微观经济学课后习题答案第七章
微观经济学第7章课后计算题答案
1、已知某完全竞争行业中的单个厂商的短期成本函数为STC=0.1Q 3-2Q 2+15Q+10。
试求:(1)当市场上产品的价格为P=55时,厂商的短期均衡产量和利润;(2)当市场价格下降为多少时,厂商必须停产?(3)厂商的短期供给函数。
解答:(1)因为STC=0.1Q 3-2Q 2+15Q+10所以SMC=dQdSTC =0.3Q 3-4Q+15 根据完全竞争厂商实现利润最大化原则P=SMC ,且已知P=55,于是有:0.3Q 2-4Q+15=55整理得:0.3Q 2-4Q-40=0解得利润最大化的产量Q *=20(负值舍去了)以Q *=20代入利润等式有:=TR-STC=PQ-STC=(55×20)-(0.1×203-2×202+15×20+10)=1100-310=790即厂商短期均衡的产量Q *=20,利润л=790(2)当市场价格下降为P 小于平均可变成本AVC 即P ≤AVC 时,厂商必须停产。
而此时的价格P 必定小于最小的可变平均成本AVC 。
根据题意,有: AVC=QQ Q Q Q TVC 1521.023+-==0.1Q 2-2Q+15 令即有,0=dQ dAVC :022.0=-=Q dQdAVC 解得 Q=10 且02.022 =dQAVC d 故Q=10时,AVC (Q )达最小值。
以Q=10代入AVC (Q )有:最小的可变平均成本AVC=0.1×102-2×10+15=5于是,当市场价格P5时,厂商必须停产。
(3)根据完全厂商短期实现利润最大化原则P=SMC ,有:0.3Q 2-4Q+15=p整理得 0.3Q 2-4Q+(15-P )=0 解得6.0)15(2.1164P Q --±= 根据利润最大化的二阶条件C M R M '' 的要求,取解为: Q=6.022.14-+P考虑到该厂商在短期只有在P 时5≥才生产,而P <5时必定会停产,所以,该厂商的短期供给函数Q=f (P )为: Q=6.022.14-+P ,P 5≥ Q=0 P <52、已知某完全竞争的成本不变行业中的单个厂商的长期总成本函数LTC=Q 3-12Q 2+40Q 。
微观经济学第七章 习题答案
MR,试求:图7—1(1)A点所对应的MR值;(2)B点所对应的MR值。
解答:(1)根据需求的价格点弹性的几何意义,可得A点的需求的价格弹性为e d =eq \f(15-5,5)=2或者e d =eq \f(2,3-2)=2再根据公式MR=P eq \b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,e d ))),则A点的MR值为MR=2×eq \b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,2)))=1(2)与(1)类似,根据需求的价格点弹性的几何意义,可得B点的需求的价格弹性为e d =eq \f(15-10,10)=eq \f(1,2)或者e d =eq \f(1,3-1)=eq \f(1,2)再根据公式MR=P eq \b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,e d ))),则B点的MR值为MR=1×eq \b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,1/2)))=-12. 图7—2(即教材第205页的图7—19)是某垄断厂商的长期成本曲线、需求曲线和收益曲线。
试在图中标出:(1)长期均衡点及相应的均衡价格和均衡产量;(2)长期均衡时代表最优生产规模的SAC曲线和SMC曲线;(3)长期均衡时的利润量。
图7—2图7—3(1)长期均衡点为E点,因为在E点有MR=LMC。
由E点出发,均衡价格为P0,均衡数量为Q0。
(2)长期均衡时代表最优生产规模的SAC曲线和SMC曲线如图7—3所示。
在Q0的产量上,SAC曲线和LAC曲线相切;SMC曲线和LMC曲线相交,且同时与MR曲线相交。
(3)长期均衡时的利润量由图7—3中阴影部分的面积表示,即π=[AR(Q0)-SAC(Q0)]·Q 0。
3. 已知某垄断厂商的短期总成本函数为STC=0.1Q3-6Q2+140Q+3 000,反需求函数为P=150-3.25Q。
平狄克微观经济学课后习题答案-第7-8章
第七章复习题1.显性成本2.她自己做其他事时会得到的最高收入3.多用资本,少用工人4.完全竞争价格给定,即斜率不变5.不意味6.意味着递增7.AVC<AC MC递增 MC=AVC最低点 MC=AC最低点8.L形9.长期扩展线为把等产量线簇上斜率相同点连起来,此时它改变了斜率10.规模经济基础是内在经济,针对一种产品范围经济基础是同时生产高度相关的产品.练习题1.AVC=1000 AC=1000+1000/Q非常大,最后为10002.不对,除非工人只可以在这里找到工作3.见书后4.见书后5.见书后6.每个均衡点斜率更小7不同意,应按不同时段定价,如不可,则同意8.见书后9.TC=120000+3000(q/40)+2000AC=75+122000/QMC=75AC随Q减小2个劳动组,1600元1/4, 更大的生产能力11.190万元 53元 53元 19元第七章附录练习题1、我们考查规模报酬时可由F(aK,aL)与aF(K,L)之间的关系判断当F(aK,aL)>aF(K,L),表明是规模报酬递增;当F(aK,aL)=aF(K,L),表明是规模报酬不变;当F(aK,aL)<aF(K,L),表明是规模报酬递减;(a)规模报酬递增;(b)规模报酬不变;(C)规模报酬递增。
2、根据已知条件,资本价格r=30,设劳动价格为w,则成本函数C=30K+ wL由拉格朗日函数可知,F(K,L,λ)=30K+wL-λ(100KL -1000)要使成本最小化则有:∂F(K,L, λ)/ ∂K=30-100λL =0 (1)∂F(K,L, λ)/ ∂L=w -100λK=0 (2)∂F(K,L, λ)/ ∂λ=100KL -1000 =0 (3)联立(1) ,(2), (3)可得K=(w/3) 1/2 ,L=(300/w) 1/2 ,此时成本最小,代入成本函数C=30K+ wL,得C=2(300w)1/23、根据已知条件,资本价格为r=10,劳动价格为w=15,则成本函数C=10K+ 15L由拉格朗日函数可知,F(K,L,λ)=10K+15L-λ(KL2–Q)要使成本最小化则有:∂F(K,L, λ)/ ∂K=10-λL2 =0 (1)∂F(K,L, λ)/ ∂L=15-2λKL=0 (2)∂F(K,L, λ)/ ∂λ= KL2–Q=0 (3)联立(1) ,(2), (3)可得K/L=3/4,此时成本最小,即生产既定产出的成本最小化的资本和劳动的组合为资本/劳动=3/4。
曼昆《经济学原理》第6版 微观经济学分册 第7章 课后习题答案p157p159
第三篇市场和福利第七章消费者、生产者与市场效率问题与应用1.Melissa用120美元购买了一个iPod,并得到了80美元的消费者剩余。
A.她的支付意愿是多少?答:消费者剩余等于支付意愿减去付出的价格。
因此,梅莉莎须支付200 美元($120 + $80)。
B.如果她在降价销售时买了售价为90美元的iPod,她的消费者剩余会是多少?答:此时,她的消费者剩余为:200-90 =110 美元。
C.如果iPod的价格是250美元,她的消费者剩余会是多少?答:如果iPod 的价格是250 美元,其价格大于梅莉莎的支付愿意,因此她不会再买,这时的消费者剩余就为零。
2.加利福尼亚早来的寒流使柠檬变酸。
柠檬市场上消费者剩余会有什么变动?柠檬水市场上消费者剩余会有什么变动?用图形说明你的答案。
答:柠檬变酸,消费者对柠檬的评价下降,需求曲线向左下方移动。
在其他条件不变的情况下,消费者剩余减少。
如图7-2(a)所示,柠檬质量下降,使需求曲线从D1下降到D 2,△APE是原先的消费者剩余,△A′P′E′是变动后的消费者剩余,△APE>△A′P′E′。
由于柠檬价格的下降,柠檬水的投入成本减少,柠檬水的价格也下降。
在其他条件不变的情况下,柠檬水市场上消费者剩余增加,如图7-2(b)所示。
图7-2 寒流的影响3.假设对法国面包的需求增加。
在法国面包市场上,生产者剩余会发生什么变动?在面粉市场上,生产者剩余会发生什么变动?用图形说明你的答案。
答:由于需求增加,在其他条件不变的情况下,法国面包的价格会上升,市场上的生产者剩余增加。
如图7 -3(a),价格从P1 上升到P2 ,销量从Q 1上升到Q 2,生产者剩余从面积P1BE1增加到面积P2BE2 。
由于面包产量上升,它的生产要素面粉的需求量也会上升。
在其他条件不变的情况下,面粉价格上升,市场上的生产者剩余增加。
如图7-3(b)所示,生产者剩余从面积P1BE1增加到面积P2BE2 。
人大版微观经济学(第三版)课后答案第7-8章
第七章 不完全竞争市场第一部分 教材配套习题本习题详解1.根据图7-20中某垄断厂商的线性需求曲线d 和相应的边际收益曲线MR ,试求:(1)A 点所对应的MR 值;(2)B 点所对应的MR 值。
图7-20答:由图7-20可知需求曲线d为P=-351+Q , TR(Q)=P ·Q= -Q Q 3512+, 所以MR=TR ′(Q)= -352+Q (1)A 点(Q=5,P=2) 的MR 值为:MR (5)= -352+Q =1; (2)B 点(Q=10,P=1) 的MR 值为: MR (10)= -352+Q =-1 本题也可以用MR=P(1--dE 1)求得: E A =2,P A =2,则MR=P(1--d E 1)=2x (1- 12)=1 E B =12,P B =1,则MR=P(1--d E 1)=1x (1- 10.5)=-12.为什么垄断厂商实现 MR =MC 的利润最大化均衡时,总有P >MC ? 你是如何理 解这种状态的?解答:在完全竞争市场条件下,由于厂商的MR=P,所以完全竞争厂商利润最大化的原则MR=MC可以改写为P=MC。
这就是说,完全竞争厂商的产品价格等于产品的边际成本。
而在垄断市场条件下,由于垄断厂商的MR曲线的位置低于d需求曲线的位置,即在每一产量水平上都有P>MR,又由于垄断厂商是根据利润最大化原则MR=MC来决定产量水平的,所以,在每一个产量水平上均有P>MC。
这就是说,垄断厂商的产品价格是高于产品的边际成本的。
而且,在MC曲线给定的条件下,垄断厂商的d需求曲线以及相应的MR曲线越陡峭,即厂商的垄断程度越强,由利润最大化原则MR=MC所决定的价格水平P高出边际成本MC的幅度就越大。
鉴于在垄断市场上的产品价格P>MC,经济学家提出了一个度量厂商垄断程度的指标:勒纳指数。
勒纳指数可以由1(1eMR P=-)=MC推导出,1(1eMR P=-)=MC,整理得,勒纳指数为:1e PP MC-=。
微观经济学课件及课后答案7
4、已知某垄断厂商的成本函数为 T C 数为P=8-0.4Q。求:
0 .6 Q 3Q 2
2
,反需求函
(1)该厂商实现利润最大化时的产量、价格、收益和利润。 (2)该厂商实现收益最大化时的产量、价格、收益和利润。 (3)比较(1)和(2)的结果。 解:
M C 1 . 2 Q 3,
( Q ) |Q 2 .5 P Q T C 1 7 .5 1 3 .2 5 4 .2 5
(2)厂商实现收益最大化时的均衡条件为MR=0,即
8 0 .8 Q 0
则Q=10。实现收益最大化时的产量为10, 价格为 ,收益为10×4=40,利润为 P |Q 1 0 8 0 .4 Q | Q 1 0 4
,即厂商 2 反应函数为
领导型厂商即厂商 1 的利润函数为
1 P Q 1 C 1 [1 0 0 0 . 4 ( Q 1 Q 2 )]Q 1 1 3 . 8 Q 1
8 6 . 2 Q 1 0 . 4 Q 1Q 2 0 . 4 Q 1
。
2200 A 100Q
5Q 1 0 0Q 1 5Q 2 0 0Q
, Q=10 ( 舍 去 Q=0 的 解 答 ) 由 。
1 5Q 2 0 0Q 2 2 0 0 A 2 7 0 0
, A=1。 A=1, 得 将 Q=10 代入需求函数 P
得价格 P=1200。 答:在长期均衡时,代表性厂商的产量为 10,产品价格为 1200, ,以 及 A 的值为 1。
2 P Q 2 C 2 [1 5 2 0 .6 ( Q 1 Q 2 )]Q 2 0 .8 Q 2
2
在古诺模型下,厂商 1 的利润最大化条件为 厂商 1 的反应函数为
西方经济学(微观经济学)课后练习答案第七章
西⽅经济学(微观经济学)课后练习答案第七章微观第七章习题⼀、名词解释完全垄断市场垄断竞争市场寡头市场价格歧视博弈纳什均衡占优策略均衡⼆、选择题1、对于垄断⼚商来说,()。
A、提⾼价格⼀定能够增加收益;B、降低价格⼀定会减少收益;C、提⾼价格未必会增加收益,降低价格未必会减少收益;D、以上都不对。
2、完全垄断的⼚商实现长期均衡的条件是()。
A、MR=MC;B、MR=SMC=LMC;C、MR=SMC=LMC=SAC;D、MR=SMC=LMC=SAC=LAC。
3、完全垄断⼚商的总收益与价格同时下降的前提条件是()。
A、Ed>1;B、Ed<1;C、Ed=1;D、Ed=0。
4、完全垄断⼚商的产品需求弹性Ed=1时()。
A、总收益最⼩;B、总收益最⼤;C、总收益递增;D、总收益递减。
5、完全垄断市场中如果A市场的价格⾼于B市场的价格,则()A、A市场的需求弹性⼤于B市场的需求弹性;B、A市场的需求弹性⼩于B市场的需求弹性;C、A市场的需求弹性等于B市场的需求弹性;D、以上都对。
6、以下关于价格歧视的说法不正确的是()。
A、价格歧视要求垄断者能根据消费者的⽀付意愿对其进⾏划分;B、⼀级价格歧视引起⽆谓损失;C、价格歧视增加了垄断者的利润;D、垄断者进⾏价格歧视,消费者就必定不能进⾏套利活动。
7、垄断竞争的⼚商短期均衡时,()。
A、⼀定能获得差额利润;B、⼀定不能获得经济利润;C、只能得到正常利润;D、取得经济利润、发⽣亏损和获得正常利润都有可能。
8、垄断竞争⼚商长期均衡点上,长期平均成本曲线处于( B )A、上升阶段B、下降阶段C、⽔平阶段D、以上三种情况都有可能9、垄断竞争⼚商实现最⼤利润的途径有:( D )A、调整价格从⽽确定相应产量B、品质竞争C、⼴告竞争D、以上途径都可能⽤10、按照古诺模型下列哪⼀说法不正确,()。
A、双头垄断者没有认识到他们的相互依耐性;B、每⼀个寡头都认定对⽅的产量保持不变;C、每⼀个寡头垄断者都假定对⽅价格保持不变;D、均衡的结果是稳定的。
西方经济学微观部分第七章课后答案
第七章 不完全竞争的市场1、根据图1-31(即教材第257页图7-22)中线性需求曲线d 和相应的边际收益曲线MR ,试求:(1)A 点所对应的MR 值; (2)B 点所对应的MR 值.解答:(1)根据需求的价格点弹性的几何意义,可得A 点的需求的价格弹性为:25)515(=-=d e 或者 2)23(2=-=d e 再根据公式MR=P (d e 11-),则A 点的MR 值为:MR=2×(2×1/2)=1(2)与(1)类似,根据需求的价格点弹性的几何意义,可得B 点的需求的价格弹性为:21101015=-=d e 或者 21131=-=d e再根据公式MR=(d e 11-),则B 点的MR 值为:)2/111(1-⨯=MR =-12、图1-39(即教材第257页图7-23)是某垄断厂商的长期成本曲线、需求曲线和收益曲线.试在图中标出:(1)长期均衡点及相应的均衡价格和均衡产量;(2)长期均衡时代表最优生产规模的SAC曲线和SMC曲线;(3)长期均衡时的利润量.解答:本题的作图结果如图1-40所示:(1)长期均衡点为E点,因为,在E点有MR=LMC.由E点出发,均衡价格为P0,均衡数量为Q0 .(2)长期均衡时代表最优生产规模的SAC曲线和SMC曲线如图所示.在Q0 的产量上,SAC曲线和SMC曲线相切;SMC曲线和LMC曲线相交,且同时与MR曲线相交.(3)长期均衡时的利润量有图中阴影部分的面积表示,即л=(AR(Q0)-SAC(Q0)Q03、已知某垄断厂商的短期成本函数为STC=0.1Q3-6Q2+14Q+3000,反需求函数为P=150-3.25Q求:该垄断厂商的短期均衡产量与均衡价格.解答:因为SMC=dSTC/dQ=0.3Q2-12Q+140且由TR=P(Q)Q=(150-3.25Q)Q=150Q-3.25Q2得出MR=150-6.5Q根据利润最大化的原则MR=SMC0.3Q2-12Q+140=150-6.5Q解得Q=20(负值舍去)以Q=20代人反需求函数,得P=150-3.25Q=85所以均衡产量为20 均衡价格为854、已知某垄断厂商的成本函数为TC=0.6Q2+3Q+2,反需求函数为P=8-0.4Q.求:(1)该厂商实现利润最大化时的产量、价格、收益和利润.(2)该厂商实现收益最大化的产量、价格、收益和利润.(3)比较(1)和(2)的结果.dTC解答:(1)由题意可得:MC=32.1+=QdQ且MR=8-0.8Q于是,根据利润最大化原则MR=MC有:8-0.8Q=1.2Q+3解得 Q=2.5以Q=2.5代入反需求函数P=8-0.4Q,得:P=8-0.4×2.5=7以Q=2.5和P=7代入利润等式,有:л=TR-TC=PQ-TC=(7×0.25)-(0.6×2.52+2)=17.5-13.25=4.25所以,当该垄断厂商实现利润最大化时,其产量Q=2.5,价格P=7,收益TR=17.5,利润л=4.25(2)由已知条件可得总收益函数为: TR=P (Q )Q=(8-0.4Q )Q=8Q-0.4Q2令08.08:,0=-==Q dQdTRdQ dTR即有 解得Q=10 且8.0-=dQdTR<0 所以,当Q=10时,TR 值达最大值. 以Q=10代入反需求函数P=8-0.4Q ,得: P=8-0.4×10=4以Q=10,P=4代入利润等式,有》 л=TR-TC=PQ-TC=(4×10)-(0.6×102+3×10+2) =40-92=-52所以,当该垄断厂商实现收益最大化时,其产量Q=10,价格P=4,收益TR=40,利润л=-52,即该厂商的亏损量为52.(3)通过比较(1)和(2)可知:将该垄断厂商实现最大化的结果与实现收益最大化的结果相比较,该厂商实现利润最大化时的产量较低(因为2.25<10),价格较高(因为7>4),收益较少(因为17.5<40),利润较大(因为4.25>-52).显然,理性的垄断厂商总是以利润最大化作为生产目标,而不是将收益最大化作为生产目标.追求利润最大化的垄断厂商总是以较高的垄断价格和较低的产量,来获得最大的利润.5.已知某垄断厂商的反需求函数为P=100-2Q+2A ,成本函数为TC=3Q 2+20Q+A ,其中,A 表示厂商的广告支出. 求:该厂商实现利润最大化时Q 、P 和A 的值. 解答:由题意可得以下的利润等式: л=P.Q-TC=(100-2Q+2A )Q-(3Q 2+20Q+A ) =100Q-2Q 2+2A Q-3Q 2-20Q-A =80Q-5Q 2+2A Q-A将以上利润函数л(Q ,A )分别对Q 、A 求偏倒数,构成利润最大化的一阶条件如下:+-=∂Q dQ1080π2A =0 0121=-=∂∂Q A Aπ求以上方程组的解:由(2)得A =Q ,代入(1)得: 80-10Q+20Q=0 Q=10 A=100在此略去对利润在最大化的二阶条件的讨论. 以Q=10,A=100代入反需求函数,得: P=100-2Q+2A =100-2×10+2×10=100所以,该垄断厂商实现利润最大化的时的产量Q=10,价格P=100,广告支出为A=100.6.已知某垄断厂商利用一个工厂生产一种产品,其产品在两个分割的市场上出售,他的成本函数为TC=Q2+40Q,两个市场的需求函数分别为Q1=12-0.1P1,Q2=20-0.4P2.求:(1)当该厂商实行三级价格歧视时,他追求利润最大化前提下的两市场各自的销售量、价格以及厂商的总利润.(2)当该厂商在两个市场实行统一的价格时,他追求利润最大化前提下的销售量、价格以及厂商的总利润.(3)比较(1)和(2)的结果.解答:(1)由第一个市场的需求函数Q1=12-0.1P1可知,该市场的反需求函数为P1=120-10Q1,边际收益函数为MR1=120-20Q1.同理,由第二个市场的需求函数Q2=20-0.4P2可知,该市场的反需求函数为P2=50-2.5Q2,边际收益函数为MR2=50-5Q2.而且,市场需求函数Q=Q1+Q2=(12-0.1P)+(20-0.4P)=32-0.5P,且市场反需求函数为P=64-2Q,市场的边际收益函数为MR=64-4Q.dTC.此外,厂商生产的边际成本函数MC=402+=QdQ该厂商实行三级价格歧视时利润最大化的原则可以写为MR1=MR2=MC. 于是:关于第一个市场:根据MR1=MC,有:120-20Q1=2Q+40 即 22Q1+2Q2=80关于第二个市场:根据MR2=MC,有:50-5Q2=2Q+40 即 2Q1+7Q2=10由以上关于Q1、Q2的两个方程可得,厂商在两个市场上的销售量分别为:Q1=3.6 Q2=0.4P1=84,P2=49.在实行三级价格歧视的时候,厂商的总利润为:л=(TR1+TR2)-TC=P1Q1+P2Q2-(Q1+Q2)2-40(Q1+Q2)=84×3.6+49×0.4-42-40×4=146(2)当该厂商在两个上实行统一的价格时,根据利润最大化的原则即该统一市场的MR=MC有:64-4Q=2Q+40解得 Q=4以Q=4代入市场反需求函数P=64-2Q,得:P=56于是,厂商的利润为:л=P.Q-TC=(56×4)-(42+40×4)=48所以,当该垄断厂商在两个市场上实行统一的价格时,他追求利润最大化的销售量为Q=4,价格为P=56,总的利润为л=48.(3)比较以上(1)和(2)的结果,可以清楚地看到,将该垄断厂商实行三级价格歧视和在两个市场实行统一作价的两种做法相比较,他在两个市场制定不同的价格实行实行三级价格歧视时所获得的利润大于在两个市场实行统一定价时所获得的利润(因为146>48).这一结果表明进行三级价格歧视要比不这样做更为有利可图.7、已知某垄断竞争厂商的长期成本函数为LTC=0.001Q3-0.51Q2+200Q;如果该产品的生产集团内所有的厂商都按照相同的比例调整价格,那么,每个厂商的份额需求曲线(或实际需求曲线)为P=238-0.5Q.求:(1)该厂商长期均衡时的产量与价格.(2)该厂商长期均衡时主观需求曲线上的需求的价格点弹性值(保持整数部分).(3)如果该厂商的主观需求曲线是线性的,推导该厂商长期均衡时的主观需求的函数.解答:(1)由题意可得:LAC=LTC/Q=0.001Q2-0.51Q+200LMC=dLTC/dQ=0.003Q2-1.02Q+200且已知与份额需求D曲线相对应的反需求函数为P=238-0.5Q.由于在垄断竞争厂商利润最大化的长期均衡时,D曲线与LAC曲线相交(因为л=0),即有LAC=P,于是有:001Q2-0.51Q+200=238-0.5Q解得Q=200(负值舍去了)以Q=200代入份额需求函数,得:P=238-0.5×200=138所以,该垄断竞争厂商实现利润最大化长期均衡时的产量Q=200,价格P=138.(2)由Q=200代入长期边际成本LMC函数,得:LMC=0.003×2002-1.02×200+200=116因为厂商实现长期利润最大化时必有MR=LMC,所以,亦有MR=116.再根据公式MR=P (de 11-),得: 116=138(d e 11-) 解得d e ≈6所以,厂商长期均衡时主观需求曲线d 上的需求的价格点弹性d e ≈6.(3)令该厂商的线性的主观需求d 曲线上的需求的函数形式 P=A-BQ ,其中,A 表示该线性需求d 曲线的纵截距,-B 表示斜率.下面,分别求A 值和B 值. 根据线性需求曲线的点弹性的几何意义,可以有P A P e d -= ,其中,P 表示线性需求d 曲线上某一点所对应的价格水平.于是,在该厂商实现长期均衡时,由PA P e d -=,得: 6=138138-A 解得 A=161此外,根据几何意义,在该厂商实现长期均衡时,线性主观需求d 曲线的斜率的绝对值可以表示为: B=Q P A -=115.0200138161=- 于是,该垄断竞争厂商实现长期均衡时的线性主观需求函数为:P=A-BQ=161-0.115Q或者 Q=115.0161P - 8.某家灯商的广告对其需求的影响为 P=88-2Q+2A对其成本的影响为C=3Q 2+8Q+A其中 A 为广告费用。
微观经济学课后题答案高鸿业主编
微观经济学课后题答案高鸿业主编第七章不完全竞争的市场◎ <该章的基本要求与基本知识点>◎ <教学重点与难点>◎ <第一节垄断>◎ <第二节垄断竞争>◎ <第三节寡头>◎ <第四节寡头厂商之间的博弈:博弈论初步> ◎ <第五节不同市场的比较> ◎ <本章小结>※<该章的基本要求与基本知识点> (1)了解完全垄断的含义与条件;(2)会画出完全垄断厂商的需求曲线和收益曲线; (3)掌握完全垄断厂商的短期均衡及供给曲线; (4)会推导完全垄断厂商的长期均衡;(5)了解垄断竞争的含义与条件;(6)会画出垄断竞争市场上厂商的需求曲线; (7)掌握垄断竞争市场上的短期均衡;(8)会推导垄断竞争市场上的长期均衡; (9)了解寡头垄断的含义与特征;(10)掌握古诺模型和斯威齐模型中价格和产量的决定。
※<教学重点与难点>垄断竞争市场的短期和长期均衡、垄断竞争厂商的D与d ※<第一节垄断> 垄断市场是指整个行业中只有唯一的一个厂商的市场组织。
生产资源独占拥有专利权形成垄断的原因政府特许自然垄断(一)垄断厂商的需求曲线和收益曲线1(需求曲线:右下方倾斜线性反需求函数:P=a—bQ2、收益曲线:MR>O,斜率为正;MR<O,斜率为负;MR=0,收益曲线达最大值。
2 收益函数:TP(Q)=PQ-aQ-bQ边际收益函数:MR(Q)=a-2bQ3(边际收益、价格和需求的价格弹性1MR,P, (1)ed注意:对垄断厂商的需求曲线和收益曲线的分析,同样适用于其他非完全竞争条件下的厂商。
(二)垄断厂商的短期均衡和长期均衡1(短期均衡短期内垄断厂商无法改变固定要素投入量,生产规模既定。
短期均衡条件:MR=SMC。
在短期均衡点上,垄断厂商可以获得最大利润、利润为零或者蒙受最小亏损。
在图中显示利润为PFGH。
《微观经济学》课后练习题7-1011
第七章 不完全竞争的市场一.选择题1.对完全垄断厂商来说,( C )A.提高价格一定能够增加收益;B.降低价格一定会减少收益;C.提高价格未必能增加收益,降低价格未必减少收益;D.以上都不对。
2.完全垄断厂商的总收益与价格同时下降的前提条件是( B )A. E d >1;B. E d <1;C. E d =1;D. E d =0 。
3.一垄断者如果有一线性需求函数,总收益增加时( B )A.边际收益为正值且递增;B.边际收益为正值且递减;C.边际收益为负值;D.边际收益为零。
4.完全垄断厂商的产品需求弹性E d =1时,( B )A.总收益最小;B.总收益最大;C.总收益递增;D.总收益递减。
5.理性的垄断者不会选择在需求价格弹性的下列哪一绝对值上生产? ( B )A 等于零B 等于无穷大C 大于1D 小于16.当垄断市场的需求富于弹性时,MR 为( A )A.正;B.负;C.0;D.1。
7.垄断厂商利润极大时,( C )A.P=MR=MC ;B.P >MR=AC ;C.P >MR=MC ;D.P >MC=AC 。
8.如果市场价格超过平均成本,边际收益大于边际成本,垄断厂商多卖1单位产品时( D )A.对总利润没有影响,但会缩小边际收益和边际成本之间的差额;B.总利润会减少;C.厂商总收益会减少其数额等于P -AC ;D.总利润会增加,其数额为MR -MC ,并缩小边际收益和边际成本之间的差额。
9.完全垄断厂商的平均收益曲线为直线时,边际收益曲线也是直线。
边际收益曲线的斜率为平均收益曲线斜率的( A )A.2倍;B.1/2 倍;C.1倍;D.4倍。
10.若一个管理机构对一个垄断厂商的限价正好使经济利润消失,则价格要等于( C )A.边际收益;B.边际成本;C.平均成本;D. 平均可变成本。
11.在短期,完全垄断厂商( D )A.无盈亏;B.取得最大利润;C.发生亏损;D.以上任一种情况都可能出现。
微观经济学第七章课后题答案
微观经济学第七章课后题答案一、回答问题:1、什么是贸易政策?贸易政策是指政府通过各种措施,对外国货物进出口、直接投资产业和服务业的活动实施的限制,以调节国际贸易,实现政府政治、外交以及经济利益的手段。
2、什么是贸易壁垒?贸易壁垒是指政府采取措施,限制外国货物进入本国市场,或者鼓励本国货物出口国外市场的行为。
这些措施包括关税、进口配额、进口许可证、货物检验、汇率操纵等,以及在国家境内实施的所有其他限制和刺激措施。
3、什么是贸易保护主义贸易保护主义是指政府以提高本国经济的竞争力为基本宗旨,通过采取一系列的措施来惠及国内行业,支持本国商品、服务的贸易,从而占据国内市场或者把国内商品强力推向国外市场的政策。
4、为什么政府要采取贸易保护主义政策?政府采取贸易保护主义政策目的是惠及国内行业,增强本国的国际竞争力,摆脱外国的经济和技术支配,更好地利用发达国家的先进技术,提高国内工业的综合竞争力,实现政府经济战略性目标;更重要的是,采取贸易保护主义政策,能够减少外国货物对本国市场的冲击,有助于促进本国企业的发展。
二、论述题:贸易保护主义是一种经济管理政策,也是国家实施国际贸易的一种政策。
它是政府以保护国民经济利益为目的,采取一系列行动和措施的总称。
其中包括限制外国商品进入本国市场,管制本国商品出口国外市场,以及采用各种政策以惠及国内企业的活动,常以关税和进口配额的方式实施。
贸易保护主义引起了许多经济学家的探讨,学术界就贸易保护主义存在的必要性和价值问题因应而开。
一方面,贸易保护主义能够缓解国家外汇困窘形势,促进经济快速发展,另一方面政府采取投资保护政策可以增加投资,减少贸易依赖,有利于货币贬值和汇率稳定,有助于减少外汇储备支出,提高汇率抵抗力,促进就业,影响外贸的增长,提高国家的综合竞争力。
另外,贸易保护主义也存在负面影响,比如对跨国贸易的限制抑制了国际贸易活动,对本国企业技术创新发展和产品创新发展不利,有时候还会造成双边贸易紧张,影响本国的经济发展。
微观经济学课后习题答案第七章完整版
微观经济学课后习题答案第七章HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】第七章 复习思考题 参考答案1、为什么垄断厂商的需求曲线是向右下方倾斜的?并解释相应的TR 曲线、AR 曲线和MR 曲线的特征以及相互关系。
解答:垄断厂商所面临的需求曲线是向右下方倾斜的,其理由主要有两点:第一,垄断厂商所面临的需求曲线就是市场的需求曲线,而市场需求曲线一般是向右下方倾斜的,所以垄断厂商的需求量与价格成反方向的变化。
第二,假定厂商的销售量等于市场的需求量,那么,垄断厂商所面临的向右下方倾斜的需求曲线表示垄断厂商可以通过调整销售量来控制市场的价格,即垄断厂商可以通过减少商品的销售量来提高市场价格,也可以通过增加商品的销售量来降低市场价格。
关于垄断厂商的TR 曲线、AR 曲线和MR 曲线的特征以及相互关系,以图7-1加以说明:第一,平均收益AR 曲线与垄断厂商的向右下方倾斜的d 需求曲线重叠。
因为,在任何的销售量上,都是P=AR 。
第二,边际收益MR 曲线是向右下方倾斜的,且位置低于AR 曲线。
其原因在于AR 曲线是一条下降的曲线。
此外,在线性需求曲线的条件下,AR 曲线和MR 曲线的纵截距相同,而且MR 曲线的斜率的绝对值是AR 曲线的斜率的绝对值的两倍。
第三,由于MR 值是TR 曲线的斜率,即dQdTR MR =,所以,当MR>0时,TR 曲线是上升的;当MR <0时,TR 曲线是下降的;当MR=0时,TR 曲线达极大值。
图 7-1 垄断竞争厂商的AR 与TR 之间的关系2、根据图7-22中线性需求曲线d 和相应的边际收益曲线MR ,试求:(1)A 点所对应的MR 值;(2)B 点所对应的MR 值。
解答:(1)根据需求的价格点弹性的几何意义,可得A 点的需求的价格弹性为:25)515(=-=d e , 或者,2)23(2=-=d e ,根据)11(d e P MR -=,则A 点的MR 值为:MR=2×(2×1/2)=1。
高鸿业微观经济学(第5版)课后习题答案 第七章
第七章不完全竞争的市场1. 根据图7—1(即教材第205页的图7—18)中线性需求曲线d和相应的边际收益曲线MR,试求:图7—1(1)A点所对应的MR值;(2)B点所对应的MR值。
解答:(1)根据需求的价格点弹性的几何意义,可得A点的需求的价格弹性为e d=eq \f(15-5,5)=2或者e d=eq \f(2,3-2)=2再根据公式MR=P eq \b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,e d))),则A点的MR值为MR=2×eq \b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,2)))=1(2)与(1)类似,根据需求的价格点弹性的几何意义,可得B点的需求的价格弹性为e d=eq \f(15-10,10)=eq \f(1,2)或者e d=eq \f(1,3-1)=eq \f(1,2)再根据公式MR=P eq \b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,e d))),则B点的MR值为MR=1×eq \b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,1/2)))=-12. 图7—2(即教材第205页的图7—19)是某垄断厂商的长期成本曲线、需求曲线和收益曲线。
试在图中标出:(1)长期均衡点及相应的均衡价格和均衡产量;(2)长期均衡时代表最优生产规模的SAC曲线和SMC曲线;(3)长期均衡时的利润量。
图7—2解答:本题的作图结果如图7—3所示:图7—3(1)长期均衡点为E点,因为在E点有MR=LMC。
由E点出发,均衡价格为P0,均衡数量为Q0。
(2)长期均衡时代表最优生产规模的SAC曲线和SMC曲线如图7—3所示。
在Q0的产量上,SAC曲线和LAC曲线相切;SMC曲线和LMC曲线相交,且同时与MR曲线相交。
(3)长期均衡时的利润量由图7—3中阴影部分的面积表示,即π=[AR(Q0)-SAC(Q0)]·Q 0。
《微观经济学》课后练习题参考答案7
《微观经济学》课后练习题参考答案7第七章不完全竞争的市场一.选择题1.C11.D21.D2.B12.B22.B3.B13.A23.D4.B14.D24.D5.D15.C25.D6.A16 .B26.C7.C17.B27.C8.D18.B28.B9.A19.A29.A10.C20.B30.C二.名词解释1.垄断:是指一个厂商独占市场控制整个市场的产品的供给和产品的市场价格以攫取最大的利润。
2.自然垄断:所谓自然垄断,就是行业存在规模报酬递增,产量越多平均成本越低,使得一般厂商无法与一个超大规模的厂商竞争,从而形成的垄断。
3.垄断势力:又称垄断势力,指垄断厂商对价格的控制程度,一般用P—MC来测量。
4.价格歧视:所谓价格歧视,是指完全垄断厂商对不同的消费者,或对同一消费者不同的购买量,分别以不同的价格销售。
5.寡头垄断:寡头垄断是指少数几家厂商控制某一市场的产品供给及销售价格的一种市场组织。
在这种市场组织中,每一厂商都必须考虑它的对手对它的行动做出的反应。
6.垄断竞争:所谓“垄断竞争”,就是指有许多厂商在市场中销售近似但不相同的产品。
厂商对市场略有影响。
7.多余的生产能力:经济学家一般把完全竞争企业在长期平均成本LAC最低点上的产量称为理想的产量,把实际产量与理想产量之间的差额称作为多余的生产能力。
8.消费者剩余:就是消费者对一定量的商品或劳务最多愿意支付的价钱与实际支付的价钱之差,是对消费者从交易中所得利益的一种货币度量。
9产品变异:产品变异指变换产品的颜色、款式、质地、做工和附带的服务等来改变原有的产品,以形成产品差异,影响市场均衡。
10.拐折(弯折)需求曲线:根据寡头垄断厂商推测其他寡头跟跌不跟涨的假定,得出自己产品的需求曲线在开始的市场价格处形成拐折点,拐折点之上的需求曲线段比较平坦,拐折点之下的需求曲线段比较陡峭。
三.问答题1.在不完全竞争市场的产品市场中,厂商的需求曲线向右下方倾斜,试说明MR与P的差距会随着产量Q的增加而越来越大。
《微观经济学》(刘天祥版)第七章参考答案
《微观经济学》第七章参考答案一、略二、选择题CBDDC CABDD BB1、C.2、B.3、D.完全垄断厂商无论是短期还是长期,其均衡时的产量都是由MR=MC决定的。
4、D.5、C.6、C.7、A.8、B.完全垄断厂商实行价格歧视是在需求价格弹性小的市场上提高价格,而在需求价格弹性大的市场上降低价格。
9、D. 垄断势力的存在使厂商可以维持低产高价,从而使资源配置无效率。
10、B11、B.由于总收益下降,则边际收益为负。
且11d MR PE⎛⎫=-⎪⎝⎭12、B.由11dMR PE⎛⎫=-⎪⎝⎭,可知,当1dE=时,MR=0,所以此时总收益最大。
三、判断题√×√√√√××1、√。
对于垄断厂商有P=AR为需求曲线,而边际收益曲线MR总是位于需求曲线的下方。
2、×。
垄断厂商没有确定的供给曲线。
3、√。
一级价格歧视下,虽然所有的消费者剩余都被厂商剥夺了,但是其均衡的价格和产量与完全竞争下的均衡价格和产量一样,所以其资源配置是有效率的。
4、√5、√6、√7、×。
垄断竞争厂商的边际收益曲线是根据其相应的主观需求曲线得到的。
8、×。
短期内垄断厂商既可能获得经济利润也可能经济利润为0,还可能出现亏损。
四、计算题1、总利润最大化条件为:MC=MR;已知需求函数P=12-0.4Q可推知:MR=12-0.8Q;又有TC函数可以推知:MC=1.2Q+4;利润最大化,即1.2Q+4=12-0.8Q ,可得Q=4;将Q=4代入P=12-0.4Q ,得P=10.4;总收益:TR=P*Q=10.4×4=41.6;总利润:π=TR -TC=11;2、(1)垄断厂商利润最大化:MR=MC ,已知TC 可得MC=Q+10;又TR=(90-0.5Q )Q 可得MR=90-Q ;于是:MR=MC 即Q+10=90-Q ,解之Q=40;将Q=40带入需求函数,解之P=70;利润π=TR -TC=1600(2)当P=55时,即90-0.5Q=55 得,Q=70;当Q=70时,TC=3150;TR=P*Q=3850π=TR -TC=700;(3)假设国家最高限价P=50,这实际上是对垄断厂商采取了边际成本定价的原则即P=MC ;此时厂商提供的产量为Q=40;厂商的利润为π=TR -TC=800;然而此时市场的需求根据需求函数计算得Q=80,故会出现市场供不应求的局面。
曼昆《经济学原理》第6版 微观经济学分册 第7章 课后习题答案p157p159
第三篇市场和福利第七章消费者、生产者与市场效率问题与应用1.Melissa用120美元购买了一个iPod,并得到了80美元的消费者剩余。
A.她的支付意愿是多少?答:消费者剩余等于支付意愿减去付出的价格。
因此,梅莉莎须支付200 美元($120 + $80)。
B.如果她在降价销售时买了售价为90美元的iPod,她的消费者剩余会是多少?答:此时,她的消费者剩余为:200-90 =110 美元。
C.如果iPod的价格是250美元,她的消费者剩余会是多少?答:如果iPod 的价格是250 美元,其价格大于梅莉莎的支付愿意,因此她不会再买,这时的消费者剩余就为零。
2.加利福尼亚早来的寒流使柠檬变酸。
柠檬市场上消费者剩余会有什么变动?柠檬水市场上消费者剩余会有什么变动?用图形说明你的答案。
答:柠檬变酸,消费者对柠檬的评价下降,需求曲线向左下方移动。
在其他条件不变的情况下,消费者剩余减少。
如图7-2(a)所示,柠檬质量下降,使需求曲线从D1下降到D 2,△APE是原先的消费者剩余,△A′P′E′是变动后的消费者剩余,△APE>△A′P′E′。
由于柠檬价格的下降,柠檬水的投入成本减少,柠檬水的价格也下降。
在其他条件不变的情况下,柠檬水市场上消费者剩余增加,如图7-2(b)所示。
图7-2 寒流的影响3.假设对法国面包的需求增加。
在法国面包市场上,生产者剩余会发生什么变动?在面粉市场上,生产者剩余会发生什么变动?用图形说明你的答案。
答:由于需求增加,在其他条件不变的情况下,法国面包的价格会上升,市场上的生产者剩余增加。
如图7 -3(a),价格从P1 上升到P2 ,销量从Q 1上升到Q 2,生产者剩余从面积P1BE1增加到面积P2BE2 。
由于面包产量上升,它的生产要素面粉的需求量也会上升。
在其他条件不变的情况下,面粉价格上升,市场上的生产者剩余增加。
如图7-3(b)所示,生产者剩余从面积P1BE1增加到面积P2BE2 。
平狄克《微观经济学》课后答案 7-8
CHAPTER 7THE COST OF PRODUCTIONIn this chapter, it is easy for the students to concentrate too much on definitions and geometry and lose focus on the economics. Therefore, keep in mind the key concepts: opportunity cost, short-run average and marginal cost, cost minimization, and long-run average cost. These concepts can be illuminated with the supplementary material provided at the end of the chapter, which includes sections on economies of scope, learning curves, and estimating and predicting costs. The Appendix presents the calculus of constrained optimization, as applied to cost minimization. All exercises involve some algebra or geometry: Exercises (12) and (13) are time consuming, but rewarding.Opportunity cost is the conceptual base of this chapter. While most students think of costs in accounting terms, they must develop an understanding of the distinction between accounting, economic, and opportunity costs. One source of confusion is the opportunity cost of capital, i.e., why the rental rate on capital must be considered explicitly by economists. It is important, for example, to distinguish between the purchase price of capital equipment and the opportunity cost of using the equipment. The opportunity cost of a person’s tim e also leads to some confusion for students.Following the discussion of opportunity cost, the chapter diverges in two directions: one path introduces types of cost and cost curves, and the other focuses on cost minimization. Both directions converge with the discussion of long-run average cost.The geometry of total, fixed, variable, average, and marginal costs can prove to be tedious. An emphasis on the following issues helps students master this topic: 1) the relationship between the production function, diminishing returns in the short run, input prices, and the shapes of the various cost curves; 2) the distinction between total, average, and marginal; and 3) the reasonableness of the assumption of constant input prices (note that this assumption w ill be relaxed in Chapter 10’s discussion of monopsony). The determination of the cost-minimizing quantity is crucial to understanding Chapters 8 and 10. The concept of duality (minimizing cost subject to a given level of production) is equivalent to maximizing output subject to a given level of total cost) clarifies this concept for students.A clear understanding of short-run cost and cost minimization is necessary for the derivation of long-run average cost. With long-run costs, stress that firms are operating on short-run cost curves at each level of the fixed factor and that long-run costs do not exist separately from short-run costs. Exercise (6) illustrates the relationship between long-run cost and cost minimization, with an emphasis on the importance of the expansion path. Stress the connection between the shape of a long-run cost curve and returns to scale. While Section 7.7 is starred, it does not require calculus. Example 7.5 “Cost Functions for Electric Power,” gives students another vie w of long-run average cost and allows for discussion of minimum efficient scale, an important determinant of industry structure.1. A firms pays its accountant an annual retainer of $10,000. Is this an explicit or implicit cost?Explicit costs are actual outlays. They include all costs that involve a monetary transaction.An implicit cost is an economic cost that does not necessarily involve a monetary transaction, butstill involves the use of resources. When a firm pays an annual retainer of $10,000, there is amonetary transaction. The accountant trades his or her time in return for money. Therefore,an annual retainer is an explicit cost.2. The owner of a small retail store does her own accounting work. How would you measure the opportunity cost of her work?Opportunity costs are measured by comparing the use of a resource with its alternative uses.The opportunity cost of doing accounting work is the time not spent in other ways, i.e., time suchas running a small business or participating in leisure activity. The economic cost of doingaccounting work is measured by computing the monetary amount that the time would be worth inits next best use.3. Suppose a chair manufacturer finds that the marginal rate of technical substitution of capital for labor in his production process is substantially greater than the ratio of the rental rate on machinery to the wage rate for assembly-line labor. How should he alter his use of capital and labor to minimize the cost of production?To minimize cost, the manufacturer should use a combination of capital and labor so the rate atwhich he can trade capital for labor in his production process is the same as the rate at which hecan trade capital for labor in external markets. The manufacturer would be better off if heincreased his use of capital and decreased his use of labor, decreasing the marginal rate oftechnical substitution, MRTS. He should continue this substitution until his MRTS equals theratio of the rental rate to the wage rate.4. Why are isocost lines straight lines?The isocost line represents all possible combinations of labor and capital that may be purchasedfor a given total cost. The slope of the isocost line is the ratio of the input prices of labor andcapital. If input prices are fixed, then the ratio of these prices is clearly fixed and the isocost lineis straight. Only when the ratio or factor prices change as the quantities of inputs change is theisocost line not straight.5. If the marginal cost of production is increasing, does this tell you whether the average variable cost is increasing or decreasing? Explain.Marginal cost can be increasing while average variable cost is either increasing or decreasing. Ifmarginal cost is less (greater) than average variable cost, then each additional unit is adding less(more) to total cost than previous units added to the total cost, which implies that the AVCdeclines (increases). Therefore, we need to know whether marginal cost is greater than averagecost to determine whether the AVC is increasing or decreasing.6. If the marginal cost of production is greater than the average variable cost, does this tell you whether the average variable cost is increasing or decreasing? Explain.If the average variable cost is increasing (decreasing), then the last unit produced is adding more(less) to total variable cost than the previous units did, on average. Therefore, marginal cost isabove (below) average variable cost. If marginal cost is above average variable cost, averagevariable cost is also increasing.7. If the firm’s average cost curves are U-shaped, why does its average variable cost curve achieve its minimum at a lower level of output than the average total cost curve?Total cost is equal to fixed plus variable cost. Average total cost is equal to average fixed plusaverage variable cost. When graphed, the difference between the U-shaped total cost andaverage variable cost curves is the average fixed cost curve. If fixed cost is greater than zero, theminimum of average variable cost must be less than the minimum average total cost.8. If a firm enjoys increasing returns to scale up to a certain output level, and then constant returns to scale, what can you say about the shape of the firm’s long-run average cost curve?When the firm experiences increasing returns to scale, its long-run average cost curve isdownward sloping. When the firm experiences constant returns to scale, its long-run averagecost curve is horizontal. If the firm experiences increasing returns to scale, then constantreturns to scale, its long-run average cost curve falls, then becomes horizontal.9. How does a change in the price of one input change the firm’s long-run expansion path?The expansion path describes the combination of inputs for which the firm chooses to minimizecost for every output level. This combination depends on the ratio of input prices: if the price ofone input changes, the price ratio also changes. For example, if the price of an input increases,less of the input may be purchased for the same total cost. The intercept of the isocost line onthat input’s axis moves closer to the origin. Also, the slope of the isocost line, the price ratio,changes. As the price ratio changes, the firm substitutes away from the now more expensiveinput toward the cheaper input. Thus, the expansion path bends toward the axis of the nowcheaper input. See Exercise (7.6).10. Distinguish between economies of scale and economies of scope. Why can one be present without the other?Economies of scale refer to the production of one good and occur when proportionate increases inall inputs lead to a more-than-proportionate increase in output. Economies of scope refer to theproduction of more than one good and occur when joint output is less costly than the sum of thecosts of producing each good or service separately. There is no direct relationship betweenincreasing returns to scale and economies of scope, so production can exhibit one without theother. See Exercise (13) for a case with constant product-specific returns to scale andmultiproduct economies of scope.1. Assume a computer firm’s marginal costs of production are constant at $1,000 per computer. However, the fixed costs of production are equal to $10,000.a. Calculate the firm’s average variable cost and average total cost curves.The variable cost of producing an additional unit, marginal cost, is constant at $1,000, so theaverage variable cost is constant at $1,000, ()000,1$000,1$=QQ . Average fixed cost is $10,000Q. Average total cost is the sum of average variable cost and average fixed cost: ATC Q=+$1,$10,.000000 b. If the firm wanted to minimize the average total cost of production, would it choose to be verylarge or very small? Explain.The firm should choose a very large output because average total cost decreases with increase inQ . As Q becomes infinitely large, ATC will equal $1,000.2. If a firm hires a currently unemployed worker, the opportunity cost of utilizing t he worker’s service is zero. Is this true? Discuss.From the worker’s perspective, the opportunity cost of his or her time is the time not spent inother ways, including time spent in personal or leisure activities. Certainly, the opportunity costof hiring an unemployed mother of pre-school children is not zero! While it might be difficult toassign a monetary value to the time of an unemployed worker, we can not conclude that it is zero.From the perspective of the firm, the opportunity cost of hiring the worker is not zero, and thefirm could purchase a piece of machinery rather than hiring the worker.3.a. Suppose that a firm must pay an annual franchise fee, which is a fixed sum, independent of whether it produces any output. How does this tax aff ect the firm’s fixed, marginal, and average costs?Total cost, TC , is equal to fixed cost, FC , plus variable cost, VC . Fixed costs do not vary with thequantity of output. Because the franchise fee, FF , is a fixed sum, the firm’s fixed costs increaseby this fee. Thus, average cost, equal toFC VC Q +, and average fixed cost, equal to FC Q , increase by the average franchise fee FF Q. Note that the franchise fee does not affect average variable cost. Also, because marginal cost is the change in total cost with the production of anadditional unit and because the fee is constant, marginal cost is unchanged.3.b. Now suppose the firm is charged a tax that is proportional to the number of items it produces. Ag ain, how does this tax affect the firm’s fixed, marginal, and average costs?Let t equal the per unit tax. When a tax is imposed on each unit produced, variable costsincrease by tQ . Average variable costs increase by t , and because fixed costs are constant,average (total) costs also increase by t . Further, because total cost increases by t with eachadditional unit, marginal costs increase by t .4. A recent issue of Business Week reported the following:During the recent auto sales slump, GM, Ford, and Chrysler decidedit was cheaper to sell cars to rental companies at a loss than to lay offworkers. That’s because closing and reopening plants is expensive,partly because the auto makers’ current union contracts obligatethem to pay many wor kers even if they’re not working.When the article discusses selling cars “at a loss,” is it referring to accountingprofit or economic profit? How will the two differ in this case? Explainbriefly.When the article refers to the car companies selling at a loss, it is referring to accounting profit.The article is stating that the price obtained for the sale of the cars to the rental companies was less than their accounting cost. Economic profit would be measured by the difference of theprice with the opportunity cost of the cars. This opportunity cost represents the market valueof all the inputs used by the companies to produce the cars. The article mentions that the carcompanies must pay workers even if they are not working (and thus producing cars). Thisimplies that the wages paid to these workers are sunk and are thus not part of the opportunitycost of production. On the other hand, the wages would still be included in the accountingcosts. These accounting costs would then be higher than the opportunity costs and wouldmake the accounting profit lower than the economic profit.5. A chair manufacturer hires its assembly-line labor for $22 an hour and calculates that the rental cost of its machinery is $110 per hour. Suppose that a chair can be produced using 4 hours of labor or machinery in any combination. If the firm is currently using 3 hours of labor for each hour of machine time, is it minimizing its costs of production? If so, why? If not, how can it improve the situation?If the firm can produce one chair with either four hours of labor or four hours of capital,machinery, or any combination, then the isoquant is a straight line with a slope of -1 andintercept at K = 4 and L = 4, as depicted in Figure 7.5.The isocost line, TC = 22L + 110K has a slope of -=-2211002. when plotted with capital on the vertical axis and has intercepts at K TC =110 and L TC =22. The cost minimizing point is a corner solution, where L = 4 and K = 0. At that point, total cost is $88.6. Suppose the economy takes a downturn, and that labor costs fall by 50 percent and are expected to stay at that level for a long time. Show graphically how this change in the relative price of labor and capital affects the firm’s expansion path.Figure 7.6 shows a family of isoquants and two isocost curves. Units of capital are on the verticalaxis and units of labor are on the horizontal axis. (Note: In drawing this figure we have assumedthat the production function underlying the isoquants exhibits constant returns to scale, resultingin linear expansion paths. However, the results do not depend on this assumption.)If the price of labor decreases while the price of capital is constant, the isocost curve pivotsoutward around its intersection with the capital axis. Because the expansion path is the set ofpoints where the MRTS is equal to the ratio of prices, as the isocost curves pivot outward, theexpansion path pivots toward the labor axis. As the price of labor falls relative to capital, thefirm uses more labor as output increases.business when costs are cheaper and discourage off-peak business when costs are higher.Do you follow the consultant’s advice? Discuss.The consultant does not understand the definition of average cost. Encouraging ridership always decreases average costs, peak or off-peak. If ridership falls to 10, costs climb to $3.00 per rider. Further, during rush hour, the buses are full. How could more people get on? Instead, encourage passengers to switch from peak to off-peak times, for example, by charging higher prices during peak periods.MC 2 is the marginal cost of refining distillate up to the capacity constraint, Q 2. The shape of thetotal marginal cost curve is horizontal up to the lower capacity constraint. If the capacityconstraint of the distilling unit is lower than that of the hydrocracking unit, MC T is vertical at Q 1.If the capacity constraint of the hydrocracking unit is lower than that of the distilling unit, MC T isvertical at Q 2.9. You manage a plant that mass produces engines by teams of workers using assembly machines. The technology is summarized by the production function.Q 4 KLwhere Q is the number of engines per week, K is the number of assembly machines, and L is the number of labor teams. Each assembly machine rents for r = $12,000 per week and each team costs w = $3,000 per week. Engine costs are given by the cost of labor teams and machines, plus $2,000 per engine for raw materials. Your plant has a fixed installation of 10 assembly machines as part of its design.a. What is the cost function for your plant — namely, how much would it cost to produce Qengines? What are average and marginal costs for producing Q engines? How do average costs vary with output?K is fixed at 10. The short-run production function then becomes Q = 40 L. This implies that for any level of output Q, the number of labor teams hired will be L = Q / 40. The total cost function is thusgiven by the sum of the costs of capital, labor, and raw materials:TC(Q) = rK + wL + 2000Q = (12,000)(10) + (3,000)(Q/40) + 2,000 Q= 120,000 + 2,075QThe average cost function is then given by:AC(Q) = TC(Q)/Q = 120,000/Q + 2,075and the marginal cost function is given by:∂ TC(Q) / ∂ Q = 2,075Marginal costs are constant and average costs will decrease as quantity increases (due to the fixed cost of capital).b. How many teams are required to producing 80 engines? What is the average cost perengine?To produce Q = 80 engines we need L = Q/40 labor teams or L = 2. Average costs are given byAC(Q) = 120,000/Q + 2,075or AC = 3575 c. You are asked to make recommendations for the design of a new production facility. Whatwould you suggest? In particular, what capital/labor (K/L) ratio should the new plant accommodate? If lower average cost were your only criterion, should you suggest that the new plant have more production capacity or less production capacity that the plant you currently manage?We no longer assume that K is fixed at 10. We need to find the combination of K and L which minimizes costs at any level of output Q. The cost-minimization rule is given byMP r =MP w .KLTo find the marginal product of capital, observe that increasing K by 1 unit increases Q by 4L, so MP K = 4L. Similarly, observe that increasing L by 1 unit increases Q by 4K, so MP L = 4K. (Mathematically, MP K = ∆Q /∆K = 4L and MP L = ∆Q /∆L = 4K.) Using these formulas in the cost-minimization rule, we obtain:4L/r = 4K/w or K / L = w / r = 3,000 / 12,000 = 1/4The new plant should accommodate a capital to labor ratio of 1 to 4.The firm’s capital -labor ratio is currently 10/2 or 5. To reduce average cost, the firm should either use more labor and less capital to produce the same output or it should hire more labor and increase output.*10. A computer company’s cost function, which relates its average cost of product ion AC to its cumulative output in thousands of computers CQ and its plant size in terms of thousands of computers produced per year Q, within the production range of 10,000 to 50,000 computers is given byAC = 10 - 0.1CQ + 0.3Q.a. Is there a learning curve effect?The learning curve describes the relationship between the cumulative output and the inputsrequired to produce a unit of output. Average cost measures the input requirements per unit ofoutput. Learning curve effects exist if average cost falls with increases in cumulative output.Here, average cost decreases as cumulative output, CQ, increases. Therefore, there are learningcurve effects.b. Are there increasing or decreasing returns to scale?To measure scale economies, calculate the elasticity of total cost, TC, with respect to output, Q:ETCTCQQTCTCQMCACC ===∆∆∆∆.If this elasticity is greater (less) than one, then there are decreasing (increasing) returns to scale, because total costs are rising faster (slower) than output. From average cost we can calculate total and marginal cost:TC = Q(AC) = 10Q - (0.1)(CQ)(Q) + 0.3Q2, thereforeMCdTCdQCQ Q ==-+100106...Because marginal cost is greater than average cost (because 0.6Q > 0.3Q), the elasticity, EC, is greater than one; there are decreasing returns to scale. The production process exhibits a learningeffect and decreasing returns to scale.c. During its existence, the firm has produced a total of 40,000 computers and is producing 10,000computers this year. Next year it plans to increase its production to 12,000 computers. Will its average cost of production increase or decrease? Explain.First, calculate average cost this year:AC1= 10 - 0.1CQ + 0.3Q = 10 - (0.1)(40) + (0.3)(10) = 9.Second, calculate the average cost next year:AC2= 10 - (0.1)(50) + (0.3)(12) = 8.6.(Note: Cumulative output has increased from 40,000 to 50,000.) The average cost will decreasebecause of the learning effect.11. The short-run cost function of a company is given by the equation C = 190 + 53Q, where C is the total cost and Q is the total quantity of output, both measured in tens of thousands.a. What is the company’s fixed cost?When Q = 0, C = 190 (or $1,900,000). Therefore, fixed cost is equal to 190 (or $1,900,000).b. If the company produced 100,000 units of goods, what is its average variable cost?With 100,000 units, Q= 10. Variable cost is 53Q= (53)(10) = 530 (or $5,300,000). Averagevariable cost is TVCQ==$530$53.10c. What is its marginal cost per unit produced?With constant average variable cost, marginal cost is equal to average variable cost, $53.d. What is its average fixed cost?At Q = 10, average fixed cost is TFCQ==$190$1910.e. Suppose the company borrows money and expands its factory. Its fixed cost rises by $50,000,but its variable cost falls to $45,000 per 10,000 units. The cost of interest (I) also enters into the equation. Each one-point increase in the interest rate raises costs by $30,000. Write the new cost equation.Fixed cost changes from 190 to 195. Variable cost decreases from 53 to 45. Fixed cost alsoincludes interest charges: 3I . The cost equation isC = 195 + 45Q + 3I .*12. Suppose the long-run total cost function for an industry is given by the cubic equation TC = a + bQ + cQ 2 + dQ 3. Show (using calculus) that this total cost function is consistent with a U-shaped average cost curve for at least some values of a, b, c, d.To show that the cubic cost equation implies a U -shaped average cost curve, we use algebra,calculus, and economic reasoning to place sign restrictions on the parameters of the equation.These techniques are illustrated by the example below.First, if output is equal to zero, then TC = a , where a represents fixed costs. In the short run,fixed costs are positive, a > 0, but in the long run, where all inputs are variable a = 0. Therefore,we restrict a to be zero.Next, we know that average cost must be positive. Dividing TC by Q:AC = b + cQ + dQ 2.This equation is simply a quadratic function. When graphed, it has two basic shapes: a U shapeand a hill shape. We want the U shape, i.e., a curve with a minimum (minimum average cost),rather than a hill shape with a maximum.To the left of the minimum, the slope should be negative (downward sloping). At the minimum,the slope should be zero, and to the right of the minimum the slope should be positive (upwardsloping). The first derivative of the average cost curve with respect to Q must be equal to zero atthe minimum. For a U -shaped AC curve, the second derivative of the average cost curve must bepositive.The first derivative is c + 2dQ ; the second derivative is 2d . If the second derivative is to bepositive, then d > 0. If the first derivative is equal to zero, then solving for c as a function of Qand d yields: c = -2dQ . If d and Q are both positive, then c must be negative: c < 0.To restrict b , we know that at its minimum, average cost must be positive. The minimum occurswhen c + 2dQ = 0. We solve for Q as a function of c and d : Q c=->0. Next, substitutingthis value for Q into our expression for average cost, and simplifying the equation:2222⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-++=++=d c d c d c b dQ cQ b AC , orAC b b b c d cd cd c d c d =-=-+=->+2222223362660. implying b c d >26. Because c 2and d > 0, b must be positive.In summary, for U -shaped long-run average cost curves, a must be zero, b and d must be positive, cmust be negative, and 4db > c 2. However, the conditions do not insure that marginal cost is positive.To insure that marginal cost has a U shape and that its minimum is positive, using the sameprocedure, i.e., solving for Q at minimum marginal cost -c d /,3 and substituting into theexpression for marginal cost b + 2cQ + 3dQ 2, we find that c 2 must be less than 3bd . Notice thatparameter values that satisfy this condition also satisfy 4db > c 2, but not the reverse.where a, b, and c are positive. Is this total cost function consistent with the presence of economies or diseconomies of scale? With economies or diseconomies of scope?There are two types of scale economies to consider: multiproduct economies of scale and product-specific returns to scale. From Section 7.5 we know that multiproduct economies of scalefor the two-product case, S H,S , are()()()()()S H S H MC S MC H S H TC S +=, , where MC H is the marginal cost of producing hardware and MC S is the marginal cost of producingsoftware. The product-specific returns to scale are:()()()()H H MC H S TC S H TC S ,0 , -= and ()()()()S S MC S H TC S H TC S 0, , -= where TC (0,S ) implies no hardware production and TC (H ,0) implies no software production. Weknow that the marginal cost of an input is the slope of the total cost with respect to that input.Since()(),S cH b aH bS H cS a TC -+=+-=we have MC H = a - cS and MC S = b - cH .Substituting these expressions into our formulas for S H,S , S H , and S S :()()cH b S cS a H cHS bS aH S S H -+--+=, or S aH bS cHS H S ,=+-+->1, because cHS > 0. Also, ()()cS a H bS cHS bS aH S H ---+=, or()()()()1=--=--=cS a cS a cS a H cHS aH S H and similarly ()().1=---+=cH b S aH cHS bS aH S S There are multiproduct economies of scale, S H,S > 1, but constant product-specific returns to scale,S H = S C = 1.Economies of scope exist if S C > 0, where (from equation (7.8) in the text):()()()()S H TC S H TC S TC H TC S c , , ,0 0, -+=, or, ()()S H TC cHS bS aH bS aH S c , -+-+=, or ().0, >=S H TC cHS S c Because cHS and TC are both positive, there are economies of scope.CHAPTER 8PROFIT MAXIMIZATION AND COMPETITIVE SUPPLYAs the title implies, this chapter covers two interrelated topics: a consideration of the behavioral incentives of the profit-maximizing firm and an examination of the interaction of these firms in a competitive market. The chapter begins with a discussion of whether firms maximize profits and ends with a discussion of the criteria for a competitive market, including an introduction to contestable markets. Exercises (1), (2), and (4) rely on data discussed in the text, while Exercises (3), (6), and (7) focus on the determination of the firm’s profit -maximizing quantity. Exercises (5), (8), and (9) consider the influence of taxes on firms’ output in a competitive market.S ections 8.2 through 8.4 derive the firm’s supply curve. Although total revenue is easily understood, you will need to show why average revenue may be represented by the demand curve. Demand and average revenue will be used interchangeably in Chapters 10 and 11. When presented with a problem involving the derivation of marginal revenue, some students will substitute Q , instead of P , in the expression for total revenue. This leads to revenue as a function of price. Stress that when they are given a demand curve in these applications they should first solve for price as a function of quantity. The origin of this confusion could lie in the popular notion that the firm determines the profit-maximizing price instead of the profit-maximizing quantity. Emphasize the importance of quantity, for example, when discussing why deviations from the profit-maximizing quantity lead to a decrease in profit (see Figure 8.3). Using the solutions to the exercises, emphasize that, for a linear demand curve, the slope of the marginal revenue curve is twice the slope of the demand curve.Other sources of confusion arise during analysis of firms’ supply curves. Stress that, as a primary rule, the firm should choose a quantity such that marginal revenue is equal to marginal cost. In this chapter, we can simplify this rule: for a firm facing a perfectly elastic demand curve, price is equal to marginal revenue. Stress that the rule for the competitive firm is a special case. Although some students will understand references to second-order conditions, expect to be asked why q 0 in Figure 8.3 is not profit maximizing, although MR = MC . Two additional points warrant careful explanation: 1) why the firm would remain in business if the firm sustains a loss in the short run, and 2) that maximizing profit is the same as minimizing loss.Although the summation of firm supply curves into a market supply curve is easy, the analysis of long-run competitive equilibrium is difficult. Show that long-run equilibrium relies on profit maximization by firms. Accompanying the rule that price must be greater than average variable cost in the short run, there is the assumption of free entry and exit. This leads to the statement that price must equal long-run average cost, LAC, as no firm may make an economic profit. The rule that price must equal long-run marginal cost, LMC , is the second equilibrium condition. Therefore, because LAC = LMC at minimum LAC , price is equal to minimum LAC in the long-run equilibrium. This result will be reconsidered in Chapter 12 in the discussion of equilibrium for a monopolistically competitive firm. When discussing the attainment of equilibrium in constant, increasing, and。
微观经济学第第七章课后答案
第7章 课后练习答案一、基本概念 1、一般均衡:经济中所有经济单位及其市场同时处于均衡的一种状态。
2、帕累托最优条件:1)交换的帕累托最化条件:A B XY XYMRS MRS = ;2)生产的帕累托最优条件:C D LK LKMRTS MRTS = ;3)交换和生产的帕累托最优条件:XY XY MRS MRT = 3、帕累托改进:在资源既定的情况下,如果经济社会通过资源重新配置可以在不使得他人境况受到损害的条件下使得某些人的境况得到改善,则社会福利得到增进.二、分析简答1、什么是局部均衡和一般均衡,两者的区别和联系是什么?答:局部均衡是指:仅仅是某一种产品实现了均衡或某一种市场(例如,产品市场或要素市场)实现了均衡。
一般均衡是指经济中所有经济单位及其市场同时处于均衡的一种状态。
局部均衡把市场上其他商品和生产要素的数量与价格对这种商品或生产要素价格的影响忽略不计或视为不变,即假定这一商品或生产要素的价格只取决于它本身的供求状况,而不受其他商品的价格和供求状况的影响。
而在一般均衡分析中,不仅要分析影响该商品价格变动的供求关系,还要分析影响该商品生产的生产要素市场、消费者收入等多种因素的影响,即把经济中的所有经济单位和所有市场联系起来加以考虑和分析。
2、为什么完全竞争可以实现帕累托最优所需具备的三个条件?完全竞争经济在一定的假设条件下存在着一般均衡,即存在一组价格,在该组价格下市场中的供求平衡.假设该组价格为Px ,P Y ,…,P L ,P K ,…。
其中P X ,P Y ,…表示商品X ,Y ,…的均衡价格;P L ,P K ,…表示要素L ,K ,…的均衡价格。
在完全竞争条件下,每个消费者和生产者都是价格的接受者,消费者在既定价格下追求自身效用的最大化,生产者在既定价格下追求自身利润的最大化。
对于消费者而言,任意一个消费者在完全竞争经济中效用最大化的条件是任意两种商品的边际替代率等于两种商品的价格比率,对于消费者C ,有: /A XY X Y MRS P P = ;对于消费者B,有:/B XY X Y MRS P P =;将以上两式整理可得:A B XY XY MRS MRS =;此公式就是交换的帕累托最优条件。
微观经济学课后习题答案解析第七章
第七章 复习思考题 参考答案1、为什么垄断厂商的需求曲线是向右下方倾斜的?并解释相应的TR 曲线、AR 曲线和MR 曲线的特征以及相互关系。
解答:垄断厂商所面临的需求曲线是向右下方倾斜的,其理由主要有两点:第一,垄断厂商所面临的需求曲线就是市场的需求曲线,而市场需求曲线一般是向右下方倾斜的,所以垄断厂商的需求量与价格成反方向的变化。
第二,假定厂商的销售量等于市场的需求量,那么,垄断厂商所面临的向右下方倾斜的需求曲线表示垄断厂商可以通过调整销售量来控制市场的价格,即垄断厂商可以通过减少商品的销售量来提高市场价格,也可以通过增加商品的销售量来降低市场价格。
关于垄断厂商的TR 曲线、AR 曲线和MR 曲线的特征以及相互关系,以图7-1加以说明: 第一,平均收益AR 曲线与垄断厂商的向右下方倾斜的d 需求曲线重叠。
因为,在任何的销售量上,都是P=AR 。
第二,边际收益MR 曲线是向右下方倾斜的,且位置低于AR 曲线。
其原因在于AR 曲线是一条下降的曲线。
此外,在线性需求曲线的条件下,AR 曲线和MR 曲线的纵截距相同,而且MR 曲线的斜率的绝对值是AR 曲线的斜率的绝对值的两倍。
第三,由于MR 值是TR 曲线的斜率,即dQdTR MR ,所以,当MR>0时,TR 曲线是上升的;当MR <0时,TR 曲线是下降的;当MR=0时,TR 曲线达极大值。
图 7-1 垄断竞争厂商的AR 与TR 之间的关系2、根据图7-22中线性需求曲线d 和相应的边际收益曲线MR ,试求:(1)A 点所对应的MR 值;(2)B 点所对应的MR 值。
解答:(1)根据需求的价格点弹性的几何意义,可得A 点的需求的价格弹性为:25)515(=-=d e , 或者,2)23(2=-=d e ,根据)11(d e P MR -=,则A 点的MR 值为:MR=2×(2×1/2)=1。
(2)方法同(1)。
B 点所对应的MR =-1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章 复习思考题 参考答案1、为什么垄断厂商的需求曲线是向右下方倾斜的?并解释相应的TR 曲线、AR 曲线和MR 曲线的特征以及相互关系。
解答:垄断厂商所面临的需求曲线是向右下方倾斜的,其理由主要有两点: 第一,垄断厂商所面临的需求曲线就是市场的需求曲线,而市场需求曲线一般是向右下方倾斜的,所以垄断厂商的需求量与价格成反方向的变化。
第二,假定厂商的销售量等于市场的需求量,那么,垄断厂商所面临的向右下方倾斜的需求曲线表示垄断厂商可以通过调整销售量来控制市场的价格,即垄断厂商可以通过减少商品的销售量来提高市场价格,也可以通过增加商品的销售量来降低市场价格。
关于垄断厂商的TR 曲线、AR 曲线和MR 曲线的特征以及相互关系,以图7-1加以说明: 第一,平均收益AR 曲线与垄断厂商的向右下方倾斜的d 需求曲线重叠。
因为,在任何的销售量上,都是P=AR 。
第二,边际收益MR 曲线是向右下方倾斜的,且位置低于AR 曲线。
其原因在于AR 曲线是一条下降的曲线。
此外,在线性需求曲线的条件下,AR 曲线和MR 曲线的纵截距相同,而且MR 曲线的斜率的绝对值是AR 曲线的斜率的绝对值的两倍。
第三,由于MR 值是TR 曲线的斜率,即dQ dTR MR ,所以,当MR>0时,TR 曲线是上升的;当MR <0时,TR 曲线是下降的;当MR=0时,TR 曲线达极大值。
图 7-1 垄断竞争厂商的AR 与TR 之间的关系2、根据图7-22中线性需求曲线d 和相应的边际收益曲线MR ,试求:(1)A 点所对应的MR 值;(2)B 点所对应的MR 值。
解答:(1)根据需求的价格点弹性的几何意义,可得A 点的需求的价格弹性为: 25)515(=-=d e , 或者,2)23(2=-=d e ,根据)11(d e P MR -=,则A 点的MR 值为:MR=2×(2×1/2)=1。
(2)方法同(1)。
B 点所对应的MR =-1。
3、图7-23是某垄断厂商的长期成本曲线、需求曲线和收益曲线。
试在图中标出:(1)长期均衡点及相应的均衡价格和均衡产量;(2)长期均衡时代表最优生产规模的SAC 曲线和SMC 曲线;(3)长期均衡时的利润量。
解答:本题的作图结果如图7-23所示:(1)长期均衡点为E 点,因为,在E 点有MR=LMC 。
由E 点出发,均衡价格为P 0,均衡数量为Q 0 。
(2)长期均衡时代表最优生产规模的SAC 曲线和SMC 曲线如图所示。
在Q 0 的产量上,SAC 曲线和SMC 曲线相切;SMC 曲线和LMC 曲线相交,且同时与MR 曲线相交。
(3)长期均衡时的利润量有图中阴影部分的面积表示,即л=(AR(Q 0)-SAC(Q 0)Q 0图 7-234、已知某垄断厂商的短期成本函数为STC =0.1Q 3-6Q 2+14Q+3000,反需求函数为P=150-3.25Q 。
求:该垄断厂商的短期均衡产量与均衡价格。
解答:由垄断厂商 的短期成本函数STC =0.1Q 3-6Q 2+140Q+3000得边际成本140123.02+-=Q Q MC ,厂商的总收益23.25Q -150Q 3.25Q)Q -(150Q P TR ==⋅=,其边际收益Q MR 5.6150-=;垄断厂商要实现短期均衡的条件是MC MR =,即Q Q Q 5.6150140123.02-=+-,解之得均衡产量:)(20舍去负值=Q则,均衡价格8525.3150==Q P -5、已知某垄断厂商的成本函数为TC=0.6Q 2+3Q+2,反需求函数为P=8-0.4Q 。
求:(1)该厂商实现利润最大化时的产量、价格、收益和利润。
(2)该厂商实现收益最大化的产量、价格、收益和利润。
(3)比较(1)和(2)的结果。
解答:(1)由题意可得该垄断厂商的边际成本32.1+==Q dQdTC MC ,其总收益24.08Q Q PQ TR -==,其边际收益Q MR 8.08-=;于是,根据利润最大化原则MR=MC 有:8-0.8Q=1.2Q+3,解得Q=2.5;以Q=2.5代入反需求函数P=8-0.4Q ,得:P=8-0.4×2.5=7;以Q=2.5和P=7代入利润等式,有:л=TR-TC=PQ-TC=(7×2.5)-(0.6×2.52+2×2.5+2)=17.5-13.25=4.25所以,当该垄断厂商实现利润最大化时,其产量Q=2.5,价格P=7,收益TR=17.5,利润л=4.25。
(2)由已知条件可得总收益函数为:TR=P (Q )Q=(8-0.4Q )Q=8Q-0.4Q 208.08,0=-==Q dQ dTR dQ dTR 即有,令,解得Q=10;且8.0-=dQdTR <0,所以,当Q=10时,TR 值达最大值;以Q=10代入反需求函数P=8-0.4Q ,得:P=8-0.4×10=4以Q=10,P=4代入利润等式,л=TR-TC=PQ-TC=4×10-(0.6×102+3×10+2)=40-92=-52所以,当该垄断厂商实现收益最大化时,其产量Q=10,价格P=4,收益TR=40,利润л=-52,即该厂商的亏损量为52。
(3)通过比较(1)和(2)可知:将该垄断厂商实现最大化的结果与实现收益最大化的结果相比较,该厂商实现利润最大化时的产量较低(因为2.25<10),价格较高(因为7>4),收益较少(因为17.5<40),利润较大(因为4.25>-52)。
显然,理性的垄断厂商总是以利润最大化作为生产目标,而不是将收益最大化作为生产目标。
追求利润最大化的垄断厂商总是以较高的垄断价格和较低的产量,来获得最大的利润。
6.已知某垄断厂商的反需求函数为P=100-2Q+2A ,成本函数为TC=3Q 2+20Q+A ,其中,A 表示厂商的广告支出。
求:该厂商实现利润最大化时Q 、P 和A 的值。
解答:由题意可得以下的利润等式:л=P ·Q-TC=(100-2Q+2A )Q-(3Q 2+20Q+A )=100Q-2Q 2+2A Q-3Q 2-20Q-A =80Q-5Q 2+2A将以上利润函数л(Q ,A )分别对Q 、A 求偏倒数,构成利润最大化的一阶条件如下:)1(021080 =+-=∂A Q dQπ )2(0121=-=∂∂Q A A π由(2)得A =Q ,代入(1)得:80-10Q+2Q=0,解之得Q=10,则A=100。
(在此略去对利润在最大化的二阶条件的讨论。
同学们做作业时不能略去)以Q=10,A=100代入反需求函数,得:P=100-2Q+2A =100-2×10+2×10=100所以,该垄断厂商实现利润最大化的时的产量Q=10,价格P=100,广告支出为A=100。
7.已知某垄断厂商利用一个工厂生产一种产品,其产品在两个分割的市场上出售,他的成本函数为TC=Q 2+40Q ,两个市场的需求函数分别为Q 1=12-0.1P 1,Q 2=20-0.4P 2。
求:(1)当该厂商实行三级价格歧视时,他追求利润最大化前提下的两市场各自的销售量、价格以及厂商的总利润。
(2)当该厂商在两个市场实行统一的价格时,他追求利润最大化前提下的销售量、价格以及厂商的总利润。
(3)比较(1)和(2)的结果。
解答:(1)由第一个市场的需求函数Q 1=12-0.1P 1可知,该市场的反需求函数为P 1=120-10Q 1,边际收益函数为MR 1=120-20Q 1;同理,由第二个市场的需求函数Q 2=20-0.4P 2可知,该市场的反需求函数为P 2=50-2.5Q 2,边际收益函数为MR 2=50-5Q 2。
而且,市场需求函数Q=Q 1+Q 2=(12-0.1P )+(20-0.4P )=32-0.5P ,且市场反需求函数为P=64-2Q ,市场的边际收益函数为MR=64-4Q ;此外,厂商生产的边际成本函数402+==Q dQdTC MC 。
该厂商实行三级价格歧视时利润最大化的原则为MR 1=MR 2=MC 。
于是:在第一个市场上:根据MR 1=MC ,有:120-20Q 1=2Q+40,即11Q 1+Q 2=40......(1); 同理,在第二个市场上:根据MR 2=MC ,有:50-5Q 2=2Q+40 即 2Q 1+7Q 2=10 (2)解(1)(2)组成的方程组可得,厂商在两个市场上的销售量分别为:4.0,6.321==Q Q ,由此可得49,8421==P P 。
在实行三级价格歧视的时候,厂商的总利润为:л=(TR 1+TR 2)-TC=P 1Q 1+P 2Q 2-(Q 1+Q 2)2-40(Q 1+Q 2)=84×3.6+49×0.4-42-40×4=146(2)当该厂商在两个上实行统一的价格时,P P P Q Q Q 5.0324.0201.01221-=-+-=+=,由此得Q P 264-=。
该厂商的总收益为Q Q Q P TR )264(-=⋅=,其边际收益为MR =64-4Q 。
厂商在统一市场实现利润最大化的条件为:MR =MC ,即:64-4Q=2Q+40,解得 Q=4;以Q=4代入市场反需求函数P=64-2Q ,得:P=56;于是,厂商的利润为:л=P ·Q-TC=(56×4)-(42+40×4)=48;所以,当该垄断厂商在两个市场上实行统一的价格时,他追求利润最大化的销售量为Q=4,价格为P=56,总的利润为л=48。
(3)比较以上(1)和(2)的结果,可以清楚地看到,将该垄断厂商实行三级价格歧视和在两个市场实行统一作价的两种做法相比较,他在两个市场制定不同的价格实行三级价格歧视时所获得的利润大于在两个市场实行统一定价时所获得的利润(因为146>48)。
这一结果表明进行三级价格歧视要比不这样做更为有利可图。
8、已知某垄断竞争厂商的长期成本函数为LTC=0.001Q 3-0.51Q 2+200Q ;如果该产品的生产集团内所有的厂商都按照相同的比例调整价格,那么,每个厂商的份额需求曲线(或客观需求曲线)为P=238-0.5Q。
求:(1)该厂商长期均衡时的产量与价格。
(2)该厂商长期均衡时主观需求曲线上的需求的价格点弹性值(保持整数部分)。
(3)如果该厂商的主观需求曲线是线性的,推导该厂商长期均衡时的主观需求的函数。
解答:(1)由题意可得:LAC=LT C/Q=0.001Q2-0.51Q+200LMC=dLTC/dQ=0.003Q 2-1.02Q+200且已知与份额需求D曲线相对应的反需求函数为P=238-0.5Q.由于在垄断竞争厂商利润最大化的长期均衡时,D曲线与LAC曲线相切(因为л=0),即有LAC=P,于是有:001Q2-0.51Q+200=238-0.5Q,解得 Q=200(负值舍去)以Q=200代入份额需求函数,得:P=238-0.5×200=138所以,该垄断竞争厂商实现利润最大化长期均衡时的产量Q=200,价格P=138。