二极管包络检波实验报告
高频包络检波,同步检波实验报告
高频实验报告————振幅解调器(包络检波,同步检波)姓名:王少阳学号:2班级:2013级电子一班一、二极管包络检波:(一)AM波的解调1、m=30%的AM波解调上面是8TP03的输出,下面是10TP02的输出2、m=100%的AM波解调上面是8TP03的输出,下面是10TP02出的输出3、m>100%的AM波解调上面是8TP03的输出,下面是10TP02出的输出4、对角线切割失真上面是8TP03的输出,下面是10TP02出的输出5、底部切割失真波形上面是8TP03的输出,下面是10TP02出的输出(二)DSB波的解调上面为8TP03的输出,下面为10TP02的输出上面为8TP02的输出,下面为10TP02的输出二:集成电路(乘法器)构成的同步检波器1、DSB波的解调2、SSB波的解调实验报告要求:1、输入的调幅波AM波DSB m=30% m=100% m>100%包络检波能正确调解能正确调解不能正确调解不能正确调解同步检波能正确调解能正确调解能正确调解能正确调解2、1、产生对角切割失真的原因是滤波时间常数RC选得过大,以致滤波电容的放电速率跟不上包络变化速率所造成。
2、底部切割失真是由于检波器的低频交流负载与直流负载电阻不同而引起的,通常检波被输出的低频电压经耦合电路[图7(a)中的R1C1]再送至低频放大器中去由于C1数值很大,(约为10微法)它的两端降有直流电压为载波幅度的平均值Uco若R1<R时,该电压大部分落在R两端上,以致在音频包络负半波时,输入电压可能低于R两端的直流电压,于是二极管截止,输出信号不再随输入信号包络的下降而改变,产生如图7-b的底边切割失真,要避免此失真,应满足式m<R1/(R1+R);式中:R为直流电阻,交流电阻R-=R//R1。
不失真条件可写为m<R-/Ro。
3、1、同步检波不存在门限效应,而包络检波在一定情况下会存在门限效应;2、同步检波在接收端需要加一个与载波同频同相的波,其对时序的要求比较严格,而包络检波则不需要加;结论与体会:通过这次的实验,我进一步了解了解调的的工作原理,掌握了包络检波和同步检波的方法,并研究了已调波与调制信号,载波以及解调波之间的关系这次的实验,其中有的波形并不太容易调制出现,费了很大的力气,但最终还是成功了,这次的实验,不仅仅收获了知识,将知识应用于实践,更锻炼我们的耐心,很有收获!。
二极管包络检波实验报告
一、实验设计方案2.实验原理、试验流程或装置示意图实验原理:图6-1是二极管大信号包络检波电路 图6-2表明了大信号检波的工作原理。
输入信号)(U i(t)为正并超过C和LR上的)( U0(t)时二极管导通信号通过二极管向C充电 此时)( U0(t)随充电电压上升而升高。
当)( (U i(t)下降且小于)(0tu时二极管反向截止此时停止向C充电并通过LR放电)( U0(t)随放电而下降。
充电时二极管的正向电阻Dr较小充电较快)( U0(t)以近)(U i(t)上升的速率升高。
放电时 因电阻LR比Dr大得多通常kRL10~5放故)( U0(t)的波动小并保证基本上接近于)( (U i(t)的幅值。
如果)((U i(t)是高频等幅波且LR很大则)( U0(t)几乎是大小为U0的直流电压 这正是带有滤波电容的半波整流电路。
当输入信号)( (U i(t)的幅度增大或减少时 检波器输出电压)( U0(t)也将随之近似成比例地升高或降低。
当输入信号为调幅波时检波器输出电压)( U0(t)就随着调幅波的包络线而变化从而获得调制信号完成检波作用由于输出电压)( U0(t)的大小与输入电压的峰值接近相等故把这种检波器称为峰值包络检波器。
30实验设备及材料二、实验报告1.实验现象与结果试验得到输入的波形及数据如下输出的波形如下2.对实验现象、实验结果的分析及结论检波输出可能产生三种失真:第一由于检波二极管伏安特性弯曲引起的非线性失真;第二是由于滤波电容放电慢引起的惰性失真;第三是由于输出耦合电容上所充的直流电压引起的负峰值失真,其中第一种失真主要存在于小信号检波中并且是小信号检波器中不可避免的失真。
对于大信号检波器这种失真影像不大,主要是后两种失真。
(1)惰性失真(对角失真)(2)、割底失真三.实验总结1.本次试验成败及原因分析惰性失真(对角线切割失真)断开J1、J3 连接J2 由IN1端加入普通调幅波 AM 分别调节集成乘法器幅度调制实验电路板上产生的普通调幅波 AM 的调幅系数m a、调制信号频率Ω、二极管大信号包络检波实验电路上电位器RW1 在TP2点观测图6-3所示惰性失真波形图。
包络检波及同步检波实验报告
包络检波及同步检波实验报告篇一:实验十二包络检波及同步检波实验实验十二包络检波及同步检波实验一、实验目的1.进一步了解调幅波的原理,掌握调幅波的解调方法。
2.掌握二极管峰值包络检波的原理。
3.掌握包络检波器的主要质量指标,检波效率及各种波形失真的现象,分析产生的原因并思考克服的方法。
4. 掌握用集成电路实现同步检波的方法。
二、实验内容1.完成普通调幅波的解调。
2.观察抑制载波的双边带调幅波的解调。
3.观察普通调幅波解调中的对角切割失真,底部切割失真以及检波器不加高频滤波时的现象。
三、实验原理及实验电路说明检波过程是一个解调过程,它与调制过程正好相反。
检波器的作用是从振幅受调制的高频信号中还原出原调制的信号。
还原所得的信号,与高频调幅信号的包络变化规律一致,故又称为包络检波器。
假如输入信号是高频等幅信号,则输出就是直流电压。
这是检波器的一种特殊情况,在测量仪器中应用比较多。
例如某些高频伏特计的探头,就是采用这种检波原理。
若输入信号是调幅波,则输出就是原调制信号。
这种情况应用最广泛,如各种连续波工作的调幅接收机的检波器即属此类。
从频谱来看,检波就是将调幅信号频谱由高频搬移到低频,如图12-1 所示(此图为单音频Ω调制的情况)。
检波过程也是应用非线性器件进行频率变换,首先产生许多新频率,然后通过滤波器,滤除无用频率分量,取出所需要的原调制信号。
常用的检波方法有包络检波和同步检波两种。
有载波振幅调制信号的包络直接反映了调制信号的变化规律,可以用二极管包络检波的方法进行解调。
而抑制载波的双边带或单边带振幅调制信号的包络不能直接反映调制信号的变化规律,无法用包络检波进行解调,所以采用同步检波方法。
图12-1 检波器检波前后的频谱1. 二极管包络检波的工作原理当输入信号较大时,利用二极管单向导电特性对振幅调制信号的解调,称为大信号检波。
大信号检波原理电路如图12-2(a)所示。
检波的物理过程如下:在高频信号电压的正半周时,二极管正向导通并对电容器C充电,由于二极管的正向导通电阻很小,所以充电电流iD很大,使电容器上的电压VC很快就接近高频电压的峰值。
包络检波及同步检波实验
同步检波器用于对载波被抑止的双边带或单 边带信号进行解调。它的特点是必须外加一个 频率和相位都与被抑止的载波相同的电压。 外加载波信号电压加入同步检波器可以有两种方 式,框图如下:
1
相乘器
2
低通滤波器
1
0
本地载波 (a)
2
包络 检波器
(b)
图3同步检波器方框图
+1 2 v
C5
载波信号不变,将调制信号 Vs 的峰值电压调 至 80mV ,调节 Rp1 使调制器输出为抑制载 波的双边带调幅信号,然后加至二极管包络检 波器输入端,观察记录检波输出波形,并与调 制信号相比较。
2、1496构成解调器
1、解调全载波信号
( 1 )将图 4 中的 C ' L 另一端接地, C5 另一 端接 A ,按调幅实验中实验内容 2 ( 1 )的条件获得 调制度分别为 30 %、 100 %及> 100 %的调幅波。 将它们依次加至解调器 V ^米的输入端,并在解调器 的载波输入端加上与调幅信号相同的载波信号,分别 记录解调输出波形,并与调制信号相比。 ( 2 )去掉 C4 、 C5 观察记录 m = 3o %的调幅波 输入时的调解器输出波形ボ并与调制信号相比较。
解调全载波调幅信号 (1)m<30%的调幅波检波 输入载波465KHZ、Vp-p=0.5V~1V、 m<30% 的已调波(音频调制信号频率约为1K)。 (2)m=100%, 观察记录检波输出波形 (3)改变载波信号频率, fc = 500KHz ,其余条 件不变,观察记录检波器输出端波形。
解调抑制载波的双边带调幅信号
1、二极管包络检波的工作原理
当输入信号较大(大于0.5伏)时,利用二极管单向 导电特性对振幅调制信号的解调,称为大信号 检波。 大信号检波原理电路如图1所示
包络检波及同步检波实验报告
实验十一包络检波及同步检波实验一、实验目的1、进一步了解调幅波的原理,掌握调幅波的解调方法。
2、掌握二极管峰值包络检波的原理。
3、掌握包络检波器的主要质量指标,检波效率及各种波形失真的现象,分析产生的原因并思考克服的方法。
4、掌握用集成电路实现同步检波的方法。
二、实验内容1、完成普通调幅波的解调。
2、观察抑制载波的双边带调幅波的解调。
3、观察普通调幅波解调中的对角切割失真,底部切割失真以及检波器不加高频滤波时的现象。
三、实验仪器1、信号源模块1块2、频率计模块1块3、4号板1块4、双踪示波器1台5、万用表1块四、实验原理及实验电路说明检波过程是一个解调过程,它与调制过程正好相反。
检波器的作用是从振幅受调制的高频信号中还原出原调制的信号。
还原所得的信号,与高频调幅信号的包络变化规律一致,故又称为包络检波器。
假如输入信号是高频等幅信号,则输出就是直流电压。
这是检波器的一种特殊情况,,在测量仪器中应用比较多。
例如某些高频伏特计的探头,就是采用这种检波原理。
若输入信号是调幅波,则输出就是原调制信号。
这种情况应用最广泛,如各种连续波工作的调幅接收机的检波器即属此类。
从频谱来看,检波就是将调幅信号频谱由高频搬移到低频,如图11-1所示(此图为单音频Ω调制的情况)。
检波过程也是应用非线性器件进行频率变换,首先产生许多新频率,然后通过滤波器,滤除无用频率分量,取出所需要的原调制信号。
常用的检波方法有包络检波和同步检波两种。
全载波振幅调制信号的包络直接反映了调制信号的变化规律,可以用二极管包络检波的方法进行解调。
而抑制载波的双边带或单边带振幅调制信号的包络不能直接反映调制信号的变化规律,无法用包络检波进行解调,所以采用同步检波方法。
1、二极管包络检波的工作原理当输入信号较大(大于0.5伏)时,利用二极管单向导电特性对振幅调制信号的解调,称为大信号检波。
大信号检波原理电路如图11-2(a)所示。
检波的物理过程如下:在高频信号电压的正半周时,二极管正向导通并对电容器C充电,由于二极管的正向导通电阻很小,所以充电电流i D很大,使电容器上的电压V C很快就接近高频电压的峰值。
高频电子线路实验六 二极管包络检波实验
实验六二极管包络检波实验一、实验目的1、进一步了解调幅波的原理,掌握调幅波的解调方法。
2、了解二极管包络检波的原理。
3、通过实验掌握二极管包络检波的主要技术指标,检波效率,以及二极管包络检波电路的失真。
二、实验预习要求1、复习二极管包络检波的原理。
2、复习二极管包络检波电路的各个元件的作用,以及二极管包络检波的条件。
3、复习二极管包络检波产生的惰性失真和负峰切割失真的原因,以及如何避免惰性失真和负峰切割失真。
三、实验原理调幅波的解调是从调幅信号中取出调制信号的过程,通常称为检波,是调制的逆过程。
振幅检波有同步检波和二极管包络检波,这里主要完成二极管包络检波实验。
二极管包络检波只适合对大信号(大于0.5V)的普通调幅波检波,它具有电路简单,D,RC低易于实现的优点。
本实验的实验电路原理如图实验电路图所示。
主要由二极管1101通滤波器组成,利于二极管的单向导电性和检波负载RC的充放电过程实现检波。
所以对RC充放电时间常数的选择很重要,放电时间过长,会产生惰性失真。
放电时间过短,检波输出电压里面谐波成分太多,检波效果不好。
四、实验仪器1、双踪示波器2、万用表3、函数信号发生器4、XSX-4B型高频实验箱五、实验内容及步骤实验电路图如图所示,在实验箱上找到本次实验所用的单元电路,然后接通实验箱K,相应的发光二极管点亮。
电源,并按下单元电源开关11001、按照211102-K ,321104-K ,321103-K 连接电路,由高频函数信号发生器产生一个载波为kHz V V C 100/2=(有效值),调幅系数为%20=a m ,调制信号的频率为1kHz 的调幅波,加到1101TP 二极管包络检波器的输入端,用示波器观察记录1104TP 点的波形。
(同时也要记录该调幅波的波形)2、按照211102-K ,321104-K ,321103-K 连接电路,由高频函数信号发生器产生一个载波为kHz V V C 100/2=(有效值),调幅系数为%100=a m ,调制信号的频率为1kHz 的调幅波,加到1101TP 二极管包络检波器的输入端,用示波器观察记录1104TP 点的波形。
二极管包络检波实验报告
二极管包络检波实验报告一、引言包络检波是无线电通信系统中常用的一种调制解调方法。
它的原理是利用非线性元件(如二极管)的特性,将高频信号转换为低频信号。
本实验通过搭建二极管包络检波电路,验证包络检波的工作原理,并对检波效果进行分析和讨论。
二、实验装置与方法1. 实验装置:(1)信号源:提供高频信号,频率可调。
(2)二极管:采用硅二极管,型号为1N4148。
(3)电容:用于耦合和滤波,选用容值为10nF的电容。
(4)负载电阻:用于接收检波后的低频信号,选用阻值为1kΩ的电阻。
(5)示波器:用于观察输出信号的波形。
2. 实验步骤:(1)搭建电路:将信号源与二极管串联,二极管的正极接地,负极接电容,电容的另一端接负载电阻,负载电阻的另一端接地。
将示波器的探头分别与二极管的两端相连。
(2)调节信号源频率:将信号源的频率调节到几十MHz的高频范围。
(3)观察示波器波形:通过示波器观察并记录输出信号的波形。
三、实验结果与分析经过实验观察,得到了如下结果:1. 当信号源频率较低时,示波器上观察到的波形为输入信号的高频振荡波形。
这是因为二极管处于截止状态,无法将高频信号进行包络检波。
2. 随着信号源频率的增加,示波器上观察到的波形逐渐变为输入信号的包络波形。
这是因为二极管开始进入导通状态,能够将高频信号的包络部分传递到负载电阻上。
3. 当信号源频率较高时,示波器上观察到的波形基本为输入信号的包络波形。
这是因为二极管处于完全导通状态,能够将高频信号完整地传递到负载电阻上。
根据上述结果进行分析,可以得出以下结论:1. 二极管的非线性特性使其能够实现包络检波。
在低频情况下,二极管处于截止状态,无法将高频信号的包络部分传递到负载电阻上。
而在高频情况下,二极管进入导通状态,能够将高频信号的包络部分传递到负载电阻上。
2. 二极管包络检波能够实现信号的解调,提取出原始信号的包络信息。
这在通信领域中具有重要的应用,如广播调幅(AM)信号的解调。
二极管包络检波实验
二极管包络检波实验————————————————————————————————作者:————————————————————————————————日期:ﻩ高频实验报告实验名称:二极管包络检波实验姓名:学号:班级:时间:南京理工大学紫金学院电光系一、 实验目的1、加深对二极管大信号包络检波工作原理的理解。
2、掌握用二极管大信号包络检波器实现普通调幅波(AM)解调的方法。
了解滤波电容数值对AM 波解调影响。
3、了解电路参数对普通调幅波(AM)解调影响。
二、实验基本原理与电路1. 二极管大信号包络检波工作原理u ittu 2u 2u iUcmm a U cmU 0U Ωm直流成分U 0图4-1 大信号检波电路 图4-2大信号检波原理图4-1是二极管大信号包络检波电路,图4-2表明了大信号检波的工作原理。
输入信号)(t u i 为正并超过C 和1R 上的)(0t u 时,二极管导通,信号通过二极管向C 充电,此时)(0t u 随充电电压上升而升高。
当)(t u i 下降且小于)(0t u 时,二极管反向截止,此时停止向C 充电并通过L R 放电,)(0t u 随放电而下降。
充电时,二极管的正向电阻D r 较小,充电较快,)(0t u 以接近)(t u i 上升的速率升高。
放电时,因电阻L R 比D r 大的多(通常Ω=k R L 10~5),放电慢,故)(0t u 的波动小,并保证基本上接近于)(t u i 的幅值。
如果)(t u i 是高频等幅波,则)(0t u 是大小为0U 的直流电压(忽略了少量的高频成分),这正是带有滤波电容的整流电路。
当输入信号)(t u i 的幅度增大或减少时,检波器输出电压)(0t u 也将随之近似成比例地升高或降低。
当输入信号为调幅波时,检波器输出电压)(0t u 就随着调幅波的包络线而变化,从而获得调制信号,完成检波作用,由于输出电压)(0t u 的大小与输入电压的峰值接近相等,故把这种检波器称为峰值包络检波器。
包络检波及同步检波实验报告
包络检波及同步检波实验报告篇一:实验十二包络检波及同步检波实验实验十二包络检波及同步检波实验一、实验目的1.进一步了解调幅波的原理,掌握调幅波的解调方法。
2.掌握二极管峰值包络检波的原理。
3.掌握包络检波器的主要质量指标,检波效率及各种波形失真的现象,分析产生的原因并思考克服的方法。
4. 掌握用集成电路实现同步检波的方法。
二、实验内容1.完成普通调幅波的解调。
2.观察抑制载波的双边带调幅波的解调。
3.观察普通调幅波解调中的对角切割失真,底部切割失真以及检波器不加高频滤波时的现象。
三、实验原理及实验电路说明检波过程是一个解调过程,它与调制过程正好相反。
检波器的作用是从振幅受调制的高频信号中还原出原调制的信号。
还原所得的信号,与高频调幅信号的包络变化规律一致,故又称为包络检波器。
假如输入信号是高频等幅信号,则输出就是直流电压。
这是检波器的一种特殊情况,在测量仪器中应用比较多。
例如某些高频伏特计的探头,就是采用这种检波原理。
若输入信号是调幅波,则输出就是原调制信号。
这种情况应用最广泛,如各种连续波工作的调幅接收机的检波器即属此类。
从频谱来看,检波就是将调幅信号频谱由高频搬移到低频,如图12-1所示(此图为单音频Ω调制的情况)。
检波过程也是应用非线性器件进行频率变换,首先产生许多新频率,然后通过滤波器,滤除无用频率分量,取出所需要的原调制信号。
常用的检波方法有包络检波和同步检波两种。
有载波振幅调制信号的包络直接反映了调制信号的变化规律,可以用二极管包络检波的方法进行解调。
而抑制载波的双边带或单边带振幅调制信号的包络不能直接反映调制信号的变化规律,无法用包络检波进行解调,所以采用同步检波方法。
图12-1 检波器检波前后的频谱1. 二极管包络检波的工作原理当输入信号较大(大于0.5伏)时,利用二极管单向导电特性对振幅调制信号的解调,称为大信号检波。
大信号检波原理电路如图12-2(a)所示。
检波的物理过程如下:在高频信号电压的正半周时,二极管正向导通并对电容器C充电,由于二极管的正向导通电阻很小,所以充电电流iD很大,使电容器上的电压VC很快就接近高频电压的峰值。
二极管包络检波器实验
列二极管的参数请见书后附表。
负载RL和C的选择 设计时考虑的原则:
a.
,
即C对载频等效旁路,对低频等效开路.
b.C»Cd,C大相应Cd的作用减小,从而可忽略不 计.
c.从系统而言:RL↑→Ri↑,RL↑→Kd↑,即负载 增加,对输入阻抗提高及传输效率的改善有利.
若输入US=UC(1+mcosΩt)cosωct 则检波输出U0=KdUC(1+m cosΩt) 2.输入阻抗高:
Zi可等效为一个电容Ci和一个电阻Ri并联。Ri 大小与检波器内阻及导通角有关。 Ci与结电 容及引线分布电容有关。可见Ri越大, Ci越小, 则检波电路对前级(谐振中放)的影响小。理 论分析可按功率守恒计算Ri,即有
实验说明及思路提示
二极管检波器工作原理及性能要求
大信号包络检波器其用途就是从调幅波中取出 低频调制信号。常用的是二极管检波,它是通过 二极管的非线性伏安特性进行频率变换,再通过 低通平滑滤波完成检波作用的。原理电路如图4。
对检波器的基本性能要求有: 1.传输系数Kd大:
图4.检波器原理电路图如下:
图1.检波器实验电路图如下:
输入调幅波形如下:uAM Ucm 1 mcostcosct
检波输出图形如下:uo kdUcm 1 mcost
2. 惰性失真: 仿真条件:Uim=1V,F=1KHZ,RL=10KΩ,接 入0.1μf电容,m=50%,检波输出波形如图8。
3.底部切割失真:
仿真条件:Uim=1V,F=1KHZ,RL=20kΩ,不 接入0.1uf电容,m=50%,输出波形如图9。
Kd=UΩm/mUim=0.25/0.3≈0.83 检波器输入输出波形对比图如下:
二极管检波实验报告
通讯电子电路实验调幅波信号的解调**: ***学号: ********班级: 02320802一、实验目的:1、进一步了解调幅波的原理,掌握调幅波的解调方法;2、掌握二极管包络检波的主要指标,检波效率及波形失真;3、掌握电路参数的选取方法,设计出合理的检波电路。
二、实验软件:Multisim三、实验过程:实验内容1、输入信号为:载波频率为100KHz,幅值为10V,调制信号频率为1KHz,调制度m=30%实验电路如图:输出波形:(1)电路器件参数的选择原则二极管的选择:为了提高检波效率,应选取正向电阻小,反向电阻大,同时要求PN结电容小的管子。
本次实验选择1N4151二极管。
负载电阻R3和滤波电容C1的选择:R3和C1的选择需要综合考虑检波失真、检波效率和输出波形质量等方面因素。
为了提高检波效率,R3应较大,C1较小,同时满足R3C1的值比较大;为了防止对角线失真,Ω一定的情况下R3C1不能过大;为了减小输出波形的纹波,R3C1不能过小。
下面具体讨论数值计算过程。
(2)对角线失真避免对角线失真的条件为:ΩR3C1<√1−m 2m。
实验中Ω=1KHz,m=30%,所以可以计算出R3C1<3.18×10-3。
实验中选R3=50kΩ,C1=10nF,R3C1=0.5×10-3,满足要求。
(3)割底失真不产生割底失真的条件是:m≤ 1 - -R3R3+R i。
本次实验直接用示波器观测输出结果,因此可视负载输入电阻为正无穷,即R i=∞,可知本次实验不会产生割底失真。
(4)检波效率η检波效率与电路参数R3、C1、r D以及信号的大小有关。
η= U OmU cm = U O0.3×10V在上述电路参数条件下,如图所示,测得: Uo=4.677V/2=2.3385V所以η=2.3385V/3V≈78%检波电路应该作为上一级电路的负载,因此考虑了设置合理的输入电阻。
如不考虑检波电路的输入电阻,电路图如下:通过调整合适的R3、C1值,检波效率可以近似为100%,输出如图:(5)纹波检波后应该尽量减小输出波形的纹波,以得到较为理想的解调结果。
二极管包络检波实验报告(一)
二极管包络检波实验报告(一)二极管包络检波实验报告简介•实验名称:二极管包络检波实验•实验目的:通过实验学习和理解二极管包络检波的原理和应用,掌握实验操作方法,加深对二极管特性的了解。
•实验时间:XXXX年XX月XX日实验设备•双踪示波器•函数信号发生器•二极管•适配器和连接线•耦合电容和电阻实验步骤1.准备实验设备,并将函数信号发生器连接到示波器的通道1上,将示波器的通道1与信号源连接。
2.将二极管连接到适配器和连接线上,并将适配器连接到示波器的通道2上。
3.调节函数信号发生器的频率和幅值,使其输出正弦波信号,并调节示波器的水平和垂直刻度,确保信号能够正常显示。
4.将示波器切换到 XY 显示模式,并观察示波器屏幕上显示出的Lissajous 图案。
5.调节函数信号发生器的频率,观察 Lissajous 图案的变化,并记录下频率与图案的对应关系。
6.将示波器切换到 Normal 显示模式,调节函数信号发生器的幅值,观察示波器屏幕上显示出的 AM 调制波形。
7.更换二极管并重复步骤4-6,观察不同二极管对包络检波的影响。
实验结果•在 XY 显示模式下,观察到了不同形状的 Lissajous 图案,显示了输入信号与载波信号之间的相位关系。
•在 Normal 显示模式下,观察到了经过包络检波后的调制波形,能够清晰看到信号的包络特性。
•随着函数信号发生器频率的变化,Lissajous 图案呈现出不同的形状,说明包络检波对输入信号的频率敏感。
•更换二极管后,观察到调制波形的幅度和包络特性发生了变化,不同二极管的特性对包络检波影响显著。
实验结论通过二极管包络检波实验,我们得出以下结论: - 二极管包络检波能够实现将调制信号的包络提取出来,使调制波形更清晰明了。
- 函数信号发生器的频率和幅值对包络检波结果有影响,调节函数信号发生器可以改变包络检波效果。
- 不同二极管的特性会对包络检波产生影响,选择合适的二极管可以得到更理想的包络检波结果。
二极管包络检波实验报告
CRL
1 ma2 ma
上式表明 ma 或 大,则包络线变化快、 CRL 放电慢,这些都促成发生放电失真。
实验电路图:
四、 实验步骤及数据分析
实验电路图如下所示
A1 D1
1、 将乘法器调幅实验中调好的 m<30%的全载波调幅信号(载波信号 Vpp=50~100mV)
加入 Um,观察记录 A1 接 A 与 A1 不接 A 两种情况的输出波形,并与原来的调制信
号作对比
A 接 A1
A 不接 A1
2、 加大调制信号的幅度,使 m=100%,观察记录输出波形;
A 接 A1
A 不接 A1
3、 改变载波信号频率观察记录输出波形的变化。
波
形
m<30%
m=100%
调制信号
解调输出
是否失真
否
是
4、用示波器比较二极管包络检波器和乘法器、同步检波器在同一载波信号频率下的检波
二极管包络检波器当 RLC 很大而 rD 很小时,输出低频电压振幅1,实际上d 在80%左右。并且 R 足够大时,d 为常数,即检波器输出电压的平 均值与输入高频电压的振幅成线性关系,所以又把二极管峰值包络检波称为线性检波。检波
效率与电路参数 RL 、 C 、 r0 以及信号大小有关。它很难用一个简单关系式表达,所以简单 的理论计算还不如根据经验估算可靠。如要更精确一些,则可查图表并配以必要实测数据得 到。
效果,并比较改变载波频率检波效果有何异同。
二极管包络检波器
乘法同步检波器
五、 实验结果讨论
1、从实验中观察 A 接 A1 和 A 不接 A1 的比较中可以看出,A 接 A1 时,并联一个 C,C 变大,输出信号的幅度比 A 不接 A1 时要小,放电时间常数 RC 变大,放电变慢, 输出波形与高频调幅波更接近,由此可见,大信号的检波过程,主要是利用二极管的单 向导电性和检波负载 RC 的充放电过程。
二极管包络检波器和同步检波器仿真实验报告
二极管包络检波器战共步检波器仿真正在验报告之阳早格格创做姓名:教号:班级:09电疑二班一、真验手段1.进一步相识调幅波的本理,掌握调幅波的解调要领.2.相识二极管包络检波的主要指标,检波效用及波形得真.3.掌握用集成电路真行共步检波的要领.二、真验真质及步调(1)二极管包络检波电路1.利用EWB硬件画造出如图 1.15的二极管包络检波电路. 2.按图树立各个元件参数,其中调幅旗号源的调幅度M 为0.8.挨启仿真启闭,从示波器上瞅察波形.画出波形图. 3.分别将Rp调到最大或者最小,从示波器上不妨瞅察到惰性得真战背峰切割得真,画出波形图.附图二极管包络检波器仿真正在验电路(2)共步检波电路1.利用EWB硬件画造出如图 1.19的单边戴调幅真验电路.2. 按图树立各个元件参数,挨启仿真启闭,从示波器上瞅察共步检波器输进的单边戴旗号及输出旗号.画出波形图.3.改变共步检波器参照旗号相位,瞅察输出波形的变更,画出波形图.附图单边戴调造及其共步检波的仿真正在验电路三.真验报告央供1.画出二极管包络检波器的波形.画出二极管包络检波器的惰性得真战背峰切割得真波形.RP1=0% RP2=100%RP=0% RP2=0%背峰切割得真RP1=100% RP2=0%背峰切割得真R1=R2=100%惰性得真2.对于比划出共步检波电路的仄常波形战改变参照旗号相位波形.共步检波电路的仄常波形Uc=3.5344V参照旗号相位30度波形参照旗号相位45度波形随着参照旗号相位的减少哦,Uc幅值渐渐较小.四.思索题1.分解二极管包络检波器的惰性得真战背峰切割得真爆收的本果.问:惰性得真:当输进为调幅波时,太过删大RL战C 值,以致二极管截行功夫C通过RL的搁电速度过缓,正在某t1时刻跟没有上输进调幅波包络的下落速度.输出仄衡电压便会爆收得真,称惰性得真背峰切割得真:检波器与下级电路对接时,普遍采与阻容耦合电路.Cc为隔值电容,对于Ω呈接流短路,Cc二端电压为VAV.Ri2为下级电路输进电阻,VAV正在RL、Ri2分压后正在RL二端得VA电压反效用到二极管二端,若VA>Vsmmin,D截行,使输出调造旗号电压正在其背峰值附近将被削仄,出现背峰切割得真.2.证明共步检波电路的共步旗号与载波旗号的相互闭系.问:它们真足共频共相.。
二极管包络检波器
实验二 二极管包络检波器一、实验目的1、. 初步认识实际的硬件包络检波器电路的组成,尤其要重视实际电路比原理性电路,多添加的辅助性元件的作用,以培养良好的识图习惯,增强识图能力。
2、掌握检波失真产生的原因,以及失真波形的特征。
二、实验原理调幅波的解调是从调幅信号中取出调制信号,通常称之为检波。
调幅波解调方法有二极管包络检波器,同步检波器。
本实验板上主要完成二极管包络检波。
二极管包络检波器具有电路简单,易于实现的优点。
它适用于解调含有较大载波分量的大信号,利用二极管的单向导电特性和检波负载L R C 的充放电过程实现检波。
所以L R C 时间常数的选择很重要。
L R C 时间常数过大,会产生惰性失真。
L R C 常数太小,高频分量会滤不干净。
综合考虑要求满足aa L m m C R f max 2011Ω-≤<< 其中:m a 为调制度,f 0为载波频率,Ωmax 为调制信号角频率的最大值。
由于检波电路交直流负载电阻的不同,有可能产生负峰切割失真。
为了避免负峰切割失真,各参数值应满足La R R m Ω≤,式中ΩR 表示交流负载,L R 表示直流负载。
三、实验电路分析本实验的实际电路如图4-1所示。
调幅波信号从J1101(或TP1101)输入,晶体管BG1101及其外围电路组成高频小信号调谐放大器,对输入信号进行放大后,经二极管D 1101及其外围RC 低通滤波器组成的包络检波电路,对调幅波进行解调。
解调后得到的低频调制信号,经运放电路放大后,由J1102(或TP1104)输出。
本实验电路的简化电路如图4-2所示。
切换开关K1101,可以将高频放大电路和检波电路连通;切换开关K1103,可以将检波电路和低频放大电路连通。
检波电路部分,切换开关K1102,直流负载电阻在R1106和R1107之间选择;切换开关K1104,负载电阻在R1108和R1109之间选择。
通过选择不同的交直流负载,在信号输出端J1102(或TP1104)即可观察到相应的失真波形。
实验6 二极管包络检波器
实验6 二极管包络检波器—、实验准备1.做本实验时应具备的知识点:●振幅解调●二极管包络检波2.做本实验时所用到的仪器:●晶体二极管检波器模块●高频信号源●双踪示波器●万用表二、实验目的1.熟悉电子元器件和高频电子线路实验系统;2.掌握用包络检波器实现AM波解调的方法。
了解滤波电容数值对AM波解调影响;3.理解包络检波器只能解调m≤100%的AM波,而不能解调m>100%的AM波以及DSB 波的概念;4.了解输出端的低通滤波器对AM波解调的影响;三、实验内容1.用示波器观察包络检波器解调AM波时的性能;2.用示波器观察普通调幅波(AM)解调中的对角切割失真和底部切割失真的现象。
四、基本原理振幅解调即是从振幅受调制的高频信号中提取原调制信号的过程,亦称为检波。
通常,振幅解调的方法有包络检波和同步检波两种。
1.二极管包络检波二极管包络检波器是包络检波器中最简单、最常用的一种电路。
它适合于解调信号电平较大(俗称大信号,通常要求峰一峰值为1.5V 以上)的AM 波。
它具有电路简单,检波线性好,易于实现等优点。
本实验电路主要包括二极管、RC 低通滤波器和低频放大部分,如图9-1所示。
图中,10D01为检波管,10C02、10R08、10C07构成低通滤波器,10R01、10W01为二极管检波直流负载,10W01用来调节直流负载大小,10R02与10W02相串构成二极管检波交流负载,10W02用来调节交流负载大小。
开关10K01是为二极管检波交流负载的接入与断开而设置的,10K01置“on ”为接入交流负载,10K01置“off ”为断开交流负载。
10K02开关控制着检波器是接入交流负载还是接入后级低放。
开关10K02拨至左侧时接交流负载,拨至右侧时接后级低放。
当检波器构成系统时,需与后级低放接通。
10BG01、10BG02对检波后的音频进行放大,放大后音频信号由10P02输出,因此10K02可控制音频信号是否输出,调节10W03可调整输出幅度。
7二极管包络检波实验
Thursday, February 16, 2012 卢 莎
实验目的
加深对二极管大信号包络检波工作原理的理 解。 掌握用二极管大信号包络检波器实现普通调 幅波(AM)解调的方法。了解滤波电容数值 对AM波解调影响。 了解电路参数普通调幅波(AM)解调影响。
卢莎
2
实验仪器
集成乘法调幅实验板 二极管包络检波实验板 低频信号源模块 高频信号发生器 20MH双踪示波器 万用表
卢莎
22
实验步骤
3.观察波形惰性失真 分别增大Ω ,增大ma(调节集成乘法器幅度调制实验电路板上 RW2),RW1,当波形出现失真时,记录此时波形以及对应的 的RW2 RW2 Ω ,ma,负载 。
Ω 不失真时 第一次 第二次 第三次
ma
负载
负载在TP2时为R1//R2+RW1;TP3时为R1//R2+RW1//R3+RW2
二极管包络检波器当RC很大而Rd很小时,输出低频电 压振幅只略小于调幅波包络振幅,故Kd略小于1,实际 上在80%左右。R足够大时,Kd为常数,即检波器输出 电压的平均值与输入高频电压的振幅成线性关系,所以 又把二极管峰值包络检波称为线性检波。 检波效率与电路参数R、C、 Rd以及信号大小有关。
卢莎 11
输入电阻
对于高频输入信号源来说,检波器相当于一个负载,此 负载就是检波器的等效输入电阻Rin。
R Rin − % 2Kd
上式说明,大信号输入电阻Rin等于负载电阻的一半再 除以Kd 。 一般大信号检波比小信号检波输入电阻大。
卢莎
12
检波失真
理想情况下,包络检波器的输出波形应与调幅波包络线 的形状完全相同,但实际上,检波器的输出波形存在某 些失真。 失真:惰性失真、负峰切割失真、非线性失真、频率失 真。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二极管包络检波器当 RLC 很大而 rD 很小时,输出低频电压振幅只略小于调幅波包络振幅,
故d 略小于1,实际上d 在80%左右。并且 R 足够大时,d 为常数,即检波器输出电压的平 均值与输入高频电压的振幅成线性关系,所以又把二极管峰值包络检波称为线性检波。检波
效率与电路参数 RL 、 C 、 r0 以及信号大小有关。它很难用一个简单关系式表达,所以简单 的理论计算还不如根据经验估算可靠。如要更精确一些,则可查图表并配以必要实测数据得 到。
1. 二极管大信号包络检波工作原理
ui maUcm
u2 ui
Ucm
t
u2
UΩm U0
直流成分U0
t
图 4-1 大信号检波电路
图 4-2 大信号检波原理
图4-1是二极管大信号包络检波电路,图4-2表明了大信号检波的工作原理。输入信号
ui (t) 为正并超过 C 和 R1上的 u0 (t) 时,二极管导通,信号通过二极管向 C 充电,此时 u0 (t) 随
故 u0 (t) 的波动小,并保证基本上接近于 ui (t) 的幅值。如果 ui (t) 是高频等幅波,则 u0 (t) 是大
小为U 0 的直流电压(忽略了少量的高频成分),这正是带有滤波电容的整流电路。当输入
信号 ui (t) 的幅度增大或减少时,检波器输出电压 u0 (t) 也将随之近似成比例地升高或降低。
3.二极管大信号包络检波器输入电阻 输入电阻是检波器的另一个重要的性能指标。对于高频输入信号源来说,检波器相当于 一个负载,此负载就是检波器的等效输入电阻 Rin 。
Rin
~
RL 2 d
上式说明,大信号输入电阻 Rin 等于负载电阻的一半再除以d 。例如 RL 5.1k ,当d
=0.8,时,则 Rin
自动化学 院(系) 电子信息工程 专业 1802 班
组
姓名 学号
指导老师
成
实验日期 2020 年 6 月 3 日
绩
实验名称
一、 实验目的
二极管包络检波
1、了解二极管包络检波的主要指标,检波效率及波形失真的知识 2、掌握二极管包络检波的原理。
二、 实验仪器设备
multisim 仿真软件
三、 实验原理及电路图
号作对比
A 接 A1
A 不接 A1
2、 加大调制信号的幅度,使 m=100%,观察记录输出波形;
A 接 A1
A 不接 A1
3、 改变载波信号频率观察记录输出波形的变化。
波
形
m<30%
m=100%
调制信号
解调输出
是否失真
否
是
4、用示波器比较二极管包络检波器和乘法器、同步检波器在同一载波信号频率下的检波
2、从实验中观察调制信号 m<30%和 m=100%时的输出波形可以看到,m<30%时, 输出波形不失真,m=100%时,输出波形发生失真,表明二极管包络检波对于 m 有限制。
3、实验中比较二极管包络检波和乘法器同步检波可以得到,包络检波适用范围小, 只适用于 AM 波解调,并且会因参数选择不当产生各种失真(底部切割失真、对角 dao 切割失真等),但解调电路较简单。同步检波适用范围广,AM 波,DSB,SSB 信号均可 适用,并且检波效率高,检波线性好,乘法器输出电压中,不存在载波分量 Wc,工作稳 定等优点,但解调电路相对较复杂。
当输入信号为调幅波时,检波器输出电压 u0 (t) 就随着调幅波的包络线而变化,从而获得调
制信号,完成检波作用,由于输出电压 u0 (t) 的大小与输入电压的峰值接近相等,故把这种 检波器称为峰值包络检波器。
2.二极管大信号包络检波效率 检波效率又称电压传输系数,用d 表示。它是检波器的主要性能指标之一,用来描述检
5.1 2 0.8
3.2k 。
由此数据可知,一般大信号检波比小信号检波输入电阻大。
3.二极管大信号包络检波器检波失真
检波输出可能产生对角切割失真:是由于滤波电容放电慢引起的失真,也可称为惰性失
真。
(1) 对角切割失真。如图 4-3 电路所示。
u ui
u0
t
避免对角线失真的条件是
图 4-3 对角线失真原理图
充电电压上升而升高。当 ui (t) 下降且小于
通过 RL 放电, u0 (t) 随放电而下降。充电时,二极管的正向电阻 rD 较小,充电较快,u0 (t) 以
接近 ui (t) 上升的速率升高。放电时,因电阻 RL 比 rD 大的多(通常 RL 5 ~ 10k ),放电慢,
CRL
1 ma2 ma
上式表明 ma 或 大,则包络线变化快、 CRL 放电慢,这些都促成发生放电失真。
实验电路图:
四、 实验步骤及数据分析
实验电路图如下所示
A1 D1
1、 将乘法器调幅实验中调好的 m<30%的全载波调幅信号(载波信号 Vpp=50~100mV)
加入 Um,观察记录 A1 接 A 与 A1 不接 A 两种情况的输出波形,并与原来的调制信
效果,并比较改变载波频率检波效果有何异同。
二极管包络检波器
乘法同步检波器
五、 实验结果讨论
1、从实验中观察 A 接 A1 和 A 不接 A1 的比较中可以看出,A 接 A1 时,并联一个 C,C 变大,输出信号的幅度比 A 不接 A1 时要小,放电时间常数 RC 变大,放电变慢, 输出波形与高频调幅波更接近,由此可见,大信号的检波过程,主要是利用二极管的单 向导电性和检波负载 RC 的充放电过程。
波器将高频调幅波转换为低频电压的能力。d 定义为:
d
检出的音频电压幅度 调幅波包线变化的幅度
(U m ) (maU cm
)
U m maU cm
当检波器输入为高频等幅波时,输出平均电压U 0 ,则d 定义为
d
整出的直流电压 (U 0 ) 检波电压的幅值 (U cm )
U0 U cm
这两个定义是一致的,对于同一个检波器,它们的值是相同的。由于检波原理分析可知,