§4.7 周期信号的傅里叶变换

合集下载

傅里叶变换及反变换

傅里叶变换及反变换
卷积 相乘 时域 频域
1 2{F [j(0) ]F [j(0) ] }
F ( j )
1
m 0 m
P( j)
( )
( )
0
0
0
R( j)
1 2
0
0
0
F ( j )
1
m 0 m
f (t)
r(t)
y1(t)
低通
滤波
y(t)
cos(0t) cos(0t)
R( j)
1 2
0 ( )
0
P( j)
0 ( )
§4.5 连续时间傅里叶变换的性质
复习
F(j)= f(t)ejtdt
f(t)21 F(j)ejtd
1 唯一性: 2 线性特性: 3 奇偶特性: 4 共轭特性: 5 对称特性: 6 时域展缩特性: 7 时移特性:
9 时域微分特性: 10 频域微分特性: 11 时域卷积定理: 12 频域卷积定理:
偶信号的频谱是偶函数,奇信 号的频谱是奇函数。
F(j) f(t)ejtdt令t
f()ejd f()关e于jtd F(j)
f(t) F (j) , 则 f* (t) F * ( j)
证F (: j)= f (t)ejtd可 t F 得 *(j)= f*(t)ejtdt
F *(j)= f *(t)ejtdt
0
1 4
20
0
0
Y1( j)
1
1
2
4
0
20
Y ( j) 1
2
0
4.7 傅里叶反 变换
要解决的问题:由F( jw)求 f(t)
f(t)21 F (j)ejtd
利用傅里叶变换的互易对称性 部分分式展开

周期信号的傅里叶变换

周期信号的傅里叶变换

周期信号的傅里叶变换
周期信号的傅里叶变换与傅里叶级数有很大的关系,它与非周期信号的傅里叶不是一回事,非周期傅叶变换对不对用在周期信号上。

先做个铺垫:
虚指函数是一个周期函数,他的傅里叶变换可以从下面的开始考虑
由傅里叶级数可知,一个周期信号可以用
表示,即用一串虚指函数的加权表示。

那么由上式可知:虚指函数的傅里叶变换是02()πδωω-。

一个周期信号x (t )的傅里叶变换是一个脉冲串,可用表示。


中表示的是,发生在第K 次谐波关系的的冲激函数的面积是加权的系数
的2pi 倍。

现在关键在于加权的系数的计算。

这里的就是傅里叶级数中的。

下面是傅里叶级数的表达式:
到此为止,可以计算周期信号的傅里叶变换了!
计算的时候注意,可以尽量先直接化成虚指函数,再根据虚指函数与脉冲这间的关系直接计算求得,如果不行,可以通过计算,再代入.
满足狄里赫利条件的周期信号都可以用傅里叶级数的形式表示,即虚指函数的加权;虚指函数的频谱为脉冲02()πδωω-,那么所有可以用傅里叶级数表示的周期信号的频谱都是脉冲串。

如正弦函数的频谱是在+wo 和-wo 处的脉冲。

周期信号的傅里叶变换

周期信号的傅里叶变换
信号与系统
第17讲 周期信号的傅里叶变换
周期信号进行傅里叶变换的目的
将周期信号用傅里叶级数展开得到周期信号的离散 频谱,令周期信号的周期趋近无穷大引出非周期信 号,从傅里叶级数在周期趋于无穷大的极限导出傅 里叶变换,由周期信号的离散谱过渡到连续谱,引 出频谱密度函数的概念
周期信号进行傅里叶变换的目的
f ( t )
F n . e j n 1t
n
根据傅里叶变换的线性和频移特性
F T [ f (t)] 2 Fn ( n1 )
n
3.一般的周期信号的傅立叶变换
F ( j) 2 Fn( n1)
n
周期信号的频谱是离散的,而傅里叶变换反映 的是频谱密度的概念,因此周期信号的傅里叶 变换不同于其傅里叶系数,它不是有限值,而 是冲激函数,这表明在谐波频率点处,即无穷小 的频带范围内取得了无穷大的频谱值。
1.复指数信号的傅里叶变换
因为
1 2 ()
对于复指数
f (t) e j0t
由频移特性,可知
e j0t 2 ( 0)
2. 余弦和正弦信号信号的傅里叶变换
对于正弦和余弦信号,根据欧拉公式,并利用
e j0t 2 ( 0)
得到其频谱函数分别为
cos0t [ ( 0 ) ( 0 )]
sin0t j[ ( 0 ) ( 0 )]
3.一般的周期信号的傅立叶变换
F( j) 2 Fn ( n1)
n
周期信号的傅里叶变换是由无穷多个频域上的 冲激函数组成,这些冲激函数位于信号的各谐
波频率 n1处,其强度为相应傅里叶级数系数
Fn 的 2 倍。
4、周期单位冲激序列的傅里叶变换
T (t)
n
(t nT1)

周期信号的分解-傅里叶级数

周期信号的分解-傅里叶级数

傅里叶级数
傅里叶级数是一种将周期信号分 解为不同频率的正弦和余弦函数 的数学方法。
三角函数系
傅里叶级数使用正弦和余弦函数 作为基底,将周期信号表示为这 些函数的线性组合。
频谱分析
通过傅里叶级数,可以分析周期 信号的频谱,了解信号中各个频 率分量的强度和分布。
周期信号的频谱分析
频谱图
频谱图是用来表示周期信 号中各个频率分量强度的 图形,横轴表示频率,纵 轴表示幅度。
傅里叶级数的发展经历了多个阶段, 包括早期的数学证明和后来的完善, 最终成为数学和工程领域中分析周期 信号的重要工具。
傅里叶级数的应用领域
1 2 3
通信领域
傅里叶级数用于信号处理和调制解调,例如在频 分复用(FDM)和调频(FM)中分析信号的频 谱特性。
振动分析
傅里叶级数用于分析机械振动,通过将振动信号 分解为不同频率的分量,可以研究振动的模式和 频率成分。
图像处理
傅里叶变换在图像处理中广泛应用,通过将图像 信号表示为傅里叶级数,可以实现图像的滤波、 去噪、压缩等处理。
02 傅里叶级数的数学基础
三角函数和正弦函数三角Fra bibliotek数包括正弦函数、余弦函数、正切函数 等,它们在周期信号的分解中起着关 键作用。
正弦函数
正弦函数是周期函数,其基本周期为 $2pi$,在信号处理中常用于描述周 期信号。
周期信号的频谱分析
频谱分析
通过将周期信号分解为不同频率的正弦波分量,可以分析信号中各频率分量的 幅度和相位。
频谱密度函数
描述了信号中各频率分量的分布情况,其图形称为频谱图或频谱密度图。
傅里叶级数的收敛性
傅里叶级数
是一个无穷级数,可以用来表示任何周期信号。

周期信号的傅立叶变换

周期信号的傅立叶变换

又F 1[s
()]
1
s
n
(t
nTs )
fs (t)
f
(t) * 1
s
(t
n
nTs )
1
s
n
f
(t) *
(t
nTs )
1
s n f (t nTs )
由上式可知,假如有限时间信号f (t)的频谱函数
F ( j)在频域中被间隔为s的冲激序列采样,则被取样 后频谱Fs ( j)所对应的时域信号fs (t)以Ts为周期的序列.
举例4.6.2 已知周期为T的单位冲激函数序列T (t)
T (t)= (t mT ) m
式中m为整数。求其傅里叶变换?
解:根据前面的结论
F[ fT (t)] 2 Fn ( n) n
Fn ?
1
Fn T
T
2 T
fT (t)e jnt dt,n 0,1, 2,....
2
Fn
1 T
无失真传输频率特性
设输入信号为f (t),那么经过无失真传输后,输出信号 y(t) Kf (t td )
Y ( j) Ke jtd F ( j)
系统的频率响应
H ( j) Ke jtd
其幅频特性和相频特性分别为
H ( j) | K () td
结论
为使信号无失真传输,对频率响应函数提出的要 求,即在全部频带内,系统地幅频特性应为一常 数,而相频特性应为通过原点的直线。
(
1
j 1)
Y ( j)
1
1 1
( j 2)( j 1) ( j 1) j 2
取傅立叶反变换
y(t) (et e2t ) (t)
例4.7 1某LTI系统的幅频响应|H(j)|和相频特性如图,

常用傅里叶变换表

常用傅里叶变换表

常用傅里叶变换表傅里叶变换是信号处理和数学分析中常用的重要工具,可以将一个函数表示为一系列复指数函数的加权和,从而揭示了信号的频谱特性。

为了方便使用傅里叶变换,人们总结了一些常用的傅里叶变换表,以便在实际应用中快速查找和计算傅里叶变换。

以下是一些常用傅里叶变换表的示例:1. 时间域和频率域的关系当我们进行傅里叶变换时,需要将信号从时间域转换到频率域。

在时间域中,信号通常用函数的自变量表示,而在频率域中,信号则以频率为变量进行表示。

傅里叶变换表中可以列出频率的取值范围以及对应的时间域函数。

这样,我们就可以根据频率的取值范围,找到对应的时间域函数。

2. 傅里叶级数的表达傅里叶级数是傅里叶变换的一种特殊形式,适用于周期信号的分析。

傅里叶级数表包含了一系列关于系数和频率的信息,用于计算周期信号的频谱成分。

3. 傅里叶变换的基本性质傅里叶变换具有许多重要的性质和定理,包括线性性、平移性、尺度性等。

常用的傅里叶变换表可以列出这些性质和定理,并给出相应的公式和解释。

4. 常见函数的傅里叶变换表达式常见的函数,例如矩形函数、三角函数、指数函数等,它们的傅里叶变换具有一定的规律和特点。

傅里叶变换表可以提供这些常见函数的变换表达式,以便将它们与其他信号进行比较和分析。

5. 傅里叶变换的逆变换表达式傅里叶变换提供了将信号从时域转换到频域的方法,而逆傅里叶变换则将信号从频域转换回时域。

逆傅里叶变换表中包含了逆变换的表达式,可以用于将傅里叶变换后的频域信号还原为时域信号。

6. 傅里叶变换的性质推导除了使用表格给出傅里叶变换的常用形式,也可以通过推导的方式得到某些信号的傅里叶变换形式。

这种方式在一些特殊的情况下很有帮助,可以帮助理解和推广傅里叶变换的性质。

总结:常用傅里叶变换表是信号处理领域必备的工具之一。

通过使用傅里叶变换表,我们可以快速计算信号的频谱成分,深入理解信号的特性,加快信号处理的速度。

只要掌握了常见傅里叶变换表的使用方法和基本要点,我们就能更好地应用傅里叶变换进行信号分析和处理工作,提高工作效率。

傅里叶变换(周期和非周期信号)

傅里叶变换(周期和非周期信号)

f (t) Fne jn0t n
n1
e e jn0t jn0t
e e jn0t jn0t
a0 (an
n1
2
bn
2j
)
a0
n1
( an
- jbn 2
e
jn0t
an
2
jbn
e
jn0t
)
*
F0 Fne jn0t F en jn0t
n1
n1
*
F0 a0 是实数,Fn与 F n 是一对共轭复数
n1
c0 a0
cn an2 bn2
a0
1 T
T
2 -T
f (t) dt
2
an
2 T
T
2 T
2
f (t) cosn0t dt
bn
2 T
T
2 T
2
f (t)sin n0t dt
周期信号的傅里叶变换——傅里叶级数
1、 三角函数式傅里叶级数
若周期函数 f (t) 满足狄里赫利( Dirichlet)条件:

f (t) c0 cn cos(n0t n ) n1
谐波形式
ω0是基谐波角频率,简称基波频率。
例1 已知周期信号f(t)如下, 画出其频谱图。
f (t) 1
2
c
os0t
c
os(20t
5
4
)
2
s in 0t
1 2
sin
30t
解 : 将f(t)整理为标准形式
f
(t)
1 2 cos(0t
4
f (t) a0 (an cos0t bn sin0t)
n1
a0

信号与系统分析《信号与系统分析》吴京,国防科技大学出版社 第四章-总结

信号与系统分析《信号与系统分析》吴京,国防科技大学出版社 第四章-总结

G ( t ) sa 2
e
e
t
1 u( t ) a j
( 0)
( 0)
a t
2a a2 2
cos 0 t ( 0 ) ( 0 反变换的方法: 利用定义式 利用傅里叶变换的互易对称性 F ( jt ) 2 f ( ) 部分分式展开 利用傅里叶变换性质和常见的傅里叶变换对


(1)物理意义: ①:非周期信号可以分解成无穷多个 e jt 的连续和; ②:各频率分量的振幅 f(t)的频率特性; ③:F(jw) 称为“频谱密度函数”,简称为“频谱函数”;
F ( j ) F ( j ) e j ( ) F ( j ) ~ f ( t )的幅频特性;
4 系统的频域分析 无失真传输与滤波 (1)系统的频域分析
Y f ( j ) H ( j )F ( j )
F ( j )
H(jw)
Y ( j )
H(jw)-系统函数,系统的频率响应
H(jw): ① 是h(t)的傅里叶变换; ②可以表示系统; ③ 表示系统对输入各频率分量的改变
求解零状态响应: y f ( t ) F 1 [Y f ( j )] F 1 [ H ( j )F ( j )]
i
1 周期信号傅里叶级数
§4.2、4.3
2 非周期信号的傅里叶变换§4.4、4.5 3 傅里叶反变换 4 系统的频域分析 无失真传输与滤波 §4.7
§4.8、4.9
5 周期信号的傅里叶变换 §4.6
1 周期信号傅里叶级数
傅里叶级数展开就是将信号正交分解。
正余弦信号集 {sin( nt ),1, cos(nt ),

傅里叶变换(周期和非周期信号)

傅里叶变换(周期和非周期信号)

例1的频谱图
周期信号的傅里叶变换——傅里叶级数
2、指数形式的傅里叶级数
式中,
f (t) Fne jn0t n
1
Fn T
T
2 T
f (t )e jn0tdt
2
证明
- n
傅里叶复系数
周期信号的傅里叶变换——傅里叶级数
2、指数形式的傅里叶级数
式中,
f (t) Fne jn0t n
1
Fn T
A
T1
2 A sin n1
n1 n
2
cos n1t
A
T1
2A sin
1
2
cos1t
A
sin
1
cos 21t
2A sin
3
31
2
cos 31t
......
2. 指数形式的傅里叶级数
周期矩形脉冲
f (t) Fne jn1t n
Fn
1 T1 A T1
T1
2 T1
f (t )e jn1tdt
2. T不变,τ减小,则频谱的幅度也将减小,谱线密度 保持不变,但包络过零点的间隔将增大。
A
F0 T
Back
非周期信号的傅立里叶变换
两个重要公式:
f ( t ) F( ) : F( ) f ( t )e jtdt
F( ) f (t ):
F -1F( ) f ( t ) 1 F( )e jtd
1、 三角函数式傅里叶级数
若周期函数 f (t) 满足狄里赫利( Dirichlet)条件:
(1)在任意周期内存在有限个第一类间断点; (2)在任意周期内存在有限个的极值点; (3)在任意周期上是绝对可积的,即

信号傅里叶变换

信号傅里叶变换

信号傅里叶变换引言信号傅里叶变换是一种在信号处理中常用的数学工具,用于将一个信号从时域转换到频域。

通过傅里叶变换,我们可以将一个信号分解成若干不同频率分量的叠加,从而能够更加深入地理解信号的特性和结构。

本文将对信号傅里叶变换的原理、应用以及算法进行介绍,并对其进行详细解析。

信号傅里叶变换的原理信号傅里叶变换基于傅里叶级数展开的思想,将一个周期信号分解成一系列谐波分量的叠加。

而对于非周期信号,傅里叶变换则将其看作一个无穷长的周期信号,并将其分解成一系列频率连续的谐波分量的叠加。

傅里叶变换的核心思想是将一个信号转换成其频谱表示,即将信号在频域上的幅度和相位信息提取出来。

通过傅里叶变换,我们可以得到信号在不同频率上的能量分布情况,进而对信号进行分析和处理。

信号傅里叶变换的数学表达式对于一个信号f(t),其傅里叶变换可以表示为:F(ω)=∫f∞−∞(t)e−jωt dt其中,F(ω)表示信号f(t)在频率为ω上的复振幅。

可以看出,傅里叶变换将信号f(t)从时域表示转换到频域表示。

逆傅里叶变换则将频域表示的信号恢复到时域,可以表示为:f(t)=12π∫F∞−∞(ω)e jωt dω信号傅里叶变换的应用信号傅里叶变换在信号处理领域有着广泛的应用。

以下是几个常见的应用场景:频谱分析频谱分析是傅里叶变换的主要应用之一。

通过对信号进行傅里叶变换,我们可以得到信号在频域上的能量分布情况,从而分析信号中不同频率分量的贡献程度。

频谱分析对于音频处理、图像处理等领域具有重要意义。

滤波器设计傅里叶变换可以用于滤波器的设计。

通过在频域上对信号进行滤波操作,我们可以选择性地增强或抑制信号中的某些频率分量,从而达到滤波的效果。

傅里叶变换为滤波器设计提供了有效的理论和工具。

图像处理信号傅里叶变换在图像处理中有着广泛的应用。

通过将图像进行傅里叶变换,我们可以提取图像的频域特征,进行频域滤波、图像增强、图像压缩等操作。

图像傅里叶变换也常用于图像压缩编码和图像识别等领域。

数学物理方法傅里叶变换法

数学物理方法傅里叶变换法

数学物理方法傅里叶变换法傅里叶变换法是一种将一个函数表示为一系列正弦和余弦函数的叠加的方法。

这种方法在数学和物理学中广泛应用,在信号处理、图像处理、调制和解调等领域具有重要意义。

本文将详细介绍傅里叶变换法及其在数学和物理学中的应用。

傅里叶变换法的基本原理是基于傅里叶级数展开的思想。

傅里叶级数展开是将一个周期函数表示为一系列正弦和余弦函数的线性组合。

这种展开的思想被扩展到了非周期函数,即傅里叶变换。

傅里叶变换可以将一个函数表示为连续的正弦和余弦函数的积分形式。

傅里叶变换的定义公式如下:\[F(\omega)=\int_{-\infty}^{\infty}f(t)e^{-i\omega t}dt\]傅里叶变换的逆变换公式如下:\[f(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}F(\omega)e^{i\omega t}d\omega\]傅里叶变换法在数学中有广泛的应用。

它可以用于求解偏微分方程和积分方程等问题。

傅里叶变换法可以将微分方程转化为代数方程,简化求解过程。

例如,在热传导方程中,傅里叶变换法可以将其转化为常微分方程来求解。

在物理学中,傅里叶变换法用于分析和解释各种物理现象。

例如,在波动现象中,傅里叶变换法可以将一个周期信号分解为不同频率的正弦和余弦函数,从而可以分析波的频谱特性。

在光学中,傅里叶变换法可以用于分析光的传播和衍射现象。

在量子力学中,傅里叶变换法被广泛用于求解薛定谔方程。

傅里叶变换还具有信号处理和图像处理方面的重要应用。

在信号处理中,傅里叶变换可以将一个信号从时域转换到频域,从而可以方便地进行滤波、降噪等处理。

在图像处理中,傅里叶变换可以将一个图像从空域转换到频域,并可以进行图像增强、去噪等操作。

此外,傅里叶变换还有一些与之相关的变换方法,如离散傅里叶变换(DFT)和快速傅里叶变换(FFT)。

离散傅里叶变换是一种将离散信号转换到频域的方法,而快速傅里叶变换是一种计算傅里叶变换的高效算法。

傅里叶变换

傅里叶变换

1 2
F1
ω 2
e j3ω
F1ω Ff1t
Ff1 t F1ω
对t时移6, 得
Ff16 t F1ωe j6ω
对t压缩2倍
F f1 6
2t
1 2
F1
ω 2
e j 3ω
方法三 利用傅里叶变换的性质
Ff at t0
1 a
F
ω
e
t j
0
a
a
上上 a -2, t0 6上上上上上上
F f1 6
方法二:利用傅里叶变换的积分性质
f t 1 f1(t)
f1(t)为f2 (t)的积分
O
1
1 2
t
f
A
t
1
O1
t
f t
2 1
F2
ω
Sa
ω 2
e

上上
F1 ω
πω
1

Sa
ω 2
ejω
Sa ω ejω
πω 2

Sa ω ejω
F ω F1 F1ω 3 π δω
2 jω
O1
t
jbn )
Fn
F n
1 2
cn
1 2
dn
1 2
an2 bn2
Fn Fn cn
Fn Fn an
bn j(Fn Fn )
Fn 是 n1 的偶函数。
(3)函数的时域对称性与傅里叶系数的关系 ①实偶函数的傅里叶级数中不包含正弦项,只可能包含直流项和余弦项。 ②实奇数的傅里叶级数中不包含余弦项和直流项,只可能包含正弦项。 ③实奇谐函数的傅里叶级数中只可能包含基波和几次谐波的正弦、余弦项,而不包含偶次 谐波项。 2.傅里叶变换 傅里叶变换定义为

周期信号的傅里叶变换

周期信号的傅里叶变换
x( t )
1 Xn T
n T1 2 T 1 1 2 jn 1 t X e n

x( t )e jn 1t dt
4
单周期信号的傅里叶变换
X d ( ) xd ( t )e j tdt Nhomakorabeadt
1 Xn T1

T1 2 T 1 2
x( t )e jn 1t dt
x(t)
xs(t) x( t ) T xs(t)
0
t
0
T
2T
3T
t
11
调制信号x(t)
抽样
xs(t)
数字信号 量化编码 载波信号
这是由于傅里叶变换反映的是频谱密度概念,周期 信号在各谐振点上,具有有限幅度,说明在这些谐振频 点上其频谐密度趋于无限大,所以变成冲激函数。 这也说明了傅里叶级数可看作傅里叶变换的一种特 例。 三、周期信号与单周期信号频谱间的关系 周期信号x(t)在时域上可以看作是它的单周期信号 xd(t)的周期延拓。已知周期信号的傅里叶级数为:
X ( )
n
0
T1
t
jn1t e
X

n
2 ( n 1 )

n 1 E 1 Sa ( n 1 ) 2 n
9
x0(t) E
E
X0() 2/
0
t E/T1 x(t) E Xn


2/
2.3.4 周期信号的傅里叶变换
前面在推导傅里叶变换时,是将非周期信号看成是 周期信号T 无穷大的周期信号的极限,从而导出了频谱 密度函数的概念。 本节将这概念推广去求周期信号的频谱密度函数 ,即 求周期信号的傅里叶变换,从而得出傅里叶级数是傅里叶 变换的特例的结论。 周期信号是不满足绝对可积条件的,同样它也仅仅在 频谱中引入冲激函数后,傅里叶变换才存在。 因为周期信号可以展成傅里叶级数,即展成一系列不 同频率的复指数分量或正弦、余弦分量的叠加。下面先 求复指数、正弦、余弦分量的傅里叶变换,在此基础上再 求任意周期信号的傅里叶变换。

周期信号的傅里叶变换

周期信号的傅里叶变换

Sa ns
2
Fs ()
E
Ts
n
Sa
ns
2
F (
ns )
上式表明:
信号在时域被抽样后,它的频谱Fs(ω)是连 续信号的频谱F(ω)以抽样频率ωs为间隔周 期地重复而得到的.在重复过程中,幅度被抽 样脉冲p(t)的傅立叶系数所加权,加权系数 取决于抽样脉冲序列的形状.
抽样前 F(ω) 1
抽样后 Fs(ω) E ωs
2
2sin
4 (4 2e j )
f (t) f1(t) T (t) T 2
T (t) ( )
2
T
F()
4sin n 4 [2 (1)n ] ( n )
n
n
例题5 :已知f (t) F (),求下列信号的FT :
(1) d f (at b) dt
(2) f 2 (t) sin 0t
理想抽样
:
Fs ( )
1 Ts
F (
n
ns )
频域抽样信号的FT
f1 (t )
1
1
n
f
(t
nT1)
时域抽样定理
| | m
fs
2 fm或Ts
1 2 fm
频域抽样定理
|t
|
tm
Ts
2tm或f s
1 2tm
例题1:
已知周期信号f1(t)和f2 (t)如图,且
f1(t) a0 [an cos(n1t) bn sin(n1t)] n1
✓若f(t)被等间隔T取样,将等效于F(ω)以 ωs=2/T为周期重复;
✓而F(ω)被等间隔ωs取样,则等效于f(t)以T 为周期重复.
➢因此,在时域中进行抽样的过程,必然导致 频域中的周期函数;在频域中进行抽样的过 程,必然导致时域中的周期函数。

周期信号的傅里叶变换

周期信号的傅里叶变换

二、一般周期信号的傅里叶变换
令周期信号f(t)的周期为T1,角频率为1=2f1
e 一般周期信号:f (t)
F jn1t n
n
F 2 Fn n1 n
其中:
Fn
1 T1
T1
2 T1
f (t)e jwtdt
2
1.单脉冲信号的傅里叶变换
单脉冲信号:从周期脉冲信号f(t)中截取一个周 期,得到单脉冲信号。
思考题
1.正弦、余弦信号的傅里叶变换公式? 2. 一般周期信号的傅里叶变换公式?
n

1 Fn T1
fT (t) T (t) FT w1 (w nw1) n
可见,在周期单位冲激序列的傅里叶变换中只包含位于 =0,1, 21, n1, 频率处的冲激函数,其强度大 小相等,均等于1 。
例3-11
求周期矩形脉冲信号的傅里叶级数和 傅里叶变换。
f (t)
E


T
0
T
一、正弦、余弦周期信号的傅里叶变换
e Q f (t) j0t F F( m0 ), 0 0 1F2 (t) e j0t F 2 ( m0 ), 0 0
余弦信号:cos(1t) F ( 1) ( 1) 正弦信号:sin(1t) F j ( 1) ( 1)
1 f (t) cos w1t
2
f
(t
)e
jwt
dt
wnw1
周期信号的傅里叶级数的系数Fn等于单脉冲信号的傅里 叶变换F0()在n1频率点的值乘以1/T1。
可利用单脉冲的傅里叶变换方便求出周期性信号的傅里 叶级数的系数。
例3-10 单位冲激函数的间隔为T1,用符号T(t)
表示周期单位冲激序列:

周期信号和脑电的傅里叶变换分析

周期信号和脑电的傅里叶变换分析

/ 幅 值
0 -10 0
1
2
3
4
-10 0
1
2
3
4
10 5
时间(s) alpha wave
8-13Hz
/ 幅 值
10 5 0 -5
时间(s) beta wave
14-30Hz
/ 幅 值
0 -5 -10 0 1 2 3 4
-10 0
1
2
3
4
时间(s)
时间(s)
10
• (5)生理意义分析 • 脑电频率会向低频段迁移,人体表现出在疲劳状态 • 疲劳度因子变大,表明观看40分钟的3D影片人体产生疲劳
幅值/ μV
脑电信号
60
40 20 0 -20 -40 0 0.5 1 1.5 2 2.5 3 3.5 4
• • • •
EEGpre=load('pre.txt'); k=(0:N-1)*fs/N; EEGk=fft(EEGpre); %myDFT stem(k(1:N/2),abs(EEGk(1:N/2));
幅值
时间 (s)
脑电频谱
3000
3000
2500
2500 2000 1500
2000
1500
1000 500 0 0 5 10 15 20 25 30 35
1000
• 计算时间? • TimeDFT/TimeFFT 数量级在103
500
0 0 20 40
60
80
100
120
140
频率 (Hz)
8
(3)频谱分析
0
幅度/V
幅度
0
-0.2
4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

t
T
o
T
t
比较(1)(2)
(1)
w玏n f 0 (t ) « fT (t )
1 Fn = ò T
T 2 T T 2 2 T T 2
ò
f 0 (t )e-
j wt
dt
f (t )e-
j nW t
dt
1 Fn F0 j n T (2)
▲ ■ 第 8页
F j
π
0
O
π
0
sin 0 t jπ 0 jπ 0 sin 0 t 频谱图:
F j

2
0
π
0 o
π
0

0



2
o


第 3页
二、一般周期信号的傅里叶变换
( 4) 其最大强度在 n 0处,为 。 T▲ Nhomakorabea■
第 7页
三、傅里叶系数与傅里叶变换关系
推导:一个周期单脉冲f0(t)的傅氏变换F0(jω)与周期信号 fT(t)的傅氏系数Fn的关系:
f 0 t
fT t
设 f0 t F0 j
F0 ( j w) =
T 2
o
T 2
Fn = Tò
2 T 2
fT (t )e
- jnW t
1 dt = T
δT(t)←→
2p T
邋 d(w n= - ?

nW )= W
n - ?
d(w - nW )= W dW(w)

第 5页
周期信号傅氏变换例2
例2:周期信号如图,求其傅里叶变换。 解:周期信号f(t)也可看作 一时限非周期信号f0(t)的周 … 期拓展。即 -4
fT (t ) = fT (t ) =
n= - ? ゥ
å
¥
Fn e jnW t
1 Fn = ò T
T 2 T 2
fT (t ) en - ?
jnW t
dt
jnW t F e 邋 n n= - ?
ゥ jnW t
FT ( jw) = 2p
Fn F [e
jnW t
Fnd(w - nW )
?
证明:
F [ fT (t )] = F [ 邋 Fn e
n= - ?
]=
n - ?
] = 2p
n - ?
?
Fnd(w - nW ) = FT ( jw)
说明:(1)周期信号f T(t)的傅氏变换由冲激序列
组成,冲激函数仅存在于谐波频率处;
(2)谱线的幅度不是有限值,因为FT(jω)代表频谱密度。
例1 例2
▲ ■ 第 4页
频域分析例1
例1:δ T(t)←→? T 解: 1
1 cos 0 t 2π 0 2π 0 π 0 π 0 2
同理
sin 0 t jπ 0 jπ 0
▲ ■ 第 2页
频谱图
cos 0 t π ( 0 ) ( 0 ) cos 0 t 频谱图:
1 f(t) … -1 0 1 4 t
f(t) = T(t)* f0(t)
F(jω) = ΩΩ(ω) F0(jω)

F0 ( jn) ( n)
n

本题 f0(t) = g2(t)←→ 2Sa( )
n n F(jω) 2Sa(n) ( n) Sa( ) ( ) 2 2 n n


2 T 2
第 6页
n n 强度Fn Sa( ) Sa( ) , n = 0 ,±1,±2,… T 2 T T F [ fT (t )]
( ) T


O

2

(1)一系列冲激序列, 当ω nΩ时有冲激 (2)包络线形状:抽样函数 2π (3)第一个零点坐标:

第 1页
一.正、余弦的傅里叶变换 1 cos t e e 2
0 j 0 t j 0 t
1 j 0 t sin 0 t e e j 0 t 2j


已知 由频移特性得
1←→2πδ(ω) e j ω0 t ←→ 2πδ(ω–ω0 ) e –j ω0 t ←→ 2πδ(ω+ω0 )
§4.7
周期信号的傅里叶变换
周期信号:f(t)←→傅里叶级数Fn 离散谱 非周期信号:f(t)←→傅里叶变换F(jω) 连续谱 周期信号的傅里叶变换如何求?与傅里叶级数的关系?
周期 f t 统一的分析方法:傅里叶变换 非周期 • 正、余弦的傅里叶变换 • 一般周期信号的傅里叶变换 • 傅里叶系数与傅里叶变换
相关文档
最新文档