数学分析傅立叶级数

合集下载

傅里叶级数收敛定理及其推论

傅里叶级数收敛定理及其推论
傅里叶级数由正弦和余弦函数构成,通过将原始函数展开成一系列正弦 和余弦函数的线性组合,可以表示任意周期函数。
傅里叶级数的形式为:$f(x) = a_0 + sum_{n=1}^{infty} (a_n cos(nx) + b_n sin(nx))$,其中 $a_0, a_n, b_n$ 是常数,取决于原始函数。
傅里叶级数可以用于分析物体的振动模式,通过分析振动信号的频率成分,可以推断物体的振动 性质。
热传导分析
在热传导分析中,傅里叶级数可以用于分析温度场的变化,通过分析温度信号的频率成分,可以 推断热传导的规律。
电磁场分析
在电磁场分析中,傅里叶级数可以用于分析电磁波的传播和散射,通过分析电磁波信号的频率成 分,可以推断电磁场的性质。
02
通过傅里叶级数,可以分析信号的频率成分、进行图像滤波 和增强等操作。
03
在物理学中,该定理用于研究波动方程、热传导方程等偏微 分方程的解的性质。
03 傅里叶级数的收敛性质
收敛速度的讨论
快速收敛
对于具有快速衰减的函数,傅里叶级数可能 以相对较快的速度收敛。
慢速收敛
对于具有振荡或缓慢衰减的函数,傅里叶级 数可能以较慢的速度收敛。
在信号处理中的应用
1 2
信号的频谱分析
傅里叶级数可以将一个复杂的信号分解为多个正 弦波和余弦波的组合,从而分析信号的频率成分 和强度。
信号滤波
通过傅里叶级数,可以将信号中的特定频率成分 进行增强或抑制,实现信号的滤波。
3
信号压缩
傅里叶级数可以用于信号压缩,通过对信号进行 频域变换,去除冗余信息,实现信号的压缩。
傅里叶变换的推论
傅里叶变换的线性
性质
若 $f(t)$ 和 $g(t)$ 是两个函数, 且 $a, b$ 是常数,则有 $a f(t) + b g(t) rightarrow a F(omega) + b G(omega)$。

十五章傅里叶级数

十五章傅里叶级数

2
2
2
当只给出一种周期旳体现式时,傅里叶级数在两端点旳值
可用 上述公式求之.
例1:设
x, f (x) 0,
0 x x 0
求f
旳傅里叶级数展开式.
解: 函数f 及其周期延拓后的图象如图所示,
y
3 2 O 2 3 4
x
显然 f 是按段光滑旳,故由收敛定理,它能够展开成傅里叶级数。
因为
第十五章 傅里叶级数
§15.1 傅里叶级数
一、 三角级数 • 正交函数系
二、以 2 为周期旳函数旳傅里叶级数
三、收敛定理
§15.1 傅里叶级数
一、三角函数 正交函数系
在科学试验与工程技术旳某些现象中,常会遇到一种周期运动,最简
单旳周期运动,可用正弦函数 A sin(x ) 来描写。
所体现旳周期运动也称为简谐运动,其中 A 为振幅, 为初相角,
f (x) cos kxdx
a0 cos kxdx 2
(an cos nx cos kx bn sin nx cos kx)dx n1
cos2 kxdx
f (x) cos kxdx ak
ak
1
f (x) cos kxdx
(k 1, 2, )
同理可得:
bk
1
f (x) sin kxdx
f 的傅里叶级数收敛于f 在点x的左,右极限的算术平均值,即
f
(x
0) 2
f
(x 0)
a0 2
(an
n1
cos nx bn
sin nx)
其中an ,bn为f的傅里叶系数。
推论:
若f 是以2为周期的连续函数,且在[, ]上按段光滑,则 f 的

数学分析傅里叶级数及系数

数学分析傅里叶级数及系数
数学分析傅里叶级数及 系数
性 质 1 a,b,c R n, , R,则 有 1) 交 换 律 : a b b a;
2) 结 合 律 : a b c a b c ;
3) 分 配 率 :
a b a b ,
a a a, a a.
定 义 2在 R n 中 定 义 了 向 量 的 加 法 和 数 乘 运 算 , 称 R n 为 n 维 向 量 空 间 .
a
b
2
a
b,a
b
a
,
a
2
a,
b
b,
b
2
a 2 a
b
b
2
a
b
2

因此结论得证。
定义5(向量内积运算): 任意 a, b Rn不为零向量,
a (a1, a2 , , an ), b (b1, b2 , , bn ),
定义两个向量的夹角为
a b
cos(a, b)
ab
a1b1 a2b2 anbn a12 a22 an2 b12 b22
定 理 1 对 任 意 集 合 E R n ,E o 为 开 集 .
定理2(开集运算性质) 1)Rn , 为开集合;
2)设E
,
I为开集合族,则
I
E为开集;
n
3)设Ei ,i 1,2,
,
n为开集,则 i1
Ei为开集.
证明:X
I
E ,则E1
I
E , X E1 ,
因此存在r>0,使得
B
X;r
1)Ea,bc,d; 2)Ex, y xy0;
3)Ex,y xy0;4)Ex,y x,y均整;
5)Ex,
y

数学分析15傅里叶级数总练习题

数学分析15傅里叶级数总练习题

第十五章 傅里叶级数总练习题1、求三角多项式T n (x)=2A 0+∑=n1k k k sinkx )B +coskx (A 的傅里叶级数展开式.解:T n (x)以2π为周期,且在(-∞,+∞)上光滑,∴能展开为傅里叶级数.又a 0=⎰ππ-02A π1dx+∑⎰⎰=n 1k ππ-k ππ-k dx )sinkx B +dx coskx A (π1=A 0; 当m ≥0时,a m =⎰∑⎥⎦⎤⎢⎣⎡+=ππ-n1k k k 0sinkx)B +coskx (A 2A π1cosmxdx=⎩⎨⎧>≤n m 0,n m ,A m ;b m =⎰∑⎥⎦⎤⎢⎣⎡+=ππ-n1k k k 0sinkx)B +coskx (A 2A π1sinmxdx=⎩⎨⎧>≤nm ,0n m ,B m .∴在(-∞,+∞)上,有T n (x)=2a 0+∑∞=1m m m sinm x )b +cosmx (a =2A 0+∑=n1k k k sinkx )B +coskx (A ,即T n (x)的傅里叶级数展开式是其本身.2、设f 为[-π,π]上的可积函数,a 0, a k , b k (k=1,2,…,n)为f 的傅里叶系数. 试证明:当A 0=a 0, A k =a k , B k =b k (k=1,2,…,n)时,积分⎰-ππ-2n ](x )T )x (f [dx取得最小值,且最小值为⎰ππ-2)x (f dx-π[2a 0+∑=n 1k 2k 2k )b +(a ]. 其中 T n (x)=2A 0+∑=n1k k k sinkx )B +coskx (A ,A 0, A k , B k 为其傅里叶系数.证:⎰-ππ-2n ](x )T )x (f [dx=⎰∑⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡+-=ππ-2n1k k k 0sinkx)B +coskx (A 2A )x (f dx=-2⎰∑∑⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+=∞=ππ-n1k k k 01k k k 0sinkx)B +coskx (A 2A sinkx)b +coskx (a 2a dx+⎰∑⎥⎦⎤⎢⎣⎡+=ππ-2n 1k k k 0sinkx)B +coskx (A 2A dx+⎰∑⎥⎦⎤⎢⎣⎡+∞=ππ-21k k k 0sinkx)b +coskx (a 2a dx =-2π⎪⎭⎫ ⎝⎛++∑∑==n 1k n 1k k k k k 00b B a A a 2A +π⎪⎪⎭⎫⎝⎛++∑∑==n 1k n 1k 2k 2k 20B A 2A +2π⎪⎪⎭⎫ ⎝⎛++∑∑==n 1k n 1k 2k 2k 20b a 2a -π⎪⎪⎭⎫ ⎝⎛++∑∑==n 1k n 1k 2k 2k 20b a 2a +π⎪⎭⎫ ⎝⎛+∑∑∞+=∞+=1n k 1n k 2k 2k b a =π⎥⎦⎤⎢⎣⎡++∑∑==n1k 2k k n 1k 2k k 200)b -(B )a -(A )a -(A 21+π∑∞+=+1n k 2k 2k )b (a .∴当A 0=a 0, A k =a k , B k =b k (k=1,2,…,n)时,⎰-ππ-2n ](x )T )x (f [dx 取得最小值.方法一:根据帕塞瓦尔等式有⎰ππ-2(x)f π1dx=2a 20+∑∞=1n 2n 2n )b +(a ,即 ⎰ππ-2(x )f dx=2πa 20+π∑∞=1n 2n 2n )b +(a ,∴这个最小值为 π∑∞+=+1n k 2k2k)b (a =π∑∞=+n k 2k2k)b (a -π∑=n1k 2k2k)b +(a =⎰ππ-2)x (f dx-π[2a 0+∑=n 1k 2k 2k )b +(a ]. 方法二:又⎰-ππ-2n ](x )T )x (f [dx=⎰ππ-2)x (f dx-2⎰ππ-n (x )T )x (f dx+⎰ππ-2n (x )T dx.∵2⎰ππ-n (x )T )x (f dx=π00A a +2π∑=+n 1k k k k k )B b A a (=π2a +2π∑=n1k 2k 2k )b +(a ,由贝塞尔不等式有⎰ππ-2n(x )T dx ≥2πA 20+∑=n 1k 2n 2n )B +(A π=2πa 20+π∑=n 1k 2k 2k )b +(a , ∴⎰-ππ-2n ](x )T )x (f [dx ≥⎰ππ-2)x (f dx-π2a -2π∑=n1k 2k2k )b +(a +2πa 20+π∑=n 1k 2k 2k )b +(a=⎰ππ-2)x (f dx-π[2a 0+∑=n 1k 2k 2k )b +(a ],即 ⎰-ππ-2n ](x )T )x (f [dx 有最小值⎰ππ-2)x (f dx-π[2a 0+∑=n 1k 2k 2k )b +(a ]. 方法三:又⎰-ππ-2n ](x )T )x (f [dx=⎰∑⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡+-=ππ-2n1k k k 0sinkx)b +coskx (a 2a )x (f dx=⎰ππ-2)x (f dx-2⎰∑∑⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+=∞=ππ-n1k k k 01k k k 0sinkx)b +coskx (a 2a sinkx)b +coskx (a 2a dx+⎰∑⎥⎦⎤⎢⎣⎡+=ππ-2n1k k k 0sinkx)b +coskx (a 2a dx=⎰ππ-2)x (f dx-2π⎪⎪⎭⎫ ⎝⎛++∑∑==n 1k n 1k 2k 2k 20b a 2a +π⎪⎪⎭⎫ ⎝⎛++∑∑==n 1k n1k 2k 2k 20b a 2a =⎰ππ-2)x (f dx-π[2a 0+∑=n 1k 2k 2k )b +(a ].3、设f 是以2π为周期,且具有二阶连续可微的函数. b n =nx sin )x (f π1ππ-⎰dx ,b n ”=nx sin )x (f π1ππ-⎰''dx. 证明:若级数∑''nb 绝对收敛,则∑=n1k k |b |≤)|b |2(21n1k k∑=''+. 证:利用∑=n1k 2k 1≤∑∞=1k 2k1=6π2<2,及分部积分法可得:b n ”=nx sin )x (f π1ππ-⎰''dx=-cosnx )x (f πn ππ-⎰'dx=-sinnx )x (f πn ππ-2⎰dx=-n 2b n ;∴)|b |2(21n 1k k ∑=''+≥)|b |k 1(21n1k k n 1k 2∑∑==''+=])|b |(k k 1[212k 2n 1k 2+∑=≥|b |k k 1221k n 1k ⋅⋅∑==∑=n 1k k |b |.注:可记a ’n =cosnx )x (f π1ππ-⎰'dx; 则a ’n =-nb n ,b ”n =na ’n ,∴b ”n =-n 2b n .4、设周期为2π的可积函数f(x)与g(x)分别满足以下关系式: (1)f(-x)=g(x);(2)f(-x)=-g(x). 试问:f 的傅里叶系数a n , b n 和g 的傅里叶系数αn , βn 有什么关系? 解:令x=-t ,则 a n =cosnx )x (f π1ππ-⎰dx=-cos(-nt))t (f π1ππ-⎰-d(-t)=cosnt )t (f π1ππ-⎰-dt, n=0,1,2,…; b n =sinnx )x (f π1ππ-⎰dx=-sin(-nt))x (f π1ππ-⎰-d(-t)= -sinnt )t (f π1ππ-⎰-dt, n=1,2,….(1)当f(-x)=g(x)时,a n =cosnt )t (g π1ππ-⎰dt=αn , n=0,1,2,…; b n = -sinnt )t (g π1ππ-⎰dt=-βn , n=1,2,….(2)当f(-x)=-g(x)时,a n =cosnt )t (g -π1ππ-⎰dt=-αn , n=0,1,2,…; b n =sinnt )t (g π1ππ-⎰dt=βn , n=1,2,….5、设定义在[a,b]上的连续函数列{g n }满足:⎰bam n )x (g )x (g dx=⎩⎨⎧=≠m n 1mn 0,,;对于在[a,b]上的可积函数f ,定义αn =⎰ba n )x (g )x (f dx, n=1,2,….证明:∑∞=1n 2nα收敛,且有不等式∑∞=1n 2nα≤⎰ba 2)x (f dx.证:作级数∑∞=1n n n )x (g α,令S m (x)=∑=m1n n n )x (g α,则⎰-ba2m )]x (S )x ([f dx=⎰b a2)x (f dx-2⎰b am )x (S )x (f dx+⎰ba2m )x (S dx ;又2⎰ba m )x (S )x (f dx=2⎰∑=ba m 1n n n )x (g α)x (f dx=2∑⎰=m1n ba n n )x (g )x (f αdx=2∑=m1n 2n α;由{g n }的定义有:⎰b a 2m)x (S dx=⎰∑⎥⎦⎤⎢⎣⎡=ba2m 1n n n )x (g αdx=∑=m1n 2n α;∴0≤⎰-b a 2m )]x (S )x ([f dx=⎰ba 2)x (f dx-∑=m 1n 2nα, 即∑=m1n 2n α≤⎰ba2)x (f dx. 又m 为任意自然数,且⎰ba 2)x (f dx 为有限值,∴∑∞=1n 2nα因部分和数列有界而收敛,且有∑∞=1n 2nα≤⎰ba 2)x (f dx.。

数学分析2部分习题解析(傅里叶级数部分)

数学分析2部分习题解析(傅里叶级数部分)

数学分析2部分习题解析傅里叶级数部分第3节部分习题1、设f 以2π为周期且具有二阶连续的导数,证明f 的傅里叶级数在(),-∞+∞上一致收敛于f 。

证明由条件知,f 一定是以2π为周期的连续函数且在一个周期区间[],ππ-上按段光滑,所以由收敛定理得,在(),-∞+∞上有()011cos sin ()2n n n a a nx b nx f x ∞=++=∑,其中0a ,n a ,n b (1n ≥)为()f x 的傅里叶系数。

由三角级数一致收敛的判别法,下证()0112n n n a a b ∞=++∑收敛即可。

事实上,记0a ',n a ',nb '为导函数()f x '的傅里叶系数,由()f x 与()f x '的傅里叶系数的关系得0a '=,n n a nb '=,n n b na '=-。

所以,()()22211112n n n n n n a b b a a b n n n ⎛⎫''''+=+≤++ ⎪⎝⎭。

又由傅里叶系数满足的贝塞尔不等式得,()()()221nn n a b ∞=''+∑收敛,再注意到211n n∞=∑收敛,所以()0112n n n a a b ∞=++∑收敛,故结论成立。

2、设f 为[],ππ-上的可积函数,证明:若f 的傅里叶级数在[],ππ-上一致收敛于f ,则成立帕塞瓦尔等式:()22220111()d 2n n n f x x a a b πππ∞-==++∑⎰,其中0a ,n a ,n b (1n ≥)为()f x 的傅里叶系数。

证明由f 在[],ππ-上可积得,f 在[],ππ-上有界,从而由题设可得()2011()()cos ()sin ()2n n n a f x a f x nx b f x nx f x ∞=++=∑,在[],ππ-上一致成立。

《数学分析》第十五章 傅立叶级数

《数学分析》第十五章 傅立叶级数

1 22

1 32

1 42

,
2


4

1
2
4
,

1
2

2 , 6
2

1 3

2 , 2432 1
2 . 12
例 3 设f ( x)是以2为周期的连续函数,且
f ( x) a0
2 试证明:1



n1

f

(an cos nx 2( x)dx
第十五章 傅立叶级数
15.1 傅立叶级数 15.2 正弦级数与余弦级数 15.3 以 为周期的函数的展开式 15.4 收敛定理的证明
15.1 傅立叶级数
一、问题的提出 二、三角级数 三角函数系的正交性
三、函数展开成傅里叶级数
一、问题的提出
非正弦周期函数:矩形波
u
u(t
)

1,

1,
当 t 0 当0 t
sin nx)
问题:
f
(x)
条件?
a0 2


(an
n1
cos nx

bn
sin nx)
2.狄利克雷(Dirichlet)充分条件(收敛定理)
设 f ( x)是以2为周期的周期函数.如果它满足条件: 在一个周期内连续或只有有限个第一类间断点,并且 至多只有有限个极值点,则 f ( x) 的傅里叶级数收敛, 并且 (1) 当x 是 f ( x)的连续点时,级数收敛于 f ( x) ;
f
( x)sin nxdx]
n1


f 2( x)dx

数学分析153傅里叶级数收敛定理的证明doc

数学分析153傅里叶级数收敛定理的证明doc

数学分析15.3傅里叶级数收敛定理的证明.doc傅里叶级数收敛定理是数学分析中的重要定理之一,它可以用于研究周期函数的展开。

下面给出傅里叶级数收敛定理的证明。

设f(x)是一个周期为2π的函数,它在一个周期内可积,即∫[0,2π]|f(x)|dx < ∞。

我们要证明f(x)的傅里叶级数收敛于f(x)。

设f(x)的傅里叶级数为:f(x) = a0 + ∑[n=1,∞] (an cos(nx) + bn sin(nx))其中a0, an, bn分别为f(x)的傅里叶系数。

我们要证明f(x)的傅里叶级数收敛于f(x),即要证明对于任意的x,有f(x) = lim[N→∞] (a0 + ∑[n=1,N] (an cos(nx) + bn sin(nx)))为了证明这个结论,我们需要用到以下两个引理:引理1:若f(x)是一个周期为2π的函数,它在一个周期内可积,则对于任意的实数x和整数N,有∫[0,2π] f(x)sin(Nx)dx = bn其中bn为f(x)的傅里叶系数。

引理2:若f(x)是一个周期为2π的函数,它在一个周期内可积,则对于任意的实数x和整数N,有∫[0,2π] f(x)cos(Nx)dx = a0 + ∑[n=1,N] an其中a0, an为f(x)的傅里叶系数。

现在我们来证明傅里叶级数收敛定理。

首先,我们使用引理1和引理2,将f(x)的傅里叶级数展开,并对其进行部分和的计算:∫[0,2π] f(x)sin(Nx)dx = bn = ∫[0,2π] f(x)sin(Nx)dx = ∫[0,2π] (a0 + ∑[n=1,N] an)sin(Nx)dx根据正弦函数的正交性质,我们知道∫[0,2π] sin(Nx)sin(Mx)dx = 0,其中N≠M。

因此,上式中的交叉项∫[0,2π] ansin(Nx)sin(Mx)dx = 0。

所以,我们可以得到:∫[0,2π] f(x)sin(Nx)dx = ∫[0,2π] (a0 + ∑[n=1,N] an)sin(Nx)dx = ∫[0,2π] a0sin(Nx)dx + ∑[n=1,N] ∫[0,2π] ansin(Nx)dx同理,我们可以得到:∫[0,2π] f(x)cos(Nx)dx = a0 + ∑[n=1,N] an现在,我们来证明f(x) = lim[N→∞] (a0 + ∑[n=1,N] (an cos(nx) + bn sin(nx)))。

数学分析课件 傅里叶级数

数学分析课件  傅里叶级数

03
工程学
在工程学中,傅里叶级数可以用于分析和设计各种周期性结构,例如在
机械工程和土木工程等领域中,可以通过傅里叶级数来描述和分析周期
性振动和波动等问题。
02
傅里叶级数的基本性质
三角函数的正交性
三角函数的正交性是指在一周期内,任何两个不同的三角函 数都不相交,即它们的乘积在全周期内的积分值为零。这一 性质在傅里叶级数的展开和重构中起到关键作用,确保了频 谱的纯净性和分离性。
三角函数的周期性使得我们能够将无限长的信号转化为有限长的频谱,从而方便 了信号的分析和处理。
傅里叶级数的收敛性
傅里叶级数的收敛性是指一个信号的傅里叶级数展开在一 定条件下能够无限接近原信号。这一性质保证了傅里叶级 数展开的精度和可靠性,使得我们能够通过有限项的级数 展开来近似表示复杂的信号。
收敛性的判定是数学分析中的重要问题,涉及到级数的收 敛半径、收敛域等概念。在实际应用中,我们需要根据信 号的特性和精度要求来选择合适的收敛域和级数项数,以 保证傅里叶级数展开的准确性。
首先,确定函数的周期和定义域;其次,计算正弦和余弦函数的系数;最后,将得到的系数代入正弦和余弦函数的线 性组合中,得到函数的傅里叶级数表示。
傅里叶级数的表示方法的优缺点
傅里叶级数具有简洁、易计算等优点,能够将复杂的周期函数分解为简单的正弦和余弦函数。然而,傅 里叶级数也存在着一些缺点,例如在非周期函数的情况下,傅里叶级数可能无法得到正确的结果。
图像增强
利用傅里叶级数,可以对图像进行增 强处理,如锐化、降噪等,提高图像 的视觉效果。
数值分析中的傅里叶级数
数值逼近
傅里叶级数可以用于求解某些函数的 数值逼近问题,如求解函数的零点、 极值等。

数学分析傅里叶级数

数学分析傅里叶级数


前页 后页 返回
π
f ( x)cos kxdx π
a0
2
π
π
cos kxdx
π
(an
cos nx cos kxdx
π
n1
π
bn
sin nx cos kxdx).
π
由三角函数的正交性, 右边除了以 ak 为系数的那一
项积分
π cos2 kxdx π π
外,其他各项积分都等于0,于是得出:
所以函数(2)周期为T. 对无穷多个简谐振动进行叠
加就得到函数项级数
A0 An sin(n x n ).
(3)
n1
若级数(3)收敛, 则它所描述的是更为一般的周期运
前页 后页 返回
动现象. 对于级数(3), 只须讨论 1(如果 1可
用 x 代换x )的情形. 由于
sin(nx n ) sinn cos nx cosn sin nx,
由此可知, 若f 是以 2π 为周期且在 [ , ]上可积的
函数, 则可按公式(10)计算出 an和 bn , 它们称为函数 f (关于三角函数系(5) ) 的傅里叶系数,以 f 的傅里
叶系数为系数的三角级数(9)称为 f (关于三角函数
系) 的傅里叶级数, 记作
f ( x) :
a0 2
(an cos nx
§1 傅里叶级数
一个函数能表示成幂级数给研究函数带来 便利, 但对函数的要求很高(无限次可导). 如果 函数没有这么好的性质, 能否也可以用一些简 单而又熟悉的函数组成的级数来表示该函数 呢? 这就是将要讨论的傅里叶级数. 傅里叶级 数在数学、物理学和工程技术中都有着非常 广泛的应用, 是又一类重要的级数.

傅里叶级数的定义与公式

傅里叶级数的定义与公式

傅里叶级数的定义与公式傅里叶级数是分析函数周期性的重要工具,它在信号处理、图像处理、物理学等领域广泛应用。

在数学上,傅里叶级数可以将一个周期函数表示为一系列的正弦和余弦函数的线性组合。

通过傅里叶级数,我们可以将任意周期函数进行频域分解,从而更好地理解信号的频谱特性。

傅里叶级数的定义如下:假设函数f(x)是一个以T为周期的连续函数,在周期T上可展开成如下的正弦余弦级数:f(x) = a0 + Σ(an*cos(nω0x) + bn*sin(nω0x))其中,n为正整数, ω0=2π/T是基本频率,an和bn为函数f(x)的傅里叶系数。

而a0是傅里叶级数中的直流分量,表示函数的平均值。

要计算函数f(x)的傅里叶系数,我们可以利用傅里叶级数的公式:an = (2/T) * ∫[0,T] (f(x)*cos(nω0x)dx),n≥1bn = (2/T) * ∫[0,T] (f(x)*sin(nω0x)dx),n≥1其中,∫[0,T]表示对周期T内的函数进行积分。

傅里叶级数的计算过程可以通过数值积分方法等多种途径实现。

计算出傅里叶系数之后,我们可以通过将级数的每一项相加,逐渐逼近原始函数f(x)。

这样可以实现对任意周期函数进行分析和重建。

傅里叶级数的应用非常广泛。

在信号处理领域,傅里叶级数可用于时域和频域的转换,从而实现滤波、频谱分析和频谱合成等任务。

在图像处理领域,傅里叶级数可以用来进行图像的压缩和频域滤波等操作。

在物理学领域,傅里叶级数可以用来解决波动方程、热传导方程等偏微分方程的初值问题。

在学习和应用傅里叶级数时,我们需要注意一些问题。

首先,要判断函数是否满足周期性条件,周期必须是确定的。

其次,要注意函数的奇偶性,奇函数的傅里叶级数只包括正弦项,偶函数的傅里叶级数只包括余弦项。

此外,对于非周期函数,我们可以通过周期延拓的方式来逼近其傅里叶级数。

总之,傅里叶级数是一种重要的分析工具,可以将周期函数展开成具有不同频率的正弦和余弦函数的线性组合。

傅里叶级数cesaro和 -回复

傅里叶级数cesaro和 -回复

傅里叶级数cesaro和-回复傅里叶级数是数学分析领域的一个重要概念,是将一个周期性函数表示为一系列正弦和余弦函数的线性组合。

而Cesaro和则是一种数列求和方法,用于对于可能发散的级数进行求和。

本文将分为几个部分,逐步回答关于傅里叶级数和Cesaro和的问题。

第一部分:傅里叶级数1.什么是傅里叶级数?- 傅里叶级数是将一个周期为T的函数f(x)表示为一系列正弦和余弦函数的线性组合。

- 傅里叶级数的表达式为:f(x) = a_0 + Σ[a_n*cos(nωt) + b_n*sin(nωt)],其中a_0,a_n和b_n是常数,ω表示角频率。

2.为什么使用傅里叶级数?- 傅里叶级数可以将复杂的函数用简单的正弦和余弦函数相加的形式表示,便于分析和处理。

- 傅里叶级数在信号处理、图像处理、电路分析等领域有广泛应用,可以用于信号重构、滤波、数据压缩等问题的求解。

3.傅里叶级数的计算方法是什么?- 傅里叶级数的计算可以通过使用傅里叶变换和傅里叶级数的积分定理来进行。

- 首先,使用傅里叶变换将函数f(x)转换为频域的表达式F(ω)。

- 然后,根据傅里叶级数的积分定理,可以将F(ω)拆分为一系列频率为n ω的复指数函数。

- 最后,根据欧拉公式将复指数函数转换为正弦和余弦函数,就得到了傅里叶级数的表达式。

第二部分:Cesaro和1.什么是Cesaro和?- Cesaro和是一种对于数列求和的方法,用于对可能发散的级数进行求和。

- Cesaro和的基本思想是通过对数列中部分项进行平均,得到一个新的数列,然后对这个新的数列进行求和。

2.为什么使用Cesaro和?- 在一些情况下,级数可能会发散,无法求得其真实的和。

Cesaro和提供了一种求和的近似方法。

- Cesaro和的性质使得它有助于理解数列的平均趋势及其稳定性。

3.Cesaro和的计算方法是什么?- Cesaro和的计算方法是通过对数列的前n项的平均值进行求和,然后再除以n。

数学分析傅立叶级数习题

数学分析傅立叶级数习题

第十五章 傅里叶级数一.填空题1. 设)(x f 是周期为π2的函数,在),[ππ-上的表达式为⎪⎪⎩⎪⎪⎨⎧<<=<≤--=ππππx x x x f 0,2,0,0,0,2)(,则)(x f 的傅里叶系数=n a .2.若)(x f 在],[ππ-上按段光滑,则)(x f 在],[ππ-上的傅里叶级数()=++∑∞=10sin cos 2n n n nx b nx a a . 3. 设,0(),0,0x x f x x ππ≤≤⎧=⎨-≤<⎩则此函数的傅里叶级数在π=x 处收敛于 .4. 设⎪⎩⎪⎨⎧≤<=<<--=ππx x x x x x f 0,,0,0,0,)(22,则此函数的傅里叶级数在0=x 处收敛于 .5. 设⎩⎨⎧<≤<≤-50,3,05,0)(x x x f ,则此函数的傅里叶级数在0=x 处收敛于 .6. )(x f 是以π2为周期的连续函数,且在],[ππ-上按段光滑,则()=++∑∞=10sin cos 2n n n nx b nx a a . 二.选择题1.下列说法正确的是( ).A 若)(x f 是以π2为周期的函数,且在],[ππ-上可积,则)(x f 的傅里叶系数中的⎰-=ππnxdx x f b n sin )(, ,3,2,1=n.B 若)(x f 是以l 2为周期的函数,且在],[l l -上可积,则)(x f 的傅里叶系数中的⎰-=lln dx lxn x f a πcos)(, ,3,2,1=n .C 若)(x f 是以π2为周期的偶函数,且在],[ππ-上按段光滑,则)(x f 在],[ππ-上可展开成余弦级数∑∞=1cos n n nx a ..D 若)(x f 是以π2为周期的奇函数,且在],[ππ-上按段光滑,则)(x f 在],[ππ-上可展开成正弦级数∑∞=1sin n n nx b .2.设)(x f 是周期为π2的函数,在),[ππ-上的表达式为⎪⎪⎩⎪⎪⎨⎧<<=<≤--=ππππx x x x f 0,4,0,0,0,4)(,则下列说法错误的是( ).A )(x f 在),(ππ-上可以展开成傅里叶级数. .B )(x f 的傅里叶展式在π=x 处收敛于4π. .C )(x f 的傅里叶展式在0=x 处收敛于0. .D )(x f 的傅里叶系数0=n a .3.设函数)(x f 满足)()(x f x f -=+π,则该函数的傅里叶级数具有性质( ).A 0=n a .B 0=n b .C 022==n n b a .D 01212==--n n b a4.设)(x f 是周期为π2的函数,在),[ππ-上的表达式为⎩⎨⎧<≤<<--=ππx x x f 0,4,0,4)(,则下列说法正确的是( ).A )(x f 的傅里叶展式在0=x 处收敛于4..B )(x f 的傅里叶展式在π-=x 处收敛于-4. .C )(x f 的傅里叶展式在π=x 处收敛于4. .D )(x f 的傅里叶展式在π±=x 处均收敛于0.5.将⎩⎨⎧<<-≤<-=42,3,20,1)(x x x x x f 在)4,0(上展开成余弦级数,则下面关说法错误的是( ).A )(x f 的傅里叶展式在2=x 处收敛于-1..B )(x f 的傅里叶展式在0=x 处收敛于1. .C )(x f 的傅里叶展式在4=x 处收敛于1. .D )(x f 的傅里叶展式在3=x 处收敛于1.6. 若将函数x x f =)(在)2,0(内展成正弦级数,则下列说法正确的是( ).A 40=a.B )(x f 的正弦级数展式在2=x 处收敛于2. .C 当)2,0(∈x 时,展成的正弦级数收敛于)(x f 本身. .D )(x f 在)2,0(内不能展成余弦级数三.判断题1. ,sin ,cos ,,2sin ,2cos ,sin ,cos ,1nx nx x x x x 是],[ππ-上的正交函数系. ( )2.若)(x f 是以π2为周期的函数,且在],[ππ-上按段光滑,则)(x f 在],[ππ-上的傅里叶级数收敛于)(x f 本身. ( )3.若)(x f 在],[ππ-上按段光滑,则)(x f 在],[ππ-上可以展成傅里叶级数. ( )4.函数)(x f 是在],[ππ-上的周期函数,且在],[ππ-上按段光滑,则)(x f 在],[ππ-上可以展成正弦级数. ( )5.函数)(x f 的傅里叶级数在连续点处收敛于该点的函数值. ( )6.设函数,0(),0,0x x f x x ππ≤≤⎧=⎨-≤<⎩则此函数的傅里叶级数在x π=-处收敛于0.( )7. ,sin ,cos ,,2sin ,2cos ,sin ,cos ,1nx nx x x x x 是],0[π上的正交函数系. ( ) 8.x x f =)(在)2,0(上不能展成余弦级数. ( ) 9.2cos)(xx f =在],0[π上不能展成正弦级数. ( ) 10.若级数()∑∞=++10||||2||n n n b a a 收敛,则级数()∑∞=++10sin cos 2n n n nx b nx a a 在整个数轴上一致收敛. ( ) 四.计算题1.(1)将2)(xx f -=π在]2,0[π上展开成傅里叶级数;(2)利用展开式证明: +-+-=71513114π2.将x x f =)(在)1,1(-上展开成傅里叶级数.3.(1)将x x f =)(在]1,0[上展开成余弦级数; (2)根据展开式求()211.21n n ∞=-∑4.将x e x f =)(在],0[π上展开成正弦级数.5.求⎩⎨⎧<≤<<-=T x x T C x f 0,0,0,)((C 是常数)在),[T T -上的傅里叶展开式.五.证明题1.设)(x f 在],[ππ-上可积或绝对可积,若对],[ππ-∈∀x ,成立)()(x f x f =+π,证明:01212==--n n b a .2.设周期为π2的可积函数)(x f 在],[ππ-的傅里叶系数为n n b a ,,函数)(x g 的傅里叶系数为n n b a ~,~,且)()(x f x g -=,证明:n n n n b b a a ==~,~.3.根据2)1()(-=x x f 在)1,0(的余弦级数展开式证明631211222π=+++ .4.已知帕萨瓦尔等式为∑⎰∞=-++=122202)(2)]([1n n n b a a dx x f πππ,(n n b a ,为)(x f 的傅里叶系数),利用),(,cos )1(431222πππ-∈-+=∑∞=x nx n x n n证明9031211444π=+++ . 5.已知),(,cos )1(431222πππ-∈-+=∑∞=x nx nx n n,利用逐项积分法证明3x 在),(ππ-的傅里叶级数为x n n n n sin )6()1(21322∑∞=--π第十六章——第十七章一、判断题1、设平面点集{}(,),D x y x y Z =∈,则(0,0)为其内点。

傅里叶级数理解傅里叶级数的概念和计算方法

傅里叶级数理解傅里叶级数的概念和计算方法

傅里叶级数理解傅里叶级数的概念和计算方法傅里叶级数:理解傅里叶级数的概念和计算方法傅里叶级数是一种数学工具,用于将任意周期函数分解成一系列正弦和余弦函数的和。

它是由法国数学家傅里叶提出的,具有重要的物理和工程应用。

本文将介绍傅里叶级数的概念和计算方法。

一、傅里叶级数的概念傅里叶级数的核心思想是利用正弦和余弦函数的线性组合来表示周期函数。

对于一个周期为T的函数f(t),如果它满足一定条件(可积、狄利克雷条件等),则可以用以下公式表示:f(t) = a0 + Σ(an*cos(nωt) + bn*sin(nωt))其中,a0、an、bn是待确定的系数,n表示正整数,ω=2π/T是角频率。

a0表示直流分量,即周期函数在一个周期内的平均值。

an和bn表示交流分量,分别代表正弦和余弦函数的振幅。

二、傅里叶级数的计算方法1. 计算a0:将周期函数在一个周期内的积分除以周期T即可得到a0。

2. 计算an和bn:将周期函数与正弦或余弦函数相乘后在一个周期内积分,最后除以周期T即可得到an或bn。

3. 根据需要确定级数的取舍:当n趋向于无穷大时,傅里叶级数能准确地还原原始函数。

但实际应用中,通常会根据需要截断级数,只考虑前几项的和来逼近原函数。

三、傅里叶级数的应用傅里叶级数在物理和工程领域有广泛的应用。

以下是一些常见的应用领域:1. 信号处理:傅里叶级数可以将信号分解成不同频率的分量,用于信号滤波、降噪等处理。

2. 电路分析:傅里叶级数可以将电路中的周期性电信号转化为频域上的分布,用于电路分析和设计。

3. 通信系统:傅里叶级数是调制和解调过程的基础,用于信号的传输和接收。

4. 图像处理:傅里叶级数在图像压缩、频域滤波和图像识别等方面有重要应用。

四、总结傅里叶级数是将任意周期函数分解成正弦和余弦函数的和的数学工具。

通过计算待确定的系数,可以将周期函数用傅里叶级数表示。

傅里叶级数在物理和工程领域的应用广泛,包括信号处理、电路分析、通信系统和图像处理等。

数学分析15.1傅里叶级数

数学分析15.1傅里叶级数

第十5章 傅里叶级数1傅里叶级数一、三角级数·正交函数系概念1:由正弦函数y=Asin(ωx+φ)表示的周期运动称为简谐振动,其中A 为振幅,φ为初相角,ω为角频率,其周期T=ω2π.常用几个简谐振动y k =A k sin(k ωx+φk ), k=1,2,…,n 的叠加来表示较复杂的周期运动,即:y=∑=n 1k k y =∑=n1k k k )φ+ x sin(k ωA ,其周期为T=ω2π.若由无穷多个简谐振动叠加得函数项级数A 0+∑∞=1n n n )φ+ x sin(n ωA 收敛,当ω=1时,sin(nx+φn )=sin φn cosnx+cos φn sinnx ,所以 A 0+∑∞=1n n n )φ+sin(nx A = A 0+∑∞=1n n n n n sinnx )cos φA +cosnx sin φ(A ,记A 0=2a 0,A n sin φn =a n ,A n cos φn =b n ,n=1,2,…,则该级数可以表示为: 2a 0+∑∞=1n n n sinnx )b +cosnx (a . 它是由三角函数列(或称为三角函数系) 1,cosx,sinx,cos2x, sin2x,…,cosnx,sinnx,…构成一般形式的三角级数.定理15.1:若级数2a 0+∑∞=+1n n n |)b ||a (|收敛,则三角级数2a 0+∑∞=1n n n sinnx )b +cosnx (a 在整个数轴上绝对收敛且一致收敛.证:对任何实数x ,∵|a n cosnx+b n sinnx|≤|a n |+|b n |, 由魏尔斯特拉斯M 判别法得证.概念2:若两个函数φ与ψ在[a,b]上可积,且⎰ba φ(x )ψ(x )dx=0,则 称函数φ与ψ在[a,b]上是正交的, 或称它们在[a,b]上具有正交性,若有一系列函数两两具有正交性,则称其为正交函数系.注:三角函数列:1,cosx,sinx,cos2x, sin2x,…,cosnx,sinnx,…有以下性质: 1、所有函数具有共同的周期2π;2、任何两个不相同的函数在[-π, π]上具有正交性,即为在 [-π, π]上的正交函数系. 即有:⎰ππ-cosnx dx=⎰ππ-sinnx dx=0;⎰ππ-cosmx cosnx dx=0 (m ≠n);⎰ππ-sinmx sinnx dx=0 (m ≠n);⎰ππ-cosmx sinnx dx=0 (m ≠n).3、任何一个函数的平方在[-π, π]上的积分都不等于零,即⎰ππ-2nx cos dx=⎰ππ-2nx sin dx=π;⎰ππ-21dx=2π.二、以2π为周期的函数的傅里叶级数定理15.2:若2a 0+∑∞=1n n n sinnx )b +cosnx (a 在整个数轴上一致收敛于f ,则:a n =⎰ππ-f(x)cosnx π1dx, b n =⎰ππ-f(x)sinnx π1dx, n=1,2,…. 证:由定理条件可知,f(x)在[-π, π]上连续且可积,∴⎰ππ-f(x )dx=2a⎰ππ-dx +∑⎰⎰∞=1n ππ-n ππ-n )sinnx dx b +dx cosnx (a =2a 0·2π=a 0π.即a 0=⎰ππ-f(x)π1dx. 对f(x)=2a 0+∑∞=1n n n sinnx )b +cosnx (a两边同时乘以coskx(k 为正整数),可得:f(x)coskx=2a 0coskx +∑∞=1n n n )sinnx coskx b +cosnx coskx (a ,则新级数收敛,有coskx f(x )ππ-⎰dx=2a 0⎰ππ-coskx dx +∑⎰⎰∞=1n ππ-n ππ-n )dx sinnx coskx b +coskx dx cosnx a (.由三解函数的正交性,等式右边除了以=a k 为系数的那一项积分kx cos a 2ππ-k ⎰dx= a k π外,其余各项积分都为0,∴coskx f(x )ππ-⎰dx= a k π,即a k =⎰ππ-f(x)coskx π1dx (k=1,2,…). 同理,对f(x)=2a 0+∑∞=1n n n sinnx )b +cosnx (a两边同时乘以sinkx(k 为正整数),可得:b k =⎰ππ-f(x)sinkx π1dx (k=1,2,…).概念3:若f 是以2π为周期且在[-π, π]上可积的函数,则按定理15.2中所求a n , b n 称为函数f(关于三角函数系)的傅里叶系数,以f 的傅里叶系数为系数的三角级数2a 0+∑∞=1n n n sinnx )b +cosnx (a 称为f(关于三角函数系)的傅里叶级数,记作f(x)~2a 0+∑∞=1n n n sinnx )b +cosnx (a .注:若2a 0+∑∞=1n n n sinnx )b +cosnx (a 在整个数轴上一致收敛于f ,则,f(x)=2a 0+∑∞=1n n n sinnx )b +cosnx (a .三、收敛定理概念4:若f 的导函数在[a,b]上连续,则称f 在[a,b]上光滑. 若定义在[a,b]上除了至多有限个第一类间断点的函数f 的导函数在[a,b]上除了至多有限个点外都存在且连续,在这有限个点上导函数f ’的左右极限存在,则称f 在[a,b]上按段光滑.注:若函数f 在[a,b]上按段光滑,则有: 1、f 在[a,b]上可积;2、在[a,b]上每一点都存在f(x ±0),且有t 0)f(x -t)f(x lim 0t +++→=f ’(x+0),t-0)f(x -t)f(x lim 0t ---→=f ’(x-0);3、补充定义f ’在[a,b]上那些至多有限个不存在点上的值后,f ’在[a,b]上可积.定理15.3:(傅里叶级数收敛定理)若周期为2π的函数f 在[-π, π]上按段光滑,则在每一点x ∈[-π, π],f 的傅里叶级数2a 0+∑∞=1n n n sinnx )b +cosnx (a 收敛于f 在点x 的左右极限的算术平均值,即20)-f(x 0)f(x ++=2a 0+∑∞=1n n n sinnx )b +cosnx (a ,其中a n , b n 为傅里叶系数.注:当f 在点x 连续时,则有20)-f(x 0)f(x ++=f(x),即f 的傅里叶级数收敛于f(x).推论:若周期为2π的续连函数f 在[-π, π]上按段光滑,则f 的傅里叶级数在(-∞,+∞)上收敛于f.注:由f 周期为2π,可将系数公式的积分区间[-π, π]任意平移,即:a n =⎰+2πc c f(x)cosnx π1dx, b n =⎰+2πc c f(x)sinnx π1dx, n=1,2,….c 为任意实数. 在(-π, π]以外的部分,按函数在(-π, π]上的对应关系作周期延拓,如 f 通过周期延拓后的函数为:,2,1k ],1)π(2k , 1)π-(-(2k x ,) 2π-f(x ]π, (-πx ,f(x)(x)f ˆ⎩⎨⎧⋯±±=+∈∈= 函数f 的傅里叶级数就是指函数(x)fˆ的傅里叶级数.例1:设f(x) )0, (-πx ,0]π[0,x x ,⎩⎨⎧∈∈=,求f 的傅里叶级数展开式.解:f 及其周期延拓后图象如图:可见f 按段光滑.由收敛定理,有a 0=⎰ππ-f(x)π1dx=⎰π0x π1dx=2π. 当n ≥1时,a n =nx cos f(x)π1ππ-⎰dx=⎰π0xcosnx π1dx=⎰-π0π0sinnx n π1|xsinnx n π1dx=π2|cosnx πn 1 =πn 12(cosn π-1)=πn 1(-1)2n -;b n =⎰ππ-f(x)sinnx π1dx=⎰π0xsinnx π1dx=-⎰+π0π0cosnx n π1|xcosnx n π1dx=n (-1)1n +.∴在(-π, π)上,f(x)=4π+∑∞=⎥⎦⎤⎢⎣⎡+-1n n2n sinnx n (-1)cosnx πn 1-)1(.当x=±π时,该傅里叶级数收敛于20)πf(0)πf(+±+-±=20π+=2π.∴f 在[-π, π]上的傅里叶级数图象如下图:例2:把函数f(x)= π2x πx πx 0πx 0 x 22⎪⎩⎪⎨⎧≤<-=<<,,,展开成傅里叶级数. 解:f 及其周期延拓后图象如图:可见f 按段光滑.由收敛定理,有a 0=⎰2π0f(x)π1dx=⎰π02x π1dx-⎰2ππ2x π1dx =-2π2. 当n ≥1时,a n =nx cos f(x)π1ππ-⎰dx =⎰π02cosnx x π1dx-⎰2ππ2cosnx x π1dx ; 又⎰π02cosnx x π1dx=⎰-π0π02xsinnx n π2|sinnx x n π1dx=21n n 2(-1)+-;⎰2ππ2cosnx x π1dx=⎰-2ππ2ππ2xsinnx n π2|sinnx x n π1=21n 2n 2(-1)n 4++; ∴a n =21n 221n n 2(-1)n 4n 2(-1)++---=2n4[(-1)n -1]. b n =⎰2π0f(x)sinnx π1dx=⎰π02sinnx x π1dx-⎰2ππ2sinnx x π1dx ;又⎰π02sinnx x π1dx=-⎰-π0π02xcosnx n π2|cosnx x n π1dx=πn ](-1)-2[1n π)1(3n 1n --+;⎰2ππ2sinnx x π1dx=-⎰-2ππ2ππ2xcosnx n π2|cosnx x n π1dx=-πn ](-1)-2[1n π)1(n 4π3n 1n +--+; ∴b n =πn ](-1)-2[1n π)1(3n 1n --++πn ](-1)-2[1n π)1(n 4π3n 1n --++ =πn ](-1)-4[1n 2π)1(n 4π3n n ---=πn ](-1)-4[1n (-1)]-[1 2πn 2π3n n -+ =⎪⎭⎫ ⎝⎛-+πn 4n 2π](-1)-[1n 2π3n ;∴当x ∈(0, π)∪(π, 2π]时, f(x)= -π2+∑∞=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-++1n 3n n 2sinnx πn 4n 2π](-1)-[1n 2π1]cosnx -[(-1)n 4 .当x=π时,该傅里叶级数收敛于20)f(π0)f(π++-=2)π(π22-+=0;当x=0或2π时,该傅里叶级数收敛于20)f(00)f(0++-=204π-2+=-2π2.注:由当x=2π时,有f(x)= -π2+∑∞=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-++1n 3n n 2sinnx πn 4n 2π](-1)-[1n 2π1]cosnx -[(-1)n 4=-π2+∑∞=1n n 21]-[(-1)n4=-π2-8∑∞=+0n 21)(2n 1=-2π2. 可求得∑∞=+0n 21)(2n 1=8π2.例3:在电子技术中经常用到矩形波,用傅里叶级数展开后,就可以将巨形波看成一系列不同频率的简庇振动的叠加,在电工学中称为谐波分析。

傅里叶级数定理

傅里叶级数定理

傅里叶级数定理傅里叶级数定理是数学中的一项重要定理,它是法国数学家傅里叶在18世纪提出的。

傅里叶级数定理的中心思想是任意一个周期函数都可以表示成一系列三角函数的和,这些三角函数的频率是原周期函数的基本频率的整数倍。

这个定理在数学、物理和工程等学科中都有非常广泛的应用。

傅里叶级数定理的表述可以用以下方式来说明:设f(x)是一个周期为T的函数,那么f(x)可以展开成各个频率的三角函数幅度和相位逐渐递减的级数表达式。

这个级数中的三角函数是正弦函数和余弦函数,其频率为基频的整数倍。

傅里叶级数表达式如下:f(x) = A0 + Σ[An*cos(nωt) + Bn*sin(nωt)]在这个公式中,A0是基频分量的直流分量,An和Bn分别是基频分量的余弦和正弦分量。

ω是基频角频率,n是频率的整数倍。

这个定理是非常重要的,因为它告诉我们任意周期函数都可以用无穷多个正弦和余弦函数来逼近。

这个逼近的程度可以通过级数中各个分量的幅度来控制。

如果级数中的幅度越大,那么逼近的程度就越高,而如果幅度趋近于零,那么函数的表示也就趋近于原函数。

傅里叶级数定理的应用非常广泛。

在数学领域,它可以用于解决各种泛函方程,比如热传导方程、波动方程和拉普拉斯方程等。

通过傅里叶级数的展开,我们可以将这些复杂的方程转化为简单的三角函数的运算。

在物理学中,傅里叶级数定理是研究振动和波动现象的重要工具。

通过将物理量表示为傅里叶级数,我们可以更好地理解光、声音等波动的性质。

在工程学中,傅里叶级数定理被广泛应用于信号处理和通信系统。

通过将信号进行频域变换,我们可以分析信号的频率成分,进而提取有用的信息。

傅里叶级数定理还有一项重要的推广,即傅里叶变换。

傅里叶变换是将一个非周期函数表示成一系列连续频谱的方法。

通过傅里叶变换,我们可以将信号从时域转换到频域,进而分析信号的频率特性。

傅里叶变换在数字信号处理、图像处理和音频处理等领域有着广泛的应用。

总结起来,傅里叶级数定理是数学中的一个重要定理,它告诉我们任意周期函数都可以表示成一系列三角函数的和。

数学分析简明教程答案14

数学分析简明教程答案14
, .
(2)由于 是 的奇函数,因此 , .
, ,
且 在 可微,因此
, .
(3) ,
, ,
, ,
由于 在 可微,故
, .
(4) ,
, ,
, ,
且 在 上逐段可微,连续,故


2.求下列周期函数的Fourier级数:
(1) ;
(2) .
解(1)这是周期为 的函数,且 在 连续,逐段可微,又是偶函数,故 , .

, ,
所以,
, .

所以, , .
(2) ,

, ,
所以,
~ .
由于 在 逐段可微,而
, ,
因此,


2.由展开式

(1)用逐项积分法求 , , 在 中的Fourier展开式;
(2)求级数 , 的和.
解(1)
, ,
所以,
, .
, ,
, .
, ,
所以,
, .
(2)由于 ,故只须求出 即可.在(1)中最后一式,令 ,得到
第十四章傅里叶级数
§1三角级数与傅里叶级数
1.证明:
(1) 是 上的正交系;
(2) 是 上的正交系;
(3) 是 上的正交系;
(4) 不是 上的正交系.
证明(1) ,有

所以, 是 上的正交系.
(2) ,有

பைடு நூலகம்所以, 是 上的正交系.
(3)由于 ,有

又, ,有

故 是 上的正交系.
(4)因为 ,因此 不是 上的正交系.

这是在和号中后一积分中令 换元后得到的.由此得

傅里叶级数与傅里叶变换

傅里叶级数与傅里叶变换

傅里叶级数与傅里叶变换是数学分析中两个重要的概念和理论工具,它们在信号处理、图像处理、物理学等领域有广泛的应用。

傅里叶级数是一种将周期函数分解为一系列谐波的方法,而傅里叶变换是将非周期函数分解成连续谱的方法。

首先,我们来介绍一下傅里叶级数。

傅里叶级数是将一个周期为T的函数f(t)展开为一系列谐波的和的形式,其中每个谐波都有一个特定的频率和振幅。

傅里叶级数的基本公式为:f(t) = a0 + Σ(An cos(nω0t) + Bn sin(nω0t))其中a0表示直流分量,An和Bn分别表示正弦和余弦项的振幅,n为谐波的阶数,ω0为基本频率。

傅里叶级数的系数可以通过求解积分或者利用傅里叶级数的性质进行计算。

傅里叶级数的应用十分广泛。

例如在信号处理中,傅里叶级数可以用来将一个周期信号分解为多个频率成分,从而进行频域分析和滤波等操作。

此外,傅里叶级数也可以用来恢复被损坏的信号,例如在音频和图像压缩中,傅里叶级数可以用来还原被压缩的信号。

接下来,我们来介绍傅里叶变换。

傅里叶变换是将一个非周期函数f(t)分解成连续的频谱。

傅里叶变换的基本公式为:F(ω) = ∫[f(t)*e^(-jωt)] dt其中F(ω)表示函数f(t)在频率ω处的频谱,e^(-jωt)是一个旋转复指数,j为虚数单位。

傅里叶变换的结果是一个连续的函数,其中包含了函数f(t)在不同频率上的振幅和相位信息。

傅里叶变换的应用也非常广泛。

在信号处理中,傅里叶变换可以用来将一个时域信号转换成频域信号,在频域进行滤波、增强和分析操作。

在图像处理中,傅里叶变换可以用来进行图像的频域滤波、边缘检测和压缩等操作。

在物理学中,傅里叶变换可以用来研究波动、振动和量子力学等问题。

傅里叶级数和傅里叶变换是相互联系的。

当一个函数是周期函数时,傅里叶级数可以通过傅里叶变换来计算。

而当一个函数是非周期函数时,傅里叶变换可以通过傅里叶级数来近似计算。

总之,傅里叶级数和傅里叶变换是数学分析的两个重要工具,它们在信号处理、图像处理和物理学等领域具有广泛的应用。

fft 与傅里叶级数

fft 与傅里叶级数

fft 与傅里叶级数傅里叶级数(Fourier Series)是数学分析的一个重要内容,用来表示周期函数和非周期函数的展开形式。

而快速傅里叶变换(Fast Fourier Transform,简称FFT)则是一种高效的计算傅里叶级数的算法,广泛应用于信号处理、图像处理、音频处理等领域。

傅里叶级数是由法国数学家傅里叶于19世纪初提出的。

它的基本思想是将一个周期函数分解为一系列正弦和余弦函数的叠加形式,即:f(x) = a0 + Σ(an*cos(nx) + bn*sin(nx))其中,a0、an、bn是系数,表示了函数f(x)在不同频率下的振幅或幅度,并且有一定的关系式可以求解这些系数。

傅里叶级数可以将一个周期函数表示为无限多个周期函数的叠加,实现了对周期函数的分析和合成。

快速傅里叶变换是由Cooley和Tukey在1965年提出的高效的计算傅里叶级数的算法。

它通过巧妙地利用对称性和周期性,将原本需要O(n^2)的复杂度降低为O(nlogn),大大提高了计算效率。

FFT算法的核心思想是将计算傅里叶级数的问题转化为子问题的递归求解。

通过将输入序列分成偶数项和奇数项,然后对它们分别进行FFT计算,最后将它们合并起来得到最终的结果。

在实际应用中,FFT算法被广泛应用于信号处理,例如音频处理中的频谱分析、图像处理中的频域滤波等。

它可以将信号从时域转换到频域,将信号的频谱特征展示出来,方便对信号进行分析和处理。

除了傅里叶级数和FFT算法,还有一些相关的概念和应用。

例如,在信号处理中,我们还需要了解功率谱密度(Power Spectral Density)、频率响应(Frequency Response)等概念。

功率谱密度描述了信号在不同频率下的能量分布情况,频率响应描述了系统对不同频率信号的响应程度。

总结起来,傅里叶级数和FFT算法是数学分析和信号处理中的重要内容。

傅里叶级数可以将周期函数展开为一系列正弦和余弦函数的叠加,通过求解系数可以得到具体的振幅或幅度,用于对周期函数进行分析和合成。

高中数学(人教版)傅里叶级数课件

高中数学(人教版)傅里叶级数课件

其导函数在[a, b]上除了至多有限个点外都存 并且在这有限个点上导函数
在且连续, 极限存在,
f 的左、右
则称 f 在
[a , b]上按段光滑.
§1 傅里叶级数
三角级数 · 正交函数系
以2π为周期的函数的傅里叶级数
收敛定理
在[a, b]上按段光滑的函数 f ,有如下重要性质: (i) f 在 (ii) 在
所产生的一般形式的三角级数. 容易验证,若三角级数(4)收敛, 则它的和一定是一
个以
为周期的函数. 2π
关于三角级数(4)的收敛性有如下定理:
§1 傅里叶级数
三角级数 · 正交函数系
以2π为周期的函数的傅里叶级数
收敛定理
定理15.1
若级数
| a0 | (| an | | bn, |) 收敛 2 n 1
(8)
( x ) ( x )dx 0,
a
b
则称 交性.
与 在 [a , b] 上是正交的,
由此三角函数系(5)在
或在
[a , b]上具有正
[ π, π] 上具有正交性.
或者说(5)是正交函数系.
§1 傅里叶级数
三角级数 · 正交函数系
以2π为周期的函数的傅里叶级数
收敛定理
(10a ) (10b周期的函数的傅里叶级数
收敛定理
以的傅里叶系数为系数的三角级数(9)称为 f (关于三
角函数系) 的傅里叶级数,
记作
a0 f ( x ) ~ (an cos nx bn sin nx ). 2 n1
这里记号“~”表示上式右边是左边函数的傅里叶级
π
(7)
§1 傅里叶级数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
2
n
2
当n 1,3,5, 当n 2,4,6,
n
x 1 2 [( 2)sin x sin 2x 1 ( 2)sin 3x ]
2
3
(0 x )
y 2[( 2)sin x sin 2x 1 ( 2)sin 3x sin 4x 1 ( 2)sin 5x]
1 22
1 32
1 42
,
2
4
1
2
4
,
1
2
2 , 6
2
1 3
2 , 24
3
2 1
2 . 12
二、正弦级数与余弦级数
1. 奇函数和偶函数的傅里叶级数
定理
(1)当周期为2的奇函数 f ( x)展开成傅里叶级数
时,它的傅里叶系数为
an 0
bn
2
0
f ( x)sin nxdx
(n 0,1,2, ) (n 1,2, )
(2)当周期为2的偶函数 f ( x)展开成傅里叶级
数时,它的傅里叶系数为
2
an 0 f ( x)cos nxdx (n 0,1,2, )
bn 0
(n 1,2, )
证明 (1) 设f ( x)是奇函数,
an
1
f
( x)cos nxdx 奇函数
0
(n 0,1,2,3, )
bn
1
f
和函数图像为
u
1
o
t
1
注意: 对于非周期函数,如果函数 f ( x) 只在 区间 [, ] 上有定义,并且满足收敛定 理条件,也可展开成傅氏级数.
作法:
周期延拓(T 2) F ( x) f ( x) (, )
端点处收敛于1[ f ( 0) f ( 0)] 2
例2
将函数
f
(
x
)
x,
则F
(
x)Βιβλιοθήκη f( 0x)0 x x0
y
f ( x) x 0
0 x
f ( x)的傅氏正弦级数
f ( x) bn sin nx (0 x ) n1
偶延拓: g( x) f ( x)
y
则F ( x)
f f
(x) ( x)
0 x x0
f ( x)的傅氏余弦级数
0 x
f
(x)
1 (2n
1)2
cos(2n
1) x
( x )
利用傅氏展开式求级数的和
f
(
x)
2
4
n1
1 (2n
1)2
cos( 2n
1) x ,
当x 0时, f (0) 0,
2 8
1
1 32
1 52

1
1 22
1 32
1 42
,
1
1
1 32
1 52
(
2 8
),
2
1 22
1 42
1 62
,
3
1
§12.3 函数的Fourier级数展开
Fourier级数的收敛定理
定义(分段光滑函数)
若函数f的导函数在[a,b]连续,则称f在[a,b]光滑;
若f在[a,b]上至多有有限个第一类间断,且其导函数除有限 个点外都存在且连续,且在有限个点上导函数的在左右极 限存在,称f在[a,b]按段光滑.
定理3 若f是以为周期函数,在[a,b]上分段光滑,则 在[a,b]上,f的傅立叶级数收敛于的左右极限的平均 值
4
1)2
,
n 2k 1, k 1,2,
0,
n 2k, k 1,2,
bn
1
f ( x)sin nxdx
1
0 (
x)sin
nxdx
1
0
x
sin
nxdx
(n 1,2,3, )
所以
F
(
x)
2
4
n1
1 (2n
1)2
cos(2n
1) x
特别的,
( x )
f
(
x)
2
4
n1
x,
x0 0 x
展开为
傅立叶级数.
解 所给函数满足定理条件.
延拓f ( x)为(,)上的以2为周期的函数,
记为F ( x),
y
2 0 2 x
于是
a0
1
F ( x)dx
1
f ( x)dx
1
0
(
x)dx
1
0
xdx
,
an
1
f ( x)cos nxdx
2 n2
[(
1)
n
1]
(2k
( x)sin nxdx
2
0
f
( x)sin nxdx
偶函数
(n 1,2,3, )
同理可证(2)
定义
如果
f
(
x
)
为奇函数,傅氏级数
bn
sin
nx
n1
称为正弦级数.
如果 f ( x)为偶函数,
傅氏级数a0 2
an cos nx n1
称为余弦级数.
例 3 设 f ( x) 是周期为 2 的周期函数,它在 [,)上的表达式为 f ( x) x,将 f ( x)展开成
a0 2
an
n1
cos nx
(0 x )
例 4 将函数 f ( x) x 1 (0 x )分别展开成
正弦级数和余弦级数.
解 (1)求正弦级数. 对f ( x)进行奇延拓,
bn
2
0
f
( x)sin nxdx
2
0( x
1)sin nxdx
2 (1 cos n cos n) n
傅氏级数.
解 所给函数满足定理条件,
在点x (2k 1) (k 0,1,2, )处不连续,
级数收敛于 f ( 0) f ( 0) 0,
2
在连续点x( x (2k 1) )处收敛于f ( x),
x (2k 1) 时 f ( x)是以2为周期的奇函数 ,
an 0, (n 0,1,2, )
和 函 数 图 3 2 像
y
0
2 3 x
2. 函数展开成正弦级数或余弦级数
设f ( x)定义在[0,]上, 延拓成以2为周期的 函数 F ( x).

F
(
x)
f (x) g( x)
0 x , 且F ( x 2 ) F ( x),
x0
常用如下两种情况
奇延拓 偶延拓.
奇延拓: g( x) f ( x)
解 u(t)相应的Fourier级数为:
4
u(t) ~
sin(2n 1)t
n1 (2n 1)
在u(t)的不连续点t k (k 0,1,2, )处,
级数收敛于 1 1 0, 在连续点处,收敛到u(t), 2
所以函数的傅氏展开式为:
u(t)
4 sin(2n 1)t
n1 (2n 1)
( t ;t 0,,2, )
f ( x 0)
2
f ( x 0)
a0 2
(an cos nx bn sin nx)
n1
an , bn 为f的傅立叶级数系数
一、以 2为周期的函数的Fourier级数展开
例 1 以2 为周期的矩形脉冲的波形
u
u(t
)
1,
1,
t 0 0 t
1
o
t
将它展成Fourier级数?
1
bn
2
0
f
( x)sin
nxdx
2
0x sin
nxdx
2
[
x
cos n
nx
sin nx n2
]0
2 cos n 2 (1)n1, (n 1,2, )
n
n
f ( x) 2(sin x 1 sin 2x 1 sin 3x )
2
3
2 (1)n1 sin nx. n1 n
( x ; x , 3, )
相关文档
最新文档