+⎰令 1ˆˆ1A X θθ==+ ∴ˆ1XXθ=- (4) 110()(1)!kk x kE X x x e dx k βββ--=*=-⎰令 ˆkX β=∴ ˆkXβ=(5) 根据密度函数有2221()22()E X a aE X a λλλ=+=++根据矩估计有1222221ˆˆˆ22ˆˆˆa A X aa A S X λλλ+==++==+解得λ和a 的矩估计为:ˆˆaX λ==(6) ∵ (,)X B m p∴ ()E X mp =令 1ˆmpA X == 解得p 的矩估计为:ˆX pm= 2.2解:(1)X 服从指数分布,λ的似然函数为:L (λ)=λn e −λ∑x i n i=1, x i>0,i =1,2,⋯,nlnL (λ)=nlnλ−λ∑x i ni=1∂lnL (λ)∂λ=nλ−∑x i ni=1解得:λ̂=1x̅(2)f (x )=1b−a,a <x <b似然函数为:L (a,b )=1(b −a)n,a <x i <b显然:a ̂=X (1) b ̂=X (n) (3)f (x )={θ x θ−1 ,0<x <10, 其他似然函数为:L (θ)=θn ∗∏x i θ−1ni=1,0<x i <1lnL (θ)=nlnθ+(θ−1)∑lnx i ni=1∂lnL (θ)∂θ=nθ+∑lnx i ni=1=0 解得:θ̂=−n ∑lnx in i=1(4) f (x )={βk(k−1)!x k−1e −βx ,x >00, x ≤0似然函数为:L (β)=(βk(k −1)!)n ∗∏x i k−1ni=1∗e −β∑x i n i=1 ,x i >0 i =1,2,⋯,n lnL (β)=nk ∗lnβ−n ∗ln (k −1)!+(k −1)∑lnx i ni=1−β∑x i ni=1∂lnL (β)∂β=nkβ−∑x i ni=1=0解得:θ̂=−kx̅(5) f (x )={λ x −λ(x−a),x >a 0, x ≤a似然函数为:L (a,λ)=λn x −λ∑(x i ni=1−a) ,x i >a,i =1,2,⋯,nlnL (a,λ)=n ∗lnλ−λ∑x i ni=1+nλa ∂lnL (a,λ)∂λ=nλ−∑(x i ni=1−a)=0 解得:a ̂=X (1) , λ̂=−1X ̅−X (1)(6) X~B(m , P)P {X =k }=(m k)P k(1−P)m−k ,k =0,1,⋯,m似然函数为:L (p )=(m k)n P ∑xi n i=1(1−P)∑(m−x i )n i=1,x i =0,1,2,⋯,nlnL (p )=n ∗ln (mk)+∑x i n i=1∗lnp +∑(m −x i )ni=1∗ln (1−p)∂lnL (p )∂p=∑x in i=1p−∑(m −x i )n i=11−p=0解得:p ̂=−X̅m2.3解:∵ X 服从几何分布,其概率分布为:1()(1)k P X k p p -==-故p 的似然函数为: 1()(1)ni i x nnL p p p =-∑=-对数似然函数为:1ln ()ln ()ln(1)ni i L p n p x n p ==+--∑令 1ln ()1()01nii L p n x n p p p=∂=--=∂-∑ ∴ 1ˆpX= 2.4 解:由题知X 应服从离散均匀分布,⎪⎩⎪⎨⎧≤≤==其它01 1)(Nk N k x pE (X )=N+12矩估计: 令N ̂+12=710 ∴N̂=1419 极大似然估计:⎪⎩⎪⎨⎧≤≤=其它07101 1)(NN N L要使)(N L 最大,则710=N710=∴∧N2.5 解:由题中等式知:2196.196.196.1)025.01(025.0)(1S X +=+=∴+=+-Φ=∴=-Φ-∧∧∧-σμθσμμσθσμθ2.6 解:(1) 05.009.214.2=-=R0215.005.04299.05=⨯==∴∧d Rσ(2)将所有数据分为三组如下所示:0197.005.03946.005.0)05.005.005.0(316=⨯==∴=++=∴∧d R R σ 2.7 解:(1)⎩⎨⎧+<<=其它 01x 1)(θθx f θθθθθθ≠+==+=++=∴∧21)()(2121)(X E E X E ∴ X =∧θ不是θ的无偏估计,偏差为21=-∧θθ(2) θ=-)21(X E 21-=∴∧X θ是θ的无偏估计(3) 22))(()())(()(θθθθ-+=-+=∧∧X E X D E D M S E41121+=n 2.8 证:由例2.24,令2211x a x a +=∧μ,则∧μ 为μ无偏估计应 满足121=+a a因此1μ,2μ,3μ都是μ的无偏估计)()()()(21)()(2513)()(95)9491)(()())(()()(1233212221212∧∧∧∧∧∧=∧<<===+=∴+==∑μμμμμμμD D D X D D X D D X D X D D a a X D X D a D i i i2132121X X +=∴∧μ最有效2.9 证: )(~λp X λλ==∴)( )(X D X EX 是λ=)(X E 的无偏估计,2*S 是λ=)( X D 的无偏估计 )()1()())1((2*2*S E X E S X E αααα-+=-+∴λλααλ=-+=)1(∴ 2*)1(SX αα-+是λ的无偏估计2.10 解:因为2222((1))()(1)()(1)()1(1)()11(1)1E X S E X E S na E S n n a E S n n n a n nααααλαλαλαλλ**+-=+-=+--=+---=+-=- 所以 2(1)X S αα*+-是λ的无偏估计量2.11证明:X~P (λ)假设T(X 1)为θ=e −2λ的无偏估计,即: E[T(X 1)]= θ, E [T (X1)]=∑T (X )∞x=0∗λx x!e−λ=e −2λ=∑T (X )∞x=0∗λx x!=e−λ=∑(−λ)xx!∞x=0=∑(−1)x λx x!∞x=0(泰勒展开)所以T (X 1)=(−1)X 1是θ=e −2λ的唯一无偏估计。
《应用数理统计》吴翊李永乐第四章-回归分析课后作业参考答案
《应⽤数理统计》吴翊李永乐第四章-回归分析课后作业参考答案第四章回归分析课后作业参考答案4.1 炼铝⼚测得铝的硬度x与抗张强度y的数据如下:i x68 53 70 84 60 72 51 83 70 64i y288 298 349 343 290 354 283 324 340 286(1)求y 对x的回归⽅程(2)检验回归⽅程的显著性(05.0=α) (3)求y在x =65处的预测区间(置信度为0.95) 解:(1) 1、计算结果⼀元线性回归模型εββ++=x y 10只有⼀个解释变量其中:x 为解释变量,y 为被解释变量,10,ββ为待估参数,ε位随机⼲扰项。
()()()()685.222,959.4116,541.35555.76725.19745.109610,5.3151,5.671221212112121211=-==-====-=-==-=--==-=-======∑∑∑∑∑∑∑∑========n Q U L Q L L U y n yyy L y x n y x y y x x L x n xxx L n y n y x n x ee yy e xxxyni ini i yy ni i i n i i i xy ni ini i xx ni i n i i σ使⽤普通最⼩⼆乘法估计参数10,ββ上述参数估计可写为95.193??,80.1?101=-===x y L L xxxy βββ所求得的回归⽅程为:x y80.195.193?+= 实际意义为:当铝的硬度每增加⼀个单位,抗张强度增加1.80个单位。
2、软件运⾏结果根据所给数据画散点图过检验由线性回归分析系数表得回归⽅程为:x y801.1951.193?+=,说明x 每增加⼀个单位,y 相应提⾼1.801。
(2) 1、计算结果①回归⽅程的显著性检验(F 检验):0H 线性回归效果不显著 :1H 线性回归效果显著()91.62/=-=n Q UF e在给定显著性⽔平05.0=α时,()()F F n F <==--32.58,12,195.01α,所以拒绝0H ,认为⽅程的线性回归效果显著②回归系数的显著性检验(t 检验)0:10=βH 0:11≠βH()628.22/?1=-=n Q L t e xx β在给定显著性⽔平05.0=α时,()()t t n t<==--306.282975.021α,所以拒绝0H ,认为回归系数显著,说明铝的硬度对抗张强度有显著的影响。
研究生“应用数理统计”课外作业---初试成绩分布的假设检验
研究生“应用数理统计”课程课外作业学号 XXXXXXX 姓名 XXX 学院 XXXXXX年级专业 XXXXX成绩初试成绩分布的假设检验摘要:数理统计学是一门应用性很强的学科,其方法被广泛应用于现实社会的信息、经济、工程等各个领域,学习和应用数理统计方法已成为当今技术领域里的一种时尚,面对信息时代,为了处理大量的数据以及从中得出有助于决策的量化理论,必须掌握不断更新的数理统计知识,为今后的研究和应用提供新的思路和有效解决方法。
本报告主要应用数理统计的其中一种方法-假设检验,对报考重庆大学2012年机械工程学院工业工程专业的70名学生的初试成绩进行假设检验,首先假设70名学生的初试成绩服从正态分布,然后建立模型,进行模型分析并代入初始数据求解,然后进行检验,通过检验发现报考重庆大学2012年机械工程学院工业工程专业的70名学生的初试成绩服从正态分布。
关键字:假设检验初试成绩正态分布一、问题提出,问题分析。
我是2012年考入重庆大学机械工程学院工业工程专业的一名学生,进入学校几个月来,在选课时,我选了数理统计这门课,刚刚学习了假设检验,其中,书上有一道例题:检验某高校60名学生的英语成绩是否服从正态分布,检验结果是服从正态分布。
这使我想起了我当初参加的研究生考试,我发现我们的考试成绩分布在355-395之间的比较多,小于355或大于395的比较少,那么,我们参加复试的70名考生的初试成绩是否也服从正态分布呢?于是,我根据自己学到的数理统计知识进行了假设检验。
二、数据描述(用表格表达数据信息,指出数据来源或提供原始数据)幸运的是:当初公布复试结果时,我用手机把复试结果照了下来,照片上可以看出我们70名考生的初试成绩,现将其整理如下(原件请见附录):表(2.1.1)重庆大学2012年机械工程学院工业工程专业初试成绩表404 407 415 402 389 387 390 391 388 393 405 378 381 381 369 392 359 362 403 385 381 388 365 358 366 354 368 368 373 349 379 360 360 391 351 367 348 362 372 348 347 340 360 354 349 345 352 353 342 360 351 342 341 340 384 371 324 340 374 340 341 335 335 339 334 317 374 380 359 356三、模型建立:(1)提出假设条件,明确概念,引进参数;设总体X的分布函数为F(x),但未知。
《应用数理统计》吴翊李永乐第四章回归分析课后作业参考答案
第四章 回归分析课后作业参考答案4.1 炼铝厂测得铝的硬度x 与抗张强度y 的数据如下:i x68 53 70 84 60 72 51 83 70 64 i y288 298 349 343 290 354 283 324 340 286(1)求y 对x 的回归方程(2)检验回归方程的显著性(05.0=α) (3)求y 在x =65处的预测区间(置信度为0.95) 解:(1) 1、计算结果一元线性回归模型εββ++=x y 10只有一个解释变量其中:x 为解释变量,y 为被解释变量,10,ββ为待估参数,ε位随机干扰项。
()()()()685.222,959.4116,541.35555.76725.19745.109610,5.3151,5.671221212112121211=-==-====-=-==-=--==-=-======∑∑∑∑∑∑∑∑========n Q U L Q L L U y n yyy L y x n y x y y x x L x n xxx L n y n y x n x ee yy e xxxyni ini i yy ni i i n i i i xy ni ini i xx ni i n i i σ使用普通最小二乘法估计参数10,ββ上述参数估计可写为95.193ˆˆ,80.1ˆ101=-===x y L L xxxy βββ 所求得的回归方程为:x y80.195.193ˆ+= 实际意义为:当铝的硬度每增加一个单位,抗张强度增加1.80个单位。
2、软件运行结果 根据所给数据画散点图过检验由线性回归分析系数表得回归方程为:x y801.1951.193ˆ+=,说明x 每增加一个单位,y 相应提高1.801。
(2) 1、计算结果①回归方程的显著性检验(F 检验):0H 线性回归效果不显著 :1H 线性回归效果显著()91.62/=-=n Q UF e在给定显著性水平05.0=α时,()()F F n F <==--32.58,12,195.01α,所以拒绝0H ,认为方程的线性回归效果显著 ②回归系数的显著性检验(t 检验)0:10=βH 0:11≠βH()628.22/ˆ1=-=n Q L t e xx β在给定显著性水平05.0=α时,()()t t n t<==--306.282975.021α,所以拒绝0H ,认为回归系数显著,说明铝的硬度对抗张强度有显著的影响。
应用数理统计课后习题参考答案
习题五1 某钢厂检查一月上旬内的五天中生产的钢锭重量,结果如下:(单位:k g)日期重旦量1 5500 5800 5740 57102 5440 5680 5240 56004 5400 5410 5430 54009 5640 5700 5660 570010 5610 5700 5610 5400试检验不同日期生产的钢锭的平均重量有无显著差异? ( =0.05)解根据问题,因素A表示日期,试验指标为钢锭重量,水平为 5.2假设样本观测值y j(j 123,4)来源于正态总体Y~N(i, ),i 1,2,...,5检验的问题:H。
:i 2 L 5, H i : i不全相等.计算结果:注释当=0.001表示非常显著,标记为*** '类似地,=0.01,0.05,分别标记为查表F0.95(4,15) 3.06,因为F 3.9496 F0.95(4,15),或p = 0.02199<0.05 ,所以拒绝H。
,认为不同日期生产的钢锭的平均重量有显著差异2 考察四种不同催化剂对某一化工产品的得率的影响,在四种不同催化剂下分别做试验解根据问题,设因素A表示催化剂,试验指标为化工产品的得率,水平为 4 .2假设样本观测值y j(j 1,2,..., nJ来源于正态总体Y~N(i, ), i 1,2,...,5 .其中样本容量不等,n分别取值为6,5,3,4 .日产量操作工查表 F O .95(3,14) 3.34,因为 F 2.4264 F °.95(3,14),或 p = 0.1089 > 0.05, 所以接受H 。
,认为在四种不同催化剂下平均得率无显著差异3试验某种钢的冲击值(kg Xm/cm2 ),影响该指标的因素有两个,一是含铜量 A ,另一个是温度试检验含铜量和试验温度是否会对钢的冲击值产生显著差异? ( =0.05 )解 根据问题,这是一个双因素无重复试验的问题,不考虑交互作用设因素A,B 分别表示为含铜量和温度,试验指标为钢的冲击力,水平为 12.2假设样本观测值y j (i 1,2,3, j 1,2,3,4)来源于正态总体 Y j ~N (j ,),i 1,2,3,j 1,2,3,4 .记i 为对应于A 的主效应;记 j 为对应于B j 的主效应;检验的问题:(1) H i 。
应用数理统计课外大作业范例
《数理统计》案例分析大作业(范例)学号 姓名 专业 成绩国家财政收入的多元线性回归模型摘要:用Excel 求解Y 与X 之间的初步回归模型,得到初步回归直线方程1234567284870.009090.462080.031870.2860660.221980.002920.239963Y x x x x x x x =---+--+然后对此方程进行线性显著性检验和回归系数显著性检验。
由20.999R =知Y 与X 之间存在显著的线性,然而只有自变量27,x x 满足通过t 值检验,从而回归系数13456,,,,x x x x x 与Y 之间没有显著的线性关系,说明自变量之间存在多重共线性关系。
采用MATLAB 逐步回归方法对数据进行处理,根据程序自动提示得到最优回归方程57733410.6606580.241802y x x ∧=-+,此时20.997R =,3008F =。
最后采用2010年的数据对此方程进行验证,得到结果在误差范围内,表明这个模型可以正确反映影响财政收入的各因素的情况。
一、问题提出近年来,随着国家经济水平的飞速发展,人民生活水平日益提高,综合国力日渐强大。
经济上的飞速发展并带动了国家财政收入的飞速增加,国家财政的状况对整个社会的发展影响巨大。
政府有了强有力的财政保证才能够对全局进行把握和调控,对于整个国家和社会的健康快速发展有着重要的意义。
所以对国家财政的收入状况进行研究是十分必要的。
国家财政收入的增长,宏观上必然与整个国家的经济有着必然的关系,但是具体到各个方面的影响因素又有着十分复杂的相关原因。
为了研究影响国家财政收入的因素,我们就很有必要对其财政收入和影响财政收入的因素作必要的认识,如果能对他们之间的关系作一下回归,并利用我们所知道的数据建立起回归模型这对我们很有作用。
而影响财政收入的因素有很多,如人口状况、引进的外资总额,第一产业的发展情况,第二产业的发展情况,第三产业的发展情况等等。
研究生数理统计课外作业
工科研究生数理统计课外作业
一、说明
1.要求:
请大家结合现实生活或者专业背景,说明参数估计、假设检验、方差分析、回归分析、正交设计(至少选择一个)的应用
要求大家自行提出问题、搜集数据(提供原始数据)和假设条件,建立模型,并且应用统计方法和相关统计软件进行模型求解,对计算结果进行解释和说明。
注意:不能复制已有结果,同学之间也不能相互复制相关内容2.评价标准:
以问题表述的清晰性、条件假设的合理性、建模的科学性和创造性、模型表达的正确性、计算方法选择的合理性、结果的正确性和文字表述的清晰程度、格式的规范性(科研论文格式规范)为主要标准
3.课外作业提交形式:
纸质报告(用A4纸打印)包括报告题目、摘要、正文、参考文献和附录五个部分。
正文内容应包括问题描述、数据描述、模型建立、求解和检验、模型结果分析等内容。
报告用Word 文本格式,中文字使用宋体、小四号字,英文用Roman 字体5 号字,数学符号用MathType 输入。
4.课外作业提交时间:由授课老师确定,但最迟提交时间为考试前.
二、报告基本格式
合肥工业大学研究生“数理统计”课程课外作业
姓名:学号:
学院:专业:
类型:
成绩:
题目:
摘要:
关键词:
正文:
一、问题提出,问题分析;
二、数据描述(用表格表达数据信息,指出数据来源或提供原始数据)
三、模型建立:
(1)提出假设条件,明确概念,引进参数;
(2)模型构建;
(3)模型求解。
四、计算方法设计和计算机实现。
五、主要的结论或发现。
六、结果分析与检验参考资料
附录。
重庆大学硕士研究生数理统计课外大作业
重庆大学硕士研究生“数理统计”课外作业学生:学号:201510****专业:动力工程专业重庆大学动力工程学院二O一五年十二月学号201510******* 姓名**** 学院****学院专业****专业成绩一元线性回归分析在风力发电中的应用摘要:能源短缺和环境恶化日益严重,风能作为一种可再生的清洁能源,越来越受到世界各国的重视,风力发电的装机容量也越来越大。
风力机是风力发电机组重要的组成部分,实现风能向机械能的转化,机械能再通过直流发电机转发为电能,其中直流发电机输出的直流电压和风速紧密相关。
本文以课题研究中测得的实验数据为基础,对风力发电直流电输出和风速的线性相关关系进行计算分析,运用数理统计中一元线性回归分析及假设检验的相关知识,采用EXCEL软件进行辅助计算,最终得到了风力发电的直流电输出和风速的线性关系显著,对以后的课题研究具有一定的借鉴作用。
1 问题提出与分析在能源短缺和环境趋向恶化的今天,风能作为一种可再生的清洁能源,越来越受到世界各国的重视,也越来越多地被应用到风力发电中。
风力机和发电机是风力发电机组中将风能转化为电能的重要装置,它们不仅直接关系到输出电能的质量和效率,也影响着整电量输出和风速的相关性。
风力机是风力发电机组重要的组成部分,其实现了风动能到风轮机轴机械能的转化,机械能通过直流电动机转发为电能,其中直流电动机产生的直流电压和风力紧密相关。
风力发电的设计和评价和电量输出与风速的关系密不可分,其中对于数学知识要求很高。
本文以课题研究中实验测得的数据为基础,对风力发电直流电输出和风速是否存在线性关系进行分析,运用数理统计中一元线性回归及非参数检验的相关知识,结合EXCEL软件进行辅助计算分析,最终得到了风力发电的直流电输出和风速关系,为以后科研工作和风力发电的应用具有指导意义。
综上所述,对风力发电的直流电输出和风速的研究,具有理论与实践的重要意义。
2 数据描述本文以风力发电的直流输出和风速的关系为研究对象,采用实验中观察得出的直流电输出和风速的部分数值进行计算分析,风力发电的直流电输出y(单位:MW)和风速x(单位:nmile/h)的数据如表1所示。
应用数理统计吴翊李永乐第四章回归分析课后作业参考答案
第四章 回归分析课后作业参考答案4.1 炼铝厂测得铝的硬度x 与抗张强度y 的数据如下:i x68 53 70 84 60 72 51 83 70 64 i y288 298 349 343 290 354 283 324 340 286(1)求y 对x 的回归方程(2)检验回归方程的显著性(05.0=α) (3)求y 在x =65处的预测区间(置信度为0.95) 解:(1) 1、计算结果一元线性回归模型εββ++=x y 10只有一个解释变量其中:x 为解释变量,y 为被解释变量,10,ββ为待估参数,ε位随机干扰项。
()()()()685.222,959.4116,541.35555.76725.19745.109610,5.3151,5.671221212112121211=-==-====-=-==-=--==-=-======∑∑∑∑∑∑∑∑========n Q U L Q L L U y n yyy L y x n y x y y x x L x n xxx L n y n y x n x ee yy e xxxyni ini i yy ni i i n i i i xy ni ini i xx ni i n i i σ使用普通最小二乘法估计参数10,ββ上述参数估计可写为95.193ˆˆ,80.1ˆ101=-===x y L L xxxy βββ 所求得的回归方程为:x y80.195.193ˆ+= 实际意义为:当铝的硬度每增加一个单位,抗张强度增加1.80个单位。
2、软件运行结果 根据所给数据画散点图过检验由线性回归分析系数表得回归方程为:x y801.1951.193ˆ+=,说明x 每增加一个单位,y 相应提高1.801。
(2) 1、计算结果①回归方程的显著性检验(F 检验):0H 线性回归效果不显著 :1H 线性回归效果显著()91.62/=-=n Q UF e在给定显著性水平05.0=α时,()()F F n F <==--32.58,12,195.01α,所以拒绝0H ,认为方程的线性回归效果显著 ②回归系数的显著性检验(t 检验)0:10=βH 0:11≠βH()628.22/ˆ1=-=n Q L t e xx β在给定显著性水平05.0=α时,()()t t n t<==--306.282975.021α,所以拒绝0H ,认为回归系数显著,说明铝的硬度对抗张强度有显著的影响。
《应用数理统计》第五章方差分析课后作业参考答案
第五章 方差分析课后习题参考答案5.1 下面给出了小白鼠在接种三种不同菌型伤寒杆菌后的存活日数:设小白鼠存活日数服从方差相等的正态分布,试问三种菌型的平均存活日数有无显著差异?(01.0=α)解:(1)手工计算解答过程 提出原假设:()3,2,10:0==i H i μ记167.2081211112=⎪⎪⎭⎫ ⎝⎛-=∑∑∑∑====r i n j ij ri n j ij T i iX n X S467.7011211211=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=∑∑∑∑====r i n j ij ri n j ij iA ii X n X n S7.137=-=A T e S S S当H成立时,()()()r n r F r n S r S F e A ----=,1~/1/本题中r=3经过计算,得方差分析表如下:查表得()()35.327,2,195.01==---F r n r F α且F=6.909>3.35,在95%的置信度下,拒绝原假设,认为不同菌型伤寒杆菌对小白鼠的存活日数有显著影响。
(2)软件计算解答过程组建效应检验Dependent Var iable: 存活日数a70.429235.215 6.903.004137.73727 5.101208.16729方差来源菌型误差总和平方和自由度均值F 值P 值R Squared = .338 (Adjusted R Squared = .289)a.从上表可以看出,菌种不同这个因素的检验统计量F 的观测值为6.903,对应的检验概率p 值为0.004,小于0.05,拒绝原假设,认为菌种之间的差异对小白鼠存活日数有显著影响。
5.2 现有某种型号的电池三批,他们分别是甲、乙、丙三个工厂生产的,为评论其质量,各随机抽取6只电池进行寿命试验,数据如下表所示:工厂 寿命(小时) 甲 40 48 38 42 45 乙 26 34 30 28 32 丙39 40 43 50 50试在显著水平0.05α=下,检验电池的平均寿命有无显著性差异?并求121323,μμμμμμ---及的95%置信区间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0.5
37.35
37.45
37.42
37.50
37.4300
7
0.6
44.28
44.28
44.30
44.38
44.3275
8
0.7
51.19
51.19
51.18
51.25
51.2175
9
0.8
58.06
58.06
58.12
58.14
58.1000
10
0.9
64.92
64.92
64.94
65.00
64.9550
因而本文就用一元线性回归的方法进行对Y型固体压力传感器回归分析,来进行对其鉴定,并分析仪器误差。
二、数据描述
本文的数据摘自《现代科学仪器》,主要是标准压力计对Y型固体压力传感器进行标定,得到了下表的一系列值。如表1:
表1压力传感器检定数据表
序号
标准压力x(pa)
传感器输出电压y(mv)
四次读数平均值
12.21300
6
0.5
37.4300
0.25
1401.00490
18.71500
7
0.6
44.3275
0.36
1964.92720
26.59650
8
0.7
51.2175
0.49
2623.23231
35.85225
9
0.8
58.1000
0.64
3375.6100
46.48000
10
0.9
64.9550
Xi
Yi
Xi2
yi2
xiyi
1
0.0
2.8100
0.00
7.89610
0.00000
2
0.1
9.7550
0.01
95.16003
0.97550
3
0.2
16.6925
0.04
278.63936
3.33850
4
0.3
23.5975
0.09
556.84201
7.07825
5
0.4
30.5325
0.16
932.23356
11
1.0
71.73
71.73
71.73
71.75
71.7400
其主要测定了11组值,通过控制其标准压力(标准压力范围0.0pa—1.0pa)来测定其升压与降压四组值,再算出他们的平均值写与其后。从表中可以看出随着标准压力的升高,其升压值和降压也都升高,但其是否成一定的线性关系,还有待进一步确定。
三、模型建立
0.81
4219.15203
58.45950
11
1.0
71.7400
1.00
5146.62760
77.74000
5.5
411.1575
3.85
20610.32536
281.44950
/n
0.5
37.378
0.35
1873.66549
25.58632
(2)计算统计量 ,lyy,lxy
(3)求系数
则回归方程为:
一、问题提出,问题分析
压力传感器是工业实践中最为常用的一种传感器,其广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业。因而,其工作时的精确性是十分的重要。为了进行对其标准压力与传感器输出电压之间的关系,采用一元线性回归进行对该传感器进行分析,看其是否满足一定的线性关系,若满足,前提是所得的回归方程显著性高。所以问题也就转化为对一元回归线性方程显著性检验。只要该方程高度显著,说明实验误差和参与误差都很小,该传感器与标准压力之间还是存在这一种相互制约、相互联系的关系。
选定显著性水平为0.01,查附表可得:
由于 > F0.01(1,33)=7.47, 0.01 ,说明两种的第二F检验都高度显著。
仪器要求线性标定,即是要求得到一条回归直线 ,可以证明用平均的各点拟合的回归直线,与用原来的44个点拟合的回归直线完全一样。对所得出的直线进行显著性检验,运用第一F,和第二F检验。对的出的检验结果判断其线性拟合的显著性,从而来判断其线性拟合度的高低。
四、计算设计及检验
(1)列表计算,如表2所示
表2一元线性回归计算表
选定显著性水平为0.01,查附表可得Fa(fM,fE)=F0.01(9,33)=3.由于F1=5.65> F0.01(9,33)=3,故回归线与回归方程失拟高度显著,说明失拟误差相对于实验误差来说是不可忽略的,表明所选择的一元线性回归这个数学模型与实际情况不合。
(6)第二F检验
有重复实验时,如果F1检验结果显著,不见得所得到的回归方程就没有用了,必须对所得到的回归方程进行第二F检验。
对Y型固体压力传感器的回归分析
摘要:为了得到标准压力与传感输出电压之间的关系,对Y型固体压力传感器进行标定以及仪器误差分析,对所获得的数据进行一元线性回归分析,得到一元线性方程 。并对该方程进行显著性检验,结果显示用第一F检验表明该回归方程失拟高度显著,与实际不符合;第二F检验表明高度显著,说明实验误差和参与误差都很小,而当第一F检验不显著,第二F检验显著时,得到的回归方程仍能可以使用,因而可以用次方程对该仪器进行标定。
(4)各偏差平方和与自由度
根据单次测定值的响应值yij、全部nm次试验点测定响应值的平均值 、每一次试验点m次试验结果的平均值 ,可以计算得到各偏差平方和的值:
各偏差平方和的自由度一次为
fx=1
fM=n-2=11-2=9
fE=n(m-1)=11 3=33
fT= fx+ fM+ fE=nm-1=43
(5)第一F检验
升压
降压
升压
降压
1
0.0
2.78
2.80
2.80
2.86
2.8100
2
0.1
9.70
9.76
9.78
9.78
9.7550
3
0.2
16.60
16.71
16.70
16.76
16.6925
4
0.3
23.54
23.56
23.58
23.71
23.5பைடு நூலகம்75
5
0.4
30.44
30.51
30.54
30.64
30.5325