[学习]概率论与数理统计第五章
概率第五章_大数定律与中心极限定理090505
P ( − Eξ ε ) = ξ ≥
P(ξ ≥ Eξ + ε ) + P (ξ ≤ Eξ − ε )
k
=
≤
k : xk ≥ E +
∑ξ ε p
k
+
k : xk ≤ E −
∑ξ ε p
pk +
k :xk ≥ E +
∑ξ ε
( x − Eξ ) 2
ε
2
k :xk ≤ E −
∑ξ ε
( x − Eξ ) 2
, 方差 Dξ n ( n = 1, 2,L),且 Dξi < l (i = 1, 2,L) 其中 l 与 i 无关的
1 Eξ = (1 + 2 + 3 + L + 6) 6
35 7 故 Eξ = Dξ = 12 2
4 2 = P (ξ = 5) + P(ξ = 6) + P (ξ = 1) + P (ξ = 2) = = 6 3 7 1 P( − 2 ) = P(ξ ≥ 5.5) + P(ξ ≤ 1.5) = P (ξ = 6) + P (ξ = 1) = ξ ≥
即
lim P ( − p < ε ) = 1 n →∞ n
ξ
此定理表明:当试验在不变的条件下重复进行很多次时, 随机事件的频率 频率在它的概率 概率附近摆动。 频率 概率 由贝努里大数定律可知,若事件A的概率很小很小时,则 它的频率也很小很小,即事件A很少发生或几乎不发生, 这种事件叫小概率事件。反之,若随机事件的概率很接近1, 则可认为在个别试验中这事件几乎一定发生。 同分布的两个或多个随机变量: 同分布的两个或多个随机变量 离散型: 它们的概率分布律相同. 离散型 它们的概率分布律相同 连续型: 它们的概率密度函数相同. 连续型 它们的概率密度函数相同 所以它们的期望与方差一定相同. 所以它们的期望与方差一定相同
概率论与数理统计 第五章
Xn ⎯ ⎯→ X 2. 依概率收敛与依分布收敛的关系
依概率收敛 ⇒ 依分布收敛
L
3. 定义:中心极限定理 设随机变量 X ~ N(0,1),{Xi },i = 1, 2, … 相互独 立,且数学期望和方差都存在, 若标准化随机变量序列
∑
n
i =1
Xi −
∑ E(X
i =1
n
i
)
∑
n
i =1
D(X i)
所以结论成立。 由此有,若X ~ B( n, p ),对于足够大的n,有 ⎧ m1 − np X − np m2 − np ⎫ ⎪ ⎪ < ≤ P{m1 < X ≤ m2 }= P ⎨ ⎬ np(1 − p) np(1 − p) ⎪ ⎪ np(1 − p) ⎩ ⎭
⎧ Yn − np ⎫ ⎪ ⎪ ≤ x ⎬ = Φ( x ) lim P ⎨ n →∞ ⎪ np(1 − p ) ⎪ ⎩ ⎭
证明:对于任意正整数n,随机变量Yn 可表示为 证明:对于任意正整数n Yn = X1+ X2+…+ Xn X1, X2,…, Xn 相互独立,Xi ~ B( 1, p ),且有 E( Xi ) = p , D( Xi ) = p(1-p) 所以随机变量序列{ Xi }, i =1,2,…满足独立同分布 中心极限定理条件。即有
切比雪夫不等式的应用 1)估计随机变量落在某个区间内的概率 (P125例5.5.2) 2)估计ε的值, 使 P(│X - E(X)│<ε) ≥ a (0<a<1) 3)证明大数定律。
二. 大数定律 定义: 依概率收敛 设{Xn}是一个随机变量序列,X 是一个随机变量 或常数,若对于任意的ε> 0,有 lim P{| X n − X |≥ ε } = 0
概率论与数理统计 第5章
n
n
性质2.(分布可加性):若X~2(n1),Y~2(n2),X与 Y独立,则
X + Y~2(n1+n2 )
3、2分布表及有关计算
(1)构成 P{2(n)>λ}=α,已知n, α可查表求得λ; (2)有关计算P 2 (n) 2 (n) 称为上侧α分位数
例5.1 设 X ~ N ( , 2 ) (X1,X2,…,Xn)为X的一个样本,
求(X1,X2,…,Xn)的密度。 解 (X1,X2,…,Xn)为X的一个样本,故
X i ~ N ( , 2 )
n
i 1,2,, n
f ( x1 , x2 ,, xn ) f ( xi )
16 2
解
i 1,2,,16
2 1 16 2 2 P ( X i ) P 8 2 (16) 16 2 16 i 1
2—分布的密度函数f(y)曲线
n/2 1 f ( y) 2 ( n / 2) y 0,
n y 1 2 2
e , y0 y0
2 例5.4 X ~ N ( , ) (X1,X2,X3)为X的一个样本
X 1 X 2 X 3 的分布。 求
(n)为整体记号
2
2 (n) 2 2 查表得 0 ( 25 ) 34 . 382 10) 18.307 .1 0.05 (
1 当n充分大时,近似有 (n ) (u 2n - 1) 2 2
2
练习1. P(2(n)<s)=1-p ∵P(2(n) < s)=1- P(2(n) s )=1-p ∴ P(2(n) s )=p 2 s p (n) 练习2. P(2(11)>s)=0.05,求s
概率论与数理统计 第五章 大数定律与中心极限定理
的概率很小” ,用数学语言表达,就是要证明: 0 ,有
nA nA lim P p 0 lim P p 1 n ,或 n n . n
另一种提法是:研究随机变量 n A 的分布的极限行为,即讨 论分布函数
nA lim P p 0 lim P n n 或 n
nA p 1 . n
证 引入
1 , 第i次试验中事件A发生 Xi ,i 1 , 2 , , n , 0 , 第i次试验中事件A不发生
下面我们进一步来讨论贝努利试验.若记 n A 为 n 次贝努利试
nA 验中事件 A 发生的次数, 则事件 A 发生的频率为 n . 所谓 “频 率的稳定性” ,无非是指当试验次数 n 无限增大(即 n )时,
nA 频率 n 无限接近于某个固定常数.这个固定的常数就是“事 件 A 在一次试验中发生的的概率 p” . nA 由此可见,讨论频率 n 的极限行为,是理解概率论中最基本
2019年1月14日星期一
11 / 102
§5.1
大数定律
作为预备知识,我们先明确随机变量序列收敛的
相关概念,同时给出一个重要的不等式,它是以下理 论证明所用的主要工具之一.
定 义 1.1 设 a 是常数,对于随机变量序列 ,如果 0 ,有
X1 , X 2 ,
, Xn ,
lim P
n
个常数,即在这个常数的附近摆动,这就是所谓的“频
率稳定性”.但对这一点,至今为止我们尚未给予理论 上的说明.另外,在第二章我们给出了二项分布的泊松 逼近,那么更一般的近似计算方案又是怎样呢?
概率论与数理统计第五章课后习题及参考答案
概率论与数理统计第五章课后习题及参考答案1.用切比雪夫不等式估计下列各题的概率.(1)废品率为03.0,1000个产品中废品多于20个且少于40个的概率;(2)200个新生儿中,男孩多于80个而少于120个的概率(假设男孩和女孩的概率均为5.0).解:(1)设X 为1000个产品中废品的个数,则X ~)1000,03.0(B ,有30)(=X E ,1.29)(=X D ,由切比雪夫不等式,得)3040303020()4020(-<-<-=<<X P X P )103010(<-<-=X P )1030(<-=X P 709.0101.2912=-≥.(2)设X 为200个新生儿中男孩的个数,则X ~)200,5.0(B ,有100)(=X E ,50)(=X D ,由切比雪夫不等式,得)10012010010080()12080(-<-<-=<<X P X P )2010020(<-<-=X P )20100(<-=X P 87205012=-≥.2.一颗骰子连续掷4次,点数总和记为X ,估计)1810(<<X P .解:设i X 为该骰子掷第i 次出现的点数,则61)(==k X P i ,6,,2,1 =i ,6,,2,1 =k .27)654321(61)(=+++++=i X E ,691)654321(61)(2222222=+++++=i X E ,35)]([)()(22=-=i i i X E X E X D ,4,3,2,1=i .因为4321X X X X X +++=,且1X ,2X ,3X ,4X 相互独立,故有14)(=X E ,335)(=X D .由切比雪夫不等式,得)1418141410()1810(-<-<-=<<X P X P )4144(<-<-=X P )414(<-=X P 271.0433512=-≥.3.袋装茶叶用及其装袋,每袋的净重为随机变量,其期望值为100g ,标准差为10g ,一大盒内装200袋,求一盒茶叶净重大于5.20kg 的概率.解:设i X 为一袋袋装茶叶的净重,X 为一盒茶叶的净重,由题可知∑==2001i i X X ,100)(=i X E ,100)(=i X D ,200,,2,1 =i .因为1X ,2X ,…,200X 相互独立,则20000)()(2001==∑=i i X E X E ,20000)()(2001==∑=i i X D X D .)()(20500)()(()20500(2001X D X E X D X E X P X P i i ->-=>∑=)1020020000205001020020000(⋅->⋅-=X P )2251020020000(>⋅-=X P 由独立同分布的中心极限定理,1020020000⋅-X 近似地服从)1,0(N ,于是0002.0)5.3(1)2251020020000(=Φ-≈>⋅-X P .4.有一批建筑用木桩,其80%的长度不小于3m .现从这批木桩中随机取出100根,试问其中至少有30根短于3m 的概率是多少?解:设X 为100根木桩中短于3m 的根数,则由题可知X ~)2.0,100(B ,有20)(=X E ,16)(=X D ,由棣莫弗—拉普拉斯定理,得)30(1)30(<-=≥X P X P )42030(1)()((1-Φ-=-Φ-=X D X E X 0062.0)5.2(1=Φ-=.5.某种电器元件的寿命服从均值为100h 的指数分布.现随机选取16只,设它们的寿命是相互独立的.求这16只元件寿命总和大于1920h 的概率.解:设i X 为第i 只电器元件的寿命,由题可知i X ~)01.0(E ,16,,2,1 =i ,且1X ,2X ,…,16X 相互独立,则100)(=i X E ,10000)(=i X D .记∑==161i i X X ,则1600)()(161==∑=i i X E X E ,160000)()(161==∑=i i X D X D .))()(1920)()(()1920(X D X E X D X E X P X P ->-=>)400160019204001600(->-=X P )8.04001600(>-=X P ,由独立同分布的中心极限定理,1600-X 近似地服从)1,0(N ,于是2119.0)8.0(1)8.04001600(=Φ-=>-X P .6.在数值计算中中,每个数值都取小数点后四位,第五位四舍五入(即可以认为计算误差在区间]105,105[55--⨯⨯-上服从均匀分布),现有1200个数相加,求产生的误差综合的绝对值小于03.0的概率.解:设i X 为每个数值的误差,则i X ~)105,105(55--⨯⨯-U ,有0)(=i X E ,1210)(8-=i X D ,1200,,2,1 =i .从而0)()(12001==∑=i i X E X E ,61200110)()(-===∑i i X D X D .由独立同分布的中心极限定理,X 近似地服从)10,0(6-N ,于是)03.0(<X P ))()(03.0)()((X D X E X D X E X P -≤-=12101200003.0121012000(44--⋅-≤⋅-=X P 9974.01)3(2=-Φ=.7.某药厂断言,该厂生产的某药品对医治一种疑难的血液病治愈率为8.0.医院检验员任取100个服用此药的病人,如果其中多于75个治愈,就接受这一断言,否则就拒绝这一断言.(1)若实际上此药对这种病的治愈率是8.0,问接受这一断言的概率是多少?(2)若实际上此药对这种病的治愈率是7.0,问接受这一断言的概率是多少?解:设X 为100个服用此药的病人中治愈的个数,(1)由题可知X ~)8.0,100(B ,则80)(=X E ,16)(=X D ,由棣莫弗—拉普拉斯定理,得)75(1)75(≤-=>X P X P 48075(1))()((1-Φ-=-Φ-=X D X E X 8944.0)25.1(=Φ=.(2)由题可知X ~)7.0,100(B ,则70)(=X E ,21)(=X D ,由棣莫弗—拉普拉斯定理,得)75(1)75(≤-=>X P X P 217075(1)()((1-Φ-=-Φ-=X D X E X 1379.0)09.1(1=Φ-=.8.一射手在一次射击中,所得环数的分布律如下表:X678910P 05.005.01.03.05.0求:(1)在100次射击中环数介于900环与930环之间的概率是多少?(2)超过950环的概率是多少?解:设X 为100次射击中所得的环数,i X 为第i 次射击的环数,则∑==1001i i X X ,15.9)(=i X E ,95.84)(2=i X E ,2275.1)]([)()(22=-=i i i X E X E X D ,100,,2,1 =i .由1X ,2X ,…,100X 相互独立,得915)()(1001==∑=i i X E X E ,75.122)()(1001==∑=i i X D X D .由独立同分布的中心极限定理,75.122915-X 近似地服从)1,0(N ,于是(1))930900(≤≤X P ))()(930)()()()(900(X D X E X D X E X X D X E P -≤-≤-=75.12291593075.12291575.122915900(-≤-≤-=X P )75.1221575.122915(≤-=X P 823.01)35.1(2=-Φ≈.(2))950(>X P ))()(950)()((X D X E X D X E X P ->-=75.122915950)()((->-=X D X E X P 001.0)1.3(1=Φ-≈.9.设有30个电子元件1A ,2A ,…,30A ,其寿命分别为1X ,2X ,…,30X ,且且都服从参数为1.0=λ的指数分布,它们的使用情况是当i A 损坏后,立即使用1+i A (29,,2,1 =i ).求元件使用总时间T 不小于350h 的概率.解:由题可知i X ~)1.0(E ,30,,2,1 =i ,则10)(=i X E ,100)(=i X D .记∑==301i i X T ,由1X ,2X ,…,30X 相互独立,得300)()(301==∑=i i X E T E ,3000)()(301==∑=i i X D T D .))()(350)()(()350(T D T E T D T E T P T P ->-=>30103003503010300(⋅->⋅-=T P )91.03010300(>⋅-≈T P ,由独立同分布的中心极限定理,3010300⋅-T 近似地服从)1,0(N ,于是1814.0)91.0(1)91.03010300(=Φ-=>⋅-T P .10.大学英语四级考试,设有85道选择题,每题4个选择答案,只有一个正确.若需要通过考试,必须答对51道以上.试问某学生靠运气能通过四级考试的概率有多大?解:设X 为该学生答对的题数,由题可知X ~41,85(B ,则25.21)(=X E ,9375.15)(=i X D ,85,,2,1 =i .由棣莫弗—拉普拉斯中心极限定理,近似地有9375.1525.21-X ~)1,0(N ,得)8551(≤≤X P ))()(85)()()()(51(X D X E X D X E X X D X E P -≤-≤-=)9375.1525.21859375.1525.219375.1525.2151(-≤-≤-=X P 0)45.7()97.15(=Φ-Φ=.即学生靠运气能通过四级考试的概率为0.。
概率论与数理统计 第五章
∑ X − ∑µ
k =1 k =1
k
Bn
≤ x} = ∫
ቤተ መጻሕፍቲ ባይዱ
x
1 2π
−∞
e
t2 − 2
dt=Φ(x).
说明: 说明
在定理条件下, r.v. Zn =
∑ X − ∑µ
k =1 k k =1
n
n
k
Bn
当 n很 大
时, 近似地服从正态分布N(0, 1),由此当n很大时,
∑X
k =1 n
n
t2 2
(本定理 可以由独立同分布 的中心极限定理证 明)
说明: 说明 本定理不难看出 :若ηn
~ b(n,p), 有
t2 2
b ηn − np 1 lim P a < e dt = Φ(b) − Φ(a), ≤ b = ∫ a n →∞ npq 2π 因 而 当 n较 大 时 , 我 们 可 以 用 正 态 分 布 近 似 计 算 二 项 分布 的 概率 。
2. 切比雪夫大数定律: 设X1 , X 2 , L Xn , L 是由两两互 不相关的随机变量所构成的序列, 每一个随机变量都 有有限的方差, 并且它们有公共的上界 , D(X1 ) ≤ C, D(X 2 ) ≤ C, L , D(Xn ) ≤ C, L 则对∀ε > 0, 都有 1 n 1 n lim P ∑ Xk − ∑ E(Xk ) < ε = 1. n →∞ n k =1 n k =1
k
2 , k = 0,1, L ,90000. 3 ≤ 30500}
90000-k
显然直接计算十分麻烦, 我们利用德莫佛-拉普拉斯定理 来求它的近 似 值 即有P{29500 < X ≤ 30500} 29500-np = P < np(1-p ) 30500-np ≤ np(1-p ) np(1-p ) X-np
概率论与数理统计----第五章大数定律及中心极限定理
= 1 − Φ(3.54)
=0.0002
一箱味精净重大于20500的概率为 的概率为0.0002. 一箱味精净重大于 的概率为
推论:
特别,若X~B(n,p),则当n充分大时, 特别, ~B(n 则当n充分大时,
X~N(np,npq) X~N(np,npq) np
若随机变量X~B( X~B(n, ),则对任意实数x有 ),则对任意实数 即 若随机变量X~B( ,p),则对任意实数 有
不等式证明 P{-1<X<2n+1}≥(2n+1)/(n+1)(n+1)
3. 设P{|X-E(X)|<ε}不小于 不小于0.9,D(X)=0.009.则用 不小于 则用
切比绍夫不等式估计ε的 最小值是( 切比绍夫不等式估计 的 最小值是
0.3 ).
4.(894) 设随机变量 的数学期望为 设随机变量X的数学期望为 的数学期望为µ, 标准差为σ,则由切比绍夫不等式 标准差为 则由切比绍夫不等式 P{|X-µ|≥3σ}≤( ). 1/9 5. 设随机变量X的分布律为 设随机变量 的分布律为 P{X=0.3}=0.2, P{X=0.6}=0.8, 用切比绍夫不等式估计 |X-E(X)|<0.2的概率 的概率. 的概率
1 n lim P ∑ Xi − µ < ε = 1 n→∞ n i =1
定理(贝努里利大数定律) 设每次实验中事件A发生的概率 定理(贝努里利大数定律) 设每次实验中事件A 为p,n次重复独立实验中事件A发生的次数为nA,则对任 次重复独立实验中事件A发生的次数为n 意的ε>0 意的ε>0 ,事件的频率 nA ,有 ε>
∫
+∞
−∞
概率论与数理统计答案第五章(东华大学出版)
第五章复习题Page1941、 设i (i=1,2,,50)ξ 是相互独立的随机变量,且它们都服从参数为0.03λ=的泊松分布。
记1250ξξξξ=+++ ,试用中心极限定理计算P(3)ξ≥。
解:由中心极限定理可认为~ξ((),())(1.5,1.5)N E D N ξξ=,则(3)P ξ≥1.31.5)1)1(1.225)10.889751.51.5P ===-Φ=-=。
2、 一部件包括10部分。
每部分的长度是一个随机变量,它们相互独立且具有同一分布。
其数学期望为2mm ,均方差为0.05mm ,规定总长度为20±0.1mm 时产品合格,试求产品合格的概率。
解:由中心极限定理可认为总长度~ξ((),())(20,0.025)N E D N ξξ=,则(19.920.P ξ≤≤()2(0.6325)10.4735025P ξ=≤=Φ-=。
3、 一个加法器同时收到20个噪声电压(1,2,,20)k V k = 。
设它们是相互独立的随机变量,且都在区间[0,10]上服从均匀分布。
V 为加法器上受到的总噪声电压,求(105)P V >解:由中心极限定理可知)3500,100()121020,520())(),((~2N N V D V E N V =⨯⨯=,则(105))1(0.39)10.65170.3483P V P >=>=-Φ=-= 4、 计算机在进行加法时,对每个加数取整(取为最接近它的整数),设所有的取整误差是相互独立的,且它们都在(0.5,0.5]-上服从均匀分布。
(1) 若将1500个数相加,问误差总和的绝对值超过15的概率是多少?(2) 问几个数加在一起可使得误差总和的绝对值小于10的概率为0.90?解:(1)由中心极限定理:误差总和)125,0()1211500,01500(~N N =⨯⨯ξ,因此(||15)2(12(10.9099)0.1802P P ξ>=>=-Φ=⋅-=。
概率与数理统计_课件_第5章_大数定律
5%的时间要使用外线通话.设每部电话是否使 用外线通话是相互独立的. 求:该单位总机至少需要安装多少条外线 才能以90%以上的概率保证每部电话需要使用 外线时可以打通?
解:
1 第i部电话使用外线通话. 令 Xi 0 第i部电话未使用外线通话.
设该单位总机安装k条外线,则:
∴ Xi ∼ b(1,p).X1,X2 , ,X200相互独立.
20 np np (1 p) 5
X
i 1 n
n
i
np
3 np np (1 p) 5
np (1 p)
}
P{
25 0.995 25 0.995 25 0.995 (1) ( 1) 2 (1) 1 0.6826
X
i 1
Sn p | } 0 任给ε>0, lim P{| n n 贝努里大数定律表明,当重复试验次数 n充分大时,事件A发生的频率Sn/n与事件A 的概率p有较大偏差的概率很小.
请看演示 贝努里大数定律 贝努里大数定律提供了通过试验来确 定事件概率的方法.
下面给出的独立同分布下的大数定 律,不要求随机变量的方差存在. 定理3(辛钦大数定律) 设随机变量序列X1,X2, …独立同 分布,具有有限的数学期E(Xi)=μ,
则
Sn X i
i 1 n
n
Sn 1 X i 是事件A发生的频率 n n i 1
于是有下面的定理:
贝努里
定理2(贝努里大数定律) 设Sn是n重贝努里试验中事件A发生的 次数,p是事件A发生的概率,则对任给的
ε> 0,
或
陈国华等主编概率论与数理统计第五章习题解答
x>0 x≤0
(α > 0, β > 0)
a a 1 1 1 dx = ∫ cos(tx) ⋅ dx + ∫ sin(tx) ⋅ dx −a −a −a 2a 2a 2a 1 1 1 = ⋅ sin(tx) |a sin(at ) x =− a = at 2a t t −1 (2)参数为 λ 的指数分布的特征函数为, φ X (t ) = (1 − i ) ,参数为 λ 的指数分布可看做
1
π (1 + x 2 )
(−∞ < x < +∞) ;
⎧A ⎪ (D) X i 的概率函数为 : g ( x) = ⎨ x 3 ⎪0 ⎩
x ≥1 x <1
(i = 1,2,3, ) .
答案:CABAD 三.解答题
1.一颗骰子连续掷 4 次,点数总和记为 X ,估计 p (10 < X < 18) .
3.已知随机变量 X 的数学期望为 10,方差 DX 存在且 P (−20 < X < 40) ≤ 0.1 ,则
DX ≥ . 4.设 X 1 , X 2 , , X n, 为独立同分布的随机变量序列,且 X i (i = 1,2, ) 服从参数为 2 的
指数分布,则 n → ∞ 当时, Yn =
1 n 2 ∑ X i 依概率收敛于 n i =1
1 1 ln n + ln n = 0 2 2
n
DX n = EX n = ln n
n 1 1 D ( Xi) = 2 ∑ 2 n n i =1
2
∑ ln i → 0(n → ∞)
i =1
根据马尔可夫大数定律, {X n } 服从大数定律。
3 、 已 知 随 机 变 量 X 和 Y 的 数 学 期 望 、 方 差 以 及 相 关 系 数 分 别 为 E ( X ) = E (Y ) = 2 ,
概率论与数理统计 第五章
贝努里定理. 它的叙述如下:设是n次重复独立 对于任意给定的ε>0,有
lim P{| nA p | } 1
n
n
lim P{| nA p | } 1
n
n
其中nA/n是频率,p是概率,即次数多
时事件发生的频率收敛于概率.表示频率的稳定性.
定理3
lim P{|
n
1 n
n i 1
Xi
| } 1
数理统计的方法属于归纳法,由大量的资料作依据,而不
是从根据某种事实进行假设,按一定的逻辑推理得到的.例
如统计学家通过大量观察资料得出吸烟和肺癌有关,吸烟
者得肺癌的人比不吸烟的多好几倍.因此得到这个结论.
数理统计的应用范围很广泛.在政府部门要求有关的资
料给政府制定政策提供参考.由局部推断整体,学生的假期
第五章 大 数 定 律 与 中 心 极 限 定 律
§ 5.1大 数 定 律
定理1(切比雪夫定理) 设X1,X2,...,Xn,...是相互独立的随机变
量序列若存在常数C,使得D(Xi)≤C. (i=1,2,...n),则对任意给
定的ε>0,有
lim P{|
n
1 n
n i 1
[Xi
E( X i )] |
7200 6800 2
200 1
D 2
1
2100 2002
0.95
可见虽有10000盏灯,只要电力供应7200盏灯即有相当大的保 证率切贝谢夫不等式对这类问题的计算有较大价值,但它的精度 不高.为此我们研究下面的内容.
2021/9/5
10
§ 5.2 中 心 极 限 定 理
在随机变量的一切可能性的分布律中,正态分布占有特殊的
(概率论与数理统计茆诗松)第5章统计量及其分布
统计量用于评估和 预测经济趋势例如 GDP、CPI等。
统计量用于研究经济 现象之间的相关性例 如通过回归分析探究 收入与消费的关系。
统计量用于风险评估 和决策制定例如在投 资组合优化中应用统 计量来降低风险。
统计量用于市场调研和 消费者行为分析例如通 过调查数据了解消费者 的购买意愿和偏好。
统计量用于描述大量粒子系统的宏观性质如温度、压强等。 在高能物理实验中统计量用于分析粒子碰撞数据以发现新粒子或研究基本粒子的相互作用。 在天体物理中统计量用于研究星系分布、宇宙射线等以揭示宇宙的演化历史和结构。 在凝聚态物理中统计量用于描述量子多体系统的性质如超导、量子相变等。
单击此处添加标题
性质:二项分布具有可加性即如果有两个独立的二项分布的随机变量X和Y那么 X+Y仍然服从二项分布。
单击此处添加标题
应用:二项分布在统计学、生物学、医学等领域有广泛的应用例如在遗传学中 研究基因的遗传规律在可靠性工程中研究设备的寿命等。
定义:泊松分布是一种离散概率分布描述了在单位时间内(或单位面积内)随机事件发生的次数。
适用范围:非参数检验适用于总体分布未知或已知分布不满足参数检验条件的情况能够更加灵活地处理 各种数据类型和分布。
添加标题
常见方法:常见的非参数检验方法包括符号检验、秩次检验、中位数检验等这些方法都是基于样本数据 本身的特性进行统计推断不需要对总体参数进行假设检验。
添加标题
优点与局限性:非参数检验具有适用范围广、灵活性高等优点但也存在一定的局限性如对于小样本数据 可能不太稳定等。因此在选择统计检验方法时需要根据具体情况进行综合考虑。
性
构造方法:利 用样本数据和 适当的数学方 法来构造有效
估计
应用:在统计 学、经济学、 社会学等领域
《概率论与数理统计》课件第五章大数定律及中心极限定理
4.大样本统计推断的理论基础
是什么?
大数定律中心极限定理
随机现象中平均结果的稳定性
大数定律的客观背景
大量抛掷硬币正面出现频率
字母使用频率
生产过程中的废品率
§5.1 大数定律
背景:1. 频率稳定性2. 大量测量结果算术平均值的稳定性
回顾
随机现象的主要研究方法
概率分布
01
证:_x001A__x001B__x001B_,_x001A__x001B__x001B_,⋯, _x001A__x001B__x001B_, ⋯相互独立同分布,则_x001A__x001B__x001B__x001B_,_x001A__x001B__x001B__x001B_, ⋯,_x001A__x001B__x001B__x001B_, ⋯也相互独立同分布,由辛钦大数定律得证.
第五章 大数定律及中心极限定理
§5.1 大数定律§5.2 中心极限定理
要点:用切比雪夫不等式估算概率独立同分布,用中心极限定理计算对于二项分布,当n很大时,计算
本章要解决的问题
1.为何能以某事件发生的频率
作为该事件的概率的估计?
2.为何能以样本均值作为总体
期望的估计?
3.为何正态分布在概率论中占
解:(1)设X表示一年内死亡的人数,则~(, ),其中=,=.%. 设Y表示保险公司一年的利润,=×−.需要求的是_x001A_<_x001B_.
由中心极限定理
_x001A_<_x001B_=_x001A_×−<_x001B_ =_x001A_>_x001B_=−_x001A_≤_x001B_
且,
由中心极限定理
解:设为第i个螺丝钉的重量, 相互独立同分布. 于是,一盒螺丝钉的重量为
概率论与数理统计 第五章 大数定律与中心极限定理 第一节 大数定律
即n 取18750时,可以使得在n次独立重复 试验中, 事件A出现的频率在0.74~0.76之间的 概率至少为0.90 .
二、大数定律
在大量的随机现象中,随机事件的频率具有稳定性
例 如 , 在 n 重 贝 努 力 试 验 中 , P ( A ) p, 若 n 次 试 验 事 件 A 共 发 生 μ n次 , 则 μn n 即 为 事 件 A发 生 的 频 率 。
1
n
n
xi
依概率收敛于 即n充分大时, x
1
i 1
n
n
xi
i 1
在切比雪夫不等式中取 0.01 n,则
P (0.74
1
X
0.76)
1
= P{ |X-E(X)| <0.01n}
0.1875n
2
n D( X )
(0.01n)
2
1
1875 n
0.0001n
一、切贝谢夫不等式
依题意,取 1 解得
n 1875 n 1875 1 0.9 18750 0.9
大数定律与中心极限定理
第一节 大数定律
一、切贝谢夫不等式
一、切贝谢夫不等式
一、切贝谢夫不等式
一、切贝谢夫不等式
一、切贝谢夫不等式
练习 在每次试验中,事件A发生的概率为 0.75, 利用切比雪夫不等式求:n需要多么大时,才能使得 在n次独立重复试验中, 事件A出现的频率在0.74~0.76 之间的概率至少为0.90? 解:设X为n 次试验中,事件A出现的次数, 则 X~B(n, 0.75) E(X)=0.75n, 所求为满足 的最小的n .
D(X)=0.75*0.25n=0.1875n
概率论与数理统计第5章
2、定理以数学形式证明了随机变量X
1
,
X
的算术平均
n
X
1 n
n i 1
X i接近数学期望E( X k ) (k
1,2, n),这种接近
说明其具有的稳定性
这种稳定性的含义说明算术平均值是依概率收敛的意义下 逼近某一常数.
1.(2010-1)设 n 为n次独立重复试验中事件A发生的次数,p是事件
10
3.(2009 1)
设X i
0, 1,
事件A不发生 事件A发生 (i 1, 2,
,100),且P(A) 0.8,
100
X1, X 2 , , X100相互独立,令Y Xi则由中心极限定理知Y 近似服从于 i 1
正态分布,其方差为________ .
4.(2008 -10)设总体X的分布律为P{X 1} p, P{X 0} 1- p, 其中0 p 1.
P{|
m n
p
|
}1
或
ln im
P{|
m n
p
|
}
0
注: 贝努里大数定律表明,当重复试验次数n充分 大时,事件A发生的频率m/n与事件A的概率p有较 大偏差的概率很小.
事件发生的频率可以代替事件的概率.
5.2.2 独立同分布随机变量的切比雪夫大数定律
定理5-3
设随机变量X
1
,
X
,
2
,X
n
,
是独立同分布随机变量序列,
E( Xi ) , D( Xi ) 2 (i 1, 2, )均存在,则对任意 0有
lim{|
n
概率论与数理统计-第五章
【数理统计简史】
1. 近代统计学时期
18 世纪末到 19 世纪,是近代统计学时期.这一 时期的重大成就是大数定律和概率论被引入统计 学.之后最小二乘法、误差理论和正态分布理论 等相继成为统计学的重要内容.这一时期有两大 学派:数理统计学派和社会统计学派.
【数理统计简史】 数理统计学派始于19世纪中叶,代表人物是比 利时的凯特莱( A.Quetelet , 1796-1874 ),著有 《概率论书简》《社会物理学》等,他主张用研 究自然科学的方法研究社会现象,正式把概率论 引入统计学,并最先用大数定律证明了社会生活 中随机现象的规律性,提出了误差理论.凯特莱 的贡献,使统计学的发展进入个了一个新的阶 段.
i =1 36
1 2 2 3 2 2 2 2 D( X ) = E ( X ) − E ( X ) = ( 0 + 1 + 2 + 3 ) − 4 2 5 = 4
2
二、样本与抽样 由于X1,X2,...,X36均与总体X同分布,且相互独 立,所以,Y的均值和方差分别为
E (Y ) = E ( ∑ X i ) = 36 E ( X ) = 54,
【数理统计简史】 18世纪到 19世纪初期,高斯从描述天文观测的 误差而引进正态分布,并使用最小二乘法作为估 计方法,是近代数理统计学发展初期的重大事件, 对社会发展有很大的影响.
【数理统计简史】 用正态分布描述观测数据的应用是如此普遍,以 至 在 19 世 纪 相 当 长 的 时 期 内 , 包 括 高 尔 顿 ( Galton )在内的一些学者,认为这个分布可用 于描述几乎是一切常见的数据.直到现在,有关 正态分布的统计方法,仍占据着常用统计方法中 很重要的一部分.最小二乘法方面的工作,在 20 世纪初以来,经过一些学者的发展,如今成了数 理统计学中的主要方法.
概率论与数理统计--第五章 统计量及其分布
5.2.2 频数--频率分布表
样本数据的整理是统计研究的基础,整理数据的最常用方法之一是给出其频数分布表或频率分布表。
例5.2.2 为研究某厂工人生产某种产品的能力, 我们随机调查了20位工人某天生产的该种产品 的数量,数据如下
(1) 对样本进行分组:作为一般性的原则,组数通 常在5~20个,对容量较小的样本;
这是一个容量为10的样本的观测值,(体会抽样作用) 对应的总体为该厂生产的瓶装啤酒的净含量。
这样的样本称为完全样本。
例5.1.4 考察某厂生产的某种电子元件的 寿命,选了100只进行寿命试验,得到 如下数据:
表5.1.2 100只元件的寿命数据
表5.1.2中的样本观测值没有具体的数值, 只有一个范围,这样的样本称为分组样本。
设总体X具有分布函数F(x), x1, x2, …, xn 为取自该总体的容量为n的样本,则样本联合分布函数为
用简单随机抽样方法得到的样本称为 简单随机样本,也简称样本。
于是,样本 x1, x2, …, xn 可以看成是 独立同分布( iid ) 的随机变量, 其共同分布即为总体分布。
5.2.1 经验分布函数
(2) 确定每组组距:近似公式为 组距d = (最大观测值 最小观测值)/组数;
(3) 确定每组组限: 各组区间端点为 a0, a1=a0+d, a2=a0+2d, …, ak=a0+kd, 形成如下的分组区间 (a0 , a1] , (a1, a2], …, (ak-1 , ak]
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
与 数
学期望和方差:E(Xi)=μ,D(Xi)=σ2,(i=1,2,...)则对于给定的ε>0,有
理 统 计 电
lim P{|
n
1 n
n i 1
Xi
| } 1(2)
子 教 定理2可由定理1得到证明.这里我们说明上述两个定理都在概
案 率意义下的极限结论,通常称为依概率收敛.
武 汉
一般,设X1,X2,..Xn是一个随机变量序列,a是一个常数,若对于任
案 验.试验前不知道该天灯泡的寿命有多长,概率和其分布情
武
况.试验后得到这几个灯泡的寿命作为资料,从中推测整批
汉
科 技
生产灯泡的使用寿命.合格率等.为了研究它的分布,利用概
学
院 数
率论提供的数学模型进行指数分布,求出 值,再利用几天
理 系
的抽样试验来确定指数分布的合适性.
概
率 论
由于灯泡使用寿命的试验是破坏性试验.不能将所有的灯泡
子
教 案
可见虽有10000盏灯,只要电力供应7200盏灯即有相当大的保
武 证率切贝谢夫不等式对这类问题的计算有较大价值,但它的精度
汉 科
不高.为此我们研究下面的内容.
技
学
院
数
理
系
概
§ 5.2 中 心 极 限 定 理
率 在随机变量的一切可能性的分布律中,正态分布占有特殊的
论
与 地位事实上遇到的大量随机变量都服从正态分布。自然会提
数 理
φ[(X-μ)/σ]~N(0,1)的概率密度函数
统 计 电
lim p{ n np
x
x}
1
t2
e 2 dt
(6)
n np(1 p)
2
子
教
案 证明 由于服从二项分布的随机变量ηn可看成n个相互独立,
武 汉
服从同一个(0-1)分布的随机变量X1,X2,...Xn之和,即ηn=∑Xi
科 技
其中Xi(i=1,2,...,n)的分布律为 P{Xi=k}=Pk(1-P)1-k
理
6
统
计
电 子
E( X ) 1 (1 2 3 4 5 6) 7
6
2
教 案
D( X ) E( X E( X ))2 (1 7 )2 1 (2 7 )2 1 (3 7 )2 1
26
26
26
武 (4 7 )2 1 (5 7 )2 1 (6 7 )2 1 1 [2 (2.52 1.52 0.52 )] 35
Ck 10000
0.7k
0.310000k
k 6800
用切贝谢夫不等式估计
数 E np 10000 0.7 7000
理 统
D npq 10000 0.7 0.3 2100
计 电
p(6800
7200)
p(
7000
7200 6800 2
200 1
D 2
1
2100 2002
0.95
与 数
次轰炸中有180颗到220颗炸弹命中目标的概率?
理
统
计 分析:令第 I次轰炸命中目标的次数 i .100次轰炸中命中
电 子
目标次数
100
i
教 案
i 1
应用中心极限定理 i 服从正态分布期望值为
200,方差为169,标准差为13
武
汉
科
技
学 院
E 100Ei 200, D(1 2 ..100) 1001.69 169
)
案
D(X ) 35 1 35 1 16
武
X 2, 2
12 4 48 3 48
汉
科 技 学 院
p( X
)
2 2
, (14)
数
理
系
概 例2 在n重贝努里试验中,若知道每次试验A出现的概率为0.75
率 试用切贝谢夫不等式求n.使A出现的频率在0.74到0.76之间的概 论
与 率不少于0.9?
论 时事件发生的频率收敛于概率.表示频率的稳定性. 与
数 理 定理3 统
lim P{|
n
1 n
n i 1
Xi
| } 1
计 电 子
lim
n
P{|
1 n
(X1
X2
... X
n)
p
|
}
1
教
案
即
lim P{| nA p | } 1
武
n
n
汉 科 技
定理3表明事件A发生的频率nA/n依概率收敛于事件A的概率p.
子 的稳定性,这就从理论上肯定了用算术平均值代替理论均值 教
案 的合理性.
武 贝努里定理. 它的叙述如下:设是n次重复独立
汉 科
对于任意给定的ε>0,有
技
学 院 数 理
lim P{| nA p | } 1
n
n
系
概 lim P{| nA p | } 1
率 n
n
其中nA/n是频率,p是概率,即次数多
科
技 学
意给定的ε>0,有 limP{|Xn-a|<ε}=1 则称该序列依概率收敛于a.
院
数理Biblioteka 系概率 论
定理2表明:当n很大时随机变量X 1 ,
X
2
,
,
X
的算术平X=Σ
n
X/in
与 数
在概率意义下接近于数学期望E(X
)=μ.
i
理 统
即表示在定理2的条件下,n个随机变量的算术平均值在n无限增
计 电
大时,几乎变成一个常数.它反映了大量测量值的算术平均值
统 计
6800和7200之间的概率?
电
7200
子
p(6800 7200 )
Ck 10000
0.7k
0.310000k
教
k 6800
案 分析:令 为夜晚同时开着灯的数目.它服从参n=100000,p=0.7
武 汉
的二项分布.用贝努里公式
科
技
学
院
数
理
系
7200
概 率 论 与
p(6800 7200 )
20 (4.36) 1
0.99999
概 率
数理统计的特点:它以随机现象的观察试验取得资料作
论 与
为出发点,以概率论为理论基础来研究随机现象.根据资料
数 为随机现象选择数学模型,且利用数学资料来验证数学模 理
统 型是否合适,在合适的基础上再研究它的特点,性质和规律
计 电
性.
子 教
例如灯泡厂生产灯泡,将某天的产品中抽出几个进行试
与 都进行试验.只能取部分的灯泡作试验.这产生二个问题.1是
数
理 抽取的灯泡是否有代表性.因为灯泡试验是一种随机现象,代
统 计
表性强的效果好.我们称为抽样方法.2是搜集到的数据怎样
电 子
进行正确的分析,是否能正确地推断出整体情况.我们称为统
教 计推断. 案
数理统计的重要内容是抽样方法和统计推断.学习数理统
学 院
定理3以严格的数学形式表达了频率的稳定性.因此在实际应用
数
理 系
中,当n很大时,我们可用事件的频率来代替概率.
概
例1 设 X 是抛一颗骰子所出现的点数,若给定X =1,2,
率 论
实际计算 p( X E(X ) ),并验证切贝谢夫不等式成立。
与 分析:因为X 的概率函数 数
p(X k) 1 , (k 1,2,..6)
数 理
出为什么正态分布如此广泛地存在,而且在概率论中占有重
统 计
要地位。应该如何解释大量随机现象中这一客观规律性呢?
电 李雅普夫证明:在某些非常一般的充分条件下,独立随机变
子
教 量的和的分布,当随机变量的个数无限增加时是趋向正态分
案 布的。
武 汉
此后林德伯格又成功地找到独立随机变量和的分布,当随机
科
定理6表明,正态分布也是二项分布的极限分布(二项分布
子 教
的另一极限分布是泊松分布).当n充分大时,我们可利用
案
定理6来计算二项分布的概率.
武 汉 科 技 学 院 数 理 系
概 例1 对敌人某地段进行100次轰炸,每次轰炸命中目标的炸
率 论
弹数目是一个随机变量,其期望值为2,方差为1.69.求100
n i 1
[Xi
E( X i )] |
} 1(1)
案
武
证明:
由于X1,X2,...,Xn相互独立,故
D(
1 n
n i 1
Xi)
1 n2
n i 1
D(Xi )
C n
汉 再由切比雪夫不等式,可得
科
技
学 院 数
p( X
)
2 2
, (14) p( X
)
1
2 2
(15)
理
系
概
率
论
与
数 理
P{|
数 理
n 10, p 0.2, q 0.8, npq 10 0.2 0.8 1.6 1.265
统 计 电 子
(1)直接计算
p(
3)
C130 p q3 103
1098 0.23 3 2
0.87
0.2013
教 案
(2)用局部定理
武 汉 科
p( 3)
1 npq
0(k
np) npq
1 1.265
(k=0,1)
学 院 数
而 E(Xi)=P, D(Xi)=P(1-P) (i=1,2,...,n),根据定理5(独立同分