差动保护试验方法总结

合集下载

变压器差动保护试验方法

变压器差动保护试验方法

变压器差动保护试验方法第一,绕组电压比差动试验。

该试验是通过加载不同的变压器绕组,在不同测点进行电压测量,然后计算电压差值来验证绕组之间的电压比差动。

具体试验步骤如下:1.确定试验参数,包括试验电流、绕组的连接模式和相对位置等。

2.进行变压器空载试验,记录各测点的电压值。

3.按照试验参数设置电流,对绕组进行加载试验。

4.在各测点测量电压,计算电压差值。

5.比较计算得到的电压差值与设定的差动值,如差值在允许范围内,则差动保护正常。

第二,同侧相位关系试验。

该试验是通过对变压器同侧绕组的相位关系进行检查,以保证差动保护系统的相位一致。

具体试验步骤如下:1.确定试验参数,包括试验电流、绕组的连接模式和相对位置等。

2.进行变压器空载试验,记录各测点的相位关系。

3.按照试验参数设置电流,对绕组进行加载试验。

4.在各测点测量电压和相位,检查相位关系是否一致。

5.如相位关系一致,则差动保护正常。

第三,误差变换试验。

该试验是通过对差动保护变压器继电器进行误差变换试验,以验证差动保护系统的测量误差是否满足要求。

具体试验步骤如下:1.确定试验参数,包括试验电流、绕组的连接模式和相对位置以及变比等。

2.进行变压器空载试验,记录各测点的电压和相位值。

3.按照试验参数设置电流,对绕组进行加载试验。

4.在继电器的输出端口测量电流,计算误差。

5.比较计算得到的误差与设定的误差范围,如误差在合理范围内,则差动保护正常。

第四,保护性校验试验。

该试验是通过在差动保护系统感应线圈内引入额外的故障源,观察差动保护系统的动作情况,以确保差动保护装置对变压器故障进行准确快速的切除。

1.在差动保护系统的感应线圈内接入故障源。

2.设置故障源的类型和参数,例如短路故障。

3.观察差动保护系统的动作情况,包括动作时间、动作电流等。

4.比较观察结果与设定的保护动作要求,如满足要求,则差动保护正常。

总结起来,变压器差动保护试验方法主要包括绕组电压比差动试验、同侧相位关系试验、误差变换试验以及保护性校验试验等。

主变差动保护调试方法详解1

主变差动保护调试方法详解1

主变差动保护调试方法主变差动保护是我们平时调试频率最高,难度最大,过程最复杂的一种保护类型,在调试过程中经常会遇到各种各样的问题,这里介绍一个主变差动保护的调试方法,以武汉豪迈电力继保之星6000C(传统保护用继保之星1600)为调试工具来做南瑞继保RCS-978和国电南自PST-1200主变差动保护试验,相信大家看了之后会觉得差动保护其实很简单很明了,将那些繁杂的公式转换都抛之脑后。

一、加采样来到现场第一步别急着开始做试验,首先我们要看保护装置的采样信息。

数字保护我们要先导取模型文件,一般后台厂家会给我们全站SCD文件,在继保之星6000C上按照步骤导入配置文件,配置通道时最好按照高中低通道1、2、3,通道映射为ABC、abc、UVW的顺序,以免弄错弄糊涂了,正确设置三侧变比信息。

然后按照通道接好光纤,在接光纤的时候可以先接保护装置侧,然后接继保仪RX光口,如果指示灯点亮表示接的正确,如果没有亮表示接反了换另一根光纤接RX。

南瑞继保RCS-978用的是方口(LC口),国电南自PST-1200用的是圆口(ST口)。

准备工作做好之后可以按照图1所示设置参数:图1传统继保可以先接线接线时按照黄绿红ABC相的顺序,只有六路电流先接上高中侧(或者高低侧)电流,接好线后开机可以按照图2所示设置参数:图2每相设置不同的电压电流量方便检查采样值。

在加采样值时以防保护动作产生报文不方便看采样信息最后先将主保护功能退掉。

在加采样值时如果不正确可检查以下情况。

数字继保:确保模型文件导入正确;通道设置与所用的实际光口通道一致;通道映射与交流试验所用的相别对应;CT、PT变比设置与保护装置内部变比一致;高中低三侧SMV接受压板均打开状态;波形监测是否有实时波形输出状态。

传统继保:电流开路指示灯是否处于点亮状态;两根电流测试线是否接反;测试线是否接对位置;CT二次侧划片是否与保护侧断开以防产生分流。

二、看差流采样值信息无误后第二步可以看差流信息,在此以江西鹰潭洪桥220kV变电站两套保护装置配置信息为例来完成下面的操作。

变压器差动保护实验报告

变压器差动保护实验报告

变压器差动保护实验报告1#主变差动保护试验报告继电保护检验报告设备名称: 主变差动保护安装地点: 继保室负责人: 刁俊起检验性质: 新安装检验试验日期: 2012.11.24开关编号: 510、410检验单位: 山东送变电工程公司试验人员: 王振报告编写:校核:审核:刁俊起风雨殿风电场RCS-9671CS变压器差动保护装置检验报告(新安装检验)试验日期: 2012年11月24日3绝缘及耐压试验:按下表测量端子进行分组,采用1000V摇表分别测量各组回路对地及各组回路之间的绝缘电阻,绝缘电阻值均应大于10MΩ。

在保护屏端子排处将所有电流、电压及直流回路的端子连在一起,并将电流、电压回路的接地点解开。

整个回路对地施加工频电压为1000V、历时为1分钟的介质强度试验,试验4工作电源检查(1)直流电源缓慢上升时的自启动性能检验。

直流电源从零缓慢升至80%额定电压值,此时逆变电源插件应正常工作,逆变电源指示灯都应亮,保护装置应没有误动作或误发信号的现象,(失电告警继电器触点返回)。

检查结果合格(2)拉合直流电源时的自启动性能。

直流电源调至80%额定电压,断开、合上检验直流电源开关,逆变电源插件应正常工作(失电告警继电器触点动作正确)。

检查结果合格(3)工作电源输出电压值及稳定性检测保护装置所有插件均插入,分别加80%、100%、110%的直流额定电压,电源监视指示灯、液晶显示器及保护装置均处于正常工作状态,测量电源输出电压值如下: 5初步通电检查(1)打印机检验:检查结果合格(2)键盘和液晶显示检验:检查结果合格(3)保护定值整定及失电保护功能检验:检查结果合格(4)时钟设置及失电保护功能检验检查结果合格(5)软件版本和程序校验码的核对6电气特性试验6.2开出检验6.3功耗测量:(记录功耗最大一侧的测量数据)6.4模/数变换系统检查:6.4.1零漂检查:利用人机对话打印出采样值的零漂(不加任何交流量时的正常采样值),电流、电压回路6.4.2电流通道刻度检查模拟量测量误差应不超过?5%。

变压器差动保护特性试验方法

变压器差动保护特性试验方法
以采 用 Y N d l 1接 线 的 2 2 O k V 变 压 器 为 例 ,其 两 侧
电流 采 用 △ 一 Y校 正 方 式 。 由式 ( 1 ) 、式 ( 2 ) 可 知 ,在 高 压 侧 A、 B相 加 入 J 一J 侧 a 相 加入 j 一、 / 5 J 0 。 、, } { 一J 1 8 O 。 , 在 低 压
电 气 测 试
变 压 器 差 动 保 护 特 性 试 验 方 法
谢 鹏 ,周 华 萍
4 2 3 0 0 0 ) ( 湖 南 省 电 力公 司郴 州 电 业 局 , 湖 南 郴 州
[ 摘要 ] 提 出一 种 基 于 角度 变量 的 变压 器 差动 保 护 动 作 特 性 试 验 方 法 :通 过 改 变保 护测 试仪 输 出 电流 的 角度 以 产 生差
{ 【 J
, . 、 一Fra bibliotek( 4 )

通 常 在变 压 器差 动 保护 中 ,差 动 电流 J 与制 动 电流

, 的计 算 公式为 :
7 , l

] I o d — I 善 I ' i 1 I 骞 I ' i l


式( 5 ) 中 ,J 为 变压 器 i 侧 的额 定 电流 ;j 为 变压 器 z
收 稿 日期 : 2 0 1 2 一 O 7 — 0 2
作者简 介 : 谢鹏( 1 9 8 2) , 从事 变电运行 工作 ; 周华萍( 1 9 8 3 一 ) , 从事 变电维操 工作 。
8 l W W W c h i n a e t n e t I 电工技术
电气测试
侧 经校 正 后 的 电流 。 0 . 8 7 8 6 A, 见表 1 。

差动保护试验

差动保护试验

比率差动保护实验方法主题词比率差动实验方法随着综合自动化装置的普遍推广使用,变压器比率差动保护得到了广泛的使用,但是由于厂家众多,计算方法和保护原理略有差异,而且没有统一的实验方法,尤其是比率制动中制动特性实验不准确,给运行和维护带来了不便,下面介绍两种比较简单和实用的,用微机继电保护测试装置测试差动保护的实验方法。

一、比率差动原理简介:差动动作方程如下:Id>Icd (Ir<Ird)Id>Icd+k*(Ir-Ird) (Ir>Ird)式中:Id——差动电流Ir——制动电流Icd——差动门槛定值(最小动作值)Ird——拐点电流定值k——比率制动系数多数厂家采用以下公式计算差动电流;Id=︱İh+İl︱(1)制动电流的公式较多,有以下几种:Ir=︱İh-İl︱/2 (2)Ir=︱İh-İl︱(3)Ir=max{︱İ1︱,︱İ2︱,︱İ3︱…︱İn︱}(4)为方便起见,以下就采用比较简单常用的公式(3)。

由于变压器差动保护二次CT为全星形接线,对于一次绕组为Y/∆,Y/Y/∆,Y/∆/∆,Y形接线的二次电流与∆形接线的二次电流有30度相位差,需要软件对所有一次绕组为Y形接线的二次电流进行相位和幅值补偿,补偿的方式为:İA=(İA’—İB’)/1.732/K hpİB=(İB’—İC’)/1.732/K hpİC=(İC’—İA’)/1.732/K hp其中İA、İB、İC为补偿后的二次电流(即保护装置实时显示的电流),İA’、İB’、İC’为未经补偿的二次电流,相当与由CT输入保护装置的实际的电流。

K hp为高压的平衡系数(有的保护装置采用的是乘上平衡系数),一般设定为1。

这样经过软件补偿后,在一次绕组为Y形的一侧加入单相电流时,保护会同时测到两相电流,加入A相电流,则保护同时测到A、C两相电流;加入B相电流,则保护同时测到B、A两相电流;加入C相电流,则保护同时测到C、B两相电流。

差动保护试验方法

差动保护试验方法

差动保护试验方法差动保护是电力系统中常用的一种保护方式,主要用于检测并定位电力系统的故障。

差动保护试验旨在验证差动保护系统的性能,确保在故障发生时能够及时、准确地切除故障部分,保护电力系统的安全运行。

1.整定试验:差动保护的整定是指根据系统参数和故障情况,确定差动保护系统的各个参数和阈值。

整定试验中主要包括设定电流试验、设定时间试验和设定阻抗试验。

设定电流试验通过改变电压、电流的变化,验证差动保护系统对不同故障情况的反应,以确定设定电流的准确值。

设定时间试验主要通过改变故障发生时的切除时间,验证差动保护的动作时间和灵敏度。

设定阻抗试验是为了验证差动保护系统的阻抗设定是否合理。

2.稳定性试验:差动保护系统的稳定性是指系统在发生故障时,能够正确地切除故障部分,而不会对正常运行的系统造成误动作。

稳定性试验主要包括对称负荷试验和非对称负荷试验。

对称负荷试验是通过改变系统的负荷情况,验证差动保护系统对不同负荷的响应情况,以确保系统在正常运行负荷下不会误动作。

非对称负荷试验是通过改变系统的负荷不平衡情况,验证差动保护系统对非对称故障的切除能力。

3.真实故障试验:差动保护系统的真实故障试验是为了验证差动保护系统对实际系统故障的响应能力。

真实故障试验通过在系统中引入各种类型的故障,并观察差动保护的动作情况,以验证差动保护系统对不同类型故障的切除能力和灵敏度。

4.抗干扰试验:差动保护系统的抗干扰能力是指在存在干扰信号的情况下,保护系统能够正常工作的能力。

抗干扰试验主要包括干扰源试验和抗干扰试验。

干扰源试验是通过在系统中加入各种类型的干扰源,观察差动保护系统的响应情况,以评估差动保护系统的抗干扰能力。

抗干扰试验是通过在差动保护系统的输入端引入干扰信号,并观察系统的响应情况,以评估差动保护系统的抗干扰能力。

差动保护试验主要包括实验前的准备工作、试验方案的制定、试验设备的准备和试验结果的分析等步骤。

实验前的准备工作主要包括对保护装置的检查和维护、系统参数和故障类型的确定等。

变压器差动保护试验新方法

变压器差动保护试验新方法

器(L 接人差动回路。B H的铁 极易饱和, B H) L 非周期分量不易通过 B H变换到二次侧 ,可 以成功的消除不平衡电流中非周期分量的影 L 响。 变压器的差动保护主要用来保护变压器的相问短路 、 单相接地 、 层 问短路 、 以及变压器引入引出的短路。 差动保护的调试 , 除继电器和互
民 营科技2 1 年第1 02 期
科技 论 坛
变压器差动保护试验新 方法
李 凤 双
( 河北省迁安恒晖热电有 限公 司, 河北 唐 山 o4 o ) 6 4 o 摘 要: 对变压 器差动保 护简单分析 , 继电保护应满足速动性 、 选择 可靠性 、 灵敏性。
关 键 词 : 力 变压 器 ; 动 保 护 ; 磁 涌 流 电 差 励
前言
2 0 V侧差动电流互感器相同。 ) 2k 2采用具有快速饱和特陛的中间变流
八钢 20 V电炉变 电站安装 一 台 2 0V 3 V,0 0 k A主 2k 2k  ̄ k 700V 变, 为一台 7 0吨电炉厂变压器(3 V,3 0 k A)另一台冶炼电炉 3 k 10 0 V , 变压器(3 V,00 k A) 电。自 19 年 1 月 7 吨电炉厂投产 , 3k 600V 供 99 1 0 多 次发生 冶炼 电炉变合 闸时 2 0V 主变 和 差流 。
冶炼时, 测量差动保护装置回路不平衡电流为零 ; 而当冶炼电炉合闸 为提高测量精度 ,一般要求被测的各互感器二次 电流不小于 时, 通过微机差动保护报告发现 , 差动保护装置回路不平衡电流有时 0 A,那么折算到电流互感器的一次侧电流就应不小于额定 电流的 . 5 达到保护动作电流 , 有时达不到保护动作电流, 这一结果和实际情况 1%, 0 所以对实验用电源的要求为:= ( /e 107 ss UU 0 、. 5 相符合 。 实际上 , 冶炼电炉变有时合闸引起主变差动保护动作 , 有时不 S2 0 0 (8/ 0 0 ̄ O 、. 0 . k A) =4 0 x3 01 0 ) 107  ̄2 5 (V 5 5 4

差动保护试验方法

差动保护试验方法

HSA-512变压器差动保护试验方法
1.YD-11接线:
● 差动定值都是高压侧额定电流的倍数关系。

● 高压侧额定电流,低压侧额定电流设为1A ,差动电流启动定值0.5倍,比例系数设为0.5
● 不投Y-三角变换时: Id=l I h I +, Ir=2/l I h I -
分相做试验,高低压侧电流相同,相位差180度,那么Id 为0,Ir 为两个电流和的一半。

分别改变两侧电流,一个增大,一个减小,步长一样,保持Ir 不变,Id 满足公式就会动作。

● 投Y-三角变换时
此时,补偿后高侧电流 IAh=3/)(h IB h IA +
公式变成 Id=|3/)(h IB h IA ++I Al | Ir=|3/)(h IB h IA +-I Al |/2
分相做试验,高压侧A 相加1︒∠0,B 相加1︒∠240,低压侧A 相加1︒∠210,那么Id 为0,Ir 为两个电流和的一半,为1A 。

分别改变两侧电流,一个增大,一个减小,步长一样,保持Ir 不变,Id 满足公式就会动作。

其中,高压侧两个电流应同步变化。

2.YYD-11接线
YYD 程序,高低侧投补偿试验方法同YD-11程序。

高中侧试验方法相当于YD11不投Y-三角变换时,而且Y-三角变换不管投不投差流均不会有变化。

注意:高,中压侧电流互感器接线应以指向变压器为正方向,即高,中压侧电流相差180度。

3.YDD-11接线
YDD 程序,高低侧或高中侧投补偿试验方法同YD-11程序。

母线差动保护测试

母线差动保护测试

下面以RCS-915AB 微机母线保护的母差保护为例,介绍用“差动保护”菜单自动测试比率差动保护。

由于母线的作用是汇集和分配电能,在潮流分布中,如果我们把母线看成一个节点的话,根据基尔霍夫电流定律,流进节点的电流应该等于流出节点的电流,这就是母线保护的基本原理。

所谓的差流,是流进母线的电流和流出母线的电流之差。

当母线正常运行(或区外故障)时,流进的电流等于流出的电流,差流为0母线保护不会动作;当母线区内故障时,故障电流应该是全部流进母线而没有流出的电流(理想情况),这时流进母线的电流就不等于流出母线的电流,差流不为0,不满足基尔霍夫电流定律,母线保护应该动作。

国内的微机型保护就是根据基尔霍夫电流定律为基本依据构成的差动保护。

2-1 母线区外(区内)故障投上保护屏上“投母差”压板,整定定值控制字中“投母差保护”置1。

RCS915A母差的差动回路包括母线大差回路和各段母线小差回路,大差是指除母联开关和分段开关外所有支路电流所构成的差动回路,某段母线的小差是指该段母线上所连接的所有支路电流所构成的差动回路。

其保护原理可简单归纳为“大差启动,小差选择”。

RCS915母差装置对TA极性要求支路TA同名端在母线侧,母联TA同名端在I母侧。

因此试验时如I母元件与母联TA顺极性加入电流,表明I母区内故障;反之,则表明I母区外故障。

试验要求对TA极性有深刻认识,理清各种故障下I、II母元件和母联开关二次电流的流向关系对于调试的正确接线将很有帮助。

1、区外故障试验方法:短接元件1的I 母刀闸位置和元件2的II 母刀闸位置接点,将元件2TA 与母联TA 同极性串联,再与元件1TA 反极性串联,模拟母线区外故障。

通入大于差动起动高定值的电流,加入保证母差电压闭锁条件开入的故障电压。

试验结果:保护起动而不出口,在端子排上测得I 、II 母上所有间隔及母联开关出口跳闸回路不接通,无动作信号。

电流接线如图:图2.2.1 母线区外故障接线图2、 区内故障短接元件1的I 母刀闸位置和元件2的II 母刀闸位置接点; (1) I 母故障试验方法:将元件1TA 、母联TA 和元件2TA 同极性串联,模拟I 母区内故障。

差动保护试验方法

差动保护试验方法

差动保护试验方法国测GCT-100/102差动保护装置采用的是减极性判据,即规定各侧均已流出母线侧为正方向,从而构成180度接线形式;1.用继保测试仪差动动作门槛实验:投入“比率差动”软压板,其他压板退出,依次在装置的高压侧,低压侧的A,B,C相加入单相电流0.90A,步长+0.01A,观察差流,缓慢加至差动保护动作,记录动作值; 说明:注意CT接线形式对试验的影响;若CT接为“Y-△,△-Y型”,则在系统信息——变压器参数项目下选择“Y/D-11”,此时高侧动作值为:定值×√3,即动作,低测动作值为定值,即动作若CT接为“Y-Y型”,则在系统信息——变压器参数项目下选择“无校正”,此时高低侧动作值均为定值,即动作2.用继保测试仪做比率差动试验:分别作A,B,C相比率差动,其他相查动方法与此类似;以A相为例,做比率差动试验的方法:在高,低两侧A相同时加电流测试仪的A相电流接装置的高压侧A相,B相电流接装置的低压侧A相,高压侧假如固定电流,角度为0度,低压侧幅值初值设为x,角度为180度,以0.02A为步长增减,找到保护动作的临界点,然后将x代入下列公式进行验证;其中:Id:差动电流,等于高侧电流减低侧电流Id0:差动电流定值Ir:制动电流,等于各侧电流中最大值Ir0:制动电流定值K:制动系数例如:定值:Id0=1A; Ir0=1A; K=接线:测试仪的Ia接装置的高压侧A相,Ib接装置的低压侧A相输入:Ia=∠0o5A Ib=∠180o5A 步长Ib=0.02A试验:逐步减小Ib电流,当Ib=3.4A时装置动作;验证:Id=5-=1.6A Id0=1A Ir=5A Ir0=1A3.用继保测试仪做差动速断试验投入“差动速断”压板,其他压板退出;依次在装置的高压侧,低压侧的A,B,C相加入单相电流9.8A,每次以0.01A为步长缓慢增加电流值至动作,记录动作值;例如:定值:速断值:10A差动速断:投接线:测试仪的Ia接装置的高压侧A相输入:Ia=∠0o9.80A试验:以0.01A的步长,逐步增加Ia至10.0A装置动作;4.用继保测试仪做差流越限试验投入“差流越限”压板,其他压板退出;差动动作试验方式加入电流0.40A,并每次增加0.01A缓慢增加至差流越限动作;例如:定值:告警值:0.5A延时值:10S差流越限:投接线:测试仪的Ia接装置的高压侧A相输入:Ia=∠0o0.40A以0.01A的步长,逐步增加Ia至0.50A装置告警;5.用继保测试仪做二次谐波闭琐试验用继保测试仪的“谐波试验”,输入基波和二次谐波的叠加电流,改变步长减小二次谐波的电流含量至保护动作,根据动作条件,计算K2并与定值进行比较;例如:定值:谐波制动比二次 20%开放值 6.00A接线:测试仪的Ia接装置的高压侧A相,Ib接装置的低压侧A相输入:Ia=∠0o2A 2次谐波=0.9A 2次谐波步长=0.01AIb=∠0o2A试验:试验开始,装置不动作;逐步减小2次谐波电流,当2次谐波=~0.84A 时装置动作;动作后观察装置二次实时数据,此时Ida=4、Ida2=左右;验证:Ida=4A Ida2=0.8A。

差动保护联调试验

差动保护联调试验

1两侧差动保护联调试验1.1本试验只针对差动保护,应将距离、零序保护的压板断开。

1.2专用光纤通道1.2.1光功率与光衰耗测试。

两侧分别在保护的光发送口(在保护装置的光发送插件背板处旋开尾纤,在3#插件背板尾纤插座上插入光功率计)测量发送功率,将接收端尾纤插头插入光功率计测量接收功率,本侧发送功率与对侧的接收功率差即光通道的衰耗,两个方向的光衰耗之差应小于2—3dB并记录备案,否则应查明原因。

1.2.2收信灵敏度和裕度的确认:装置的发信光功率为-7dB,接收光功率正常出厂为-35dB,通道裕度不小于6dB,则接收电平不得小于-29dB,即允许最大衰耗为35-7-6=22dB(当线路较长时,可通过取消插件内部的跳线L4将接收光功率整定在-40dB)。

1.2.3单相故障联动试验:本侧断路器在合闸位置,对侧断路器在断开位置,本侧模拟单相故障,则本侧差动保护动作跳开本侧断路器。

两侧断路器在合闸位置,两侧分别进行如下试验:一侧模拟单相故障同时另一侧在模拟相电压降低到额定电压90%以下,则差动保护瞬时动作跳开两侧断路器,然后单相重合。

1.2.4相间故障联动试验。

两侧断路器在合闸位置,两侧分别进行如下试验:一侧模拟相间故障的同时另一侧三相电压正常,则差动保护不动作;两侧断路器在合闸位置,一侧模拟相间故障的同时另一侧模拟故障相电压降低至额定相电压的90%以下的条件,则两侧差动保护同时动作跳开本侧的断路器。

1.2.5如采用两套PSL-603保护,应检查光纤信号不能交叉,做其中一套保护联调时应关闭另一套保护的电源。

1.3复用PCM(光纤接口)1.3.1光功率与光衰耗测试。

在保护的光发送口测量发送功率P1,在保护的光接收口测量接收功率P2;在光电转换器的光发送口测量发送功率P4,在光电转换器的光接收口测量接收功率P 3。

保护发送功率与光电转换器的接收功率差(P1-P3)即保护至光电转换器的光衰耗,光电转换器发送功率与的保护接收功率差(P4-P2)即光电转换器至保护的光衰耗,如下图所示。

差动保护试验方法

差动保护试验方法

差动保护试验方法差动保护在电力系统中被广泛采用在变压器、母线、短线路保护中。

差动保护模拟试验起来比较难,主要有以下原因:第一,差动保护的电流回路比较多,两卷变压器需要高、低压两侧电流,三卷变压器需要高、中、低压三侧电流,母线保护需要更多;第二、差动保护的核心是提供给差动继电器或自动化系统差动保护单元差电流, 要求各电流回路的极性一定要正确,否则极性接错即变成和电流; 第三,差动保护的特性测试比较难。

传统的检验极性的方法是做六角图,但新投运的变压器负荷一般较小,做六角图有难度,还有,即便是六角图对也不能保证保护屏内接就正确(笔者曾发现过屏内配线错误,做六角图时,保护动作不正确)。

曾经看到用人为加大变压器负荷的方法来准确地做出六角图的文章.如用投电容器来人为加大主变负荷,还有用两台变比不同的主变并列后产生环流来人为加大主变负荷。

笔者认为以上方法与有关运行规程有矛盾:变压器并列变比相同,负载轻时不许投电容器都是运行规程明确规定的,就是试验没问题,在与运行人员的工作协调中也有难度。

因此,以上方法不便采用。

下面介绍我们的经验,我们只在二次回路上试验,不必人为加大主变负荷即可全面、系统地验证差动保护的正确性。

一、用试验箱从保护屏端子排加电流,检查保护屏内及保护单元的接线正确性变压器的差动保护电流互感器接线,传统上都是和变压器绕组接线相对应的,即变压器绕组接成星形,相应电流互感器接成角形; 变压器绕组接成角形,相应电流互感器接成星形。

这样,变压器各侧电流回路正好反相。

现在的自动化系统差动保护单元有的继承了原来的接法,有的为了简化接线则要求各侧均为星形,这样对一般Y,D-11接线的变压器高压侧电流超前低压侧150°,接线系数为√3,这些差异由计算机来处理,最后差电流为零。

上面讨论了电流互感器接线类型,下面就做对保护屏加模拟电流来验证其接线是否正确的试验。

如果为传统的接线方式,可以加反相的两路模拟电流(从一侧头进尾出后从另一侧尾进头出即可实现),如果各侧均是星接,则加高压侧超前低压侧150°的电流来模拟。

完整的变压器差动保护调试和验证方法

完整的变压器差动保护调试和验证方法

目前绝大多数差动保护装置差动电流是取变压器两侧电流的 矢量和,制动电流取变压器两侧电流的最大值,这样能够有效防 止变压器误动作,提高稳定性。其具体公式如下:
I cd=︱ AJ+ aj ︳ I t h=max( ︱ AJ ︳, ︱ aj ︳) I c d:变压器差动电流 I t h:变压器制动电流或称穿越电流 AJ : 经过 保护校 准补 偿后的 高压 侧电 流矢量 值 aj :经过保护校准补偿后的低压侧电流矢量值 目前大多数差动保护主要由具有谐波制动(二次谐波制动和 五次谐波制动)的多斜率比率差动和高阀值的差动速断构成,保 护具有CT断线闭锁功能,其保护装置的动作特性曲线如图3。
低压侧AC两相短路或BC两相短路与AB相短路一样,高压侧 只有A相或C相有短路电流。而对于Y/ △11接线的变压器,低压侧 两相接地短路与两相短路一样。
(3)低压侧单相接地故障。由于低压侧为不接地系统,单 相接地故障不会产生故障电流,只是接地相电压降低,其他两相 电压升高,但线电压是对称的,只要负载平衡,三相电流是相同 的。此时,差动电流基本为0,制动电流为正常负荷电流。差动电 流不会动作。
(3)低压侧区外单 相短路故障。由于电压 侧为不接地系 统,区外单相接地与区内一样,电流并没有变化,变化的只是相 电压。差动电流基本为0,差动保护不会动作。
三、差动保护试验实例 下面以一个具体的实例说明 :一台变压器容量为75MVA的 变压器,接线方式为Y/ △11,高压侧额定电压110kV,CT额定 一次 电 流 为 60 0 A, 低 压 侧 额 定 电压 为 1 0k V, CT额 定一 次 电 流 为
74 河南科技2010.8下
以上数据输入进去,计算结果差动电流基本为0,如下图所示。
图 4 差动试验验证界面 可以以此为基础,详细做差动保护的各种动作值,包括启动 值、拐点、比例系数、差动速断、谐波制动。具体方法可以固定 高压侧电流不变,不断改变低压侧电流,则其差动电流和制动电 流随之改变,就可以做很多个动作值,可以绘制相应的比例差动 动作曲线,并计算动作误差。谐波制动需要根据设置是在单相加 入谐波还是三相同时加入谐波,试验其闭锁值并计算其误差。 四、结语 本文介绍一个比较完整的校验差动保护的试验方法,并利 用Exce l 的宏功能设计一个界面来验证其结果,使保护人员心中有 数,保证差动保护正确无误。

差动保护原理及校验

差动保护原理及校验

差动保护原理保护的动作方程假设保护的差动电流为Id,制动电流为Ir,差动门槛定值为Icd,差动速断定值为Isd,拐点1为Ig1,比例制动系数为K1,拐点2为Ig2,比例制动系数为K2,则国内绝大部分保护的动作方程均为:Id > Icd 当 Ir < Ig 时;Id > Icd + K * ( Ir – Ig1 ) 当 Ig2 > Ir > Ig1 时;Id > Icd + K1 * ( Ig2 – Ig1 ) + K2 * ( Ir – Ig2)当 Ir > Ig2 时;Id > Isd比例制动曲线如上图所示:以上四个动作方程只要满足其中一个,保护就会动作出口。

大部分差动保护目前只采用了一个拐点。

即便是存在两个拐点的差动保护,为了测试更方便简单,往往也可以在试验前将保护定值中修改定值为:Ig1 = Ig2;K1 = K2。

从而按只有一个拐点的方式进行测试。

只有一个拐点的比例制动动作方程如下:Id > Icd + K * ( Ir – Ig ) 当 Ir > Ig 时;对于微机差动保护,实际上比例制动和差动速断是两套保护,所以很多保护都设置了控制字,用于投、退这两种保护。

测试差动速断保护时,一般应将“比例制动”保护由控制字退出。

如果不退出,或有些保护没有这种退出功能,则只有在比例制动保护动作后,继续增加输出电流,从保护的指示灯或有关报文判断差动速断保护是否动作。

高、低压侧电流与差动电流、制动电流的关系一般,国内保护的差动电流均采用:Id = | Ih + Il |,可表述为:差动电流等于高、低压侧电流矢量和的绝对值,因此必须注意加在保护高低压侧电流的方向。

制动电流的方程则各个品牌和型号的保护往往不同,国内保护最常见的公式有以下三种:◆Ir = max{ | Ih |,| Il | },正确的表述为:制动电流等于高、低压侧电流幅值的最大值;◆Ir = ( | Ih | + | Il | ) / K ,正确的表述为:制动电流等于1/K倍的高、低压侧电流幅值之和;◆Ir = | Il | ,正确的表述为:制动电流等于低压侧电流的幅值。

变压器差动保护实验

变压器差动保护实验

变压器差动保护实验南京钛能电气研究所南京南自电力控制系统工程公司差动保护实验步骤以下:通道均衡状况检查,初始动作电流校验,比率制动特征校验,涌流判据定值校验,差动速判定值校验,差流越限监察校验。

1)通道均衡状况检查试验举例。

接线为YN,d11 的双绕组变压器,额定电压分别为110kV 及10kV,容量 31500kVA,110kV侧 TA:200/5 ,10kV 侧 TA:2000/5 ,外面 TA接线: Y/ Y。

计算:先计算各侧额定电流和均衡系数,结果以下:表 1:各侧额定电流和均衡系数差动继电器内部基准电流I B5A高压侧二次额定电流 Ie 1高压侧均衡系数 K1= I B/ I e1低压侧二次额定电流 Ie 3低压侧均衡系数 K3= I B/ I e3由于外面 TA 接线: Y/ Y,变压器接线为 YN,d11,因此,高压侧星三角变换投入,低压侧星三角变换退出。

若在高、低压侧 A 相各加 15A 的电流,方向相反,则高、低侧各相电流及各相差流以下:高压侧低压侧差流表 2:单加 A 相电流时的差流A 相所加电流 i a115Ai a1折算后电流 I a1= K1* i a1A 相电流 I A1=(I a1-I b1星三角变换后 B 相电流 I B1 =(I b1-I c10AC 相电流 I C1 =(I c1-I a1A 相所加电流 i a3-15Ai a3折算后电流 I a3= K3* i a3B 相0AC 相0AA 相B 相0AC 相相同的方法,加 B 相和 C 相,计算结果以下:表 3:加 B、 C 相时各相差流A 相差流单加 B 相电流 B 相差流C相差流0AA 相差流0A单加 C 相电流 B 相差流C相差流现实验以下:将高低压侧中性点短接,测试仪 A 相接高压侧 A 相,测试仪 N相接低压侧 A 相。

观察装置显示的差流,并记录;相同的方法测 B 相和 C 相。

表 4:通道均衡测试实验A相差流 B 相差流C相差流计算值实验值计算值实验值计算值实验值双侧加 A 相0A双侧加 B 相0A双侧加 C 相0A若计算值和实验结果基实情同,说明均衡系数正确,通道已调均衡。

(完整)差动保护调试方法

(完整)差动保护调试方法

微机变压器差动保护一、微机变压器差动保护中电流互感器二次电流的相位校正问题电力系统中变压器常采用Y/D—11接线方式,因此,变压器两侧电流的相位差为30°。

如果不采取措施,差回路中将会由于变压器两侧电流相位不同而产生不平衡电流.必需消除这种不平衡电流。

(中华人民共和国行业标准 DL-400-91《继电保护和安全自动装置技术规程》2。

3。

32条:对6。

3MVA及以上厂用工作变压器和并联运行变压器。

10MVA及上厂用变压器和备用变压器和单独运行的变压器。

以及2MVA及以上用电速断保护灵敏度不符合要求的变压器,应装设纵联差动保护。

)(一)用电流互感器二次接线进行相位补偿其方法是将变压器星形侧的电流互感器接成三角形,将变压器三角形侧的电流互感器接成星形,如图1所示。

图1变压器为Y0/△-11连接和TA为△/Y连接的差动保护原理接线图2 向量图采用相位补偿后,变压器星形侧电流互感器二次回路差动臂中的电流I 、2B I 、2AI ,刚好与三角形侧的电流互感器二次回路中的电流2a I 、2b I 、2c I 同相位,如图2 C2所示.(二)用保护内部算法进行相位补偿当变压器各侧电流互感器二次均采用星型接线时,其二次电流直接接入保护装置,从而简化了TA二次接线,增加了电流回路的可靠性。

但是如图3当变压器为Y0/△-11连接时,高、低两侧TA二次电流之间将存在30°的角度差,图4(a)为TA原边的电流相量图.图3 变压器为Y0/△-11连接和TA为Y/Y连接的差动保护原理接线图4 向量图为消除各侧TA二次电流之间的角度差,由保护软件通过算法进行调整。

1、常规差动保护中电流互感器二次电流的相位校正大部分保护装置采用Y→△变化调整差流平衡,如四方的CST31、南自厂的PST —1200、WBZ—500H、南瑞的LFP—972、RCS-985等,其校正方法如下:Y0侧:I' =(2A I -2B I )/3A2I' =(2B I -2C I )/32BI' =(2C I -2A I )/3C2△侧:I' =2a I2aI' =2b Ib2I' =2c I2c式中:I 、2B I 、2C I 为Y0侧TA二次电流,2A I' 、2B I' 、2C I' 为Y0侧校正后的各相电流;2AI 、2b I 、2c I 为△侧TA二次电流,2a I' 、2b I' 、2c I' 为△侧校正后的各相电流。

变压器差动保护试验方法

变压器差动保护试验方法

我们知道,变压器、发电机的电气主保护为纵向电流差动保护,该保护原理成熟,动作成功率高,从常规的继电器保护到晶体管保护再到现在的微机保护,保护原理都没有多大改变,只是实现此保护的硬件平台随着电子技术的发展在不断升级,使我们的日常操作维护更方便、更容易。

传统继电器差动保护是通过差动CT的接线方式与变比大小不同来进行角度校正及电流补偿的,而微机保护一般接入保护装置的CT全为星型接法,然后通过软件移相进行角差校正,通过平衡系数来进行电流大小补偿,从而实现在正常运行时差流为零,而变压器内部故障时,差流很大,保护动作。

由于变压器正常运行和故障时至少有6个电流(高、低压侧),而我们所用的微机保护测试仪一般只能产生3个电流,因此要模拟主变实际故障时的电流情况来进行差动试验,就要求我们对微机差动保护原理理解清楚,然后正确接线,方可做出试验结果,从而验证保护动作的正确性。

下面我们以国电南京自动化设备总厂电网公司的ND300系列的发变组差动保护为例来具体说明试验方法,其他厂家的应该大同小异。

这里我们选择ND300系列数字式变压器保护装置中的NDT302型号作为试验对象。

该型号的差动保护定值(已设定)见表1:表1NDT302变压器保护装置保护定值单下面我们先来分析一下微机差动保护的算法原理(三相变压器)。

这里以Y/△-11主变接线为例,传统继电器差动保护是通过把主变高压侧的二次CT接成△,把低压侧的二次CT接成Y型,来平衡主变高压侧与低压侧的30度相位差的,然后再通过二次CT变比的不同来平衡电流大小的,接线时要求接入差动继电器的电流要相差180度,即是逆极性接入。

具体接线见图1:图1而微机保护要求接入保护装置的各侧CT均为Y型接线,显而易见移相是通过软件来完成的,下面来分析一下微机软件移相原理。

ND300系列变压器差动保护软件移相均是移Y型侧,对于∆侧电流的接线,TA二次电流相位不调整。

电流平衡以移相后的Y型侧电流为基准,△侧电流乘以平衡系数来平衡电流大小。

变压器差动保护比率制动测试方法

变压器差动保护比率制动测试方法

变压器差动保护比率制动测试方法以Yn ,Yn ,d11型自耦变为例,总结了几类变压器保护算法的特点,给出了相应的试验接线方法和一般性试验步骤。

1 几个基本概念1.1 比率制动系数采用比率差动能显著提高变压器保护的灵敏度,国产微机型变压器差动保护常采用具有两段折线形的动作特性曲线,如图1所示。

I opIresI res.min图1 比率制动特性曲线图比率制动曲线有两大决定因素,即动作电流和制动电流,按照预定的算法计算得到动作电流和制动电流,满足比率制动曲线即可动作。

1.2 变压器的Y ,d11接线组[1]变压器组常采用Y ,d11接线组。

需要指出的是,只要是Y ,d 型接线组,就有奇数次接线组别出现,按照我国电工技术规范,规定Y ,d11接线组为变压器标准接线组。

如果出现Y ,d11接线组,在进行差流运算时就必须进行相位校正,这在下文的算法分析中将做详细讨论。

1.3 TA 极性端按照惯例,保护TA 极性端位于母线侧。

对于变压器差动保护,只要确立变压器各侧母线位置,就不难确定各侧TA 的极性端。

而电工学上常采用减极性标注方法对TA 极性端进行标注,照此原则就能对流入保护装置电流的方向进行准确判断。

这一点对于确定进行比率差动试验时所加电流的相位很有帮助。

1.4 平衡系数对于正常运行变压器,不计励磁电流,各侧磁势平衡。

这一平衡关系反映到微机保护中,各侧的二次电流应在微机保护的算法体系下平衡。

将各侧不同的电流值折算成作用相同的电流,相当于将某一侧或两侧的电流乘以修正系数,该系数叫做平衡系数。

以Yn ,Yn ,d11型自耦变为例,差动保护TA 二次侧采用星形接线,各侧额定电压及TA 变比分别为h h m m l l U n U n U n 、、、、、,若以高压侧为基准,则各侧流入差动保护某相的电流分别为m l h I I I ===(1) 式中N S 为变压器额定容量。

设以高压侧电流为基准,将其他两侧的电流折算到高压侧的平衡系数分别为bm bl K K 和。

变压器差动保护原理和试验

变压器差动保护原理和试验
当F左≠F右时,木块 当F左=F右时,木块 所受的力的合不为 所受的力的合为0, 0,木块不平衡。 木块是平衡静止的。
三、差动保护的原理
变压器差动保护是按
比较被保护的变压器两侧
电流的数值和相位的原理
实现的。
正常运行及外部故障
时,流入差动继电器中的
电流为零。
'
''
Ir I2 I2 0
K1
三、差动保护的原理
变压器差动保护原 理和试验
ቤተ መጻሕፍቲ ባይዱ
问题思考
问题一: 为什么变压器 需要差动保护?
问题二: 什么是差动保护?
问题三: 怎么差动保护 进行试验?
目录
一、变压器的故障类型 二、变压器装设的保护 三、变压器差动保护原理 四、PDS-721保护试验方法
一、变压器的故障类型
一、变压器的故障类型
一、变压器的故障类型
20.6A 1.55A 10.47A 0.79A
0.975倍 1.025倍 0.975倍 1.025倍 0.975倍 1.025倍 0.975倍 1.025倍
20.1A 21.1A 1.51A 1.59A 10.2A 10.7A 0.77A 0.81A
动作情况(动作:√;不动作:×)
A相
B相
C相
×
×
△型接线,变压器△
侧的电流互感器采用 Y型接线。
三、差动保护的原理
这样,变压器两侧的
二次电流
I
• a
'

•' •'
IA IB
相位便可一致了。
但大小仍不同,且由
向量图可知:
•' •'
•'
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字式发电机、变压器差动保护试
验方法
关键词: 电机变压器差动保护
摘要:变压器、发电机等大型主设备价值昂贵,当他们发生故障时,变压器、发电机的主保护纵向电流差动保护应准确及时地将他们从电力系统中切除,确保设备不受损坏。

模拟发电机、变压器实际故障时的电流情况来进行差动试验,验证保护动作的正确性至关重要。

关键词:数字式差动保护试验方法
我们知道,变压器、发电机的电气主保护为纵向电流差动保护,该保护原理成熟,动作成功率高,从常规的继电器保护到晶体管保护再到现在的微机保护,保护原理都没有多大改变,只是实现此保护的硬件平台随着电子技术的发展在不断升级,使我们的日常操作维护更方便、更容易。

传统继电器差动保护是通过差动CT的接线方式与变比大小不同来进行角度校正及电流补偿的,而微机保护一般接入保护装置的CT全为星型接法,
然后通过软件移相进行角差校正,通过平衡系数来进行电流大小补偿,从而实现在正常运行时差流为零,而变压器内部故障时,差流很大,保护动作。

由于变压器正常运行和故障时至少有6个电流(高、低压侧),而我们所用的微机保护测试仪一般只能产生3个电流,因此要模拟主变实际故障时的电流情况来进行差动试验,就要求我们对微机差动保护原理理解清楚,然后正确接线,方可做出试验结果,从而验证保护动作的正确性。

下面我们以国电南京自动化设备总厂电网公司的ND300系列的发变组差动保护为例来具体说明试验方法,其他厂家的应该大同小异。

这里我们选择ND300系列数字式变压器保护装置中的NDT302型号作为试验对象。

该型号的差动保护定值(已设定)见表1:
表1NDT302变压器保护装置保护定值单
下面我们先来分析一下微机差动保护的算法原理。

这里以Y/△-11主变接线为例,传统继电器差动保护是通过把主变高压侧的二次CT接成△,把低压侧的二
次CT接成Y型,来平衡主变高压侧与低压侧的30度相位差的,然后再通过二次CT变比的不同来平衡电流大小的,接线时要求接入差动继电器的电流要相差180度,即是逆极性接入。

具体接线见图1:
图1
而微机保护要求接入保护装置的各侧CT均为Y型接线,显而易见移相是通过软件来完成的,下面来分析一下微机软件移相原理。

ND300系列变压器差动保护软件移相均是移Y型侧,对于∆侧电流的接线,TA二次电流相位不调整。

电流平衡以移相后的Y型侧电流为基准,△侧电流乘以平衡系数来平衡电流大小。

若∆侧为△-11接线,软件移相的向量图如图2:
图2
由此可以看出如果在高压侧加一相电流,则会产生两相差流,对于主变接线为Y/△-11接线的,如果只在高压侧A相加电流,则A、C相会有差流,只在高压侧B相加电流,则A、B相会有差流,只在高压侧C 相加电流,则B、C相会有差流。

那么如果用只能产生三相电流的继电保护试验仪来做差动保护试验,则所加电流的方法如下:
(1)高压侧加A相电流,则低压侧要加A、C相电流(用继电保护试验仪的A相电流作为主变高压侧A 相电流,用继电保护试验仪的B、C相电流作为主变低压侧A、C相电流,且继电保护试验仪的A、B、C 相电流角度分别为:0、180、-180)。

我们要做主变A相差动保护试验,但如果高压侧只加A相电流,C 相必然会产生差流,因此在主变低压侧除了A相要加电流来验证差动方程外,在C相也要加上电流来平衡高压侧A相在C相产生的差流。

以下两点类同。

(2)高压侧加B相电流,则低压侧要加A、B相电流(用继电保护试验仪的A相电流作为主变高压侧B相电流,用继电保护试验仪的B、C相电流作为主变低压侧B、A相电流,且继电保护试验仪的A、B、C相电流角度分别为:0、180、-180)。

(3)高压侧加C相电流,则低压侧要加C、B相电流(用继电保护试验仪的A相电流作为主变高压侧A相电流,用继电保护试验仪的B、C相电流作为主变低压侧C、B相电流,且继电保护试验仪的A、B、C相电流角度分别为:0、180、-180)。

(4)下面分析一下差动保护的曲线及动作方程。

此差动保护的动作曲线如图3:
图3
比率差动动作方程为:
保护就会动作。

如果现在在高压侧A相加5A的电流,我们可以算出在低压侧要使保护在水平线段部分动作所要加的电流大小范围,试验的前提是使高低压两侧电流(同相)相位相差180度。

设低压侧所要加的电流为I,如果A相电流满足以下方程:
由此看出,如果高压侧所加电流大于5A,则在低压侧加大于5.27A或者小于1.45A电流就可以满足条件,则A相就可以在曲线的水平段动作。

很明显由于移相的原因,C相会产生5A的差流,因此为防止C相差动保护作,需要在低压侧C相加5/1.485=3.37A的电流来平衡。

以上只是举了一个例子,读者也可以先加低压侧电流,再根据不等式方程求出要差动保护动作高压侧所要加的电流理论值范围。

下面我们来验证斜率为K的直线
部分动作特性(如图3中的A点),此部分的动作方程为:
假设在高压侧加5A电流,要使差动动作,则低压侧所加电流I要满足的方程为:
由以上不等式可以看出如果在主变高压侧加5A的电流,则在低压侧A相1.43A<I<1.44A或者大于6.54A 的电流,同时在低压侧C相加5当然如果使用的继电保护试验仪可以产生六个电流,或者试验仪试验项目中有专门用于做差动保护试验的,试验起来会更方便。

根据定值中发电机的额定参数可以求出:
所以当中性点所加电流1.46<I7.25A时,差动保护在曲线的直线部分动作。

以上就是变压器和发电机数字式差动保护的试验方法,本文的主要目的就是通过做试验来加深继电保护工作者对差动保护原理的理解,反过来,当我们对其原理理解的透彻了,相信还会有更好的试验方法。

相关文档
最新文档