高分子材料 论文高分子材料论文

合集下载

高分子材料学论文--果胶

高分子材料学论文--果胶

果胶一、来源果胶于1970年有科学家沃克特在果汁中发现,主要存在植物细胞壁和汁液中。

它是由植物、水果、或果皮中萃取出的胶态多糖体。

不同的蔬菜,水果口感有区别,主要是由它们含有的果胶含量以及果胶分子的差异决定的。

柑橘、柠檬、柚子等果皮中约含30%果胶,是果胶的最丰富来源。

按果胶的组成可有同质多糖和杂多糖两种类型:同质多糖型果胶如D-半乳聚糖、L-阿拉伯聚糖和D-半乳糖醛酸聚糖等;杂多糖果胶最常见,是由半乳糖醛酸聚糖、半乳聚糖和阿拉伯聚糖以不同比例组成,通常称为果胶酸。

不同来源的果胶,其比例也各有差异。

部分甲酯化的果胶酸称为果胶酯酸。

果胶是一种天然高分子化合物,分果胶液、果胶粉和低甲氧基果胶三种,其中尤以果胶粉的应用最为普遍。

二、制备方法果胶制备的工艺流程:原料→清理→适当破碎→洗净沥干→抽提→抽提液处理→果胶液浓缩→成品。

原料中所含的成分如糖苷、芳香物质、色素酸类和盐类等在提取果胶前需漂洗干净,以免影响果胶品制的胶凝力。

抽提包括原果胶的水解与果胶的溶出两个过程。

在整个过程中要掌握温度、时间和酸度。

酸度高则时间短;温度低、酸度低则时间长。

有时需多次抽提才能抽净。

去除果胶中的水分,加工方法主要有:喷雾干燥法,此法制得的果胶粉碎程度大,溶解度高,但与酒精沉淀法相比,成品易返潮,并含较多杂质;酒精沉淀法提取的果胶杂质少纯度高,胶凝力强,但成本高。

三、结构特点果胶的基本结构为D-吡喃半乳糖醛酸,以α-1,4糖苷键结合为半乳糖醛酸,半乳糖醛酸部分羧基被甲酯酯化,剩余为K、Na、NH4所中和,果胶是不同程度酯化和中和的α-半乳糖醛酸以1,4糖苷键形成的聚合物。

酯基是半乳糖醛酸主链上最主要的成分,此外还有乙酰基、酰胺基。

果胶分子量10~40万u,属直链多糖。

通常把酯化度50%以下的果胶称为低甲氧基果胶。

酯化度50%以上的果胶称为高甲氧基果胶。

四、性质果胶是亲水性植物胶,淡黄色粉末状固体,稍有异臭。

1、溶解性果胶在水中可溶,但在大多数有机溶剂中不溶。

高分子材料论文综述

高分子材料论文综述
• 1931年,罗姆-哈斯公司建厂生产聚甲基丙烯酸 甲酯,首先在飞机工业得到应用,取 代了赛璐珞 塑料,用作飞机座舱罩和挡风玻璃。 • 1937年甲基酸脂工业制造开发成功,由此进入规 模性制造。二战期间因压克力具有优异的强韧性 及透光性,首先,被应用于飞机的挡风玻璃,坦 克 司机驾驶室的视野镜。 • 1948年世界第一只压克力浴缸的诞生,意味着压 克力的应用进入了新的里程碑。 • 进入六十年代,压克力广泛应用民用产品的各个 领域
四、PMMA的性能
(2)表面硬度不足,易被硬物擦伤、擦毛而失 去光泽。 (3)弯曲强度和压缩强度在Tg下受温度影响较 小;而拉伸强度和冲击强度对温度较敏感。 (4)可通过与极性组分共聚,加入交联剂使其 形成网状结构,经拉伸形成丁香结构等手段来提 高其力学性能。
四、PMMA的性能
3、热性能 (1)属于易燃材料,点燃离火后不能自熄,火焰 呈浅蓝色,下端为白色。燃烧时伴有腐烂水果、 蔬菜的气味。 (2)PMMA可在-60~65℃范围内长期使用,短 时使用温度不宜超过105℃。 (3)比热容比大多数热塑性塑料低,有利于它快 速受热塑化。
高分子材料论文
——有机玻璃---PMMA
一、有机玻璃的概念
有机玻璃: PMMA是以丙烯酸及其酯类聚合 所得到的聚合物统称丙烯酸类树酯,相应 的塑料 统称聚丙烯酸类塑料, 其中以聚甲基丙烯酯甲酯 应用最广泛。 聚甲基丙烯酸甲酯缩写 代号为 PMMA,俗称有机玻璃。
二、有机玻璃的诞生和发展
• • • •
特点: 表面光滑、色彩艳丽,比重小,强度较大, 耐腐蚀,耐湿,耐晒,绝缘性能好, 隔声性好。 形状: 可分管形材、棒形材、板形材三种。 1、光学性能 PMMA最大的特点是具有优异的光学性能,这 也是其俗称“有机玻璃”的由来。PMMA 折射率 1.49 ,透光率92%。无机硅酸盐玻璃, 折射率 1.5左右,透光率80%。

高分子材料毕业论文

高分子材料毕业论文

高分子材料毕业论文第 1 页共 9 页计算题1. PA-66原纤维支数为4500支,在不断增加负荷的作用下,当负荷为8克时,纤维被拉断。

试求:a))特数旦数D)绝对强Tex力)相对强度PPDPT)断裂长度)LPbcdef强度极限σ(ρ=1.14)2. 某腈纶厂生产的产品经测量其含湿率为2.5%。

a)试折合为回潮率为多少,b)若知回潮率为2%,那么该纤维的每1000公斤的标准重量是多少, 3. 已知某纤维厂生产PET长丝,规格为128支/3L根,试求a)该长丝的旦数,50米卷重(1)单根纤维的旦数(2) 单根纤维的断面直径是多少,(PE T:ρ=1.38) 4. PET的纺丝温度为286?,计量泵规格为0.6cm3/r,转速为15r/min,喷丝板孔径为0.3mm,孔数为20孔,孔长为0.5mm,已知η0,210Pa.s,试求流经每孔的yw0.78,η,140 Pa.s时,其yw和和压力降Δp。

若为非牛顿流体,非牛顿指数n,Δp又为多少,5. 聚丙烯腈的硫氰酸钠浓水溶液,已知其20?时的零切粘度为40Pa.S,非牛顿指数为0.43,临界剪切速率为150S,1,粘流活化能为38KJ/mol,问:(1)20?时,把剪切速率提高到3×104S-1,其表观粘度为多少,(2)把该溶液提高到60?时其零切粘度为多少,6. 涤纶纺丝工艺中所用工艺参数为:纺丝温度280?,吹风温度30?,纺丝线上固-33化点温度80?,熔体密度ρ=1.20×10g/ ,熔体比热容cm容1.88kJ/kg?,卷绕丝密3-4度1.38 g/,空气cm导热系数J/cm.s.2.6×10?,泵供量365g/min,空气运动粘度-521.6×1m/0s,卷绕速度1000m/min,喷丝板规格Ø0.25mm×400孔,L/D=2,求:(1)纺丝线固化点前的平均直径;(2)纺丝线固化点前的平均速度;(3)纺丝线固化点前的平均给热系数;(4)固化时间。

高分子材料与工程专业导论课程论文【最新版】

高分子材料与工程专业导论课程论文【最新版】

高分子材料与工程专业导论课程论文1.高分子的定义高分子又称作聚合物,由小分子相互反应而形成,高分子与低分子的区别在于前者分子量很高。

通俗地说,高分子是一种许许多多原子由共价键连接而组成的相对分子质量很大的化合物。

更精确的描述是,高分子是指其分子主链上的原子都直接以共价键连接,且链上的成键原子都共享成键电子的化合物,这样组成的高分子链的键的类型,除了共价键外,还可以包括某些配位键和缺电子键,而金属键和离子键是被排除在外的。

我对高分子的分类总结如下:其中合成高分子,又可分为橡胶、纤维和塑料三大类,常称为三大合成材料,合成橡胶的主要品种有丁苯橡胶、顺丁橡胶和异戊橡胶等。

合成纤维的主要品种有涤纶、腈纶、锦纶、维纶和丙纶。

塑料还可分为热塑性塑料和热固性塑料,前者为线性聚合物,受热可熔融流动,可多次重复加工成型,主要品种有聚乙烯、聚丙烯和聚苯乙烯;后者是网状聚合物,通常由线性聚合物或低聚物经交联得到,以后不能加热融化重复成型,主要品种有酚醛树脂、不饱和聚酯、环氧树脂等。

此外,聚合物还可作为涂料和粘合剂来使用,而且使用越来越广泛,也有人将他们单独列为两类,所以聚合物按应用分类,也应包括上述五大合成材料。

最近,着眼于聚合物所具有的特定的物理、化学、生物功能的功能高分子,也已成为新的重要一类。

天然高分子,也有有机高分子和无机高分子之分。

天然高分子,如人们所熟悉的石棉、石墨、金刚石、云母等,天然有机高分子,都是在生物体内制造出来的,储存能量的肝糖、淀粉,生物体外分泌物如蚕丝、蛛丝、植物的橡胶,还有储存遗传信息的核酸。

2.高分子材料科学的发展简史(以塑料的发展为例)从第一个塑料产品赛璐珞诞生算起,塑料工业迄今已有120年的历史。

其发展历史可分为三个阶段。

1.天然高分子加工阶段这个时期以天然高分子,主要是纤维素的改性和加工为特征。

1869年美国人J.W.海厄特发现在硝酸纤维素中加入樟脑和少量酒精可制成一种可塑性物质,热压下可成型为塑料制品,命名为赛璐珞。

高分子合成材料范文

高分子合成材料范文

高分子合成材料范文高分子合成材料是一种由化学合成而成的大分子化合物,通常具有高分子量、高强度和高导电性等特点。

高分子合成材料广泛应用于各个领域,如塑料、橡胶、纤维、涂料、胶黏剂等。

在本篇文章中,将会探讨高分子合成材料的特点、分类以及应用领域。

1.高分子量:高分子合成材料的分子量通常在10^4-10^6之间,因此具有较高的物理强度和化学稳定性。

2.可塑性:高分子合成材料具有较好的塑性,可以通过热加工、注塑等方法加工成不同形状的制品。

3.耐磨性:高分子合成材料通常具有较好的耐磨性能,可以用于制造耐磨部件,如轮胎、刷子等。

4.耐化学性:高分子合成材料通常具有较好的耐化学性,不易受到化学药品的侵蚀。

1.聚合物:聚合物是一种由同种或不同种化学单体通过聚合反应合成的高分子化合物,可以进一步分为塑料和橡胶。

塑料是一种具有可塑性的高分子合成材料,可以根据聚合单体的不同特性,如聚乙烯、聚丙烯、聚氯乙烯等分类。

橡胶是一种具有高弹性的高分子合成材料,可以根据其硬度和化学结构的不同,如天然橡胶、丁苯橡胶等。

2.高分子复合材料:高分子复合材料由高分子基质和增强材料组成,可以提高材料的力学性能。

常见的高分子复合材料包括聚合物基复合材料、纳米复合材料和纤维增强复合材料等。

3.高分子溶液:高分子溶液是指高分子化合物在溶剂中形成的溶液。

通过调整高分子溶液的浓度、溶剂的种类和温度等条件,可以使其具有不同的性质和应用前景。

1.医疗领域:高分子合成材料被广泛用于医疗器械的制造,如医用塑料制品、人工骨骼和人工器官等。

此外,高分子合成材料还被用于制造药物缓释系统和生物医学材料。

2.电子领域:高分子合成材料被广泛应用于电子器件的制造,如电子电缆、绝缘材料和电子芯片等。

3.环保领域:高分子合成材料被广泛应用于环保材料的研发和生产,如可降解塑料和水处理材料等。

4.能源领域:高分子合成材料被应用于太阳能电池板、燃料电池和锂离子电池等能源领域。

总之,高分子合成材料具有高分子量、可塑性、耐磨性和耐化学性等特点,广泛应用于医疗、电子、环保和能源等领域。

高分子材料论文总结

高分子材料论文总结

高分子材料论文总结近年来,许多学者对高分子材料进行了深入研究,并取得了一系列重要的研究成果。

本篇论文将对其中几篇具有代表性的高分子材料论文进行总结。

首先,研究团队在《高分子材料的自组装性质研究》一文中探讨了高分子材料的自组装性质。

他们制备了一种新型的高分子材料,并通过扫描电子显微镜(SEM)观察了其自组装结构。

结果表明,该高分子材料能够形成具有有序排列的自组装结构,从而展现出良好的物理性能。

该研究为进一步研发高性能高分子材料提供了理论基础和实验依据。

其次,在《聚合物交联网络的合成与性能研究》一文中,研究人员通过控制交联剂的添加量和反应时间,成功合成了一种具有优异性能的聚合物交联网络。

他们通过拉伸实验和热分析,研究了该聚合物交联网络的力学性能和热性能。

结果表明,该聚合物交联网络具有较高的机械强度和优异的热稳定性。

这为应用于高温环境的材料开发提供了新思路。

再次,在《功能性高分子材料的合成及应用研究》这篇论文中,研究人员通过改变单体的结构和反应条件,合成了一系列功能性高分子材料。

他们通过红外光谱和核磁共振等测试手段,确认了所合成材料的化学结构。

同时,他们还对这些材料进行了抗氧化性能和光电性能的测试,并研究了其应用于电子器件中的潜在用途。

研究结果表明,这些功能性高分子材料具有较好的性能和广阔的应用前景。

综上所述,近年来高分子材料的研究取得了不俗的成果。

上述论文从不同角度对高分子材料的性能、合成及应用进行了深入研究,并取得了一系列重要的研究成果。

这些研究为高分子材料的进一步应用开发和科学研究提供了重要的理论基础和实验依据。

相信未来,随着高分子材料研究的不断深入,高分子材料将在新材料领域中发挥更为重要的作用。

高分子材料与工程论文

高分子材料与工程论文

高分子材料与工程论文
高分子材料是一种具有高分子化学结构的材料,具有独特的物理性能和化学性质。

在工程领域中,高分子材料的应用日益广泛,涉及到塑料、橡胶、纤维等多个领域。

本文将就高分子材料的特性、应用及未来发展方向进行探讨。

首先,高分子材料具有良好的加工性能,可以通过热塑性或热固性工艺进行成型。

其次,高分子材料具有较高的强度和韧性,可以用于制造各种结构件和零部件。

此外,高分子材料还具有良好的耐腐蚀性能和绝缘性能,适用于化工、电气等领域。

另外,高分子材料还具有较好的可塑性和可回收性,有利于环保和资源循环利用。

在工程领域中,高分子材料被广泛应用于汽车制造、航空航天、建筑材料、电
子产品等多个领域。

例如,汽车制造中的塑料零部件、航空航天中的复合材料结构件、建筑材料中的隔热材料、电子产品中的绝缘材料等,都离不开高分子材料的应用。

高分子材料的应用不仅可以降低产品成本,提高产品性能,还可以减轻产品重量,节约能源,有利于推动工程技术的发展。

未来,随着科学技术的不断进步,高分子材料的研究和应用将迎来新的发展机遇。

例如,纳米材料、生物可降解材料、功能性高分子材料等将成为研究热点,为工程领域提供更多的新材料和新技术。

同时,高分子材料的再生利用和循环利用将成为未来发展的趋势,有助于推动工程领域的可持续发展。

综上所述,高分子材料在工程领域中具有重要的地位和作用,其特性和应用对
工程技术的发展起着重要的推动作用。

未来,高分子材料的研究和应用将继续深入,为工程领域带来更多的创新和发展机遇。

希望本文能够对高分子材料及工程领域的相关研究和应用提供一定的参考和借鉴。

功能高分子材料论文 生物医学方面的应用

功能高分子材料论文 生物医学方面的应用

功能高分子材料论文(生物医学方面的应用)摘要:了解生物医用功能高分子材料近年来的应用研究及发展状况,综述国内外生物医用高分子材料的分类、特性及研究成果,展望对未来的生物医用高分子材料的发展趋势,通过介绍医用高分子材料在人工脏器、药剂及医疗器械方面的应用,以及我国近年来的研究情况和存在的问题,形成对生物医用功能高分子的认识和其重要性的认识。

关键词:功能高分子材料,生物医用高分子材料。

1 生物医用高分子材料的现状生物医用高分子材料是以医用为目的,用于和活体组织接触,具有诊断、治疗或替换机体中组织、器官或增进其功能的高分子材料,生物医用高分子材料是在高分子材料科学不断向医学和生命科学渗透,高分子材料广泛应用于医学领域的过程中,逐渐发展起来的一类生物材料,它已形成一门介于现代医学和高分子科学之间的边缘科学。

在功能高分子材料领域, 生物医用高分子材料可谓异军突起, 目前已成为发展最快的一个重要分支。

生物医用高分子材料的发展经历了三个阶段,第一阶段始于1937 年,其特点是所用高分子材料都是已有的现成材料, 如用丙烯酸甲酯制造义齿的牙床。

第二阶段始于1953 年, 其标志是医用级有机硅橡胶的出现, 随后又发展了聚羟基乙酸酯缝合线以及四种聚(醚- 氨) 酯心血管材料, 从此进入了以分子工程研究为基础的发展时期。

该阶段的特点是在分子水平上对合成高分子的组成、配方和工艺进行优化设计, 有目的地开发所需要的高分子材料。

目前的研究焦点已经从寻找替代生物组织的合成材料转向研究一类具有主动诱导、激发人体组织器官再生修复的新材料,这标志着生物医用高分子材料的发展进入了第三个阶段。

其特点是这种材料一般由活体组织和人工材料有机结合而成, 在分子设计上以促进周围组织细胞生长为预想功能, 其关键在于诱使配合基和组织细胞表面的特殊位点发生作用以提高组织细胞的分裂和生长速度在国外,生物医用高分子材料研究已有50多年的历史,早在1947 年美国已发表了展望性论文。

高分子材料论文3000字

高分子材料论文3000字

高分子材料论文3000字近年来,高分子材料处于不断变化发展中,并且随着它的不断发展,已经渗透到人类生活中的方方面面。

因此,高分子材料在日常生活中的生产和生活活动中发挥着重要作用。

高分子材料又称之为聚合物材料,主要是由无数个小分子化合物通过化学键,进而形成的大分子化合物,称之为聚合物材料。

在日常的生产生活中常见的高分子材料主要有合成橡胶、合成纤维、合成塑料等,并且在新中国成立之后,上述高分子材料在日常生活中得到了广泛应用,例如服装业、日用品,以及各种工业材料中,满足了各行业对高分子材料的需求。

此外,在未来高分子材料将会运用于纳米高分子材料复合应用、生物可降解高分子材料、高分子材料功能化,以及航空航天领域。

二、高分子材料的发展高分子材料是一种聚合物大分子化学品,其组成主要是由半人工和人工合成的高分子材料,与其他化合物的主要区别是高分子材料在化学性质和物理性质上均能发生较大变化,可以有一些特殊功能,例如光学、电学等功能。

此外,随着科学技术的不断进步,新能源开发、微电子和生物医药的不断发展,高分子材料得到了更广泛的应用,其作用主要表现在以下结果方面。

其一,使用高分子材料设计合成新能物质,并且具有新功能,例如研制出的新型非晶质光盘,具有较好的耐腐蚀性,几乎不会被腐蚀,这一特性主要是来自于非晶质合金表面生成的耐腐性保护膜。

其二,高分子材料利用特别的加工方式来增加磁疗的特殊功能,如利用高分子膜和塑料光纤使高分子材料更加容易加工成型,并且降低其加工成本。

其三,使用两种或者两种以上性能不同的高分子材料,经过复合化学反应形成新的高分子材料,如屏蔽导电、塑料以及复合层的复合填料。

当前,随着高分子材料在生产生活中的应用日益加深,其与众不同之处逐渐凸显出来,它可以代替日常生产生活中的许多材料,并且可以通过高分子材料来改善其他材料的功能和性能,使他们成为一种全新材料,进而更好的发挥他们的功能。

进而,我国也对高分子材料这一领域的研究较为重视,在自我研发的基础上,不断加强了国际研究领域的沟通交流。

高分子材料论文

高分子材料论文

高分子材料论文课题名称:高分子材料导论学院:班级:姓名:学号:高分子材料回收利用与发展可降解材料现代文明以经济腾飞和生活水平的提高为主要标志。

随着经济发展,大规模的物质循环不可避免地引起各种问题,如资源短缺、环境恶化已为全球所关注。

科学家预言地球能源(煤、石油、天然气等)不久将消耗完,会发生严重的能源危机;现代工业以及消费业的发展已给大自然带来严重的影响,大气、海洋等受污染,温室效应发生和臭氧层的破坏等等。

所有这些已严重影响着自然界的生态平衡,最终必然会阻碍世界经济的高速发展。

材料的制造、加工、应用等均与环境和资源有直接的关系。

高分子材料自从上世纪初问世以来,因重量轻、加工方便、产品美观实用等特点,颇受人们欢迎,其应用越来越广,从而使用过的高分子材料日益增加。

据统计,2011年,我国塑料制品的产量达5474万吨,同比增长22%。

其中,塑料薄膜的产量为844万吨,占总产量的15%;日用塑料制品的产量为458万吨,占总产量的8%;塑料人造革、合成革的产量为240万吨,占总产量的4%。

如何处理这些废料已成为非常重要的课题。

处理废旧高分子材料比较科学的方法是再循环利用。

循环是废旧高分子材抖利用的有利途径,不仅使环境污染得到妥善的解决,而且资源得到最有效的节省和利用。

从资源利用的角度,对废旧高分子材料的利用首先应考虑材料的循环,然后考虑化学循环及能量回收。

回收:我国塑料回收面临的困难是数量大、分布广、品种多、体积大,许多废塑料与其它城市垃圾混在一起。

处理废塑料的主要方法是:填埋和简单焚烧,但可供填埋场地不断减少,填埋费用急剧上升以及简单焚烧带来的二次污染等问题也给我们敲响了警钟。

国外在废塑料回收方面已积累了不少经验,他们把废塑料的回收作为一项系统工程,政府、企业、居民共同参与。

德国于1993年开始实施包装容器回收再利用,1997年回收再利用废塑料达到60万t,是当年消费量(80万t)的75%。

目前,德国在全国设立300多个包装容器回收、分类网点,各网点统一将塑料制品分为瓶、薄膜、杯、PS发泡制品及其他制品,并有统一颜色标志[2]。

2021高分子材料成型论文(最新10篇)范文3

2021高分子材料成型论文(最新10篇)范文3

2021高分子材料成型论文(最新10篇)范文 随着我国科学技术的不断发展,高分子材料作为一项新型技术得到了广泛的应用,高分子材料成型的工艺技术也在不断进步,为制造业、工业等相关行业的生产活动提供了有力的技术支持。

本文整理了10篇“高分子材料成型论文”,供该专业的学者阅读参考。

高分子材料成型论文(最新10篇)之第一篇:高分子材料成型加工技术的进展 摘要:现阶段随着我国经济与科技不断快速的发展,促使对材料的需求量每年都在增加, 而且因为材料属于技术进步的基础, 所以业界的相关人员都十分认可高分子材料的出现。

同时高分子材料具有十分良好的性能, 促使对其进行广泛的应用, 例如医学、建筑、生物、计算机等。

所以本文主要研究高分子的几种成型技术, 促使我国在成型的技术研究中对技术前沿进行掌握, 从而确保大力的推动我国高分子材料成型加工技术的发展。

关键词:高分子材料,成型加工,技术,发展 1引言 因为我国社会不断快速的发展,促使我国大部分特殊的领域对高分子材料的性能要求越来越高, 例如国防尖端工业、航空工业等领域。

而且高分子材料属于通过对各种制品进行制造, 不断对其具有的价值进行实现, 所以结合高分子材料的应用角度, 高分子材料成型加工技术的发展具有极其重要的作用与意义。

同时我国需要对技术的前沿进行把握, 不断对自主知识产权进行培育, 从而确保实现我国高分子材料成型技术的可持续性发展。

2高分子材料成型加工技术的发展趋势 因为随着我国科技不断快速的发展,促使人们对制造技术的要求与质量越来越高, 而且聚合物反应加工技术有传统的双螺杆轴剂出成型的技术所演化, 以及美国的Aerstart公司已经对更加稳定、高效的连续性与混炼挤出机进行研究, 能够对确保对其他同类型挤出机成型过程中存在的问题进行有效的解决。

但是我国这项技术正处于起步的阶段, 高分子才的成型加工技术主要针对塑料的缩聚反应的机械设备。

同时随着我国不断增加的需求与生产力度, 需要对合金材料的生产效率进行有效的增强, 但是我国传统的加工设备与技术无论是在混炼的过程中, 还是在传热技术的环节中都存在大量的问题, 以及设备也具有较大的投资费用、较高的能耗、较大的噪音等缺陷[1]。

聚氨酯毕业论文

聚氨酯毕业论文

聚氨酯毕业论文聚氨酯(Polyurethane,简称PU)是一种重要的高分子材料,广泛应用于各个领域。

它具有优异的物理性能和化学稳定性,同时还具备可调控的结构和性能特点。

因此,聚氨酯的研究和应用一直是材料科学领域的热点之一。

首先,聚氨酯在建筑领域有着广泛的应用。

由于其良好的耐候性和耐化学腐蚀性,聚氨酯被用作建筑材料的涂料、胶粘剂和密封材料。

例如,聚氨酯涂料可以用于室内墙面和地板的保护,提供美观和耐久的表面。

此外,聚氨酯胶粘剂也被广泛应用于建筑材料的粘接,如木材、金属和塑料的粘接。

聚氨酯密封材料则可以用于建筑物的防水和隔热。

其次,聚氨酯在汽车工业中有着重要的地位。

由于其优异的强度和耐磨性,聚氨酯被广泛应用于汽车零部件的制造。

例如,聚氨酯泡沫被用作汽车座椅的填充材料,提供舒适的乘坐体验。

聚氨酯弹性体则被用作汽车悬挂系统的衬垫,提供良好的减震效果。

此外,聚氨酯涂层也被用于汽车外部的保护和美化,提高汽车的耐久性和外观质量。

聚氨酯还在航空航天领域发挥着重要作用。

由于其轻质和高强度的特点,聚氨酯被广泛应用于航空航天器的结构材料中。

例如,聚氨酯复合材料可以用于制造飞机的机身和翼面,提供较低的重量和较高的刚度。

聚氨酯也可以用于制造航天器的热控制材料,提供良好的隔热性能。

此外,聚氨酯泡沫还可以用于航天器的减震和隔音,提高航天器的安全性和舒适性。

除了以上领域,聚氨酯还在许多其他应用中发挥着重要作用。

例如,聚氨酯被广泛应用于家具制造中的填充材料,提供舒适的坐感和支撑力。

聚氨酯也可以用于制造运动鞋的中底,提供良好的缓冲和支撑效果。

此外,聚氨酯还可以用于制造衣物的涂层,提供防水和防风的功能。

总之,聚氨酯作为一种重要的高分子材料,具有广泛的应用前景。

它在建筑、汽车、航空航天等领域发挥着重要作用,提供了许多优异的性能和功能。

随着科学技术的不断进步,聚氨酯的研究和应用将会进一步深化,为人们的生活带来更多的便利和舒适。

药用高分子材料论文

药用高分子材料论文

药用高分子材料论文药用高分子材料是一种具有广泛应用前景的新型材料,它在药物传递、医疗器械、组织工程等领域都有着重要的应用。

本文将从药用高分子材料的定义、特点、应用及发展前景等方面进行探讨。

首先,药用高分子材料是一类在医药领域中应用广泛的材料,它具有多种形态和结构,包括天然高分子材料和合成高分子材料。

天然高分子材料如明胶、壳聚糖等,而合成高分子材料如聚乳酸、聚己内酯等。

这些材料具有较好的生物相容性和可降解性,能够在人体内被分解和吸收,不会对人体造成损害。

其次,药用高分子材料具有多种特点,包括生物相容性、可降解性、可调控性和多样性。

生物相容性是指材料与生物体相容的能力,可降解性是指材料在生物体内能够被降解和代谢,不会对生物体造成损害。

可调控性是指材料的性能和结构可以通过合成方法和工艺条件进行调控,而多样性则是指材料可以根据不同的需求进行设计和制备,具有很大的灵活性。

药用高分子材料在药物传递、医疗器械和组织工程等领域有着重要的应用。

在药物传递方面,药用高分子材料可以作为药物的载体,能够提高药物的稳定性和生物利用度,减少药物的毒副作用。

在医疗器械方面,药用高分子材料可以用于制备各种医疗器械,如缝合线、人工关节、支架等,具有良好的生物相容性和可降解性。

在组织工程方面,药用高分子材料可以用于细胞培养支架的制备,可以提供细胞生长的支撑和生长环境,有助于组织再生和修复。

最后,药用高分子材料具有广阔的发展前景。

随着生物医学领域的不断发展和进步,对于药用高分子材料的需求也在不断增加。

未来,药用高分子材料将更加注重其在药物传递、医疗器械和组织工程等方面的应用,同时也将更加注重其在材料性能和结构上的调控和设计,以满足不同领域的需求。

综上所述,药用高分子材料具有广泛的应用前景和发展潜力,它将在生物医学领域中发挥越来越重要的作用。

相信随着科学技术的不断进步,药用高分子材料将会在医学领域中发挥更大的作用,为人类的健康事业做出更大的贡献。

药用高分子材料论文

药用高分子材料论文

药用高分子材料论文药用高分子材料是一类在医学领域中具有广泛应用前景的新型材料。

它们具有良好的生物相容性、可降解性和可控释放性,因此被广泛应用于药物传递、组织工程、医用器械等领域。

本文将从药用高分子材料的特点、应用、研究现状和发展趋势等方面进行论述。

首先,药用高分子材料具有良好的生物相容性。

生物相容性是衡量材料在生物体内是否引起免疫排斥和毒性反应的重要指标。

药用高分子材料可以与生物体组织良好地相容,不会引起明显的免疫排斥反应,因此在医学领域中得到了广泛应用。

例如,可降解聚乳酸材料被用于制备缝合线、修复骨折等医疗器械,其生物相容性得到了充分验证。

其次,药用高分子材料具有可降解性。

可降解性是指材料在生物体内可以被自然降解为无害的物质,不会对生物体造成持久的影响。

这种特性使得药用高分子材料在药物传递领域具有独特优势。

例如,可降解的聚乙烯醇-聚乳酸共聚物被广泛用于制备药物缓释微球,可以实现药物的持续释放,提高药物的疗效和降低毒副作用。

另外,药用高分子材料具有可控释放性。

可控释放性是指药物可以在一定时间内以可控的速率从材料中释放出来。

这种特性使得药用高分子材料在药物传递系统中可以实现精确的药物释放,提高药物的生物利用度。

例如,通过改变材料的孔隙结构和表面性质,可以实现对药物释放速率的调控,从而实现药物的持续释放和定向释放。

在当前的研究中,药用高分子材料的应用领域不断拓展,研究重点逐渐从材料本身向材料与药物的相互作用、材料的结构与性能之间的关系等方面转移。

同时,随着生物医学工程和组织工程等新兴领域的发展,对药用高分子材料的需求不断增加,这也催生了一大批新型药用高分子材料的研究和开发。

未来,随着医学技术和材料科学的不断发展,药用高分子材料必将迎来更广阔的应用前景。

我们相信,在不久的将来,药用高分子材料将会在医学领域发挥越来越重要的作用,为人类健康事业做出更大的贡献。

综上所述,药用高分子材料具有良好的生物相容性、可降解性和可控释放性等特点,在医学领域具有广泛的应用前景。

高分子材料论文(丝素蛋白)

高分子材料论文(丝素蛋白)

⾼分⼦材料论⽂(丝素蛋⽩)丝素蛋⽩的相关性质与⽤途丝素蛋⽩,是从蚕丝中提取的天然⾼分⼦纤维蛋⽩,由蚕茧缫丝脱胶⽽得到,来源丰富,是⼀种⽆⽣理活性的天然结构性蛋⽩。

⽽蚕丝是由70%~30%的丝胶蛋⽩和70%~80%的丝素蛋⽩以及极少量的⾊素、碳⽔化合物等构成的。

其中,丝胶蛋⽩是⼀种⾼分⼦量的球蛋⽩,其分⼦结构的⽀链上亲⽔基含量较⾼,链排列不紧密,故易溶于⽔、稀酸和稀碱,并能被蛋⽩酶等⽔解,还具有与明胶类似的凝胶、粘着等特性。

丝素蛋⽩由分⼦量为5万左右的⼩肽链和分⼦量为3O万左右的⼤肽链组成。

其蛋⽩质的氨基酸组成以⽢氨酸、丙氨酸和丝氨酸为主,与⼈体的⽪肤和头发的⾓朊极为接近,这成为⼀些研究中,将丝素⽤于⼈造⽪肤制造的原因之⼀。

丝素蛋⽩的结晶部分为较为紧密的B折叠结构,在⽔中仅发⽣膨胀⽽不能溶解,亦不溶于⼄醇等有机溶剂,但可在⼀些特殊的中性盐溶液中发⽣⽆限膨胀形成粘稠的液体,透析除盐即可得到丝素的纯溶液。

然后通过喷丝、喷雾或延展、⼲燥等处理,可得到再⽣丝、凝胶、薄膜或微孔材料等产品。

对丝素蛋⽩的研究发现,与明胶、清蛋⽩等普通蛋⽩相⽐,其固化结晶⽅式具有多样化的特点:既可沿⽤⼀般天然蛋⽩的传统固化⼯艺,采⽤戊⼆醛做交联剂;也可以通过⼀些独特的处理⽅式来达到⽬的,如冷冻、热蒸、拉伸及低毒性有机溶剂浸泡等?。

特别是采⽤冷冻⼲燥,短时⾼温与⼄醇浸泡的协同处理⽅式,可以很好地保持天然蛋⽩的⾼度⽣物亲和性,并适应药物载体应⽤中,⼀些对⾼温或某种固化剂敏感的负载药物的特殊要求,在应⽤⽅⾯体现出更⼤的灵活性。

在丝素蛋⽩的特性研究中,其良好的成膜性是最受⼈们关注的热点之⼀。

与传统应⽤较多的天然⾼分⼦材料——壳聚糖与胶原等相⽐,丝素蛋⽩膜成膜⽅便性更好,还可以保持⾼达98%以上的透明性,在⾼湿状态下的柔韧性与形态保持性能也较为突出,有利于制造⼀些在临床或实验中要求透明性,以便观测提取⽣物信息或体内⾼湿环境使⽤的⽣物医学产品。

医用高分子材料范文

医用高分子材料范文

医用高分子材料范文医用高分子材料是指应用在医学领域的高分子材料。

随着科技的不断进步和医疗技术的快速发展,医用高分子材料的种类和应用范围不断扩大,已成为医疗器械和医疗设备的重要组成部分。

本文将介绍医用高分子材料的种类、特点和应用。

首先,医用高分子材料可以分为天然高分子材料和合成高分子材料两大类。

天然高分子材料包括天然橡胶、天然纤维素、胶原蛋白等。

天然高分子材料具有良好的生物相容性和生物可降解性,因此广泛应用于外科手术缝合线、心脏瓣膜、人工血管等领域。

然而,天然高分子材料的力学性能较差,容易疲劳破裂,限制了其在一些领域的应用。

合成高分子材料主要包括聚乙烯、聚丙烯、聚乳酸、聚酯等。

这些材料具有较好的力学性能和化学稳定性,可以通过化学合成来控制其物理性能和化学性质,满足不同医疗器械和医疗设备的要求。

例如,聚乳酸可以制备成可降解的缝合线,聚乙烯可以制备成人工关节、人工骨头等。

其次,医用高分子材料具有许多特点。

首先,医用高分子材料具有良好的生物相容性。

这意味着它们可以与生物体的组织和细胞相容,不会引起明显的免疫反应和毒性反应。

这是医用高分子材料能够被广泛应用于人体的重要原因之一其次,医用高分子材料具有可调控的物理性能和化学性质。

通过改变材料的组成、结构和加工工艺,可以调节医用高分子材料的机械性能、表面性质、降解速率等,以满足不同医疗需求。

再次,医用高分子材料具有较好的加工性能和可塑性。

它们可以通过注塑、挤出、模压等加工工艺制备成各种形状的医疗器械和医疗设备,例如导尿管、人工心脏瓣膜等。

同时,医用高分子材料还可以通过热成型、薄膜法等加工工艺制备成薄膜、纤维等形式,应用于创伤敷料、医用纤维材料等领域。

最后,医用高分子材料具有良好的生物可降解性。

它们在体内能够逐渐分解为低分子物质,最终通过代谢排出体外,不会对人体造成负面影响。

这种特性使得医用高分子材料在内外科手术、组织工程和药物缓释等领域得到了广泛应用。

最后,医用高分子材料在医疗领域有广泛的应用。

高分子材料论文

高分子材料论文

高分子材料论文1课程设计题目选取课程设计选题合理与否,是课程设计改革的重要环节,应注意课题的综合性、实用性及层次性[2]。

课程设计环节中增加高分子材料改性及工艺探索的题目,目的在于加深学生对《高分子材料成型工艺学》、《聚合物改性原理及方法》等课程知识的理解,提高其理论联系实际和灵活运用知识的能力。

选择合适的题目是保证学生如期完成课程设计的前提。

课程设计环节比毕业设计环节少了8周的时间,因此课程设计选题应“小而精”,难度应明显低于毕业设计题目。

如果选取完全没有研究基础的题目,学生前期探索实验会花费过多时间,不利丁•课程设计顺利进行。

基于以上原因,笔者在以往毕业设计题目的基础上进行延伸,确定了课程设计相关题目。

例如往届学生曾做过“硅橡胶阻燃材料性能研究”的毕业设计题目,对丁•硅橡胶混炼及硫化工艺积累了一定的经验数据,而硅橡胶材料力学性能指标还不尽如人意,需要进一步改进配方。

可以在此基础上引出两个课程设计题目:“硫化剂种类及用量对硅橡胶力学性能的影响”、“结构控制剂种类及用量对硅橡胶力学性能的影响”,并由两个学生分别完成以上题目。

由丁•有前人的基础,学生在实验过程中没有重复探索相关工艺参数,实验直接切入主题,有利于在有限的时间内完成课程设计。

此外,两个课程设计题目虽各有侧重,但主要原材料及成型工艺都相同,故两个学生可共用一套成型设备,大大节约了设备预热及清理时间。

将学生按相近课题组成互助小组, 不仅提供设备利用率,也有利于学生在遇到问题时,相互讨论,相互促进[3] °2实验人员安排我校高分子材料与工程专业每年招生人数为80人,现有实验室设备条件尚不能满足全部学生同时开展材料改性及工艺制定等实践内容。

因此,合理安排课程设计环节进行材料改性及工艺制定的学生人数,是如期完成课程设计内容的必要保证。

按照人才培养方案, 本专业课程设计安排在第四学年秋季学期最后4周进行。

此时学生的专业课程学习已全部完成,学生对丁•口己的就业去向也有了初步规划。

高分子材料与工程毕业论文文献综述

高分子材料与工程毕业论文文献综述

高分子材料与工程毕业论文文献综述在现代材料科学与工程领域中,高分子材料作为一种重要的材料类别,具有广泛的应用前景。

本文将对高分子材料与工程的相关文献进行综述,旨在全面了解该领域的最新研究进展和发展趋势。

一、高分子材料的定义与分类高分子材料是由大分子化合物(分子量通常在10^4至10^6量级)构成的材料系统。

根据其结构和性质的不同,高分子材料可分为线性高分子、交联高分子、支化高分子等多种类型。

二、高分子材料的合成方法高分子材料的合成方法多种多样,常见的有聚合反应、缩合反应、开环聚合、改性反应等。

每种方法都有其独特的特点和适用范围,研究人员根据具体需求选择不同的方法进行材料合成。

三、高分子材料的性质与表征高分子材料的性质与表征是研究该领域的关键内容之一。

其中,高分子材料的力学性质、热学性质、电学性质等是研究的重点。

通过使用各种表征手段,如拉伸试验、差示扫描量热法、电导率测试等,可以对高分子材料的性质进行全面而准确的评估。

四、高分子材料在工程领域中的应用高分子材料在工程领域有着广泛的应用。

其中,聚合物材料在塑料工业、橡胶工业、纤维工业等行业中扮演着重要的角色;高分子复合材料在航空航天、汽车制造、电子器件等领域中展现出巨大的潜力;生物材料作为一种新兴的材料类型,被广泛应用于医疗、生物工程等领域。

五、高分子材料领域的新兴研究方向为了满足日益增长的科技需求,高分子材料领域的研究也在不断发展。

其中,纳米复合材料、生物可降解材料、功能性高分子材料等成为了研究的热点。

这些新兴研究方向的涌现为高分子材料的应用与发展提供了更多的可能性。

六、高分子材料领域的挑战与展望虽然高分子材料在各个领域中都有广泛应用,但仍存在一些挑战。

如高分子材料的工艺性能、稳定性、可持续性等问题仍有待解决。

因此,考虑到环境保护和可持续发展的要求,高分子材料研究需要在解决这些问题的基础上不断创新,为材料科学与工程的发展做出贡献。

综上所述,高分子材料与工程领域是一门重要的学科,具有广阔的研究前景和应用潜力。

高分子材料论文

高分子材料论文

高分子材料论文高分子材料已成为现代材料科学中的重要组成部分,并具有广泛的应用范围,如电子、医学、汽车制造、航空航天等领域。

因此,高分子材料研究的学术论文也非常重要。

本文将介绍高分子材料论文的写作流程和一些常见的论文类型。

一、高分子材料论文的写作流程1. 研究主题确定确定研究主题是高分子材料论文写作的第一步。

在选择主题时,需要考虑以下几个因素:领域的局限性、目标读者、研究可行性、已有文献、新颖性等因素。

2. 文献综述文献综述通常是高分子材料论文的第二步。

这一步通常包括以下几个方面:背景、目标、对已有文献的评论、研究方法、预期结果等。

3. 研究方法高分子材料论文的研究方法包括实验室研究、理论分析和数值模拟。

实验室研究是高分子材料研究的核心,因此重视实验室研究的合理设计和实验方法的正确操作至关重要。

理论分析是指对高分子材料基本性质进行研究,从而揭示其性能机理。

数值模拟通常用于探索高分子材料的物理过程,特别是那些很难在实验中测量的物理量。

4. 实验结果实验结果是高分子材料论文的重要组成部分。

它应该具有完整性、可预测性和准确性,因此实验前需要制定详细的实验方案,以避免无效的实验结果和浪费的研究资源。

5. 写作论文高分子材料论文的写作应该紧贴主题、简明扼要。

要避免过多的技术细节,以确保目标读者清楚地理解高分子材料的研究成果。

二、高分子材料论文的类型1. 研究论文这种类型的论文着重介绍一个新兴领域或一个特定的高分子材料的研究成果。

这种类型的论文通常具有创新性和实际价值。

研究论文应该包括以下几个方面:研究思路、实验设计、数据分析、结论和建议等。

2. 综述论文综述论文总结和分析已发表的文献,阐述高分子材料领域的最新进展。

这种类型的论文不仅是一个情报工具,而且可以帮助研究者在新的高分子材料研究领域中找到适当的研究方向。

3. 评论论文评论论文通过对高分子材料领域最新研究的评论,提供一种看法或议题。

这种类型的论文应该讨论该领域内争议的问题,并就具有争议性的结论提出建议。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实践实验教学中国电力教育2010年第28期 总第179期高分子化学实验是高分子化学课程教学的一种最有效的实践教学形式,它可以帮助和促进学生课堂理论知识的学习与消化,建立和巩固高分子化学基本概念和理论,获取高分子化学知识,培养科学素质和操作技能。

我国著名化学家戴安邦指出:“只传授化学知识和技术的化学教育是片面的,全面的化学教育要求既传授化学知识和技巧,又训练科学方法与思维,还培养科学精神和品德,学生在化学实验中是学习的主体,在教师指导下进行实验,训练用实验解决化学问题,使各项智力皆得到发展”。

这番话指出了开设化学实验课的深刻内涵和重要价值。

2004年国家教育部颁布的《普通高等学校本科教学工作水平评估方案》在评估指标的二级指标“实践教学”中,从“实践教学内容与体系,综合性、设计性实验课的比例及效果,实验室开放”三个方面明确了实践教学改革和发展的方向。

近几年高校的化学类实验教学改革取得了令人瞩目的成果。

高分子材料科学与工程专业是很多高校在近年来新开设的专业,在实验教学与改革方面的成果积累较少,尤其高分子化学实验教学采用陈旧的教学内容和教学方法依然居多。

通过调研发现,目前国内高校高分子材料科学与工程专业的高分子化学实验教学依然不同程度地存在一些问题。

一、高分子化学实验教学现状剖析1.实验教学体系和内容欠合理多数的实验教学附属于理论教学,没有单独设课和单独考核,实验课时相对较少。

虽然有些高校高分子化学实验已经独立设课,但仅作为考查课。

实验教学内容中传统的、陈旧的实验较多,而体现现代科学技术发展成果的实验很少。

认知性、验证性实验所占的比例偏高,培养学生创新能力的综合性、设计性、应用性和创新性的实验偏少,而且实验环节偏重于理论,突出高分子材料应用性特点的实验太少,不利于培养学生的工程观念。

2.实验教学方法单一学生按照实验讲义预习,然后进实验室。

实验前教师把实验目的、实验原理、仪器使用方法、测试方法、实验步骤和数据记录表格及数据处理方法等进行详细的集中讲解。

学生只需按教师指导的过程按部就班或者依照讲义“照方抓药”,就可以完成一个实验。

一部分学生糊里糊涂地来到实验室,只动手不动脑地完成实验,然后又迷迷糊糊地离开实验室。

实验的现象和结果没有给他们留下太深的印象,对学生观察能力、分析问题和解决问题的能力以及创新意识的培养都很不够。

这种统一模式、统一要求、齐步走的教学方法,一方面造成了学生对教师的过分依赖,另一方面抑制了学生个性思维的发展和创新能力的培养。

3.实验教学手段落后在现代信息技术迅速发展的今天,虽然网络技术、多媒体技术等现代教学技术在理论教学中得到了普遍应用,但虚拟、仿真等实验技术手段未能在实验教学中推广应用。

这样对于一些耗费过高、时间过长、毒性过大、危险性过高的实验,只能最低限度地开设,且开设过程中费用大和危险性高,导致学生对此类重要实验缺乏足够的认知和感受的机会。

二、新教学模块的实践性探索与成效针对目前国内高校高分子材料科学与工程专业高分子化学实验教学中存在的一些问题,借鉴其他化学实验教学改革的优秀成果,提出了基础技能实验、综合设计实验、研究创新型实验的三个高分子化学实验教学模块体系,并在每个模块中结合常熟理工学院教师的科研成果引入一些新的实验教学内容,采用开放式实验教学方法。

通过实验教学实践发现新的体系和教学方法在培养学生的创新意识和工程实践能力方面起到了较好的效果。

1.基础技能实验教学模块基础技能实验模块构建的目的着重建立高分子化学实验与相关基础理论知识之间的有机联系。

培养学生的实验安全意识、清洁卫生习惯和严谨的实验态度。

训练学生掌握熟练规范的实高分子材料与工程专业高分子化学实验教学体系的构建与成效左晓兵 俞丽珍 朱亚辉摘要:概述了目前国内高校高分子材料与工程专业高分子化学实验教学存在的共性问题和关键问题。

提出了高分子材料与工程专业高分子化学实验课程由基础技能实验,综合设计实验,研究创新实验三个模块组成的新教学体系, 并在每个模块中引入一些综合性和应用性的实验教学内容。

实践证明所构建的实验教学体系在培养学生的创新意识、应用与实践能力方面起到了较好的效果。

关键词:高分子材料;高分子化学;实验教学作者简介:左晓兵(1965-),男,安徽泾县人,常熟理工学院化学与材料工程学院,副教授,理学博士,主要研究方向:聚合物合成的教学与研究;俞丽珍(1966-),女,江苏常熟人,常熟理工学院化学与材料工程学院,高级工程师,主要研究方向:聚合物合成的实验教学与管理。

(江苏 常熟 215500)基金项目:本文系常熟理工学院课程建设基金资助项目(项目编号:W090029)的研究成果。

DOI 编码:10.3969/j.issn.1007-0079.2010.28.065实践实验教学中国电力教育2010年第28期 总第179期验操作技能和技巧,为后续的实验教学模块的实施打下良好的基础。

基础技能实验模块的教学内容设计在课时总量的40%~50%为宜,课时数约30学时,开设8~10个实验。

教学内容设计涉及到高分子化学反应机理,如自由基、阴离子、阳离子等连锁反应机理,缩聚、基团转移聚合等逐步反应机理,开环聚合反应机理等。

在实验实施方法方面涉及到本体聚合、溶液聚合、悬浮聚合、乳液聚合、熔融缩聚、界面缩聚等。

如设计膨胀计发测定苯乙烯本体聚合动力学实验,让学生直观感受到了诱导期概念、聚合过程体积减小的现象以及聚合物溶液的粘性特征等非常重要的高分子化学理论知识。

设计过硫酸钾引发甲基丙烯酸甲酯自乳化聚合实验,除让学生明确了乳液聚合的基本原理外,还了解到了聚合物大分子链端基的重要作用。

设计己二酰氯和己二胺界面缩聚实验,让学生深入理解了界面缩聚的概念和聚合物的可纺成纤性能等主要高分子知识。

通过设计一些自由基、阴离子、阳离子等连锁反应机理的实验,使学生进一步掌握了活性中心的概念,同时在实验过程中认知了这些引发剂的活性、安全使用和贮存事项。

2.综合设计实验教学模块综合设计实验教学模块旨在培养学生较强的实际动手能力,自主设计和分析解决问题的能力。

本实验模块是实验教学的较高层次,注重学生实验的自主设计性和综合性。

教学内容设计在课时总量的20%~25%为宜,课时数约15学时,开设2~3个实验。

本教学模块的特点之一是实验内容的综合性,可以将同一门课的几个实验,或者是几门课的实验组合在一起,形成一个大实验。

本教学模块的特点之二是实验方案的灵活性和设计性,侧重培养学生的自主实验和学习的意识和良好习惯。

例如关于高分子合成实验先确定好采用的聚合机理和聚合方法,在原材料配方组成、引发剂种类及用量、合成温度等工艺条件方面给出一个大致的框架,然后让学生在所给的框架内进行自行设计和实施实验。

譬如悬浮法制备聚苯乙烯珠粒实验,水的用量范围为苯乙烯质量的100%~200%、分散剂为磷酸钙或聚乙烯醇两种、引发剂过氧化二苯甲酰用量为苯乙烯质量的0.2%~1.0%、反应温度设定在75℃~85℃范围等。

学生通过自行设计的方案实施实验获得了不同的实验结果,通过对不同组之间实验结果的综合分析,找到了影响悬浮法制备聚苯乙烯珠粒的一些因素,激发了学生动手实验的兴趣,发挥了学生自主实验和学习的主观能动性。

3.研究创新实验教学模块设置研究创新实验教学模块培养学生的科研和创新意识、提高学生的综合素质和应用开发能力,为实现培养高质量的应用型人才的教育目标提供重要的教学内容实体支撑。

本实验模块是实验教学的最高层次,注重学生实验的独立自主性、综合性、应用性和创新性,教学内容设计在课时总量的20%~25%为宜,课时数约15学时,开设2~3个实验。

本实验教学模块的特点之一是实验项目的独立自主性和综合性。

也就是说确定好实验项目之后,让学生在实验教师指导下独立自主地进行实验项目方案的调研、设计、实施和结果分析。

本实验教学模块的特点之二是实验项目的应用性和创新性,所拟定实验项目必须关联生产实践中的聚合物产品,充分体现实验项目的应用性。

实验项目设计主要针对这些高分子产品生产实践中存在的共性问题和关键问题的解决来进行设计。

通过研究创新实验的实施,发现学生学习积极性很高,乐此不疲,为培养学生创新意识和展示高分子化学实验的应用性特征提供了最佳学习平台,尤其是开发一些联系生活实际的应用型实验,可使学生亲身感受到高分子化学实验的实用价值,能强烈激发学生的创造动机。

此外,研究创新实验往往需要多名学生共同完成,有利于培养学生的团队合作精神。

例如,聚氨酯绝缘漆的制备及性能测定实验,每个学生做一个实验配方,每5名学生一组,5名学生的实验结果综合在一起可以得出高分子树脂配方组成与漆膜性能之间的关系曲线,以及固化条件与漆膜性能之间的关系曲线。

在实验过程中,5名学生要共同安排实验方案,尽量保持操作的一致性,最后得出的结果要呈规律性变化。

如果有一名学生操作有误,这个实验点就会落在规律性以外,影响其他学生对实验现象的观察。

因此,实施研究创新实验项目对教师也提出了更高要求。

在每次实验前,教师要指导学生拟定方案,并对可能出现的实验现象和各种影响因素进行分析,实验过程中,又有多种意外的实验现象出现,这势必要求师生共同分析和讨论造成这些现象的原因,帮助学生透过现象深刻理解事物的本质。

这样做需要教师有相当的知识储备量,并且要求教师也不断进取,充分体现了教学相长的教育理念。

三、结论基础技能实验、综合设计实验、研究创新实验三个教学模块教学的实践证明教学效果显著,特别对提高学生综合实践能力、激发学生理论课学习兴趣、培养学生创新意识和应用开发技能取得了预期效果。

基础技能实验模块的教学效果主要体现在实验现象与相关基础理论知识之间的有机联系,高分子化学实验操作技能和技巧的掌握和规范。

综合设计实验的教学效果主要体现在学生自主设计和分析解决问题的能力培养。

研究创新实验的教学效果主要体现在学生科研和创新意识的建立,以及学生团队意识和应用开发能力的培养。

参考文献:[1]李晓,等.高分子化工方向专业的课程体系设计[J].化工高等教育,2001,(1):50-52.[2]谢安邦.高等教育学[M].北京:高等教育出版社,1999.[3]杨通,范新会,王正品.材料类专业实验课程体系的改革[J].实验室研究与探索,2004,23(10):71-80.[4]虞立宏,王静爱,葛岳静.本科生科学研究项目实施特色[J].中国大学教学,2004,(8):20-21.[5]王雅珍,等.微型高分子化学实验研究[J].化学教育,2001,22(1): 47-48.[6]庄启昕,承建军,韩哲文.高分子化学实验改革的探索[J].化工高等教育,2005,(4):69-71.[7]龚建良,等.高分子材料与工程专业实验教学体系改革初探[J].高教论坛,2006,(4):56-58.(责任编辑:苏宇嵬)。

相关文档
最新文档